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Objectif du cours

∂2u

∂t2
− κ ·∇2u = f

∂v

∂t
+ v ·∇v = −∇p+ ν ∇2v + g

∇ · v = 0

équation des ondes
équation d’advection-diffusion

+
contrainte d’incompressibilité
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Organisation du cours
Evaluation et enseignement

1. Forme de l’enseignement

• 13 séances de cours avec exercices et solutions
• 5 laboratoires (programation en matlab ou python)

2. Forme de l’évaluation

• 1 examen écrit (80% de l’évaluation)
• 1 mini-projet (20% de l’évaluation)
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Contenu

Simulation en mécanique des fluides
Applications
Aspects généraux

Equations fondamentales
Equations de conservation
Modèles constitutifs
Equations de Navier–Stokes
Equation d’advection-diffusion

Discrétisation d’équations aux dérivées partielles
Problème
Maillage
Méthode numérique
Principe

Théorie des ondes
Définition
Relation de dispersion et vitesse de phase
Equations d’évolution

Références
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Simulation en mécanique des fluides
Quelques applications

• Mécanique des fluides fondamentale
Instabilités, turbulence, microfluidique, . . .

• Physique des plasmas
Confinement magnétique pour la fusion nucléaire, . . .

• Géophysique
Volcanologie, sysmique, pollution, . . .

• Météorologie
Prévisions à court et long terme (climatologie), . . .

• Risques naturels
Avalanches, glissements de terrain, . . .
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Simulation en mécanique des fluides
Quelques applications

• Transports
Automobile, aviation, maritime, ferroviaire . . .

• Chimie
Ecoulements réactifs, combustion, pharmaceutiques, . . .

• Agro-alimentaire
Procédés de production, . . .

• Bio-médical
Valves cardiaques, sténoses, . . .

• Energie
Turbomachines thermiques/hydrauliques, éoliennes, . . .

• Industrie pétrolière
Ecoulements en milieux poreux, transport de sédiments, . . .
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Geste Engineering SA
Activités liées à la mécanique des fluides

• Simulations aérodynamiques

• Sécurité et confort tympanique des
voyageurs

• Stratégies d’évacuation et de désenfumage

• Dimensionnement des systèmes de contrôle
thermique

• Etudes aéro-thermodynamiques

M2 Lausanne

Métro du Grand-Paris

Ligne ferroviaire Lyon-Turin

http://www.geste.ch
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Simulation en mécanique des fluides
Intérêts

La simulation numérique

• offre une alternative aux approches analytiques pour résoudre des
équations complexes dans des géométries complexes

• offre une alternative lorsque l’expérimentation est difficile, trop
coûteuse ou impossible

• donne accès à une information plus détaillée que l’expérimentation

• permet de réaliser rapidement des études paramétriques
(prototypage virtuel)
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Simulation en mécanique des fluides
Dangers

La simulation numérique

• n’est pas un remplacement de l’expérimentation ou de la théorie,
mais un outil complémentaire (comparaison et validation)

• n’est pas un remplacement de la connaissance en ingénierie et en
physique

• ne donne pas de résultats fiables sans efforts et sans expertise
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Simulation en mécanique des fluides
Démarche générale

1. Modélisation (physique)
Développement d’un modèle mathématique décrivant le comportement physique d’un système

2. Résolution des équations (analyse numérique)
Utilisation d’algorithmes d’analyse numérique pour obtenir une version discrète du modèle

3. Programmation et exécution des algorithmes (informatique)
Conversion de la forme discrète en logiciel (codage)

4. Interprétation et exploitation des résultats (ingénierie, expertise)
Comparaison avec la théorie et l’expérience, exploitation des résultats pour le développement d’une

application
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Simulation en mécanique des fluides
Compétences et objectifs de ce cours

• Evaluer la précision des résultats numériques en fonction des choix
des méthodes et paramètres de simulation.

• Analyser des solutions numériques et identifier les inconsistances par
rapport à la réalité physique.

• Comprendre et appliquer les concepts de la vérification et de la
validation.

• Comprendre les bases de la programmation pour développer un
logiciel structuré en utilisant un langage de programmation tel que
C++, fortran ou matlab.

• Comprendre le fonctionnement des logiciels de simulation utilisés
dans l’industrie.
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Equations fondamentales
Equation de conservation de la masse

m =

∫
Ω

ρ dV = const

• Formulation matérielle

variation︷︸︸︷
d

dt

∫
Ω

ρ dV︸ ︷︷ ︸
masse

= 0
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Equations fondamentales
Equation de conservation de la masse

d
dt

∫
Ω ρ dV = 0

d
dt

∫
Ω f dV =

∫
Ω ∂tf dV +

∫
∂Ω fv · n dS∫

Ω ∇ · F dV =
∫
∂Ω F · n dS

• Formulation spatiale∫
Ω

∂tρ dV +

∫
∂Ω

ρv · n dS = 0

∫
Ω

∂tρ+ ∇ · (ρv) dV = 0

• Formulation locale
∂tρ+ ∇ · (ρv) = 0
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Equations fondamentales
Equation de conservation de la quantité de mouvement

q = mv

dq

dt
= f = ma

• Formulation matérielle

variation︷︸︸︷
d

dt

∫
Ω

ρv dV︸ ︷︷ ︸
quantité de mouvement

=

forces volumiques︷ ︸︸ ︷∫
Ω

ρg dV +

∫
∂Ω

σ · n dS︸ ︷︷ ︸
forces surfaciques
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Equations fondamentales
Conservation quantité de mouvement

d
dt

∫
Ω ρv dV =

∫
Ω ρg dV +

∫
∂Ω σ · n dS

d
dt

∫
Ω f dV =

∫
Ω ∂tf dV +

∫
∂Ω fv · n dS∫

Ω ∇ · F dV =
∫
∂Ω F · n dS

• Formulation spatiale∫
Ω

∂t(ρv) dV +

∫
∂Ω

ρvv · n dS =

∫
Ω

ρg dV +

∫
∂Ω

σ · n dS

• Formulation locale

∂t(ρv) + ∇ · (ρvv) = ρg + ∇ · σ
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Equations fondamentales
Equation de conservation de l’énergie

e0︸︷︷︸
énergie

=

interne︷︸︸︷
e +

1

2
v · v︸ ︷︷ ︸

cinétique

• Formulation matérielle

variation︷︸︸︷
d

dt

∫
Ω

ρe0 dV︸ ︷︷ ︸
énergie

=

puissance volumique︷ ︸︸ ︷∫
Ω

ρg · v dV +

∫
∂Ω

(σ · n) · v dS︸ ︷︷ ︸
puissance surfacique

+

échanges︷ ︸︸ ︷∫
∂Ω

φ · n dS
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Equations fond.
Conservation de l’énergie

d
dt

∫
Ω ρe0 dV =

∫
Ω ρg ·v dV +

∫
∂Ω(σ ·n) ·v dS+

∫
∂Ω φ ·n dS

d
dt

∫
Ω f dV =

∫
Ω ∂tf dV +

∫
∂Ω fv · n dS∫

Ω ∇ · F dV =
∫
∂Ω F · n dS

• Formulation spatiale∫
Ω

∂t(ρe0) dV+

∫
∂Ω

ρe0v·n dS =

∫
Ω

ρg·v dV+

∫
∂Ω

(σ·n)·v+φ·n dS

• Formulation locale

∂t(ρe0) + ∇ · (ρe0v) = ρg · v + ∇ · (σ · v) + ∇ · φ



Simulation Equations Discrétisation EDP Ondes Références

Equations fondamentales
Equations de conservation

Les trois équations de conservation s’écrivent donc

∂tρ+ ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvv) = ∇ · σ + ρg

∂t(ρe0) + ∇ · (ρe0v) = ∇ · (σ · v) + ρg · v + ∇ · φ

• Plus d’inconnues que d’équations de conservation

• Introduction d’équations constitutives (modélisation)



Simulation Equations Discrétisation EDP Ondes Références

Equations fondamentales
Modèles constitutifs pour les gaz parfaits

• Equation d’état des gaz parfaits

p = ρrT

• Relation thermodynamique des gaz parfaits

e = cvT

• Loi de Fourier
φ = −λ∇T

• Fluide visqueux newtonien

σ = −pI + µ

≡ 2D︷ ︸︸ ︷
(∇v + ∇vT)︸ ︷︷ ︸

≡ τ

+η (∇ · v)I
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Equations fondamentales
Equations de Navier–Stokes, fluides visqueux Newtoniens

En injectant les relations constitutives dans les équations de conservation,
on obtient

variation︷︸︸︷
∂tρ +

accumulation︷ ︸︸ ︷
∇ · (ρv) = 0

ρ( ∂tv︸︷︷︸
variation

+

advection︷ ︸︸ ︷
v ·∇v ) = −∇p︸ ︷︷ ︸

source

+

diffusion︷ ︸︸ ︷
µ∇2v + ρg︸︷︷︸

source

ρcv( ∂tT︸︷︷︸
variation

+

advection︷ ︸︸ ︷
v ·∇T ) = 2µD : D︸ ︷︷ ︸

source

+

diffusion︷ ︸︸ ︷
λ∇2T
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Equations fondamentales
Equations de Navier–Stokes, fluides visqueux Newtoniens

Si on suppose maintenant que l’écoulement est isotherme et
incompressible, i.e.

T, ρ = const

les équations précédentes se simplifient sous la forme

contrainte︷ ︸︸ ︷
∇ · v = 0

ρ( ∂tv︸︷︷︸
variation

+

advection︷ ︸︸ ︷
v ·∇v ) = −∇p︸ ︷︷ ︸

mult. Lagrange

+

diffusion︷ ︸︸ ︷
µ∇2v + ρg︸︷︷︸

source

La pression n’obéit plus à l’équation des gaz parfaits mais devient un
multiplicateur de Lagrange permettant de satisfaire l’incompressibilité.
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Equations fondamentales
Equation d’advection-diffusion

∇ · v = 0

ρ(∂tv+v ·∇v) = −∇p+µ∇2v+ρg

• Forme générique

variation︷︸︸︷
∂tu − ν∇2u︸ ︷︷ ︸

diffusion

+

advection︷ ︸︸ ︷
c ·∇u = f︸︷︷︸

source

• En une seule dimension spatiale

variation︷︸︸︷
∂tu − ν ∂2

xxu︸ ︷︷ ︸
diffusion

+

advection︷ ︸︸ ︷
c ∂xu = f︸︷︷︸

source
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Poser le problème
Domaine - Opérateur differentiel - Terme source - Conditions aux limites

On considère l’équation de diffusion stationnaire en une dimension
spatiale  −ν

∂2u

∂x2
= f, Ω = [a,b]

u(a) = 0, u(b) = 0

avec f donné, ν ∈ R et la solution

u ∈ C2(Ω)
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Construire un maillage
Noeuds - Connectivité


−ν

∂2u

∂x2
= f, Ω = [a, b]

u(a) = 0, u(b) = 0


−ν ∂

2u

∂x2

∣∣∣∣
xi

= fi, i = 2, . . . ,p− 1

u1 = 0, up = 0
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Utiliser une méthode numérique
Différences finies

Pour approcher la dérivée seconde, on écrit les séries de Taylor

ui+1 = ui +
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

+
h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

ui−1 = ui −
h

1!

∂u

∂x

∣∣∣∣
xi

+
h2

2!

∂2u

∂x2

∣∣∣∣
xi

− h3

3!

∂3u

∂x3

∣∣∣∣
xi

±O(h4)

dont la somme permet d’obtenir

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

h2
−2h2

4!

∂4u

∂x4

∣∣∣∣
xi

±O(h4)︸ ︷︷ ︸
ε=O(h2)
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Méthode numérique
Différences finies

−ν ∂
2u
∂x2

∣∣∣∣
xi

= fi

∂2u
∂x2

∣∣∣∣
xi

=
ui−1−2ui+ui+1

h2
+O(h2)

On obtient ainsi le système d’équations algébriques Au = b

• exprimé sous forme indicielle −ν
ui−1 − 2ui + ui+1

h2
= fi, i = 2, . . . ,p− 1

u1 = 0, up = 0

• exprimé sous forme matricielle

−
ν

h2


+1
. . .

+1 −2 +1
. . .

+1


︸ ︷︷ ︸

A


u1
.

ui
.

up


︸ ︷︷ ︸

u

=


0
.
fi
.
0


︸ ︷︷ ︸

b
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Discrétisation
Principe

∂2u
∂x2

∣∣∣∣
xi

'
ui+1−2ui+ui−1

h2

• Le problème faisant intervenir une equation aux dérivées partielles
linéaire devient un système d’equations algébriques linéaires −ν

∂2u

∂x2
= f, Ω = [a,b]

u(a) = 0, u(b) = 0

→ Au = b

• Une étape importante est l’expression de l’opérateur différentiel (ici
la dérivée seconde) sous forme discrète

∂2

∂x2
→ Dxx =

1

h2


?
. . .

+1 −2 +1
. . .

?


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Discrétisation
Principe

• Gradient ∇(.) → G =


. .
. . .

? ? ?
. . .

. .



• Divergence ∇· → D =


. .
. . .

? ? ?
. . .

. .



• Rotationel ∇× → R =


. .
. . .

? ? ?
. . .

. .



• Laplacien ∇2 = ∇ ·∇(.) →
L = DG
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Equations aux dérivées partielles
Exemples (1/2)

• Navier
Mécanique des solides

(λ+ µ)∇(∇ · u) + µ∇2u+ f = 0

• Navier-Stokes
Mécanique des fluides

∂v

∂t
+ v ·∇v = −∇p+ ν ∇2v + g, ∇ · v = 0

• D’Alembert
Acoustique, éléctromagnetisme, mécanique des fluides et des solides

ε
∂2u

∂t2
−∇ · (µ−1∇u) = f
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Equations aux dérivées partielles
Exemples (2/2)

• Maxwell
Electromagnetisme

ε
∂2E

∂t2
+ σ

∂E

∂t
+ ∇× (µ−1∇×E) = f

• Darcy
Mécanique des fluides (milieux poreux)

−∇ · (µ∇p) = f

• Schrodinger
Mécanique quantique

i~
∂ψ

∂t
+

~2

2µ
∇2ψ + V ψ = 0
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Théorie des ondes
Définition

On considère l’onde

u(x, t) = û eiφ(x,t), û ∈ R

du =
∂u

∂x
dx+

∂u

∂t
dt

avec φ(x, t) la phase et les dérivées partielles

∂u

∂x
=
∂u

∂φ

∂φ

∂x
= iû eiφ ∂φ

∂x

∂u

∂t
=
∂u

∂φ

∂φ

∂t
= iû eiφ ∂φ

∂t

On obtient ainsi la différentielle totale

du = iû eiφ

(
∂φ

∂x
dx+

∂φ

∂t
dt

)
= iu dφ
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Théorie des ondes
Relation de dispersion et vitesse de phase

On définit la phase

φ = kx− ω(k)t k, ω ∈ C

dφ =
∂φ

∂x
dx+

∂φ

∂t
dt = kdx− ω(k)dt

• Relation de dispersion
Relation liant la pulsation au nombre d’onde

ω = ω(k)

• Vitesse de phase
Vitesse de propagation de l’onde (célérité)

du = iu dφ = 0 → dx

dt
=
ω(k)

k
→ vφ =

ω(k)

Re(k)
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Théorie des ondes
Relation de dispersion et vitesse de phase

u = û eiφ

φ = kx− ωt

On considère la propagation d’une onde

u = û ei(kx−ωt)

dont la relation de dispersion s’écrit

ω(k) = ck, c ∈ R

On a donc la vitesse de phase

vφ =
ω

Re(k)
= c = const
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Théorie des ondes
Relation de dispersion et vitesse de phase

u = û eiφ

φ = kx− ωt

On considère maintenant la propagation d’une onde

u = û ei(kx−ωt)

dont la relation de dispersion s’écrit

ω(k) = ck2

On a donc la vitesse de phase

vφ =
ω

Re(k)
= ck 6= const
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Théorie des ondes
Relation de dispersion et vitesse de phase

• Milieu non-dispersif
Toutes les ondes se déplacent à la même vitesse quelle que soit leur nombre d’onde

vφ =
ω(k)

Re(k)
= const

• Milieu dispersif
La vitesse de propagation dépend du nombre d’onde

vφ =
ω(k)

Re(k)
6= const
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Théorie des ondes
Equation d’advection

∂u

∂t
+ c

∂u

∂x
= 0

En considérant une solution de la forme u = û ei(kx−ωt), on obtient

(−iω + c ik)û = 0

dont on déduit la relation de dispersion et la vitesse de phase

ω = ck

vφ =
ω

Re(k)
= c
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Théorie des ondes
Equation de diffusion

∂u

∂t
− ν ∂

2u

∂x2
= 0

En considérant une solution de la forme u = û ei(kx−ωt), on obtient

(−iω + νk2)û = 0

dont on déduit la relation de dispersion et la vitesse de phase

ω = −iνk2

vφ =
ω

Re(k)
= −iνRe(k)
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