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Méthodes de discrétisation en fluides

1. Introduction

Marc A. Habisreutinger

Ecole Polytechnique Fédérale de Lausanne
Section de génie mécanique, CH-1015 Lausanne
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Informations pratiques

® Marc A. Habisreutinger
Geste Engineering SA, Rue de la Gare de Triage 5, 1020 Renens

marc-antoine.habisreutinger@epfl.ch

® Site moodle du cours

http://moodle.epfl.ch/course /view.php?id=249
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Objectif du cours

0
a—?—l—v-Vv:—Vp%-uVQ'LH—g

V-v=0

équation d’advection-diffusion
+
contrainte d'incompressibilité

équation des ondes
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Organisation du cours

Evaluation et enseignement

1. Forme de I'enseignement

® 13 séances de cours avec exercices et solutions
® 5 |aboratoires (programation en matlab ou python)

2. Forme de |'évaluation

® 1 examen écrit (80% de I'évaluation)
® 1 mini-projet (20% de I'évaluation)
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Simulation en mécanique des fluides

Quelques applications

® Mécanique des fluides fondamentale

Instabilités, turbulence, microfluidique, ...

® Physique des plasmas

Confinement magnétique pour la fusion nucléaire, ...
® Géophysique

Volcanologie, sysmique, pollution, ...
® Météorologie

Prévisions a court et long terme (climatologie), ...

® Risques naturels

Avalanches, glissements de terrain, ...
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Simulation en mécanique des fluides

Quelques applications

® Transports
Automobile, aviation, maritime, ferroviaire ...
® Chimie
Ecoulements réactifs, combustion, pharmaceutiques, ...
® Agro-alimentaire
Procédés de production, ...
® Bio-médical
Valves cardiaques, sténoses, . ..
® Energie

Turbomachines thermiques/hydrauliques, éoliennes, ...

® |ndustrie pétroliere

Ecoulements en milieux poreux, transport de sédiments, ...
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Geste Engineering SA

Activités liées a la mécanique des fluides

M2 Lausanne

Simulations aérodynamiques

Sécurité et confort tympanique des
voyageurs

Stratégies d'évacuation et de désenfumage

Dimensionnement des systemes de controle
thermique

Ligne ferroviaire Lyon-Turin

Etudes aéro-thermodynamiques
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Simulation en mécanique des fluides

Intéréts

La simulation numérique

® offre une alternative aux approches analytiques pour résoudre des
équations complexes dans des géométries complexes

® offre une alternative lorsque I'expérimentation est difficile, trop
coliteuse ou impossible

® donne acces a une information plus détaillée que I'expérimentation

® permet de réaliser rapidement des études paramétriques
(prototypage virtuel)
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Simulation en mécanique des fluides

Dangers

La simulation numérique

® n'est pas un remplacement de |'expérimentation ou de la théorie,
mais un outil complémentaire (comparaison et validation)

® n'est pas un remplacement de la connaissance en ingénierie et en
physique

® ne donne pas de résultats fiables sans efforts et sans expertise
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Simulation en mécanique des fluides

Démarche générale

1. Modélisation (physique)

Développement d'un modele mathématique décrivant le comportement physique d'un systeme

2. Résolution des équations (analyse numérique)

Utilisation d’algorithmes d'analyse numérique pour obtenir une version discréte du modele

3. Programmation et exécution des algorithmes (informatique)

Conversion de la forme discréte en logiciel (codage)

4. Interprétation et exploitation des résultats (ingénierie, expertise)
Comparaison avec la théorie et I'expérience, exploitation des résultats pour le développement d'une

application
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Simulation en mécanique des fluides

Compétences et objectifs de ce cours

® Evaluer la précision des résultats numériques en fonction des choix
des méthodes et parameétres de simulation.

® Analyser des solutions numériques et identifier les inconsistances par
rapport a la réalité physique.

e Comprendre et appliquer les concepts de la vérification et de la
validation.

® Comprendre les bases de la programmation pour développer un
logiciel structuré en utilisant un langage de programmation tel que
C+++, fortran ou matlab.

® Comprendre le fonctionnement des logiciels de simulation utilisés
dans I'industrie.
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Equations fondamentales

Equation de conservation de la masse

m:/pdV:const
Q

® Formulation matérielle

variation

=

4 / dv =0

at Jo" T
———

masse
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Equations fondamentales 4 fopdv =0

L (o FfdV = [q0if dV + [pq fv - m dS

Equation de conservation de la masse J@V -FdV = [gq F-ndS

® Formulation spatiale

/&pdV—i—/ pv-ndS=0
Q 1y}

/8tp+V-(pv)dV:0
Q

® Formulation locale
Op+V-(pv)=0



Simulation Equations Discrétisation EDP Ondes Références

000 00@0000 (e} (e} o
0000 [e] [e] 0000

(e]e] (e]e} (e]e]

[e] 0000

Equations fondamentales

Equation de conservation de la quantité de mouvement

® Formulation matérielle

variation forces volumiques
? —
— /p'udV = /png +/ o-ndS
dt Q Q a0
—— —_——

quantité de mouvement forces surfaciques
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Equations fondamentales di Japv AV = Jarg &V + fog o dS

L (o FfdV = [q0if dV + [pq fv - m dS

Conservation quantité de mouvement J@V -FdV = [gq F-ndS

® Formulation spatiale

/8t(pv)dV+/ pUU-ndS:/png+/ o-ndS
Q a0 Q By

® Formulation locale

9(pv) +V - (pvv) =pg +V - o



Simulation Equations Discrétisation EDP Ondes

Références
000 0000000 o o o
0000 o] o] 0000
[e]e) [e]e] [e]e]
o] 0000
Equations fondamentales
Equation de conservation de |'énergie
interne
e
e = e -+ By Vv
~—
énergie H’_/
cinétique
® Formulation matérielle
variation puissance volumique échanges
— —_—
d
— peg dV = pg-vdV + (0-n)-vdS+ ¢-ndS
dt  Jo Q o0 o0
S
énergie puissance surfacique
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Equations fond. @ /JarcodV =Jars-wdV+loge m) v dstfog ¢ nds
&[G F AV = [0 dV + [pq fv-n dS

Conservation de I'énergie J@V - FdV = [5q F-ndS

® Formulation spatiale

/ ¢ (peo) dV+/ pegv-n dS :/ pg-v dV+/ (om)v+¢pn dS
Q oQ Q oQ

® Formulation locale

9(peo) + V- (pegv) = pg-v+V (o0 -v)+ V- ¢
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Equations fondamentales

Equations de conservation

Les trois équations de conservation s'écrivent donc

Op+ V- (pv)=0
d(pv) +V - (pvv) =V -0 + pg
de(peo) +V - (pegv) =V - (0 -v) +pg-v+V - ¢

® Plus d'inconnues que d'équations de conservation

® Introduction d'équations constitutives (modélisation)
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Equations fondamentales

Modeles constitutifs pour les gaz parfaits

® Equation d'état des gaz parfaits

p=prT
® Relation thermodynamique des gaz parfaits
e =c,T
® |oi de Fourier
¢ =-\VT
® Fluide visqueux newtonien
=2D
—_—~

o=-—pl+p (Vo+Vob)+n (V- -o)I
S S —

T
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Equations fondamentales

Equations de Navier—Stokes, fluides visqueux Newtoniens
En injectant les relations constitutives dans les équations de conservation,
on obtient

variation  accumulation

~~ —
a0 + V-(pv) =0

advection diffusion
— /—/?
p( v +v-Vou)=—-Vp+ puVU + pg
~—~ —— NG
variation source source
advection diffusion

— —~
peo( T +wv-VT)=2uD:D+ \V*T
~~ SN——

variation source
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Equations fondamentales

Equations de Navier—Stokes, fluides visqueux Newtoniens

Si on suppose maintenant que |'écoulement est isotherme et
incompressible, i.e.

T, p = const

les équations précédentes se simplifient sous la forme

contrainte
PN
V-v =0
advection diffusion
— /—/?
p( dv +v-Vov)= —Vp + uV<v + pg
N d —— ~—
variation mult. Lagrange source

La pression n'obéit plus a I'équation des gaz parfaits mais devient un
multiplicateur de Lagrange permettant de satisfaire I'incompressibilité.
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Equations fondamentales v w0

. ) . . . p(d¢v+v - V) = —Vp+puV3v+pg
Equation d’advection-diffusion

® Forme générique

variation advection
= 9 —N
o —vVu +c-Vu = f
——
diffusion source
® En une seule dimension spatiale
variation advection
= 9 —~ =
Ou —voju+ cOgu = f
—— ~—~
diffusion source
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Poser le probleme

Domaine - Opérateur differentiel - Terme source - Conditions aux limites

On considere I'équation de diffusion stationnaire en une dimension
spatiale

82
—1/8—;; =f, Q=]la,b]
u(a) =0, u(b) =0

avec f donné, v € R et la solution

u € C?*(Q)
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Construire un maillage 024

=f, Q=]Ja,b]

v
oz2

u(a) =0, u(b) =0

Noeuds - Connectivité
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Utiliser une méthode numérique

Différences finies

Pour approcher la dérivée seconde, on écrit les séries de Taylor

h ou h? 9%u h? d3u 4
T P TR M i B
h Ou h? 9%u h3 93u
i—1 =W — = 5 — 5| — = 2| TOMR!
i T M T =1 N i B
dont la somme permet d'obtenir
@ _ Wit — 205+ iy _% @ + O(h%)
x|, h? 4! Ozt

Xi

e=0(h?)

Références
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4 L.t —v 827‘ =f;
Méthode numérique oa? |, TH
cers .. 92w |  _ Wi—1—2uituigg 2
Différences finies on? | = w2 + O(h%)

On obtient ainsi le systeme d’équations algébriques Au=Db

® exprimé sous forme indicielle

Wi—1 — 2U; + W41 .
—v— h; =1, i=2,...,p—1

u1:0, up:()

® exprimé sous forme matricielle

+1 uy 0

v .
-3 11 -2 41 w =] %
+1 up 0
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Discrétisation

82u - ui+1—2ui+ul_1
8z2 - h2
. . Xq
Principe

® |e probléeme faisant intervenir une equation aux dérivées partielles
linéaire devient un systeme d'equations algébriques linéaires

0%u
—V@:f, Q:[a,b] —

u(a) =0, u(b) =0

Au=Db

® Une étape importante est |'expression de |'opérateur différentiel (ici
la dérivée seconde) sous forme discréte

2
1 L .
i —  Dox= 5 +1 -2 +1
o2 h . .
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Discrétisation

Principe
® Gradient V(.) — G= v
® Divergence V- N D= 2 7 9
® Rotationel V x N R= s 7 9
L =DG

® Laplacien V2=V -V(.) N
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Equations aux dérivées partielles
Exemples (1/2)
® Navier
Mécanique des solides

A+ u)V(V-u)+uViu+ f=0

® Navier-Stokes

Mécanique des fluides

v
E—l—v-Vv:—Vp—i—quv—i—g, V-v=0
® D'Alembert
Acoustique, éléctromagnetisme, mécanique des fluides et des solides
0%u
-V (V) = f

ot?
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Equations aux dérivées partielles
Exemples (2/2)

® Maxwell

Electromagnetisme

82E oFE 1
S +o—8t +Vx(p 'VxE)=f
® Darcy

Mécanique des fluides (milieux poreux)

=V - (uVp) = f

® Schrodinger

Mécanique quantique

h%—qur — V) + V=0
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Théorie des ondes

Définition
On considere |'onde
u(x,t) = 0 e ?@, aeR
ou ou
du = —dz + —dt
22" o

avec ¢(x,t) la phase et les dérivées partielles

Ou  Oudgp i ol 99

or 8¢ Oz ox
Ou _0udp _ .. y00
ot asot ¢ ot

On obtient ainsi la différentielle totale

du=ite (a(bd —|—aa¢dt> = iu d¢

Références
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Théorie des ondes

Relation de dispersion et vitesse de phase
On définit la phase

p=kr—wk)it kweC
¢ 99

5z + ot = kde — w(lk)dr

)
do =7 o

® Relation de dispersion

Relation liant la pulsation au nombre d’onde

w = w(k)
® \itesse de phase
Vitesse de propagation de I'onde (célérité)
dz  w(k)
du=iudp=0 — —=—> = |vp=
¢ it k ¢

Re(k)
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Théorie des ondes

Relation de dispersion et vitesse de phase

On consideére la propagation d’une onde
u = ei(kw—wt)
dont la relation de dispersion s'écrit

w(k) = ck, ceR

On a donc la vitesse de phase

= c|= const

Références
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¢ = ko — wt
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Théorie des ondes

Relation de dispersion et vitesse de phase

On considére maintenant la propagation d'une onde
u = el(kw—wt)
dont la relation de dispersion s'écrit

w(k) = ck?

On a donc la vitesse de phase

= ck | # const
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Théorie des ondes

Relation de dispersion et vitesse de phase

® Milieu non-dispersif

Toutes les ondes se déplacent a la méme vitesse quelle que soit leur nombre d'onde
V¢ = 5~ = const

® Milieu dispersif

La vitesse de propagation dépend du nombre d’onde

w(k)

Vo = F(k) ?é const
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Théorie des ondes

Equation d’advection

ou_ ou
ot C(’?:E

En considérant une solution de la forme u = i e!(k¢=%?) on obtient

=0

(—iw+cik)i=0
dont on déduit la relation de dispersion et la vitesse de phase

w=ck

V¢~ Re(k)
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Théorie des ondes
Equation de diffusion

ou 0%u
.
ot 0z
En considérant une solution de la forme u = i e/(k¢=%?) on obtient
(—iw + vk*) =0
dont on déduit la relation de dispersion et la vitesse de phase

w= —ivk?
w

Y¢ ™ Re(k)

= —ivRe(k)
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® Dynamique des fluides, . Ryhming, PPUR, 1991

Discrétisation EDP
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