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Interpolation
Cas mono-dimensionnel

• Base d’interpolation

B = {φ1, φ2, . . . , φp, . . .}

• Expression dans la base

u(x, t)︸ ︷︷ ︸
esp. physique

=

p∑
j=1

esp. modal︷ ︸︸ ︷
uj(t) φj(x) + τ(x, t,p)︸ ︷︷ ︸

troncature à l′ordre p
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Interpolation
Cas mono-dimensionnel

u(x, t) =
∑p

j=1 uj(t)φj(x)+τ(x, t, p)

• Approximation
Troncature de la série

u(x, t) ' uh(x, t) =

p∑
j=1

uj(t)φj(x)

• Convergence
lim

p→∞
τ(x, t,p) = 0,

c’est-à-dire
lim

p→∞
u(x, t)− uh(x, t) = 0
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Interpolation
Cas mono-dimensionnel

uh(x, t) =
∑p

j=1 uj(t)φj(x)

• Noeuds de collocation

X = {x1, x2, . . . , xp}, xi ∈ Ω

• Valeurs nodales

esp. nodal︷︸︸︷
ui(t) = uh(xi, t) =

p∑
j=1

esp. modal︷ ︸︸ ︷
uj(t) φj(xi)

u︸︷︷︸
nodal

= Φ u︸︷︷︸
modal

, [Φ]ij = φj(xi)

• Opérateur de transformation
espace nodal↔ espace modal

u = Φ−1u ≡ Φu
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Interpolation
Cas mono-dimensionnel

uh(x, t) =∑p
j=1 uj(t)φj(x)

• Approximation

∂xuh(x, t) =

p∑
j=1

uj(t) dxφj(x)

• Valeurs nodales

ui,x(t) = ∂xuh(x, t)|x=xi =

p∑
j=1

uj(t) dxφj |x=xi

u,x = Φ,xu, [Φ,x]ij = dxφj |x=xi
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Interpolation
Cas mono-dimensionnel

u,x = Φ,xu

u = Φ−1u ≡ Φu

• Opérateurs nodaux et modaux

u,x = D u = Φ,xu = Φ,xΦ u

u,x = D u = ΦΦ,xu

• Relations entre opérateurs nodaux et modaux
Valables pour un opérateur discret quelconque

D = Φ,xΦ =

= I︷︸︸︷
ΦΦ Φ,xΦ = Φ D Φ

D = ΦΦ,x = ΦΦ,x ΦΦ︸︷︷︸
= I

= Φ D Φ
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Interpolation
Cas bi-dimensionnel

uh(x, t) =
∑p

j=1 uj(t)φj(x)

• Approximation

uh(x, y, t) =

px∑
k=1

py∑
l=1

Ukl(t)φ
(x)
k (x)φ

(y)
l (y)

• Représentation vectorielle

u ≡ (u1,u2, . . . ,un, . . . ,up)T

≡ (U11,U21, . . . ,Ukl, . . . ,Upxpy
)T

avec

n = k + px(l − 1)

p = pxpy
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Interpolation
Cas bi-dimensionnel

• Noeuds de collocation

X = {(xi, yi)}, (i, j) ∈ {1, . . . ,px} × {1, . . . ,py}

• Valeurs nodales

Uij(t) = uh(xi, yj , t) =

px∑
k=1

py∑
l=1

Ukl(t)φ
(x)
k (xi)φ

(y)
l (yj)

Avec sommation sur indices répétés, ceci s’écrit

Uij = Ukl[Φx]ik [Φy]jl = [Φx]ikUkl[Φ
T
y ]lj

où
[Φx]ik = φ

(x)
k (xi), [Φy]jl = φ

(y)
l (yj)
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Interpolation
Cas bi-dimensionnel

Uij = [Φx]ikUkl[Φ
T
y ]lj

On a ainsi les relations de transformation et leur inverse

• sous forme factorisée • sous forme assemblée

U = ΦxU ΦT
y

U = ΦxU ΦT
y

u = Φu

u = Φu

avec les opérateurs de transformation assemblés

Φ = Φy ⊗Φx

Φ = Φy ⊗Φx
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Interpolation
Cas bi-dimensionnel

Soient les matrices réelles

A ∈ Rm×n

B ∈ Rk×l

C ∈ Rkm×ln

On appelle produit de Kronecker, l’opération telle que

C = B⊗A =


B11A B12A . . . B1lA
B21A B22A . . . B2lA

...
...

. . .
...

Bk1A Bk2A . . . BklA


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Interpolation
Cas bi-dimensionnel

Sous forme indicielle, le produit de Kronecker s’écrit

[ C ]ij = [ B⊗A ]ij = BpqArs,
i = r + (p− 1)m
j = s+ (q − 1)n

et le produit matrice-vecteur peut être effectué

• sous forme factorisée • sous forme assemblée

W = A V BT
w = (B⊗A︸ ︷︷ ︸

= C

)v
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Interpolation
Cas bi-dimensionnel

U = ΦxUΦT
y D = Φ,xΦ

U = ΦxUΦT
y D = ΦΦ,x

Les dérivées nodales s’écrivent

U,x = Φx,xU ΦT
y U,y = ΦxU ΦT

y,y

Avec la relation de transformation inverse, on a

U,x = Φx,xΦxU(

= Iy︷ ︸︸ ︷
ΦyΦy)T

= DxU IT
y

U,y =

= Ix︷ ︸︸ ︷
ΦxΦx U(Φy,yΦy)T

= IxU DT
y
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Interpolation
Cas bi-dimensionnel

Ceci s’écrit

• sous forme factorisée • sous forme assemblée

U,x = DxU IT
y

U,y = IxU DT
y

u,x = Dxu

u,y = Dyu

avec les opérateurs de dérivation assemblés

Dx = Iy ⊗Dx

Dy = Dy ⊗ Ix
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Interpolation
Cas bi-dimensionnel

Dx = Iy ⊗Dx

u,x = Dxu =


Dx

Dx

. . .

Dx




u1

u2

...
up


• Cout de stockage de la matrice assemblée O(p4

i )

• Cout du produit matrice-vecteur O(p4
i )

• Le stockage morse de la matrice assemblée est impératif
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Interpolation
Cas bi-dimensionnel

U,x = DxU IT
y

• Cout de stockage de la matrice mono-dimensionnelle O(p2
i )

• Cout du produit matrice-matrice O(p3
i )

• Possibilité de stockage morse de la matrice mono-dimensionnelle
efficace si cette matrice est creuse, ce qui est le cas pour les méthodes d’ordre bas
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Interpolation
Cas tri-dimensionnel

u = Φu

u = Φu

En trois dimensions, les opérateurs de transformation assemblés
deviennent

Φ = Φz ⊗Φy ⊗Φx

Φ = Φz ⊗Φy ⊗Φx

et les opérateurs de dérivation assemblés s’écrivent

Dx = Iz ⊗ Iy ⊗Dx

Dy = Iz ⊗Dy ⊗ Ix

Dz = Dz ⊗ Iy ⊗ Ix
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Interpolation
Cas n-dimensionnel

u = Φu

u = Φu

En n-dimensions, les opérateurs de transformation assemblés deviennent

Φ = Φxn
⊗ . . .⊗Φxk

⊗ . . .⊗Φx2
⊗Φx1

Φ = Φxn
⊗ . . .⊗Φxk

⊗ . . .⊗Φx2
⊗Φx1

et les opérateurs de dérivation assemblés s’écrivent

Dx1
= Ixn

⊗ . . .⊗ Ixk
⊗ . . .⊗ Ix2

⊗Dx1

Dx2 = Ixn ⊗ . . .⊗ Ixk
⊗ . . .⊗Dx2 ⊗ Ix1

. . .

Dxk
= Ixn

⊗ . . .⊗Dxk
⊗ . . .⊗ Ix2

⊗ Ix1

. . .

Dxn = Dxn ⊗ . . .⊗ Ixk
⊗ . . .⊗ Ix2 ⊗ Ix1
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Tensorisation
Cas bi-dimensionnel

uh(x, y, t) = Ukl(t)φ
(x)
k

(x)φ
(y)
l

(y)

• Formulation faible

(∂tu, v) +A(u, v) = F(v)

• Fonctions test dans l’espace d’interpolation

vh(x, y, t) = Vij(t)φ
(x)
i (x)φ

(y)
j (y)

• Approximation

(∂tuh, vh) +A(uh, vh) = F(vh), ∀vh ∈ Vh
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Tensorisation
Cas bi-dimensionnel

(∂tuh, vh) +A(uh, vh) = F(vh)

uh(x, y, t) = Ukl(t)φ
(x)
k

(x)φ
(y)
l

(y)

vh(x, y, t) = Vij(t)φ
(x)
i (x)φ

(y)
j (y)

Avec ces approximations, les équations semi-discrètes deviennent

U̇kl(φ
(x)
k φ

(y)
l , φ

(x)
i φ

(y)
j ) + UklA(φ

(x)
k φ

(y)
l , φ

(x)
i φ

(y)
j )

= Fkl(φ
(x)
k φ

(y)
l , φ

(x)
i φ

(y)
j ), ∀(i, j)

Sous forme indicielle, le premier terme s’écrit

Wij = U̇kl(φ
(x)
k φ

(y)
l , φ

(x)
i φ

(y)
j )

= (φ
(x)
k , φ

(x)
i )U̇kl(φ

(y)
l , φ

(y)
j )

= [Mx]ik[U̇]kl[M
T
y ]lj



Complexité géométrique Interpolation Tensorisation Références

Tensorisation
Cas bi-dimensionnel

Ceci s’écrit

• sous forme factorisée • sous forme assemblée

W = MxU̇ MT
y

w = (My ⊗Mx︸ ︷︷ ︸
= M

)u̇

avec la matrice de masse assemblée

M = My ⊗Mx
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Tensorisation
Cas bi-dimensionnel

Le second terme des équations semi-discrètes s’écrit

Wij = UklA(φ
(x)
k φ

(y)
l , φ

(x)
i φ

(y)
j )

Pour un opérateur à variables séparables tel que

A(u) = Ax(u) +Ay(u)

il vient

Wij = Ax(φ
(x)
k , φ

(x)
i )Ukl(φ

(y)
l , φ

(y)
j ) + (φ

(x)
k , φ

(x)
i )UklAy(φ

(y)
l , φ

(y)
j )

= [Ax]ik[U]kl[M
T
y ]lj + [Mx]ik[U]kl[A

T
y ]lj
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Tensorisation
Cas bi-dimensionnel

Ceci s’écrit

• sous forme factorisée • sous forme assemblée

W = AxU MT
y + MxU AT

y

w = (My ⊗Ax + Ay ⊗Mx︸ ︷︷ ︸
= A

)u̇

avec la matrice de discrétisation assemblée

A = My ⊗Ax + Ay ⊗Mx
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Tensorisation
Cas bi-dimensionnel

On peut ainsi écrire les équations semi-discrètes sous la forme standard

Mu̇ + Au = Mf

avec

M = My ⊗Mx

A = My ⊗Ax + Ay ⊗Mx
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Tensorisation
Cas tri-dimensionnel

M = My ⊗Mx

A = My ⊗Ax + Ay ⊗Mx

En trois dimensions, la matrice de masse assemblée devient

M = Mz ⊗My ⊗Mx

et la matrice de discrétisation assemblée est donnée par

A = Mz ⊗My ⊗Ax

+ Mz ⊗Ay ⊗Mx

+ Az ⊗My ⊗Mx
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Tensorisation
Cas n-dimensionnel

M = My ⊗Mx

A = My ⊗Ax + Ay ⊗Mx

En n-dimensions, la matrice de masse globale devient

M = Mxn ⊗ . . .⊗Mxk
⊗ . . .⊗Mx2 ⊗Mx1

et la matrice de discrétisation globale est donnée par

A = Mxn
⊗ . . .⊗Mxk

⊗ . . .⊗Mx2
⊗Ax1

+ Mxn
⊗ . . .⊗Mxk

⊗ . . .⊗Ax2
⊗Mx1

. . .

+ Mxn
⊗ . . .⊗Axk

⊗ . . .⊗Mx2
⊗Mx1

. . .

+ Axn
⊗ . . .⊗Mxk

⊗ . . .⊗Mx2
⊗Mx1
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