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L’écoulement instationnaire d’un fluide idéal compressible présente des car-
actéristiques particuliéres. La propagation des ondes de chocs et de détente, leur
interactions mutuelles ou leurs interactions avec les surfaces-frontiéres du fluide con-
stituent une propriété fondamentale de ces écoulements. Pour étudier les méthodes
numériques permettant de capter correctement les chocs et les détentes, il est néces-
saire d’avoir une connaissance suffisante des aspects physiques des phénoménes en
question. Cette partie a pour but de rappeller les équations fondamentales de ces
écoulements ainsi que l’étude de quelques phénomeénes physiques les plus marquants,
tels que les ondes de détente, les ondes de compression et le tube a choc.
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Chapter 1
INTRODUCTION

Une difficulté majeure dans les approximations numériques des équations aux dérivées
partielles non-linéaires hyperboliques, et en particulier les équations d’Euler, est la
présence de discontinuités dans les solutions (les chocs). Les schémas traditionnels
(ou classiques) tels que les schémas de MacCormack, de Jameson etc., générent des os-
cillations non physiques plus ou moins importantes selon les schémas au voisinage des
discontinuités. C’est ce que ’on constate sur la figure 1 lors du calcul de 1’écoulement
supersonique-subsonique dans une tuyéere avec le schéma de MacCormack. Ces oscil-

CORMACK SCHEME
v Pressure

¥

] 1 [ [ 10 ] [] H B ]

Figure 1 Schéma de MacCormack sans viscosité artificielle

lations numériques sont généralement amplifiées aux cours des itérations temporelles.
Malgré tous les efforts de ces derniéres décades, obtenir des solutions propres pour la
résolution des équations d’Euler compressible en présence de chocs reste un probléme
majeur en CFD. Depuis une cinquantaine d’années, un trés grand nombre de schémas
numériques a été proposé pour la capture des chocs. Déja en 1950, une solution a
ce probléme a été proposée par Neumann et Richtmeyer, qui introduisirent de la vis-
cosité artificielle (viscosité numeérique) dans des schémas aux différences finies. Cette
approche est simple a mettre en oeuvre. Un exemple est donné sur la figure 2: Une
alternative a cette approche consiste a construire une solution en introduisant des ap-
proximations discontinues constantes par morceaux (Godunov). De telles solutions
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MNOZZLE FLOW: MACCORMACK SCHEME
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Figure 2 Schéma de MacCormack avec viscosité artificielle

conduisent & de bonnes appproximations, et sont capables de représenter correcte-
ment le choc dans une petite région du maillage mais en utilisant des solveurs de
Riemann (Roe, Van Leer etc.). Harten proposa alors une méthode de type TVD

NOZILE FLOW: HARTEN SCHEME
Machnumber Prassure

2,68 76200 '{ﬂ““‘.«‘.
2.22 61845 [
1.76 47480 |
iy 33135 |
i
B85 18780 M“\J
3m T, 4425
0 2 4 [ 8 0 it ] 4 [ 8
Density Entropy

1 ‘«"‘ﬂ‘.«- 46.58 e
75 [ 36.95

5 ‘ 27.32

44 | 17.69

28 “A"“«‘N 8.05

3 .n"“"’“ -1.57 =

2 2 4 [ [ 10 5 0 2 4 & )

Figure 3 Schéma TVD de Harten

(Total Variation Diminishing) pour réduire les oscillations présentes dans la solu-
tion numérique. L’idée générale de ce type de schéma est d’utiliser le stencil le plus
régulier pour approximer les flux aux frontiéres des cellules et en méme temps de sup-
primer les oscillations au voisinage des chocs. Cette méthode fut généralisée plus tard
par une méthode de type ENO ( Essentially Non-Oscillatory). Des raffinements de
cette derniére technique (WENO, Weighted ENO) sont actuellement opérationnelle.
La figure (3) montre un exemple typique de résultat pour le calcul d’'un écoulement
supersonique-subsonique dans une tuyere, en utilisant un schéma TVD de Harten.



Chapter 2
LES EQUATIONS D’EULER TRIDIMENSIONNELLES

Dans ce chapitre nous rappelons les équations d’Euler tridimensionnelles non station-
naires. Ces équations forment un systéme d’équations non-linéaires qui gouverne le
comportement de la dynamique de fluides compressibles tels que les gaz ou les liquides
a trés hautes pressions et pour lesquelles on néglige les forces gravitationnelles, les
effets visqueux et les flux de chaleur. Diverses formulations sont proposées : forme
intégrale, forme différentielle mais aussi les formes conservatives, quasi-conservatives
et non-conservatives. Pour la formulation non conservative, on introduit les variables
primitives ou variables physiques : la masse volumique p (ou la pression), les com-
posantes du vecteur vitesse (u,v,w) et I’énergie interne e (ou l’enthalpie h) tandis
que pour les formulations conservative et quasi-conservative les variables utilisées, les
variables conservatives, sont : la masse volumique p, les composantes pu, pv, pw de
la quantité de mouvement volumique et pe; l’énergie interne totale volumique. Cette
derniéere formulation a des avantages car elle dérive naturellement de la formulation
conservative des équations de la mécanique des fluides.

2.1 Formulation intégrale

2.1.1 Conservation de la masse

%///pvar//p\”z.&S:O (2.1)

2.1.2 Conservation de la quantité de mouvement

%///pvdv+//pv<v.as):—//pas+///,o?dv (2.2)

2.1.8 Conservation de l’énergie

< / / / peudV + / / (per +p) 7.4 = + / / / gedv (23)

2 2 2

2.1.4 FEquation d’état pour un gaz idéal

avec :

e=—"L (2.5)

p(k—1)
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Par suite : )
P v
= — 4+ — 2.6
“T -1 2 26)
et en introduisant la vitesse du son a = a(p, p):
0
a® = <_p> - (2.7)
o), P
on obtient aussi : ) )
a v
=+ — 2.8
“ k(k—1) 3 (28)

2.2 Formulations différentielles

2.2.1 Forme conservative
dp Opu Opv  Opw
ot o Ty T os

dpu N d (pu® + p) N d (puw) N d (puw)

=0 (2.9)

=0 2.10
ot ox dy dy (2.10)
dpv | d(pvu) O (pv*+p) | O(pvw)
5 T om T 3y +—5 =0 (2.11)
Opw 9 (pwu) I (pwv) 0 (pw’ +p)
= 2.12
o T ox oy T os 0 (2.12)
Oper | Olul(pes+p)]  Ov(pes+p)] | 0w (pe: + p)]
= 2.1
T T AL A 0 (2.13)
ou sous forme vectorielle :
ou of(U) 0g(U) 0h(U)
— = 2.14
ot T or oy T 0r (2.14)
avec :
p pu
pu pu? +p
U=| pv = pUY (2.15)
pw puw
PEt u (pey +p)
pU pw
pou pwu
g=1| p?+p ,h = pwv (2.16)
pow pw? + p

v (per + p) w (pey + p)



Formulations différentielles

2.2.2 Forme quasi-conservative

17

Une autre forme des équations d’Euler, trés utile pour la connaissance de ses pro-

priétés mathématiques est sa formulation quasi-linéaire. On écrit :

ou of(U)ou 0g(U)ou 0oh(U)oU
L Of(U)0U _ 3g(U)9U _ oh(U)

ot ouU Oz ou 0y oU 9z
ou :
ou ou 8U ou
o e TPy 08 T
avec les matrices jacobiennes :
Of(U) , 9g(U) , Oh(U)
A= P~ 0 ¢~ o

Sl U = [Ul,UQ, ..
colonnes, par exemple de A, soient formées par les vecteurs colonnes 825}]).
J

(2.17)

(2.18)

(2.19)

,Us], les matrices A, B,C sont construites de telle maniére que les

L [ot) orw)  oE(u)
ouy T oUy 77 0U;
soit :
0 1 0 0 0
—l—(”;l)ﬂ (3—k) —(k=1)w (k—1) k—1
A= —uv v u 0 0
—uw w 0 u 0
—u [vey — (k — 1) 2] vet—(”;) (" +2u?) —(k—1uw —(k—1) KU
(2.20)
0 0 1 0 0
—uw v U 0 0
B= 2—1—(”21)_’2 (k—1u (3—kK)v —(k—1) k—1
—vw 0 w v 0
—vve, — (k=17 —(k—1Duw ve— (72 4 202) — (k—1) KU
(2.21)
0 0 1 0 0
—Uw w 0 u 0
C = —vw 0 w v 0
—w%—@ﬁ? —(k—1Du —(k—1)v (3—kr)w k—1
—wlve, — (k= 1) —(k—Duw —(k—Dvw ve,—52 (P 4 20%)  kw

(2.22)
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2.2.3 Forme non conservative

La formulation classique des équations d’Euler sous forme non-conservative est celle
obtenue en effectuant toutes les opérations de dérivation, a partir, par exemple de la
forme conservative, avec les variables primitives p, u, v, w, p soit :

dp Ju dp v dp ow op
ot Par e TPay Ty TPa T Ve 0 (2:23)

—Ftu—F+v—Fw—+-—7-=0 (2.24)

ov ov ov ov 10p
- - - R T S 2.2
8t+u6’x+vay+w8z+p8y 0 (2.25)
ow ow ow ow 1dp
o e ey T s T 52, =0 (2.26)
dp o (Ou  Ov  Owy op dp op
0t+’0a (0$+8y+ 0Z)+u8$+vay+w8z_0 (2.27)

ou sous forme vectorielle :

ou’ ou’ ou’ ou’

!/ / /!
BT + A pe +B oy +C % =0 (2.28)
p
u
U = ) (229)
w
D
[uw p 0 0 0
0w 00 1/p
A=10 0 w 0 0 (2.30)
00 0 w0
0 pa® 0 0 w
[v 0 p 0 0
0O » 0 00
B=|100wov 0 1/p (2.31)
000 o0
| 00 pa’ 0 v
w 0 p 0 0
0O w 0 0 O
C'={0 0 w 0 O (2.32)
00 0 w 1/p
0 0 0 pa®> w



Chapter 3
LES EQUATIONS D’EULER MONODIMENSIONNELLES

Ce cours étant un cours élémentaire pour présenter les méthodes numériques de type
TVD basées sur les équations de convection, nous restreindrons leurs applications
aux équations d’Fuler pour des écoulements monodimensionnels stationnaires et in-
stationnaires. Dans ce chapitre, on rappelle quelques formulations, dans le cas de gaz
parfaits, nécessaires pour la compréhension du code Euler-1D utilisé pour les labora-
toires de mécanique des fluides compressibles.

3.1 Formulation compléte

On consideére I’écoulement monodimensionnel instationnaire d’un gaz parfait vérifiant
les relations :

p
e = ——— 3.1
o= 1) (31)
et : )
P v
= 4+ — 2
€t p(li — 1) + 9 (3 )
ou en introduisant la vitesse du son :
_ .92 D
a=a(p,p):a = /{; (3.3)
a? v?2
3.1.1 Forme non-conservative
On a: 5 5 5
14 U P
@t+p8x+u8x_0 (3.5)
ou Oou 10p
bl I g | 3.6
ot * Yor * p Ox (36)
Oe; de; udp pou
it oty e L BEE 3.7
ot +u8x+p8x+p8x (37)
o oh,  Oh, 10
o o D
———=0 3.8
ot " Yor  po (38)
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ou :
dp dp 50U
' it =90 3.9
ot or TP oa (3.9
avec, puisque le gaz est parfait :
hy =~ 4 L2 (3.10)
= r = .
T k-1 2"

On peut écrire le systéme précédent en fonction des wvariables primitives p, u et p
sous la forme suivante :

ou’ ou’
! =0 3.11
a A (3:-11)
avec :
p u p 0
U=|u | ,A=|0u 1/p (3.12)
D 0 pa? wu
3.1.2 Forme conservative
dp  Jpu
— 4+ —— = 3.13
ot " ox (3:.13)
Opu 0 (pu® +p)
= .14
ot + oz 0 (3.14)
dper | Ofu(pe; + p)]
=0 3.15
o T o (3:15)
o oU  of(U)
= =0 3.16
ot T on (3.16)
avec :
p pu
U=| pu |, f= pu? +p (3.17)
pet u(pe: + p)

ou les variables p, pu, pe; sont les variables conservatives.
3.1.3 Forme quasi-conservative ou linéaire

La linéarisation de 1’équation 3.16 conduit, en introduisant la matrice Jacobienne
A=20) y.

7 JU  0U
A =0 (3.18)
avec :
0 1 0
A= 3(k—3)u? —(k—3)u k—1 (3.19)
—ruey + (k—1)ud ke — 3 (k—1)u* ku

ou en remplagant e; par :

CL2

6= —— +

D) %uQ (3.20)
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0 1 0
A= 3(k—3)u? —(k—3)u k—1 (3.21)
2 2
oD (o0 m
On vérifiera la propriété d’homogénéité suivante, valable pour les équations d’Euler

avec 1’équation d’état 2.5:
f=AU (3.22)

e Méthode pour obtenir la formulation quasi-linéaire

A partir de :
ou  of(U)
W + ax =0 (3.23&)
on écrit : 5U 58 U
s + 90 or =0 (3.24)

ol % est la matrice jaconienne A telle que :

of of of of
— == —,— (3.25)
ou Jp’ Opu’ Opey
Posons :
Uy = p, Uy = pu,us = pe; (3.26)
soit :
p Uy
U= | pu | = | u (3.27)
Pet Uus3
On en déduit :
P N
f = pu? +p = w+(k—1) fus — m} (3.28)
uS
u (pe: + p) wus (1) ui—ﬁ‘?’—ﬁ}
soit :
0
’LL2 u2
of _ ot _ ~% 4 (n-1) 53] (3.29)
op  Ouy (1) [_%+u_g]
uf uf
0
of
5 s (k—3)u? (3.30)

—kue; + (K —1)u?

puis :
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1
ﬁ — ﬁ — 21%2 —(k—1) [z—i] (3.31)
Opu  Ousy 3
i (k- 1) Z—i’—ﬁ}
1
aa—f | —(k=3)u (3.32)
pu ke — 2 (k — 1) u?
et :
of of ’
S =5 = (k=1 (3.33)
R I
0
f
aa — | k-1 (3.34)
Pei Kl
d’ot finalement :
of ) 0 1 0
8_U:A: 5 (kK —3)u? —(k=3)u k—1 (3.35)

—rues + (k— 1) ud ke — 3 (k—1)u?  ku

3.2 Formulation avec variation de section

On considére I’écoulement monodimensionnel instationnaire d'un gaz parfait. On
donnera la formulation pour des variations faibles de section.

3.2.1 Cas ou la section dépend de x et du temps t

ou  9f(U)
— 4+ ———=S(U 3.36
5% T on (U) (3.36)
p pu
U=|pu |, f=| pu®+p (3.37)
per u(pex + p)
0s _ 98
1| P%8 — Poa
S(U) = -3 pu*s (3.38)
u (per + p) g—i



Formulations particuliéres 23

3.2.2 Cas ou la section dépend seulement de x

ou  of(U)
= T =S(U) (3.39)
pS pusS
U= | puS |, f=1| (pu?+pS (3.40)
perS [u(pe: +p)] S
0
S(U)= | p5; (3.41)
0

Ces équations sont celles qui sont utilisées dans le code EULER1D.

3.3 Formulations particuliéres

3.3.1 Formulation isentrope

Dans ce cas, 'entropie est constante partout et ’on a :

p=p(p) =Cp" (3.42)
ou of(U)
E + e 0 (3.43)
avec :
[ r [ pu
o[ 2]l ) o

3.3.2  Formulation isotherme

Cette formulation est un cas particulier de la formulation isentrope. Dans ce cas :

p = p(p) = pa’ (3.45)
ou of(U
5 + 8(35 ) =0 (3.46)
avec :
U

3.8.8 Formulation linéarisée

Considérons une perturbation infinitésimale du champ de vitesse 4 et de masse volu-
mique p autour de I’état de repos du fluide u = 0, p = pg, p = po- On a alors:

Nej .
p=p(po) + pa—];(po) = p(po) + pa’ (3.48)

Les équations isothermes deviennent alors :

op 0
E + p()% =0 (349)
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ot a?0p
—+——=0 3.50
ot * po Ox (3:50)
soit, sous forme matricielle :
ou’ ,0uU’
51
BT + A o =0 (3.51)
avec :
/ :5 r 0 Po
oo [2] a[ 0 m] .
L’¢élimination de % ou de p donne :
9p 82 O
cr_ -0 .
a2~ ¢ o2 (3:53)
0?4 82 U
— — =0 3.54
oz~ ¢ o2 (3:54)

3.4 Les équations monodimensionnelles instationnaires

Dans ce chapitre, on étudiera certaines propriétés des équations d’Euler pour un
écoulement monodimentionnel instationnaire pour différentes configurations thermo-
dynamiques.

3.4.1 Relation de similitude
On étudie tout d’abord le lien existant entre la formulation non conservative et la
formulation quasi linéaire. Considérons les deux systémes :

ou’ 8U’

o + A o7 (3.55)
et : U
o A— = (3.56)

Ces deux équations représentent les mémes 101s physiques, par conséquent on doit
pouvoir relier ces deux équations par une similitude. On écrit :

U JU' U oU
70 o Temar 0 (3.57)

On définit :

ou
o =M (3.58)
Par suite : e 6U’
1
5 T MAM (3.59)

La comparaison avec I’équation 3.55 donne :

A = Mt AM (3.60)
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ou dans le cas des équations d’Euler monodimensionnelles instationnaires :

1 0 0
M= u o 0 (3.61)
su? pu 1/(k—1)
et :
1 0 0
M= —u 1 0 (3.62)

k- D (k- 1u (k—1)

Or, d’aprés les propriétés des déterminants des matrices, on a pour la recherche des
valeurs propres:

det [A' — AZ] = det [MTTAM—)T]| = det [ M (A-AMIM ) M]  (3.63)

ou :
det [A'] = det [M "] det [A—AT] det [M] = det [A—AT] (3.64)

Par suite, les valeurs propres des matrices A’ et A sont identiques.

3.4.2  Valeurs propres et vecteurs propres

Les deux matrices A et A’ ont les mémes valeurs propres \; = u, Ay = u + a et
A3 = u —a . Le systéme est donc hyperbolique, avec en tout point M (z,t), trois
caractéristiques, définies par leurs pentes locales :

dx dx dx
%:Alzu $:/\2:u+a %:Agzu—a (365)

On définit alors la matrice diagonale D :

U 0 0
D=0 u+a 0 (3.66)
0 0 uU—a

ainsi que les vecteurs propres droits v(®:

1 1
W= u |, ¥ = u+a (3.67)
Lu? 1u? 4 ua + 2
2 2 r—1
et :
1
V3 = u—a (3.68)
1,2 a?
U™ — UG + )

On a alors la relation :
A=RDR (3.69)
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[ 1 o 1
o N o (u - a) (3.70)
Tu? su® + ua + —21) o (u? —ua+ ﬁ)
et :
[ 1—“—21 (k—1)% —=D)
R7=| B[3u? (s 1) —ua| Bla—(k—1u] B(k—1) (3.71)
_5[; W (k—1)+ua] Bla+ (k—1)u] B(k—1)

avec les coefficients de normalisation « et [3:

_ P a1
a—aﬁ,ﬁ—paﬁ (3.72)

3.4.8 Variables caractéristiques

On peut écrire le systéme précédent en fonction des wvariables primitives p, u et p
sous la forme suivante :

ou’ ,GU’
3.73
ot +A ( )
avec :
p u p 0
U=|u|,A=]|0u 1/p (3.74)
P 0 pa® wu
Les valeurs propres de A’ sont :
M=uUu—a, s =uUN3=u-+a
Introduisons un vecteur W. A partir de ’équation 3.73 écrivons :
ou’ oW ,0U" OW
=0 3.75
ow ot AW ax (3.75)
On définit : -
U
W R (3.76)
Le vecteur W vérifiant la condition :
RI'AR=D (3.77)
avec la matrice R:
1 1 1
R = —% 0 % (3.78)
a*> 0 a?
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ot les colonnes sont les composantes des vecteurs propres droits et la matrice R~

0 ~£ 3
R'=|10 —% (3.79)
0

ot les rangées sont les composantes des vecteurs propres gauches (& un facteur pres
de normalisation). Par suite :

oW oW
— +RTTAR— =0 3.80
g TROARG, (3.80)
Le vecteur W est appelé vecteur des variables caractéristiques. On a donc le systéme:
oW OW
—+D—=0 3.81
ot 7 ox (3:81)
ou le long des caractéristiques de pente locale \; = ‘fl—”t”:
ow; ow; Ow; dxow,;
LN =L 7 s dws =0 3.82
at "Nar ot “ator M (3.82)
Pour déterminer W, on effectuera le calcul :
w :/R—ldU’ =U = /RdW (3.83)

Or, d’apres les propriétés des matrices et des vecteurs propres, si £ est la matrice
dont les lignes sont formées des composantes des vecteurs propres gauches, on a :

R=L"R'=L (3.84)
Par suite, on a aussi :
W = / LdU’ (3.85)
Le vecteur W est le vecteur des variables caractéristiques. On a donc le systéme :
OW OW
4D — 3.86
ot + ox ( )
ou le long des caractéristiques de pente locale \; = ‘fl—f:
LAU = dW =0 (3.87)
Pour déterminer dW, on effectuera le calcul :
' p
19d | u | = dw, (3.88)
p
soient, le long de chaque caractéristique :
dp—padu:O,%:)\lzu—a
dp—a*dp=0,% =)y =u (3.89)

dp+padu:0,‘fl—f:)\3:u+a
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Chapter 4

ECOULEMENT INSTATIONNAIRE MONODIMENSIONNEL
D'UN GAZ IDEAL

Dans ce chapitre, nous allons présenter quelques résultats importants sur les pro-
priétés des écoulements monodimensionnels compressibles instationnaires qui seront
tres utiles pour une meilleure compréhension de la construction de schémas numériques
permettant de capturer des discontinuités et en particuliers des chocs. Les équations
correspondantes étant de type hyperbolique, nous introduirons les équations instation-
naires sous une forme particuliére mettant en évidence les invariants de Riemann le
long des caractéristiques. Aprés l’étude simplifiée de deux cas physiques élémentaires,
les problémes de détente et les problémes avec choc, nous introduirons comme con-
séquence, une approche théorique, la méthode de Riemann, qui sera utilisée plus loin
lors de la mise en place de schémas de discrétisation.

4.1 Etude théorique

Par hypothése, le fluide n’est ni visqueux, ni conducteur; par ailleurs ’apport de
chaleur extérieur et les forces volumiques sont nulles. On se proposera dans la suite
d’étudier un écoulement monodimensionnel instationnaire isentrope d’'un gaz parfait.

4.1.1  Les équations de base

Avec les hypothéses précédentes, considérons les équations fondamentales régissant
I’écoulement :

dp ou dp

ou Oou 10p
- 4 ZE 4.2
0t+uax+p8x 0 (42)

Oh, oh, 10p
i | 4.3
ot ox pot (43)

ol, puisque le gaz est parfait :

p=prT (4.4)
he = " T+ 1u2 (4.5)
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et ot la vitesse du son a est donnée par:

a:(%guizmﬂwﬂz(%§U2 (4.6)

S

Comme le fluide est isentrope (adiabatique et non visqueux), on utilisera la relation
thermodynamique suivante:

p=p(p) (4.7)
avec la relation isentropique, qui remplace I’équation d’énergie :

p=kp" (4.8)

4.1.2  Mise en forme des équations

On élimine la pression dans 4.2 en introduisant 4.6 et en écrivant :

p _dpdp _ (9p\ 9p _ ,0p
R G S L (4.9)
Jdxr dpox op), 0x ox
Le systéeme 4.1 & 4.3 est alors remplacé par :
dp dp Ju
- - - = 4.1
at+u3x+pﬁx 0 (4.10)
ou  Ou a®0dp
= It i 4.11
ot + Yor * p Ox (4.11)
A partir de 4.8, on en déduit :
pa "D = Cte (4.12)
ou
pa~ 2N = Cte (4.13)
On différentie I’équation 4.13 par rapport a t et a z :
10p 2 10a
-—— -—— = 4.14
p Ot + k—1la ot (4.14)
10p 2 10a
—_ZF =0 4.1
pdr kK—1ladx (4.15)
On remplace alors 4.14 et 4.15 dans 4.10 et 4.11, il vient :
da Jda k-1 Ou
- - = 4.1
ot +U6$ 2 “or 0 (4.16)
ou ou 2 Oa
z= el — =0 4.1
ot " Yor T k—1%0x (4.17)
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A cause de la symmétrie des deux équations, multiplions la premiére, par exemple,
par un facteur A a déterminer et additionnons les deux relations obtenues:

u—i—(/{il)Z;a] ~0 (418)

Pour que le terme de droite ait la méme forme que les deux autres, on doit avoir :

0 (u+ Aa) N 0 (u+ Aa) +/<:—1)\ 0
ot R 2 ou

2
A=+ 4.1
— (4.19)
Par conséquent, avec le signe +, on obtient :
0 2 0 2
alu—l—ﬁ_la]—k(u—ka)a—x[u—kﬁ_la}—O (4.20)
et avec le signe — :
0 2 0 2
E{u—ﬁ_la}—k(u—a)%[u—ﬁ_la}—0 (4.21)
On pose :
2
u—i—/{_la:P:u—i-P (4.22)
et : 5
— _1a:Q:u+Q (4.23)
avec : 5
= 4.24
P =—a (4.24)
et :
Q=— 2 a (4.25)
k-1 '
on obtient alors : ap op
el = 4.2
8t+(u+a)8x 0 (4.26)
oQ oQ
X —q) =< = 4.2
5 + (u—a) e 0 (4.27)
ce qui est équivalent & :
awj 6’wj
— — =0 4.28
ot L Ox (4.28)

avec :
wy =Pwy=Q; i =u+a,=u—a (4.29)
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Introduisons les définitions suivantes :

DT 0
E—a—i-(u—i—a)% (4.30)
D~ 0 0
E—a%—(u—a)% (4.31)

Ces opérateurs sont les dérivées temporelles mesurées par un observateur se déplacant
dans la direction +x(—z) a la vitesse u+a, (u — a) c'est-a-dire a la vitesse d’une onde
sonore. Dans le plan x — ¢, les directions dx/dt = u 4 a sont les directions locales des
caractéristiques. On obtient finalement :

D*P DY (u+P)

i D =0 (4.32)
DQ D (u+9Q)
T o7 =0 (4.33)

4.1.8  Recherche des caractéristiques

Les grandeurs P et () sont appelées les invariants de Riemann. On cherche alors les
lignes le long desquelles les grandeurs P et () sont constantes. Pour cela exprimons
P et () en fonction de x et t et calculons les différentielles totales de P et (). Prenons
le cas de P :

oP oP
dP = —dz + —dt 4.34
AT (4.34)
Or, avec 4.26, on a :
) oP
d’ou : op
dP = B [dx — (u+ a) dt] (4.36)
x
Lorsque dP est nul, P est constant sur la ligne :
d
d—f = (u+a) (4.37)
Cette ligne est la courbe caractéristique Ct vérifiant la condition:
2
P=u+ 1a:u—|—P:Cte (4.38)
/{/ J—

ou la caractéristique C est déterminée par sa pente locale :

d +
ct % = (u+a) (4.39)

De méme pour @), on aura la caractéristique C'~ telle que :

Q=u-

2 1a:u+Q:C’te (4.40)
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ou la caractéristique C~ est déterminée par sa pente locale

_.dx_
C'dt

=(u—a)

33

(4.41)

Si maintenant on associe aux lignes caractéristiques C'" et C~ passant par un point
M, le systéme de coordonnées (&, 1) tel que le long de C~,& = Cte et le long de
C*,n = Cte, on a (figure 1) :

A

e Lelong de C :

avec :

et :

e Lelongde C™ :

avec :

et :

Figure 1  Onde simple

0w, 2 ou_

o6 k—10¢
+

ct (di) =u+a
dt .

P=u+

ou_ 2 0
oy k—10n

C™: <di> =u—a
dt ¢

Q=u— 21a:u+Q:C’te

2
1a:u+'P=Ct6

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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On remarquera qu’une caractéristique Ct,n = Cte se présente toujours avec
une pente positive dans le plan (z,t). En revanche, une caractéristique C'~, £ =
C'te a une pente positive ou négative selon que ’écoulement est subsonique ou
supersonique.

4.1.4  Onde simple

Considérons une onde quelconque dans le plan xt représentée par les lignes carac-
téristiques. Cette onde est dite simple si elle se trouve adjacente & un domaine
d’écoulement invariable. Celle-ci est constituée par des lignes caractéristiques droites
appartenant & 1'une des familles 7 ou £ constantes. Cette propriété découle directe-
ment des relations (4.43 — 4.46). Considérons par exemple une onde décrite par
une famille de caractéristiques 7 constantes (figure 2). Sur cette figure deux car-
actéristiques ¢ constantes sont issues du domaine ou I’état d’écoulement est invari-
able. Ces caractéristiques rencontrent en R et S un membre de la famille de courbes
n = constante. En appliquant (4.44) et (4.47) pour les variables de ’écoulement aux
points R et S on obtient

2

2
us + 1 as = UR + 1 R

uUg — % as = () = constante

up — % ar = () = constante

7 = const.

Figure 2 Série d'ondes simples

d’ot 'on tire ag = ar et us = ug. u et a sont donc constantes le long d’une courbe
n = constante. Selon (4.43) la pente d’une ligne 7 = constante est invariable et par
conséquent les lignes 7 sont des lignes droites.
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4.1.5 Valeurs propres, vecteurs propres, équations caractéristiques et variables car-
actéristiques du systéme

Considérons de nouveau le systéme suivant:

dp dp ou

E + ua—x + p% =0 (448)
2

ou ou a 3,0_0 (4.49)

at or T por

Ecrivons ce systéme sous forme matricielle; on obtient :

ou’ ,ou’
AT =0 (4.50)
avec .
u’:[p } A = {u p} (4.51)
u 7 Uu

ou u’ est le vecteur des variables primitives.

Les valeurs propres

Les valeurs propres de A’ s’obtiennent en calculant le déterminant :
det |[A'— M| =0 (4.52)
soit:

AM=u+a =u—a (4.53)

Vecteurs propres droits

T T
Cherchons ensuite les deux vecteurs droits (1) = [Vfl),yél)} et v = [Ufz), V§2):|

associés aux valeurs propres A\; et Ao. On doit vérifier, par exemple avec vV :

A = )W (4.54)
soit :
A L I e )
a*/p u AV (w+a) Y '
d’ou : )
oY = aV a—l/fl) = a! (4.56)
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Ces deux relations sont identiques. Par conséquent, on peut introduire un facteur
d’échelle arbitraire, par exemple k; et écrire :

v =k { a}p } (4.57)

Pour le vecteur propre %, on introduira le facteur d’échelle ks et on écrira :

v =k, { _i I } (4.58)

Si on pose k1 = ks = 1, on aura:

EE R EN 50

Vecteurs propres gauches

On peut aussi déterminer les vecteurs propres gauches 1) = [l%l),lél)] et 12 =

[l?), léQ)]. Ainsi, pour 1V on a:

104" =10\, (4.60)
soit
[ lgl) lél) ] [ a?u/p Z } B [ lgl) lél) } Al (4.61)
On obtient : )
zg“% =+ 1Mp=—ia (4.62)

Ces deux relations sont identiques. Par conséquent, on peut encore introduire un
facteur d’échelle arbitraire, par exemple k] et écrire :

1M — [ggﬂ,lgﬂ] _ {9,1} (4.63)
p
De méme, pour 1® on aura :
12 = [z?,zgﬂ — K, {—9,1} (4.64)
p

En posant k] =k}, = 1, on a:

1M = {9,11, 1® = {—9, } (4.65)
p p
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Equations caractéristiques

Reprenons 1’équation 4.50 et multiplions la par les vecteurs propres gauches 1) :

Lo’ . ou’
1), 100 A== = 4.
BT +1%.A pe 0 (4.66)
ou en introduisant 4.60 avec (1) = ()
L [od ou’
1), Ni— | =0 4.67
{at * 8x] (467)
Or, comme \; = ‘fi—’t” :
s [od  dzxod 4
1), - = 10 du’ = 4.
[8t+dt 8:6] 0= du 0 ( 68)
Soit pour A\; = % avec 1V :
Sl P 0= dqut Lap=o0 (4.69)
S| du p )

. . . 2 . . dx-
Si on multiplie 4.50 par 1), on obtient pour Ay = 9

a dp | a.,

On peut d’ailleurs réécrire 4.69 et 4.70 en introduisant :

pa~2"=D = Cte (4.71)
a 2
du+ —dp =0 = du+ da =10
p k—1
a 2
du—;dp:0:>du— _1da:0 (4.72)

On retrouve les résultats obtenus sous 4.22 et 4.23 :

2
k—1

u -+ a=P=u+P (4.73)

et :

21a:Q:u+Q (4.74)
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Variables caractéristiques

Si on introduit les 2 variables caractéristiques dw; et dwsy ol d représente les variations

%, %, on a par définition :
dw =R 'ou (4.75)
ou :
w = / R du’ (4.76)
ol R! est la matrice formée par les vecteurs propres gauches :
1 o1
R =|", 1 (4.77)
o
Les variables w; vérifient les équations :
awj awj .
— —=0,7=1,2 4.78
T (4.78)
soit : 5 9
w1 w1
-1 =0 4.
BT + (u+a) pe (4.79)
8w2 a’wg
72 —a) —= = 4.
5 + (u — a) p 0 (4.80)

On calcule alors les variables w; :
we |7, Ylal? (4.81)
—% 1 U '

al + dy

a®l — du
p

wq u+ %a P u+P
N R P R P T
Les équations 4.78 valables pour chacune des valeurs propres de la matrice A" du
systéme original 4.50 n’implique chacune que linconnu w;(x,t). On dira que ce
systéme est une représentation découplée du systéme 4.50 puisque on peut y revenir
en écrivant, par exemple 4.75 sous la forme :

ou’ = Row (4.83)

Les vitesses caractéristiques sont alors les valeurs propres A; et il y a m = 2 carac-
téristiques satisfaisant les équations :

dx

E:A‘]JJ:l?Q
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t &

Figure 3 Trajectoire du piston

4.2 Etude d’un écoulement isentrope en régime de détente

4.2.1 Ezpérience

Considérons un tube semi-infini limité d’un coté par un piston et rempli d'un gaz
initialement au repos (figure 3).

A Tinstant ¢t = 0, le piston est en x = 0 tandis que le gaz est contenu dans la
partie des = positifs. Le piston est mis progressivement en accélération dans le sens
des = négatifs et est animé d’une vitesse V' variant de V=0 & V = Vp uniforme par
exemple. Au cours du mouvement les particules en contact avec le piston ont pour
vitesse Vi = —V. On constate qu’au cours du mouvement du piston, dans certaines
régions du tube, le gaz refroidit, la pression baisse ainsi que la masse volumique et
que la vitesse du son. Ce phénoméne est caractéristique d’une détente dans un fluide.

M
|
|
|
|
|
|

v
- & >

Figure 4 Caractéristiques en un point P
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4.2.2  FEtlude théorique pour le régime de détente

En tout point de I’écoulement, donc pour chaque particule fluide, passent deux car-
actéristiques (figure 4), 'une montante C*,n = Cte, Pautre descendante C~, ¢ = C'te
dans le plan (z,1).

Lieu des particules aux repos

Figure 5 Réseaux de caractéristiques C et C~

Considérons le point ' a 'intersection des caractéristiques issues des points
B, et C,, situés sur les z positifs (figure 5). On a :

up, + PBO = Uc, + 7301 == C’te (484)
Uc, — QCO = Uc; — ch = (C'te (485)
Or, le fluide est initialement au repos, par suite :
Pa, =Py, =Pc, =P, (4.86)
et :
ua, = up, = uc, =0 (4.87)
On en déduit :
Pe, =P, = a¢, = a, et ue, =0 (4.88)

Ce résultat est valable pour tous les points se situant sur les caractéristiques
C™ issues des points pour lesquels x5, > 0. Or la caractéristique C}

orig. LiMite, issue
de l'origine, a pour pente :

d +
Cori <%> = (uta)yy = a (4.89)
7,07T1g.
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Figure 6 Zone grisée : fluide au repos

ou : gt 1
Cib i : <d—) =— (4.90)
& n,071g. Qo

Par conséquent, au dessous de cette caractéristique C’;;ig_ le fluide est au repos (figure
6).
Propriétés le long des caractéristiques C'*

Considérons la caractéristique C'* issue du point A (piston), provenant elle méme du
point A, par une caractéristique C'~. Au points By et (5, on a :

U/A + PA — uBg + PBQ = UC3 + PC’3 - Cte - K (491)

Mais en B passe une caractéristique C~ issue de B, et en (3 une caractéristique C'-
issue de C,; on a donc :

up, — 7332 =Uup, — PBO = C’te (492)
ucy — Pey = uc, — Po, = Cte (4.93)
Or, comme :
Pp, =Pc, = Po (4.94)
et :
up, = uc, =0 (4.95)
On en déduit:
UB, PBz = —PO 4 96)
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et avec 4.91, on obtient :
up, = uc, et Pp, =Po, = ap, = ac, (4.98)

On en déduit que les vitesses u et a sont constantes sur les caractéristiques.
Par ailleurs au point A la vitesse de la particule fluide est égale & la vitesse du piston,
on a donc au point C3 par exemple :

Ua +Pa=uc, +Po, = K (4.99)
et :
uc; — Poy = =P, (4.100)
Or A provient de Ay par une caractéristique C~, d’ou :
ug —Pa="P, (4.101)
On en déduit, puisque,
ug = (up, = ucy) = =V (4.102)
k—1

Po, =P, -V = a¢, = a, — 1% (4.103)

2
La vitesse du son diminue, donc la pression baisse ainsi que la masse volumique : on
a bien une détente. Finalement la pente de la caractéristique est constante et donnée
par :

ot < dt ) - I 1 B 1
\dz/, Cue, +Po, —Vta,—[(k—1)/2]V  a,—[(k+1)/2]V

(4.104)
Comme V' augmente, de méme la pente augmente, on a donc un faisceau divergent
(figure 7). Au point F' ot la vitesse est constante, on a un régime uniforme. Lorsque la
vitesse du piston augmente, pour une certaine valeur de V', u+a = 0, le dénominateur
de 4.104 s’annule, la caractéristique C est verticale et on a la condition:

2

-V = — o 4.105
Y li—i—la ( )

On a ainsi un écoulement sonique vers la gauche :

2
_ . 4.106

Cette relation est a comparer avec la vitesse sonique d’un écoulement isentrope sta-

tionnaire :
|ul = \/—2 (4.107)
U = a, .
son. K; 1
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Figure 7 Caractéristiques et piston en mouvement

Pour de tres grandes valeurs de V' la vitesse du son a tend vers zéro, ainsi que toutes
les grandeurs thermodynamiques correspondantes, p, p,T’, on a alors :

2

’u‘fuite. - K — 10’0 (4108)
Pour cette vitesse les caractéristiques C et C~ et la trajectoire des particules sont
confondus. Il n’est plus possible au fluide de rester en contact avec le piston. Une zone
de vide apparait. C’est la vitesse maximum que ’on peut atteindre quand un gaz se
détend dans le vide : on 'appelle vitesse de fuite ou d’échappement. De nouveau, on
peut comparer cette valeur avec la vitesse correspondante dans le cas d’un écoulement
isentrope stationnaire :

2

k—1

o (4.109)

|U | fuite,isen. =

Calcul des grandeurs physiques de I’écoulement

Comme ’écoulement est isentropique, la pression, la température et la masse vo-
lumique du gaz peuvent étre reliées a la vitesse du son a au moyen des relations
isentropiques que ’on peut mettre sous la forme :

2k/(k—1)
L <3> (4.110)

Qo
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% - (5)2 (4.111)
Pr_ (ﬁ)w_l) (4.112)

Trajectoire d’une particule en régime de détente

Considérons I’équation de la pente de la caractéristique C* :

dt\ " 1 1
+: <%)n STV at et 1) 2 (4.113)

A partir d'un point de la trajectoire du piston , M (¢, xys) par exemple on écrit :

t—tu 1
+ . _
i e =t (EEEE (4.114)

L’équation d’une trajectoire d’une particule est par définition :

dx
= — 4.115
u=— (4.115)
En introduisant cette définition dans 4.114, on a :
dv 2 (x —xp) —ao (t—ta) (4.116)
dt — k+1 (t —tu) '
Posons ¢ —zpy =™, t —ty), =t* :
dz* 2 2 x*
=— o o— 4.117
dt* Iﬁ—i—la_'_/i—i-la t* ( )
On obtient apreés intégration :
2
1= a4 A ()% =D (4.118)
/i J—

Comme la particule est initialement en = = x,, 'expansion commence en t, = z,/a,
le long de la caractéristique C'" issue de lorigine. Il suffit alors de poser t3; = 0
et xpr = 0. Lorsque t < t,, on se trouve dans le domaine au repos et la solution
précédente n’est pas applicable. On a dans cette région x = z¢y = C'te.
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p=pe.a=a, l p=T=a=0 (a)

Ta"t Oxndc simple

X =-=a,t ,."
\*\ [ <—2a,t/(xc-1)
=t Y74 B

u!a.,‘

/ X, (c)

-a,l 2a.,tu'(K-l)

P/Po

O, Y@

r -

2a.t/(xc-1)

Ay <_I | | > Uppax (e)

Figure 8 Expansion dans un tube

4.2.3  Ezemple: expansion dans le vide

Considérons un tube obstrué au milieu par un diaphragme et rempli d’'un co6té du
diaphragme par un gaz parfait. La pression dans ce gaz et sa vitesse du son sont
respectivement pg et ag. De l'autre coté du diaphragme il régne un vide parfait, et
donc a = 0. Lors de la rupture du diaphragme (¢ = 1), le gaz s’échappe & grande
vitesse dans la partie vide du tube et une onde de détente se propage dans le gaz
parfait. Le front de cette onde se déplace a la vitesse a = aq en accélérant les particules
de gaz vers le vide (figure 8a) etc.). En appliquant la relation 4.73 au travers de 'onde
simple ainsi créée, c’est-a-dire entre 1’état régnant dans le gaz parfait (v = 0,a = ag)
et I’état limite du gaz qui s’échappe dans le tube vide (4 = tpax, @ = 0), on obtient

(4.119)

Umax = Qo
k—1
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La vitesse maximale résultant d’une onde simple dans une expansion instationnaire est
donc considérablement plus élevée que celle obtenue dans un écoulement stationnaire.
[’onde simple représentée sur la figure 8 b est donc délimitée dans le plan zt par les
lignes £ = constantes
r=—apt (u=0, a=ap)
(4.120)
T = 2 aot (U = Unax, a =0)

Puisque u et a sont constantes le long d’une ligne x¢~! = constante, la variation de
I’état de I’écoulement au travers de cette onde, a un instant ¢ = ¢;, peut se déduire
analytiquement & partir des équations de base. On est donc amené & introduire dans
4.16 et 4.17 une variable indépendante s = xt~! dont u et a deviennent des fonctions.
Les dérivées par rapport a = et t d’une fonction f = f(s) s’écrivent

8f(5)_df@_1f/ f/:((ii_f
) s

Ox ds 8z — t
(4.121)
9f(s) _df 9s _ _§f/
ot ds ot t
Par conséquent 4.16 et 4.17 sont ramenées a la forme
2 (u—s)d +ad =0 (4.122)
k—1 '
u'(u—s)+ 2 ad =0 (4.123)
k—1
Une solution de ces équations s’écrit :
u=A; + Ays; A, Ay = constantes (4.124)
a = By + Bys; By, By = constantes (4.125)
Par substitution de ces expressions dans 4.122 et 4.123 on obtient :
= A 4.126
U 1+ h 1 S ( )
A i! (4.127)
a= S .
+A4 Pl

En utilisant la variante de 4.127 ou A; posséde un signe positif, on obtient avec 4.126:

k—1 2

= 4.12
/<¢+1S+/<o+15 a+s (4.128)

u=a-+

[’application de la condition u = 0 et a = ap donne pour s la valeur s = —ag.
Finalement on déduit de 4.126 la valeur de A; :

2
u=0= Al + K—H(—ao) (4129)
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d’ou:
2

kK+1

Par conséquent, au travers de ’onde simple les grandeurs u, a et p s’expriment par :

u_ 2 (1 + i) (4.131)

ag K-+1 aot

2 —1 —1
a_ A R R 1+ — (4.132)
ag kK+1 2 apt K41 aot

2k 2k
D a\rt k—1 T el
Z_ (= = [1-— 14+ — 4.133
Po <CLO) |: k+1 ( * aot):| ( )

On vérifie la validité des conditions (4.120) & partir de ces derniéres expressions. En
x = 0, correspondant a I’emplacement du diaphragme, on obtient

ao (4.130)

1

2
Kk+1

u=a= agp (4.134)

Donc en xz = 0, u = a et ’écoulement devient critique a cet endroit du tube. Pourtant,
les valeurs de a/ag et p/po sont différentes des valeurs correspondantes dans un cas
stationnaire. En effet, pour une valeur de k = 1,4, on obtient:

o= 2= (),833

2o ()T = 0,279

(4.135)

Les variation de la vitesse et de la pression dans le tube & l'instant ¢ = t; exprimées
selon (4.131 et 4.133) sont représentées sur la figure 8 (c et d).

4.3 Propagation d’une onde de choc

Figure 9 Onde de choc engendré par le mouvement instantané du piston
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Figure 10 Onde choc dans un repére fixe attaché au choc

Les relations obtenues dans le cours de Mécanique des Fluides Compressible,
traduisant la discontinuité des variables au travers d’une onde de choc normale, sont
exprimées pour un repére fixe avec le choc. On rappelle quelques relations utiles :

P1 —2 k—1 2 v2
— =M 1 M:—1)| == 4.136
P2 ! {—i_/@—kl( 1 )] U ( )
Do 2K 9
— =1 M:—1 4.137
o =t (-1 (4.137)
T 2K k—1
=M1 M2 —1)| |1 M? -1 4.138
T, ! |:+/i—|—1( ! )}{4—&4—1( ! )} ( )

Pour une onde de choc se propageant a la vitesse V. dans un gaz parfait au repos,
les conditions de saut a travers le choc sont obtenues en appliquant la superposition
(figures 9 et 10) :

Vo=—vy, V.—u=—1vy (4.139)

Compte tenu du déplacement du choc, la vitesse u du gaz devient avec (4.136) :

u:—(ul—vz)zvc(l—@)z 2 v<1—%) (4.140)

U1 k+1 €

Dans (4.136) M} a donc été remplacé par V2 /a2, ou a; décrit la vitesse du son dans
le gaz au repos. En effectuant la méme substitution dans (4.136), (4.137) et (4.138)
on obtient :

2 2 2
P1 ay k—1 [V 2 ai
L e 1) =1- 1L 4.141
P2 %?{+m+1(ﬁ )1 m+1< ‘@) 4141)
2 V2
Pr oy =2 (g (4.142)
1 K41\ a1
T, a? 2k (V2 k—1 (V2
2 _ 4y 1) |1 e 1 4.143
T K?{+H+1<ﬁ TR\ )

Dans le cas d’une onde de choc forte pour laquelle V. /a; > 1, on obtient les résultats

2
K+1

12

V. (4.144)
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2 2T 2k(k — 1) V2

~ P2 20 Ve To_papyg 2ele— D) Ve (4.145)
pp k—=1p k+1a' Ty p1pe (k+1)2 af

Dans le cas d’une onde de choc faible on a (py/p; —1) < 1 correspondant & une valeur

de (V./a; — 1) < 1. On obtient alors les relations suivantes :

@Nm+1_p2N

% ~ jlr - <aK1 - 1) (4.146)
Zig KL((%_):H% o
%;1“:;(%_ >:1+(m—1)% (4.149)

uhe, Germany, 1995

Figure 11  Choc au voisinage d'un col de tuyére
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4.4 Etude du tube a choc

t=t,
M; p. a, ‘ Mg pr ag (a)

Faisceau de détente A

\\ a,t _ Onde gde choc

T & 3 & 2 /R

t=t [ RRD . /J
\\

L] X, (b)

pL

t=t, \\

3 p3
i) T PR x..r..(t‘)

Ul._(___t_=_t.._‘_____ Ug X (d)

PL Py

a, <+ fegus Ly (g

Figure 12 Tube a choc

4.4.1 Principe
Un tube a choc est obtenu en remplagant dans ’exemple illustré au paragraphe 1.2 le
vide par un gaz a basse pression p; < pg. Lors de la rupture du diaphragme équipant
le tube, une onde de choc et une onde de détente se propagent respectivement dans
le gaz & basse pression et le gaz a haute pression. Si les deux gaz sont, comme c’est
normalement le cas, de nature différente, la surface de séparation entre les deux gaz
se propage dans le gaz & basse pression a la maniere d’un piston.

L’état caractéristique des zones d’écoulement influencées par chaque type
d’onde est représenté sur les figures 12 et 13 Ainsi au temps initial, & la rupture
du diaphragme, la distribution de pression est un ”saut idéal” limité par les état (L)
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et (R). Cette distribution se décompose, en une onde de choc qui se propage dans la
chambre de détente, avec la vitesse V., et une onde de détente qui se propage dans
la chambre de compression avec la vitesse a; sur le front d’onde. On désigne par
2 I’état du fluide traversé par I'onde de choc et par 3 I’état du fluide traversé par
I’onde de détente. L’interface entre les régions 2 et 3 est la surface de contact, limite
entre les fluides initialement situés de part et d’autre du diaphragme. En négligeant
le phénomeéne de diffusion, les fluides ne se mélangent pas et sont donc séparés en
permanence par cette surface de contact ou de séparation. La zone 5 est le domaine
de la détente limité par les états L et 3.

Surface de contact

Figure 13  Lignes caractéristiques

On remarquera sur la figure 13 les grandeurs wy, wsy, w3, dans les domaines
R et L, représentant les variables caractéristiques dans les directions respective des
vecteurs propres ) associés a chacune des valeurs propres Aj.

4.4.2  Calculs
Les conditions initiales sont les suivantes :

u=up,p=pL,p=pr *<0,t=0 (4.150)
u=ugr,p=pr,p=pr T>0,t=0 (4.151)

avec !
Pr < DL (4.152)
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La surface de contact :

Au travers de la surface de séparation, on a les conditions :

P2 = p3 (4.153)

La z6ne 3 :

La vitesse us se calcule dans la zéne 3 en appliquant I'invariant de Riemann au travers
de 'onde simple de détente entre les états L et 3, d’ou, le long d’une caractéristique
de pente u + a entre les points L et 3 :

ur, + as (4155)

2
/iL—laL_us_I—H}L—l

Au travers du choc I’équation de continuité (4.140) s’écrit:
us =V, (1 - ﬂ) (4.156)
P2
Par substitution de (4.155) et (4.156) dans (4.154), on obtient:
2
M.ag (1 - p—R> - ar (1 - @) (4.157)

P2 Ry — ]. ar,

ou M, = V,/ay représente le nombre de Mach du choc. Au travers de I'onde simple,
la variation de pression est exprimée, en utilisant également (4.153), par:

2Kp,

Ky —1
Ps _ (%) P (4.158)
bL ar, pbL

Onde de choc :

Au travers du choc ’équation de continuité (4.156) s’écrit

us =V, (1 - p—R) (4.159)
P2

Les valeurs du saut de densité et de pression au travers du choc sont fournies par:

l—p—R* 2 Mf—l

e = (4.160)

2
P2, oM

o p— 1(Mf —1) (4.161)
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Zone 5 :

Dans la région 5, domaine de la détente formé des caractéristiques centrées de pente
us — as, les informations sont transmises le long des caractéristiques de pente us + as,
on a donc, pour un point 5 quelconque L < 5 < 3 :

2 2
1CLL:’LL5+

UL+
KL — kK —1

as (4.162)

et :

2Kp,

Ky —1
]f—i - (Z—i) : (4.163)

On a aussi, le long de % =%=us—as:

— =Ct 4.164
us = a5 = Ce (4.164)
Chaque caractéristique étant définie par :
de kp+1 Kk — 1
— = —ap — 4.165
dt g T g P ( )
dr __ x .
Comme % = %, on a:
r Kp+1 kK —1
—(UL—I-(IL) < ; < L2 us + ar, + L2 Uy, (4166)

Relation du tube a choc

Ainsi, la combinaison de (4.161) et (4.158) fournit pour p;/pr la relation

2K7,

L _ {1+ 268\ 1)} (%) (4.167)

PR KfR‘i‘l ar,

De plus, en utilisant (4.157), as/a;, peut étre exprimée en fonction de M.. On obtient
ainsi la relation fondamentale du tube a choc

2K,

pL 2KR 2 ar ki — 1 ]\402 — 1] =1
— =11 M2 —1 1—— 4.168
PR { +/~€R—|—1( ¢ )]{ ar, k1+1 M, ( )

Cette relation démontre qu’on peut obtenir des nombres de Mach élevés dans un tube
a choc. Ceci se produit avec de tres grandes valeurs de py/p;. En effet, a la limite
quand py/pr — 00, on obtient

M2—1 kp+la, rptl (KLMRlTL)l/z

_ 4.169
KrMpTg ( )

MC IiL—].CLR—HL—l
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Dans la pratique 77, = Tx = 300 K. Par conséquent, pour obtenir un nombre de Mach
M. élevé il faut que Mp/ M, soit aussi grand que possible. En utilisant comme gaz
moteur un gaz léger, par exemple I'hydrogéne (M = 2 et Kk, = 1.4), et comme
gaz de refoulement un gaz lourd, par exemple l'argon (Mg = 40 et kg = 1,66), on
obtient M. = 27. Dans un tel cas le saut de température théorique pour un gaz
parfait devient selon (4.149)

T2 ~ 2RR1(I€R — 1)

S TV T M2 =234 4.170
TR (/iR -+ 1)2 ¢ ( )

De ce fait, le tube a choc peut servir & étudier les phénomeénes liés aux gaz a hautes
températures comme, par exemple, I’ionisation et les effets de relaxation.



Chapter 5
INTRODUCTION AU PROBLEME DE RIEMANN

On vient de voir, par l’étude du tube a choc et tout particuliérement du choc lui-méme
que au temps t=0, on se trouve avec un discontinuité avec & gauche des valeurs (in-
dice L) constantes et o droite des valeurs (indice R) constantes. Un tel probléme
s’appelle aussi probléme de Riemann. Il est important d’approfondir les propriétés au
voistnage de cette discontinuité lors de la mise en place de méthode de discrétisation.
En effet, lorsque on utilisera des formulations numériques conservatives, en partic-
ulier a distribution a valeurs constantes par morceauz, et cela méme si le probléeme a
résoudre est continu, au bord de chaque cellule apparaissent automatiquement des dis-
continuités (plateau de valeurs constantes différentes d’une cellule a l’autre). C’est en
particulier pour traiter ces discontinuités non physique en plus des chocs qui peuvent
naturellement apparaitre que la méthode de Riemann est importante a analyser.

5.1 Etude théorique

5.1.1 L’équation de convection scalaire linéaire

Considérons le probléme simple suivant :

ou ou
- =0 = 1
8t+a8x 0,—o0 <z <o0,t>0 (5.1)

avec :

u(z,0) = ug(x) (5.2)

Les caractéristiques

Dans le domaine x—t, les caractéristiques peuvent étre considérées comme des courbes
telles que x = x(t). Par conséquent, comme u = u(x,t), on peut aussi écrire :

u(z,t) = u(x(t), ) (5:3)
Le taux de variation de u le long d’une courbe x = x(t) s’écrit alors :

du Ou dzxou
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Or, si 'on veut que la courbe z = z(t) soit une caractéristique et par suite satisfasse
I’équation scalaire 5.1, on doit avoir :

dx
= 5.5
On en déduit alors :
du Ou ou
%= ot % =0 (56)

Par conséquent, le taux de variation de u le long de la courbe x = 2(t) est nul : u
est donc constant le long de la courbe z = z(t). Etant donnée la condition initiale
xr = o au temps t = 0, on a immédiatement que la caractéristique associée a notre
équation scalaire passant par le point x = g, t = 0 est la droite :

r =z +at (5.7)
Ainsi pour une famille de points ¢ ;, on obtient une famille de caractéristiques for-
mant un ensemble de droites paralleles (figure 1); toutes les droites ayant la méme

pente 1/a, ce qui est typique d’une équation scalaire. D’apres la propriété que u est
constant le long de = = x(t), on en déduit :

u(x,t) = uo(zo ;) = up;(z — at) (5.8)

A

Caractéristique x =x, + at

() |
Point initial x,

Figure 1 Caractéristique pour I'équation scalaire linéaire
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u,(X) A

Ur

Bl ol S —

x=0

Figure 2 Probléme de Riemann

Le probléme de Riemann

Considérons maintenant le probléme suivant (figure 2), appelé probléme de Riemann
pour I’équation scalaire:

ou ou
— — =0,— t>0 .
(9t+a8x 0,—0c0 <z <o0,t> (5.9)
avec :
B ur, st x <0
u(x,O)—uo(x){uR sz’x>0} (5.10)

D’aprés ’étude précédente, la solution au probléme de Riemann est avec 5.8:

t A

Caractéristique x - at=0

Figure 3 Solution du probléeme de Riemann
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B B urp st r—at <0
u(z,t) = uo(z at){ wp i@ —at >0 } (5.11)
soit la figure 3.
5.1.2 L’équation de convection scalaire non-linéaire
Considérons ensuite le probleme suivant, avec I’équation de Burgers:
du  Of(u) ou 0 (u?/2)
— 4+ —=0, 4+ ——"=0—0<zr<00,t>0 5.12
o Tar Vo e oS TS0 (5.12)
avec :
u(z,0) = ug(x) (5.13)
L’équation de conservation peut s’écrire :
Oou df Ou ou ,0u
T s Wit — =0 5.14
ot Tawor ot o Y (5:14)

ol % = M u) est la vitesse caractéristique. Dans le cas de I’équation scalaire,

% = a et avec ’équation de Burgers % = wu. Le comportement de la fonction
f(u) a des conséquences importantes sur celui de la solution. Une propriété trés
importante, qui sera utilisée plus loin, est la monotonicité de la vitesse caractéristique

L — Nu) = % = f’(u). On a trois possibilités :
1. A(u) est une fonction monotone croissante de w :

dA(u)
du

=XN(u)=f"(u) >0 flux convexe (5.15)

2. A(u) est une fonction monotone décroissante de u :

d\
d(u) =N(u)=f"(u) <0 fluz concave (5.16)
u
3. AM(u) a des extréma :
d
i\l(u) =XN(u) = f"(u) =0  flux ni concave ni convere (5.17)
u

Les caractéristiques

Dans le domaine x — ¢, comme dans le cas linéaire, les caractéristiques peuvent étre
tout simplement considérées comme des courbes telles que © = z(t). Par conséquent,
on peut aussi écrire :

dx ,
o = M) = f(u) (5.18)
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Le taux de variation de u le long d’une courbe x = x(t) s’écrit alors :

du  Ou ou

— =—+4+Nu)=— =0 5.19

at Ot ( )8:15 ( )
Par suite, le taux de variation de u le long de la courbe = = x(t) est nul : u est donc
constant le long de la courbe x = z(t). Etant donné la condition initiale z(0) = xg
au temps ¢t = 0, on a immédiatement que la caractéristique associée & notre équation
scalaire passant par le point x = zg, t = 0 est la droite:

xr = xo + AMuo(zo))t (5.20)

Ainsi, pour une famille de points xg, on obtient une famille de caractéristiques formant
un ensemble de droites (figure 4); les droites ont la pente 1/A(ug(zg)). D’apres la
propriété que u est constant le long de = z(t), on en déduit :

u(z,t) = ug(zo) = ug(x — AMuo(xo))t) (5.21)

>
X

Figure 4 Caractéristique pour I'équation scalaire non linéaire

Le probléme de Riemann pour I’équation non linéaire de Burgers

Considérons maintenant le probléme de Riemann appliquée a I’équation de Burgers
non linéaire:

Ou | 0f (w)

—0—%4_ @
ot " or ot Yor

=0,—oc0o<x<00,t>0 (5.22)
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avec

(5.23)

u(z,0) :u()(x){ up six <0 }

ugr st x>0

Cas ou u;, > ug : Supposons tout d’abord que uy > ur . Comme le flux f(u) est
convexe les vitesses des caractéristiques dans le domaine de gauche sont plus grandes
que celles dans le domaine de droite. Par suite :

AL = A (UL> >Ap=A (UR) (524)

On obtient la figure 5. La solution au probléme de Riemann est :

A

u
ug,

NN

t A Choc

Ug

//u >

Figure 5 Le probléme de Riemann pour I'équation non linéaire de Burgers

u(x,t):uo(x—ut){ up, st x— Vit <0 }

ur st x — Vit >0 (5.25)
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ou V. est la vitesse de propagation du choc :

1
V; = 5 (u L +u R)
On remarquera que les caractéristiques dans chaque région ot u est constant se diri-

gent vers le choc lorsque le temps évolue.
Cas olt u;, < ur Dans ce cas, il y a une infinité de solutions. L’une d’elles est de

nouveau (figure 6):

u(z, t) = ur, st x — Vit <0
"l ugp st x— Vit >0

uh
| Ug
|
|
1
|
UL, |
>
X
tA
X
|

Figure 6 Onde de choc violant le second principe

Le choc se déplace a la vitesse V.. Mais dans ce cas, les caractéristiques
s’éloignent du choc. Cette solution est instable et viole le second principe de la
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thermodynamique. Une autre solution est 'onde de détente (figure 7):
ur, st r < upt
u(z,t) =< z/t si ugt <z < upt (5.26)

URr St T > ugt

Cette solution est stable.

!
V4 Ur
14
7
!
7/
7
Uz, /
|
X
tA
X
e >

Figure 7 Onde de détente

5.1.8  Systéme d’équations
Considérons maintenant le probléme suivant consistant en m équations scalaires hy-

perboliques.

ou ou
o Az =0 (5.27)

La matrice A possede m valeurs propres réelles \; et par conséquent m vecteurs

propres v\,
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Diagonalisation

On suppose que la matrice A est diagonalisable, c’est a dire que ’on peut écrire :

A=RDR™ (5.28)
avec :
A1
A2
D= . (5.29)
)\mfl
Am
et :
R=[vW, @ L pm=bym ] (5.30)
avec la propriété :
A=) (5.31)

Variables caractéristiques

On introduit alors les m variables caractéristiques w; en utilisant la transformation
suivante :

w =R 'u (5.32)
Multiplions 1’équation 5.27 par la matrice R~}

ou

ou| __;[0u _Oul|
at—i—Aax}—R { +RDR =0 (5.33)

-1
R [ ot Oz

Comme la matrice A est constante, il en est de méme de K et par suite on peut écrire:

OR 'u OR 1u _Ow Daw _

D = D= = .
ot P o o " Por Y (5:34)
ou :

ij 8w]‘ B -

On a donc découplé le systéeme 5.27. Chacune des équations est équivalente a 1’équation
de convection 5.27. La vitesse des caractéristiques est maintenant \; et on a m car-
actéristiques satisfaisant les relations :

dx
i A (5.36)
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Le probléme aux valeurs initiales

On a maintenant un probléme avec m conditions initiales :
= T 5.37
Uy = [Uljo, U2.0, ...Um70] ( . )

Introduisant les variables caractéristiques pour les conditions initiales :

wo = R 'ug (5.38)
Chacune des solutions aux équations % + )\j% = 0 s’écrit avec 5.21 :
wi(z,t) =wjolr —Nt),j=1,...,m (5.39)

Pour obtenir la solution u, il suffit d’écrire que :

u=Rw (5.40)
soit :
U] = wlyp) + wgyg) + ...+ wmyfm)
U; = wlul-(l) + wgul-@) + ...+ U)ml/i(m) (5.41)
Uy = Wi+ wort? 4w,
ou:

u(z,t) = Zm: wj(x, t)r") (5.42)

Ainsi la fonction w;(z,t) est le coefficient de v\ dans un développement de u(z,t)
en fonction des vecteurs propres. Mais comme avec 5.21 :

w; (ZE, t) = U)j’()(l’ - )\]t) (543)
on a:

u(z,t) =Y wjo(z — Aty (5.44)
j=1

Par conséquent, étant donné un point z, ¢, la solution u(x,t) en ce point ne dépend
que des conditions initiales aux m points z,; = v — A;t. Ce sont les intersections avec
I'axe des x des caractéristiques de pentes A;.
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Le probléme de Riemann

Le probleme de Riemann appliqué a un systéme d’équations est alors le suivant :

%1; A——O—oo<x<oot>0 (5.45)
avec :
- uy, stx <0
u(z,0) = up(z) { up si x>0 } (5.46)

On suppose alors que 'on a m valeurs propres \; toutes réelles et ordonnées :
AM <A< A3<...< )\, (5.47)

Dans le plan = — ¢, on a les caractéristiques suivantes issues de 'origine (figure 8):

t A

Aj

Figure 8 Caractéristiques

Chaque caractéristique propage un saut de u a la vitesse A;. A la gauche de \; I'état
est constant, caractérisé par uy,. A droite de \,, il est aussi constant et est caractérisé
par I’état Ug. On cherche alors a déterminer u en un point (z, t) situé entre les deux
caractéristiques extrémes. On décompose les états ur et u;, en fonction des vecteurs
propres v qui sont linéairement indépendants :

ur :Zajy(j) (5.48)
=1
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et : .
up =>» gt (5.49)
j=1

ou les coefficients «; et 3; sont constants. On peut alors calculer le saut entre les
deux états extrémes R et L:

Au = uR—uL:Z(Bj — aj) v (5.50)
j=1

L’intensité de I'onde j est a; — 3; et le saut a travers 'onde j est :

(Au); = (8; — a;) vV (5.51)
Ces sauts satisfont la condition de Rankine-Hugoniot puisque avec :
f(u) = Au (5.52)
on a : A ‘
[£(u)], = Au]; = (8; — a;) AV = (8; — a;) AV (5.53)
soit : A
[F(w)]; = A; (8 — ay) V) = ), (Au), (5.54)

ol \; est la vitesse de propagation de ce saut. Si on exprime alors le probléme en
fonction des variables caractéristiques, on a pour chaque \; I’équation :

ot ! Ox
En comparant les équations 5.46, 5.48 et 5.49, on a :

wjo(x) = { o sw<l } (5.56)

B; six>0

=0 (5.55)

Par suite :

Q; si:c—Ajt<0} (5.57)

w;(2,8) = wio(z = Ait) = { B; six—At>0

Finalement la solution u pour un point (z,t) quelconque devient :

m J
u(z,t) = Z av9) + Zﬂjy(j) (5.58)
j=1

j=J+1

ou J est la valeur maximum de j pour laquelle z — A\;z > 0. On peut aussi écrire :

u(z,t) =u,+ »_ (8 —ay) vV (5.59)
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ou :
J

u(z,t) =ug— Y (B —a;) vV (5.60)

>\j<$/t

5.2 Applications

5.2.1 Systéme linéarisée de la dynamique des gaz

Considérons a titre d’application le probléme suivant consistant en m = 2 équations
scalaires hyperboliques.

d | p 0 p |9 [p]_
E[u]+[a2/po 0}%{u =0 (5.61)
ou : a a
u u
o A =0 (5.62)

La matrice A posséde 2 valeurs propres réelles A\; et Ay par conséquent 2 vecteurs
propres vMet v, On réécrira le systéme sous la forme :

a (51 0 £o 8 U1

— — =0 5.63

ot { Usg } - { a*/po 0 | Ox | u2 (5.63)
avec les conditions initiales suivantes :

o |- [ ] 000

Diagonalisation

On vérifie que la matrice A est diagonalisable, c’est & dire que ’on peut écrire :

A=RDR™! (5.65)
avec :
A O —a 0
D—[Ol AJ—{O a} (5.66)
et :
[, @ ]=| P Po
R=[vl @] {—a a] (5.67)
ainsi que :

Rt {“ _po} (5.68)
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Variables caractéristiques

On introduit alors les 2 variables caractéristiques w; et ws en utilisant la transforma-

tion :
w=7R'u
soit, :
AN A
Wy 2apy | & po u 2| p/po+uja
On a 5 5
% j%—o,jzm
soit :
o own
o “or
dt%—i-dx%:0:>dw1:O:>dp/p0—du/a:O
ot Ox
et:
Oy | ows_
ot “or
dt%+dx%:0:>dw =0=dp/po+du/a =0
ot I 2 P/ Po

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

On a donc découplé le systéme initial. La vitesse des caractéristiques est maintenant

+a et on a 2 caractéristiques satisfaisant les relations :

dx dx
= —a,— =a

dt U dt
Le probléme aux valeurs initiales

On a un probléme avec 2 conditions initiales :

T
Uy = [ULO, Uz,o]

Introduisant les variables caractéristiques pour les conditions initiales :

Wqo = Riluo

soient : .
w,0(7) = 2apn lau1o(7) — pouao(T)]
wy () = 2ap lauy,o(x) + pouz,o()]
0

: e Dw; w;
Chacune des solutions aux équations 2 + \; 7L =

wj(x,t) = U)jp(l’ - /\ﬂf),j = ]_, ceey 2

0 s’écrit avec 5.57 :

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)
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soient :
wy(z,t) = wyo(x + at) (5.82)
wa(z,t) = wep(x — at) (5.83)
et avec 5.79 et 5.80 :
w(z,t) = l[au o(x + at) — pougo(x + at)] (5.84)
2apo
ws(x,t) = 5 lauy o(x — at) + pougp(x — at)] (5.85)
apo
Pour obtenir la solution u, il suffit d’écrire que :
u =Rw (5.86)
ou :
2
u(z,t) = ij(:v, ) = Zwm(x — A\t (5.87)
j=1 j=1
soit :
1
uy(z,t) = % [auy o(x + at) — pougo(x + at)] (5.88)
1
+ % lauy o(x — at) + pougp(x — at)]
1
us(z,t) = ~5 lauy o(x + at) — pougo(x + at)] (5.89)

1
+ % [CLUL()(JI — at) + p()UQ,o(l’ — at)]

Le probléme de Riemann

A partir de Porigine dans le plan x — t, deux ondes se déplacent avec les vitesses

Al = ‘fl—f = —a et \y = ‘fl—f = a tel que A\; < Xg. La solution a la gauche de la

caractéristique définie par \; est 1’état constant :

u; = oM + app? (5.90)

[Zi}:al[f(;]JraQ{?} (5.91)

On en déduit les valeurs de ay et ay :

soit :

_ apr — polur o — apr + pour (5.92)

“ 2apy 2apo
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et la solution a la droite de la caractéristique définie par A\ est ’état constant:

up = SV + o (5.93)
PR | _ Po Po
[UR}—BI{_Q]"FﬁQ{a} (5.94)
On en déduit les valeurs de (31 et [ :
o= YR_PUR 5, _ Opr T Do (5.95)
apo 2apo

Il est alors possible de trouver la solution pour w et p dans la région comprise en-
tre les caractéristiques associées a A\; et Ay. Considérons un point P situé dans ce

t A

P(x,t)

Ur
up

Xo(l) X

o C

%@

Figure 9 Recherche de la solution en P

domaine (figure 9). Tracons deux droites paralléles respectivement & chacune des
caractéristiques. L’une coupe l'axe des = en 19 =  — M\t = x — at et 'autre en
Too = T — Mt = v + at. Par conséquent, les coefficients de la relation déterminant
u sont alors connus. En effet, pour choisir correctement les coefficients, on choisit
un temps t quelconque et un point x; a gauche de la caractéristique A\;, uy est alors
défini par 5.90.

u; = o' + apr® (5.96)

Le point (zr,t) est tel que tous les coefficients de 5.90 sont des a;. Lorsqu’on se
déplace vers la droite (figure 10), au passage de la caractéristique A;, * — A;t change
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t A

o R b
X1, 0

b

Figure 10 Recherche des coefficients

de signe et devient positif et par suite le coefficient d’aprés 5.93 se change en ;. Par
conséquent, la solution devient :

u =8V + a® (5.97)

o= e 2]

[,0} _ apr = pour { po }JramepouL [Po}

soit :

u 2apo —a 2apo a
HE A L) 598

Enfin lorsqu’on traverse la caractéristique de pente Ay on obtient :
ur = BlV(l) + 521/(2) (599)
On en déduit avec 5.96 le saut entre I’état R et ’état L:

Au = urp —uy = (ﬁl - Oél) l/(l) + (ﬁg - Oég) V(z) (5100)
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Chapter 6

SCHEMAS DE DISCRETISATION AUX DIFFERENCES FINIES
CLASSIQUES

On suppose connus les concepts de base des méthodes numériques (cours de Simula-
tion Numérique B) pour les équations aux dérivées partielles, en particulier pour les
équations hyperboliques :

e Les erreurs de troncature
e La précision d’un schéma

La consistance

L’équation modifiée

La stabilité

La convergence

e Les erreurs de dissipation et de dispersion

6.1 L’équation scalaire de convection linéaire

Considérons un probléme aux valeurs initiales et aux limites pour ’équation de con-
vection scalaire, dans le domaine [0, L] x [0,7] du plan « — ¢, soit :

e Equation :

— +

% %% = 0,a>0 (6.1)

e (Condition initiale :

u(z,0) = ug(x) (6.2)

Conventions :



76 Schémas de discrétisation aux différences finies classiques

e u,0u u seront les notations utilisées pour la solution exacte de ’équation ou du
systéme d’équations & résoudre. En un point j, la solution exacte sera notée :
’LLJ' ou uj

e U ou U seront les notations utilisées pour la solution exacte de ’équation mod-
ifiée. En un point j, la solution exacte sera notée : U; ou U;

e U} ou Uj seront les notations utilisées pour la solution approximative apres n
itérations de ’équation discréte ou du systéme d’équations discrétes a résoudre.
Aux points discrets j, on notera : U ou U7

e Ainsi en un point j :

uj,u; solution exacte de l'équation continue
U;,U; solution exacte de l'équation discrétisée (6.3)
U, U%  solution approchée de l'équation discrétisée

6.2 Principe de discrétisation

Le principe de la discrétisation consiste & remplacer un probléme continu, représenté,
par exemple, par une équation aux dérivées partielles, au moyen d’un ensemble fini
de valeurs discrétes. Pour cela on discrétise tout d’abord le domaine de calcul, en
un ensemble fini de points (méthode aux différences finies) ou de volume (méthodes
aux volumes fins) définissant un maillage. Dans approche aux différences finis ces
valeurs sont des valeurs ponctuelles définies aux points de la grille. Pour la méthode
aux volumes finis, les valeurs discrétes sont des valeurs moyennes de distribution
constantes ou linéaires par morceau sur des volumes finis. Nous introduirons tout
d’abord les principes de discrétisation par la méthode aux différences finies. Soit
une grille réguliére en espace et en temps. On introduit 1’espace régulier des points
espacés de Az sur le domaine [0, L] en introduisant M points tels que :

Axr = — 6.4

r=1 (6.4)
et 'espace régulier dans la direction temporelle At sur le domaine [0, 7']. Les points de
la grille sont alors positionnés en (jAz, nAt) dans le plan x—t avec j = 1,..., M et n =
0,1,...N. Par conséquent, les valeurs discrétes de la fonction u(z,t) en (jAz, nAt)

sont définies par :
Ui = U(jAr,nAt) = U(x;,t") (6.5)

L’observation du domaine de discrétisation (figure 1) montre que :

e pour la discrétisation de la dérivée temporelle une différence progressive peut
étre utilisée :
{&L} Uy ) H

ST A (6.6)
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t A AX

>
n+1 ) '
At
n ) o—@
0 >
0 1 1 M-+1

.

Figure 1 Domaine de discrétisation

ol U;“Ll est la nouvelle valeur que l'on cherche, U}" étant connu Vj = 1,.., M.

e pour la discrétisation spatiale, une différence centrée faisant intervenir les valeurs
connues uj,; et uj_; devrait étre une bonne approximation :

(6.7)

@ - Uty — ULy
or| 2Ax

L’approximation de I’équation aux dérivées partielles prend alors la forme suiv-
ante :

—0 (6.8)

1
@—Fa@ ~ UJTHF —U]” +a ﬁl_U}ll
ot ox At 2Ax

On a alors une équation aux différences finies. Comme toutes les valeurs dis-

crétes au temps n sont supposées connues, il suffit de résoudre la relation pour
I’inconnue U f’“ :

n n 1 n n
U™ = Uj = 5e|Ut = Ut (6.9)

ou ¢ est le nombre de Courant, ou nombre CFL (Courant-Friedrich-Levy):

alAt a

pum . 1
Ax  Azx/At (6.10)

CcC =
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C’est le rapport de deux vitesses : la vitesse de propagation a et Az/At une
vitesse de propagation numérique lié au maillage dans le domaine discret. Si nous
cherchons les solutions obtenues pour des pas de temps allant de 0 & 4 avec un nombre
de Courant de ¢ = 0.5, avec les conditions initiales suivantes:

0_ 1 S (N
Uj—l,]<5,Uj—O,]Z5 (6.11)
on obtient :
[ n \j 0 1 2 3 4 5} 6 7 8 9 > i
0 1 1 1 1 1 0 0 O 0 0 5
1 1 1 1 1 5 1 0 0 0 0 5.5
4 4
2 11 1 £ 2 &£ L 0 0 0 6 (6.12)
3 0101 s 8 8 B B o1, (g5
4 1 25 ﬁ % % & @ ﬁ 1 0 7
L 256 256 256 256 256 256 256 256 J

d’ou la figure 2: La solution exacte a ce probléme devrait montrer que les données

Ua

7

T T T T T 1 ¢ ¢ >
012 3 4 56 7 8 9 x(j)

0

Figure 2 Schéma de discrétisation centrée

initiales sont transportées vers la droite de %Aw a chaque pas de temps. On constate
que cette solution développe une oscillation et si I’on continue elle diverge. L’analyse
de la stabilité de ce schéma (von Neumann) montre effectivement que ce schéma centré
en espace est inconditionnellement instable. Il y a cependant quelque chose de juste,
puisque la somme des termes (colonne de droite) augmente de 0.5 & chaque itération.
On rappelle que le critére CFL stipule que le domaine de dépendance numérique doit
inclure le domaine de I’équation différentielle.



Schémas du premier ordre décentré 79

6.3 Schémas du premier ordre décentré

L’utilisation du schéma centré précédent n’a pas tenu compte de la physique. En effet
pour le probléme de convection donné, la vitesse a a un signe, celui de la propagation
de l'information : soit dans le sens des x positif, soit dans le sens des x négatif.
Reprenons le probléme a zéro. Si la vitesse de propagation de 'onde a est positive,
I'information quelle transporte se trouve en amont du point ou ’on fait le calcul; en
conséquence, il ne faut pas introduire & priori de point situé en aval puisque 'onde
n’a pas encore atteint ce point.

6.3.1 Schéma CIR

Considérons donc maintenant comme choix de schéma de discrétisation pour la dérivée
spatiale un schéma décentré rétrograde lorsque a est positif:

Ou] U =Uls
—_— 6.13
{81} Az (6.13)
Dans ce cas la nouvelle équation discrete devient:
Uptt =0} —c[U} = U] (6.14)

Ce schéma appelé, le schéma CIR (Courant-Isaacson-Reeves), est du premier ordre
en espace et en temps. Il est stable conditionnellement et vérifie la condition C'F L:

0<c<1 (6.15)

Comme précédemment, si nous cherchons les solutions obtenues pour des pas de
temps allant de 0 & 4 avec un nombre de Courant de ¢ = 0.5, avec les conditions
initiales :

U)=1,j<5U=0,j>5 (6.16)
on obtient : ~ _
n\j 01 2345 6 7 8 9
0 111110 0 0 0O0 5
1 11111 4%+ 0 0 0055
2
2 1111135 7 000 6 (6.17)
3 11111 % 5 & 0065
5 11 5 1
4 111118 4 2 1L g 7]

soit le graphe 3. Que constate-t-on ? Tout d’abord, la vitesse de déplacement de la
discontinuité est correcte. Ensuite, si I’on augmente le nombre d’itération, il n’y a
pas de divergence, enfin et surtout le choc est fortement atténué. Le schéma est donc
dissipatif et suivant la valeur du nombre de Courant, I’amortissement au voisinage
du choc sera d’autant plus important que ¢ sera plus petit. En effet, son équation
modifiée a la forme : o o -

a—[j + aa—(x] = l/c]Ra—Jg (618)
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Figure 3 Schéma de discrétisation rétrograde
avec : )
VOIR = §Aa:@ (1—c¢) (6.19)
Il n’y pas d’oscillations. De méme, si la vitesse a est négative, on aurait :
+1 _
urtt =up —clUr,, - U} (6.20)
Il sera stable si la condition précédente, mais avec |c| est aussi vérifie. Un autre

Cleu ; scluticrn ae=acta Foums 3§ eolutic mumsSr idueas
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Figure 4 Schéma CIR

exemple est donnée, toujours avec un schéma CIR, en présence d'un saut (figure 4).
La solution exacte est en bleu. La solution numérique en rouge.
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6.3.2 Schéma CIR unifié

Mais que se passe-t-il lorsqu’on ne sait pas dans quelle direction s’effectue la prop-
agation des ondes 7 On doit effectuer une combinaison de ces deux schémas. Pour
cela, on introduit les notations suivantes :

1 at At
at = max(a,0) = 5 (at +a|) = ¢t = A (6.21)
_ : 1, - _a At
a —mm(a,O)—ﬁ(a —la) = ¢ = A
On vérifie que sia >0 =a~ =0et que sia < 0= a™ = 0. On en déduit le nouveau
schéma:
Upt = U =t [0 = U] = (U - U] (6.22)
avec la condition de stabilité :
0<|d <1 (6.23)
Par ailleurs son équation modifiée a la forme :
oU  oU U
= 4= = - 6.24
ot Yo T Vg (6.24)
avec : .
VOIR = iAxa (1—c|) (6.25)

Ce schéma est dissipatif.
6.3.3 Schéma de Lax-Friedrich (L.F.)
Le schéma C.I.R. est du premier ordre en espace. Il est malgré tout possible d’obtenir

un schéma stable & partir du schéma centré 6.9, qui pourtant est instable. En effet,
si on modifie le schéma en remplagant U} par:

n 1 n n
Up — 5( T+ UM) (6.26)
on obtient le schéma de Lax-Friedrich :
U = 3 (U +Uy) = ¢ (U1 = Uit (6.27)

Si on effectue un calcul avec les mémes conditions que pour les cas précédents, on
aura :

(n\j O 1 2 3 4 5 6 7 8 9 3
o 1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 2 2 0 0 0 055
4 4
2 1.1 1 2 }—;1 122 % 0 0 0 6 (6.28)
301 1 8 & = = g 0 0 6.5
4 1 265 255 243 243 189 189 S 8 7
L 256 256 256 256 256 256 256 256 a
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Figure 5 Schéma de Lax-Friedrich

soit la figure 5. On constate que le comportement global est correct, malgré une
atténuation du signal au niveau de la discontinuité. C’est encore 'effet de la dissipa-
tion.

6.3.4 Généralisation a des systémes d’équations linéaires

Considérons maintenant le systéme d’équations linéaires suivant :

ou Ou
B + A% =0;u(x,0) = u,(x) (6.29)

ou A est une matrice constante M x M. Si on utilise un schéma de discrétisation
décentré en espace et en temps, on peut approximer 6.29 sous la forme :

At

n+1 n
Uj+ :Uj—.AE

(Ur —ur) (6.30)

Comme U’;“ ne dépend que de U7 et de U7_;, la condition CFL sera vérifiée si pour
toutes les valeurs propres A, de A on a :

AL,

0<
- Ax

<1 (6.31)

c’est a dire si toutes les valeurs propres ), sont positives. Dans ce cas, on utilise
I'information, en provenance de la direction amont, c’est-a-dire de la direction d’ot
provient I'information. De méme, si toutes les valeurs propres ), étaient négatives,
on devrait choisir le schéma:

At



Schémas du premier ordre décentré 83

Quant est-il, si les valeurs propres n’ont pas le méme signe 7 Ce peut étre le cas avec
les équations d’Euler monodimensionelles instationnaires ot les valeurs propres sont
égales & u,u+ a et u — a et en particulier dans le cas d’un écoulement subsonique ot
|u| < a; on aura alors des ondes se propageant dans les deux directions. On est alors
amené a utiliser la méthode de décomposition associée au champ des caractéristiques
(‘fl—f = ),). Or, on a vu 5.35 que le systéme 6.29 pouvait étre découplé en posant :

w(x,t) = R 'u(x,t) (6.33)
et s’écrire : P 5
W \\4 . 1
e +D8x 0;w(x,0) =R u,(x) (6.34)

ol R7! est la matrice des vecteurs propres gauches de A et D la matrice diagonale
associée avec:

D=R'AR (6.35)
On est amené alors a résoudre M équations :

dwy | Owy
ot P ox

chacune avec sa propre méthode décentrée suivant le signe de \,. On définit alors :

—0;(p=1,2,..., M) (6.36)

A =max (),,0); DT = diag (\{, A, .. AL)

P . _ . 12 opo 6.37
A, =min (A, 0); D~ = diag (Al,)\p,...)\ ) (6.37)
avec la propriéteé :
D=D"+D" (6.38)
Par suite la méthode décentrée pour le systéme 6.36 s’écrira :
At At
n+l _ n n — n n

Mais comme on peut revenir aux équations originales en multipliant ’équation 6.39
par R, on obtient :

At

Ut = Y s ( -UL) A L (UL - 05) (6.40)
avec :
AT =RD*R A =RD R (6.41)
et évidemment :
A=A+ A" (6.42)

La formulation 6.40 est donc la généralisation pour des systémes d’équations de la
forme scalaire 6.22.
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6.3.5 La dissipation : atténuation du signal

Reprenons le schéma CIR pour une équation scalaire :
+1 _
Urtt =Up —c[Ur = U] (6.43)

avec ¢ > 0. Son équation modifiée associée est :

oU  oU U 1 U

— 4+ a— =voip——= = =Aza(l —¢ 6.44

ot ox CIR 92 2 ( ) oz 0x? ( )
On constate que ce schéma est dissipatif, puisque I’équation modifiée qui est I’équation
réellement calculée fait apparaitre un terme du second ordre avec comme viscosité
numérique vorgp = %Axa (1 —¢). Sa dissipation est d’autant plus importante que la
nombre de courant est faible. Reprenons le schéma purement rétrograde du premier
ordre 6.43. On peut le réécrire sous la forme suivante :

1 1
Ui = U} = 5e Ui = Ujla] + 5¢ (U — 207 + UL (6.45)

2
Cette forme du schéma montre qu’il est autodissipatif, puisque sans rajouter aucun
terme de dissipation dans la formulation 6.43, elle apparait de maniére naturelle avec
le terme 3¢ [ 200+ U J’-"Ll]. Mais on peut aussi constater que ce schéma peut
étre obtenu en prenant le schéma centré du début de cette étude, mais instable,
auquel on a rajouté de la dissipation numérique soit —c[ 200+ U]”_l] . De
méme, considérons le schéma de Lax-Friedrich:

n ]' n n n n
Urtt = 5 (Ul + Ur,) —clU} =U7 ] (6.46)
ou :
n+1 n 1 n 1 n n
Ui = Up = 5e(Uf = Ujty) + 5 (U — 207 + UL) (6.47)
Son équation modifiée a la forme :
ou  oU 9*U
— —_— —_— .4
ot " or T Vg (6.48)
avec :
A
Vg = 2Za (1 - Cz) (649)

Ce schéma est aussi dissipatif. Si on le compare avec le schéma CIR, il est cependant
beaucoup plus dissipatif; en effet, on a :
vir  1+c

2 < = < 00 (6.50)
VCIR c
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La plupart des schémas linéaires précis au premier ordre atténue plus ou moins forte-
ment la solution & cause de la présence de cette dissipation. Comme ces schémas ne
présentent pas d’oscillation, justement a cause de la dissipation plus ou moins im-
portante, il en découle une propriété importante : ces schémas sont monotones
(figure 6).

nAt

Schéma numérique
’ B q »

monotone jAx

Schéma numérigue
X non- monotone

Figure 6 La monotonicité

6.3.6 La monotonicité
Définition

Pour définir la notion de monotonicité, il suffit de savoir que, dans le cas de I’équation
d’onde, la solution exacte au temps ¢+ At, ne faisant que translater les conditions ini-
tiales, si les données initiales u(z, ¢ = 0) sont représentées par des fonctions monotones
(croissantes ou décroissantes), alors il en sera de méme pour la solution u(z,t + At).
Or, en général, un schéma numérique ne conduit pas a la solution exacte, mais quelque
soit le niveau de I'approximation, il devrait transformer les fonctions initiales en so-
lutions elle-méme monotones.

Schémas monotones

Les schémas linéaires de la forme 6.43 font partis d’une classe de schémas plus large
et définie par :

U]’fb+1 =H [U}ll; e Jn+m} = ZZL*ZW}% (6.51)

ou [ et m sont des entiers positifs. On dira qu’un schéma de la forme 6.51 est monotone
si tous ces coefficients b, sont positifs ou nuls. Ceci découle du théoréme suivant:
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Le théoréme de Godunov
Un schéma de la forme 6.51 préserve la monotonicité si et seulement si aucun de ces

coefficients by n’est négatif. On a :

H
> 0,5 6.52

Démonstration
Considérons un gradient de la solution 6.51 sous la forme suivante :

Uﬁrll U;l+1:ZTkn:flka]TL+k+l Zk_flbk j+k — Zk—flbk[ j+k+1 Uf—i—k] (6-53)

Si les données sont monotones, chacun des gradients du terme de droite ont le méme
signe, et si tous les by sont positifs, les gradients U J"fll U ;‘H auront aussi le méme
signe. Par conséquent, la condition suffisante pour que la monotonicité soit préservée
est que les coefficients de 6.51 soient tous positifs. Supposons, maintenant que I'un

des coefficients soit négatifs, par exemple b;. Prenons le cas simple ou :

0_ 1 0_( 5
Uj=1,j<0,U;=0,7<0 (6.54)
Toutes ces données sont monotones, avec des gradients nuls, excepté pour u{ —ud qui
est négatif. Dans la solution, il y a un gradient u) , — u§ avec j = —Fk, égal & :
Unk—H - UT Zk——lbk [ J+k+1 U_]+k:| bi [UO U(()J] (6.55)

qui est positif. Par suite, les coefficients by positifs sont aussi nécessaires pour garantir
la monotonicité.

6.4 Schémas linéaires du second ordre et plus

Une approximation au premier ordre d’un schéma numérique permet d’obtenir rapi-
dement des résultats (les schémas ne sont pas trés complexes), mais en général avec
des amortissement plus ou moins important au voisinage de discontinuité ou avec des
difficultés dans les zones soniques par exemple. Dans la pratique, et en particulier
dans le milieu industriel, on demande au moins une précision d’ordre deux en espace
pour les problémes stationnaires et de plus d’ordre deux en temps pour les problémes
instationnaires.

6.4.1 Construction de schémas linéaires de précision donnée

Il est possible de construire des schémas linéaires ayant la forme 6.51 et qui soit du
second ordre ou plus. Pour le montrer, considérons 1’expression :

U;LH Zk—flbk J+k (6.56)

ou l'on remplace U}" par uj:

it = 3Rl by (6.57)
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Cette différence représente l'erreur locale € du schéma, on a donc :

e=ultt =T bl (6.58)

Pour I'équation de convection scalaire, I'erreur de troncature pour un schéma quel-
conque s’écrit :

u du
=2 G (%) - S en S (5) (650
J
Or, par induction, & partir de I’équation de convection, on a :

Par suite, les termes contenant une valeur particuliere de j dans ’expression de &

sont :
(ALY (DI (kAz) (du
i\ ot Z ST o (6.61)

Par conséquent, pour obtenir un schema précis a 'ordre m = j, ces termes doivent
disparaitre et I’on a les conditions suivantes, dites conditions de consistances :

R
D k! =(—c) o< j<m (6.62)

k=—kr,

6.4.2 Le schéma de Lax-Wendroff

Considérons maintenant une généralisation de 6.22 sous la forme suivante :

Ur — o Un . —Un
n+1 n -1 +1
Si on pose :
1 1
bl = 5(1+C),b2 = 5(1—0) (664)
on obtient aprés arrangement le schéma appelé schéma de Lax-Wendroff :
1 1
Uurtt = 5c(1 +U + (1 =AU — 5c( AU, (6.65)
ou :
n+1 n 1 n n C2 n n n
Ui = Uf = 5e(Ufa = Ujty) + 5 (Ufa =207 + UjLy) (6.66)

Si on compare 6.65 avec 6.51, on a :

1 1
by = 5c(l +c),bg = (1 —c?),byy = —50(1 —c) (6.67)
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Or, d’apres 6.62 avec 6.67:
1
> bk =1=(-c)’ (6.68)

k=—1

D bkt = —c= (=)' (6.69)

k=—1
D bk? = = (—c)? (6.70)
k=-1
D bk = —c # (—c)’ (6.71)
k=-—1

Le schéma de Lax-Wendroff est donc du second ordre en espace et en temps. Par
ailleurs, son équation modifiée a la forme :

ou  oU PU
e i e (6.72)
avec : 9
A
Viw = —a( (;E) (1-¢%) (6.73)

Ce schéma est donc dispersif. Une question maintenant se pose, d’apres I’étude effec-
tuée sur les schémas du premier ordre : ceux-ci sont en général dissipatif et monotone.
Or, la propriété de monotonicité est une propriété que ’on aimerait garantir pour les
schémas d’ordre supérieur. Car, en effet, un schéma non monotone sera un schéma qui
pourra générer des oscillations dans la solution. Est-il possible d’obtenir des schémas
d’ordre supérieur qui soit monotone ? On n’oublie pas cependant, que pour I'instant
ne sont envisagés que des schémas linéaires. Le théoréme suivant va répondre a cette
question.

6.4.3 Le théoréme de Godunov pour les schémas linéaires d’ordre > 2

1l n’y a pas de schéma linéaire et monotone de la forme
UJ’,“rl — k—zzbk ok (6.74)

ayant une précision du second ordre ou supérieur. En effet, reprenons le cas du schéma
de Lax-Wendroff qui est du second ordre en espace et en temps. On se rappelle que
pour préserver la monotonicité, les coefficients by, doivent étre positifs ou nuls. Or, les
coefficients de ce schéma (voir 6.67) ne sont pas tous positifs ou nuls : par conséquent
ce schéma n’est pas monotone. En effet, posons :

Si= > bk (6.75)
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On a en supposant que les by, sont positif et en posant b, = d3:

kr
So= > di=1 (6.76)
k=—kr,
kr
Si= > kdi=-c (6.77)
k=—kj,
kr
Sp= Y Kdi=¢ (6.78)
k=—kr
Or, avec 6.75:
kr
Sp= > bk’ (6.79)
k=—kr,

on peut écrire :

k‘R k/'R kR
So= > bp(k+c)?—2c > bk—c Y by (6.80)

k=—Fkr, k=—kr, k=—kr,
soit :
kr
Sy =Y bp(k+c)* =28 — S, (6.81)
k=—Fkr,
et avec 6.76 et 6.77 : i
R
SQ = Z bk (k + 0)2 + C2 < 02 (682)
k=—k,

Or cette relation a été obtenue en supposant que by > 0. On en conclut qu’un schéma
linéaire du second ordre o coefficient positif est impossible. En conséquence, on est
obligé de se résigner au fait que les schémas linéaires du second ordre (ou supérieur)
ne sont pas monotones : ce qui signifie qu’ils sont générateurs d’oscillations. Ce
résultat est la raison fondamentale pour laquelle les probléemes hyperboliques sont
numériquement plus difficiles & résoudre que les problémes elliptiques ou paraboliques.
Si 'on reprend les mémes données initiales que pour le schéma centré et le schéma
CIR, on obtient pour le schéma de Lax-Wendroff :

n\j 01 2 3 4 5 6 7 g 9 >
0 11 1 1 1 0 0 0 0 0 5
1 11 1 1 1 0.125 0 0 0 0 5.125
2 11 1 1 1.109 0.468 0.047 0 0 0 5.624
3 11 1 0.986 1.148 0.762 0.211 0.018 0 0 6.125
| 4 1 1 1.002 0971 1.135 0.975 0.418 0.093 0.0067 0 6.6
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Figure 7 Schéma de Lax-Wendroff

soit la figure 7. On vérifie que le schéma est légérement dispersif (décalage de la
solution numérique par rapport a la solution exacte). On voit aussi apparaitre une
oscillation a 'amont de la discontinuité. Si on continue & itérer, cette oscillation
sera toujours présente mais ne s’amplifiera pas. Un autre exemple avec un saut fait
clairement apparaitre les oscillations en amont des discontinuités (figure 8).

6.4.4 Les solutions parasites des schémas d’ordre supérieur

Un autre probléme avec les schémas linéaires d’ordre supérieur est qu’ils admettent des
solutions parasites. Par exemple, considérons de nouveau le schéma de Lax-Wendroff
(d’ordre 2 en espace et en temps) sous la forme :

U; = Ui + 50(1 +c) Ul — cQUj — 56(1 - Uiy, (6.83)

On a une solution stationnaire indépendante de n si U satisfait la relation de récur-
rence :

%c(l + Uy — AU, — %c(l —c)Uj11 =0 (6.84)
Les solutions pour cette relation sont de la forme :
Uy =7k (6.85)
qui satisfait 6.83 si :
%c(l +c)—cr— %c(l —o)r’=0 (6.86)
On peut réécrire cette relation sous forme factorisée :
Sa=r) 1+ +(1=c)]=0 (6.87)

2
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Bleu : solution exacte Rouge : sclution rumérique

s
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Figure 8 Schéma de Lax-Wendroff

Maintenant, la seule solution stationnaire est U = C'te; c’est le cas pour » = 1. La

seconde solution de 6.86 est :
1+c

1-c
qui correspond & une solution oscillante qui s’amplifie dans la direction de I’écoulement
(sens des j positif) :

r =

(6.88)

1+c]"
U =" = (=1)"
b (=1) {1 — c]
L’expérience montre que ces oscillations peuvent apparaitre et par suite il faudra

trouver un moyen de les éliminer.

(6.89)

6.4.5 Quelques autres schémas classiques
Schéma de Warming et Beam

ujJrl = 50(0 —Duf 5 +ce(2—cuf  + 5(0 —1)(c—2)u} (6.90)
basé sur la formulation :
U?+1 = b,QU;LQ + b,lugll + bgu;L+1 (691)
ou :
mn n n n 1 n n n

2
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Son équation modifiée a la forme :

ou  oU 93U

avec :
(Ax)®
vBw = a4~ (1-¢)(2—¢) (6.94)
et vérifiant la condition CFL :
1<e<?2 (6.95)

Ce schéma est dispersif. Avec les méme conditions initiales que les autre cas traités,
on a:

n\j 01 2 3 4 5 6 7 8 9 10
0 11111 0 0 0 0 0 0
1 11111 32 =1 0 0 0 0
8 8
2 11111 2 & -5 & 0 0 (6.96)
3 1 1 1 1 1 44 21 38 =79 33 2
oy oeoh  1telr ko 413 9Pl
| 4 1 1 1 1 1 %06 ios Zose oo 4096 4006
On obtient la figure 9. On remarquera que contrairement au schéma de Lax-Wendroff,
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Figure 9 Schéma de Beam et Warming

l'oscillation apparait apres la discontinuité. La raison provient du signe de la disper-
sion. En présence d’un saut on a la figure ?77:

Dans le cas d'un écoulement unidimensionnel dans une tuyere et en présence
d’un choc on obtient la figure 11:
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Eleu : solutisn aexacte Roupge : solution numeérigue
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Figure 10 Schéma de Beam-Warming sans dissipation

Famille des schémas-q

Les schémas L.F., C.I.R. et L.W. appartiennent & la famille des schéma-q :

Uj =07 - 2¢ (U} = Uy) + 9 (Ufy =207 + ULy (6.97)
avec, en particulier :
1,L.F.
q=1 |c,C.I.R. (6.98)
2, LW.
Une étude de stabilité conduit au facteur d’amplification G(¢, ¢, ¢) suivant :
G(o,¢,q) =1 —q(1 —cos¢) —icsing (6.99)
avec :
é é 1/2
|G(¢,¢,q)| = [1 —4 {q —? - (q2 — 02) sin? 5} sin? 5] (6.100)

En choisissant ¢ petit on constate que g — ¢ ne doit pas étre négatif si 'on veut
que le facteur d’amplification |G (¢, ¢, q)| soit inférieur & 1. On doit alors vérifier la
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Figure 11  Schéma de Beam&Warming

condition :
?<g<1 (6.101)
On a pour ¢ petit :
1 2\ 42
G el =1-5(a=¢)9 (6.102)
et pour le déphasage ®:
) 1
7~ % (14 2¢ —3q) ¢° (6.103)

0.4.6 Résumé

A ce stade de ’étude, qu’avons nous ? Nous avons étudié deux types de schémas:
les schémas linéaires du premier ordre et les schémas linéaires du second
ordre. Nous avons vu que les schémas linéaires du premier ordre avaient trois
caractéristiques essentielles: leur faible précision, leur forte dissipation au voisinage
de discontinuité et enfin leur monotonicité. Les schémas linéaires du second ordre
(ou plus) ont évidemment une meilleure précision mais générent des oscillations au
voisinage de discontinuité et par conséquent sont non-monotones. Jusqu'a présent,
nous n’avons traité que de problémes avec des équations linéaires. Que se passe-t-il
si 'on passe & un probléme non linéaire, ce qui sera le cas lors de la résolution des
équations d’Euler 7

6.5 Problémes non linéaires

6.5.1 Formulation non conservative et discontinuités

On écrit ’équation de Burgers non-visqueuse (cas limite non-linéaire des équations
d’Euler (quantité de mouvement) monodimensionnelles instationnaires) sous la forme
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suivante : 9 9
U U
— — =0 6.104
ot * u@x ( )
on peut choisir le schéma suivant avec ﬁ—i =\
Urtt =up = \UMUT = U} ) (6.105)

si on suppose que A = 0.5, on obtient avec les conditions initiales classiques d’un saut:

(n\j 0123456789
0 11111000005
1 11111000005
2 11111000005 (6.106)
3 11111000005
4 11111000005 |

Cette méthode convergera pour des solutions réguliéres, mais ne convergera pas en
présence de discontinuités si le maillage est raffiné. En effet, si 'on a :

0,pour 7 <0
(1, 0) = up() = { o< } (6.107)

pour laquelle la solution de I’équation de Burgers est :
u(z,t) = ug(z —t/2) (6.108)

les données discrétes correspondantes sont :

0,pour j <0
0 __ )
U= { 1 pour j >0 } (6.109)

On peut alors vérifier que U ]-1 = UjQ pour tout j et de méme U}' = U J(-) et par suite la
solution converge vers u(x,t) = ug(x). Dans cette exemple, la solution est évidem-
ment fausse; mais des comportements similaires peuvent apparaitre avec d’autres
données initiales qui peuvent donner des solutions qui paraissent correctes mais qui
sont fausses. La figure 12 montre la solution exacte et la solution calculée au temps
t = 1 avec des données suivantes Ur, = 1.2 et Ur = 0.5.

n\j 0 1 2 3 4 5 6 7 8 9 >
1.2 12 12 1.2 1.2 0.5 0.5 0.5 0.5 0.5 85
1.2 1.2 1.2 1.2 1.2 0675 0.5 0.5 0.5 0.5 8.675
1.2 1.2 1.2 1.2 1.2 0852 0.544 0.5 0.5 0.5 8.9
1.2 1.2 1.2 1.2 1.2 1.000 0.628 0.511 0.5 0.5 9.14
1.2 1.2 12 1.2 1.2 1.1 0.745 0.54 0497 0.5 9.38

(6.110)

=W N = O

On obtient un résultat admissible mais avec une vitesse de propagation totalement
fausse.
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U A

0.5
0 >
O T T T T T T 1T T 1 .
0 12 3 4 5 67 89 10 XD
Figure 12 Probléme non linéaire
Conclusion

Manifestement, pour ce schéma de discrétisation simple appliqué o I’équation de Burg-
ers non linéaire, on constate que la capture d’un choc n’est pas correcte. Ou bien la
solution est complétement fausse, ou bien elle parait correcte mais avec une vitesse
de propagation fausse. On peut se poser alors la question de savoir si avant toute
chose, il ne serait pas important d’introduire des le départ de [’étude une technique
de discrétisation permettant de capter automatiquement le choc. Par ailleurs, nous
avons constaté que les schémas linéaires avaient des difficultés pour capter les chocs.
Aussi allons-nous d’une certaine maniére de nouveau repartir de zéro. Tout d’abord,
nous allons rechercher une formulation discréte permettant de garantir la capture des
chocs. Comme par ailleurs la monotonicité est une propriété importante garantis-
sant que des oscillations n’apparaissent pas, nous partirons d’un schéma du premier
ordre. Nous chercherons ensuite a augmenter la précision de notre schéma.Ce n’est
qu’ensuite que l’on cherchera & garantir la monotonicité ainsi que la précision.

6.6 Formulation conservative

6.6.1 Quand deux caractéristiques se rencontrent

Considérons une équation aux dérivées partielles non linéaire sous forme conservative
pour une fonction scalaire f(u) :

ot ox

avec la condition initiale suivante :

du  9f(u) _ (6.111)

u(z,0) = ¢(x) (6.112)



Formulation conservative 97

Dans la suite, on supposera que la fonction f(u) est convexe, c’est-a-dire qu’elle vérifie
la propriété :

0% f (u)
>0 6.113
ou? ( )
A titre d’exemple, considérons ’équation de Burgers pour laquelle :
1
fu) = §u2 (6.114)

a(u) = 82(5) (6.115)
La convexité implique que :
dalv) _ (6.116)

ou

En supposant que u(zx,t) soit différentiable, I’équation 6.111 peut étre écrite sous sa
forme quasi linéaire :

ou ou
- — = A1
T —i—a(u)ax 0 (6.117)
Considérons maintenant les solutions x(t) de I’équation :
9 (), 1)) (6.118)
dt
u(z,0) = ¢(x) (6.119)

En différentiant u(z(t),?) par rapport a ¢, on peut voir que :
u(z(t),t) = u(x — at,0) = ¢(x, — at) (6.120)

est une solution de 6.111. La fonction x(¢) est une caractéristique. Que devient u le
long de cette courbe 7 Pour cela calculons la dérivée totale de u :

du(z(t),t) Ou drxdu Ou ou
—at ot dtor EﬂLa(u(ﬂ?(t)’t))%

Or, d’apreés 6.117 le membre de droite est nul. Par suite la dérivée totale de u le long
de la courbe est nulle : par conséquent u est constant le long des caractéristiques.
Comment évolue la vitesse a de ’équation de Burgers le long d’une caractéristique 7

On a:

(6.121)

dz
i a(u(z(t),t)) = a(u(z,,0)) (6.122)
— = ¢(z,) (6.123)
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U
A //_- U(X,Tc)

7.

>
u(x,0)
Figure 13 Choc
puisque sur la caractéristique, on a :
u(zx,t) = u(w,,0) (6.124)

Par conséquent, pour I’équation de Burgers, les caractéristiques sont des droites de
pente ¢(x,). La différence entre les cas linéaires et non linéaires est que les pentes
des caractéristiques ne sont pas nécessairement constantes dans le second cas. Par
suite, lorsque on voit évoluer ces caractéristiques au cours du temps, elles peuvent
se rencontrer (figure 13). Ainsi, si on a ¢(z1) > ¢(x2) pour x; > xq, alors les
deux caractéristiques se rencontreront pour un temps fini. Méme si les conditions
initiales sont régulieres, il existe alors un temps critique 7. pour lequel la solution
n’est plus unique. La solution est-elle celle provenant de la caractéristique 1 ou de la
caractéristique 2 ou des deux? Pour le savoir, considérons le comportement spatial
de u. On connait la solution exacte pour tout temps ¢ :

u(z,t) = ¢(x — a(u(z(t),t))t) (6.125)

La dérivée partielle de u par rapport & x donne :

Ou _, da(u(z(t),t)) ,
e (6.126)
ou a d a
w_ o, ,dadu ,
So= o (6.127)
soit : 5 )
- ¢ (6.128)

dr  1+4tlg
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Si ¢’ est négatif, alors g—g diverge, car le dénominateur tend vers zéro au temps 7, ou:

1
&0
On pourrait alors penser que la solution ne peut continuer apreés le temps 7. Cepen-
dant, d’un point de vue physique, on sait qu’il existe des solutions pour des équations

hyperboliques non linéaires apres le temps critique. Pour connaitre la maniére dont
évolue cette solution, il est nécessaire d’introduire le concept de solution faible.

1. =

(6.129)

6.6.2 Le concept de solution faible
Définition

Il n’est pas toujours possible de définir une solution classique d’une équation ou d’un
systéme hyperbolique, c’est-a-dire une solution qui soit définie et continue pour tout
t. Dans le cas de problémes ot les solutions des équations peuvent étre discontinues,
on définit une classe de solutions plus étendue que celle des solutions classiques,
ce sont les solutions faibles d’un systéme hyperbolique, solutions qui admettent des
discontinuités. De telles solutions existent pour des équations instationnaires de la
dynamique des gaz si I’on considére le cas d’écoulements avec ondes de choc. On sait
que dans un écoulement supersonique on peut rencontrer des chocs, c’est-a-dire des
lignes ou surfaces a la traversée desquelles les grandeurs caractérisant 1’écoulement
sont discontinues. Les valeurs des grandeurs physiques de part et d’autre de la
discontinuité sont reliées par les équations du choc ou équations de conservation de
Rankine-Hugoniot. On définit pour ce probléme une classe de solutions faibles, c’est-
a-dire de solutions qui vérifient les équations de Rankine-Hugoniot.

Démonstration

Considérons un systéme hyperbolique sous forme conservative :

ou Of(u)

Ce systéme représente par exemple les équations d’Euler (conservation de la masse,
de la quantité de mouvement et conservation de I’énergie). Introduisons le vecteur :

v =ut+fx (6.131)

/ /D div (V) = /C v .fids (6.132)

/C .fids = /O [udz—fdt] (6.133)

mais :
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dx
82 vy
dt 7
tx B
UL Ug
to A
X1, Xr
AL AR
- - B

Figure 14 Choc et volume de contréle

Ainsi donc, pour le volume de controle [z, xg] X [to,ty] une formulation intégrale
des équations de conservations s’écrit:

}z{ [udz—fdt] = 0

C

Soit alors AB un arc de courbe le long duquel u(zx,t) est discontinue (figure 14) et
notons par uy, et up les valeurs de u de part et d’autre de AB. De méme introduisons
f; et fz. On peut écrire :

tN t0

TR L
/ u(m,tN)d:U—/ u(x,to)da:+/ f(u(xR,t))dtJr/ £ (u(0,8)) dt = 0
TL x t0 tN
: (6.134)
Soit :
TR Ty, tN tN
/ u (2, V) da _/ u (z, £) dx+/ £ (u(zs, 1)) dt —/ £ (u(zp b)) dt
TL T t0 +0
"’ (6.135)
Calculons tout d’abord ["* (u (z,t") —u (z,1°)) da:
TR NY) 0 —
27 (u (2, ) —u(x,t%)) do (6.136)

ur </\R — ‘/c (tN —ié)) +uy, ()\L + ‘/c (tN — to)) — (uL)\L + uR/\R)
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ou :

/ " () — a2, 0)) de = (up — up) Vi (Y — 1) (6.137)

zr
puis :

N

/to (f(u(zp,t)) —f(u(zg,t)))dt = (f (uy) — £ (ug)) (tN — to) (6.138)
Soit finalement :
(up —up) Vo (1Y = 1°) = (f (ur) — £ (ug)) (¢ — %) (6.139)

Posons :
[ul =uy —ug;[f(u)] =£f(uy) — f(ugr) (6.140)

Ainsi si u(z,t) est discontinue sur un arc de courbe, une solution faible satisfait alors
les conditions de saut :

Ve [u] = [f (u)] (6.141)
soit :
v, [l _ S~ lu 6.1

ouV, = ‘fl—f est la vitesse de propagation du choc. Cette relation est la relation de
Rankine-Hugoniot. Si f est une fonction réguliére, on a :

fmm—uma:<m>
13

ur, —u Ju
R

(6.143)

ou & est une valeur intermédiaire entre ug et uy. Ainsi, lorsque u;, — ug, alors :

of - ur + ug

Cela signifie que les ondes se propage le long des caractéristiques.

Conclusion

La conclusion de ces résultats est clair. La solution faible permet de capter automa-
tiquement les chocs dans le cas d’une formulation obtenue a partir des équations de
conservations de la dynamique des gaz, puisque on vérifie les relations de Rankine-
Hugoniot. On pourrait en conclure qu’il suffit pour un probléme donné, en présence
de discontinuités d’introduire une formulation conservative. Ce n’est cependant pas
st simple.
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6.6.3 La formulation conservative mathématique ou physique

Le probléme est de savoir si 'on parle de conservation au sens purement mathéma-
tique ou si I’on parle de conservation mathématique ayant un sens physique. Pour le
montrer, considérons les équations d’un écoulement isotherme de la dynamique des
gaz. Sous forme conservative, issues des principes physiques de conservation, on a :

o p 0 pu B
ot [ pU ] T o [ pu® + a?p } =0 (6.145)

ol a, la vitesse du son est constante. Ces équations peuvent étre réécrite sous la
forme suivante ou interviennent les variables primitives:

dp dp ou

5 g T g =0 (6.146)
et : )

Qu 0w, @0 _ (6.147)

ot Yor T o

On peut alors reconstruire un nouveau systéme conservatif en écrivant :

et o

U 2u2+a2lnp

Mathématiquement, on a bien une formulation conservative, cependant ces derniéres
équations 6.148 n’ont pas de sens physique, car elles expriment la conservation de la
masse et de la vitesse ! On en déduit que la formulation conservative doit faire inter-
venir les variables conservatives issues de la formulation mathématique des principes
de conservation physique.

6.6.4 Non-unicité de la solution

Quand bien méme, la formulation conservative serait correcte, un autre probléme se
présente : la solution faible n’est pas unique ! En d’autres termes, pour les mémes
conditions initaiales, on peut obtenir plusieurs solutions faibles. Ceci est immédiat
si on se réferre a la solution pour la vitesse du choc, c’est-a-dire a la relation de
Rankine-Hugoniot. En effet, on peut écrire :

v _ J ) = F(un) _ f(un) = f (us) (6.149)

Uy —Up Up — UL

Quelle est la bonne solution ? 1l est clair alors qu’il faudra choisir la solution physique.
Pour cela, on introduit la condition d’entropie.

6.6.5 La condition d’entropie

D’apres 'analyse précédente, comment alors déterminer, ou plutét choisir la bonne
solution 7 La réponse a cette question est d’imposer que la bonne solution faible soit
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la limite de solutions associés a la formulation visqueuse (probléme physique réel) du
probléme lorsque 'on fait tendre la viscosité vers zéro. Soit u” la solution de :

ou” N of (u”) 0*u”

= 1
ot Ox gy (6.150)
ou v est la viscosité. On impose alors que :
lir% u =u (6.151)

La solution faible qui vérifie cette condition conduit alors & une probléme bien posé.
La solution existe et elle est unique. On dit alors que les solutions qui satisfont
cette condition vérifient la condition d’entropie. En fait, on sait que physiquement,
P’entropie ne peut qu’augmenter a travers un choc, et la condition 6.150 est
I'un des mécanismes permettant d’identifier la solution physique ayant cette propriété.
Il existe un critére équivalent que ’on peut utiliser pour choisir la bonne solution et
qui est plus pratique & mettre en place. Rappelons que la vitesse V. de la discontinuité

est donnée par :
fur) = f (ur)

V. = (6.152)
Uy, — UR
et considérons le cas de ’équation de Burgers, avec la condition :
Or, puisque f est une fonction convexe, c’est-a-dire puique % > 0, alors Z—Z = ngJ; >0
et avec uy, > up on a :
a(ur) > a(ug) (6.154)
et comme :
a(u a(u

la condition d’entropie est vérifiée si :

a(ug) > V. > a(ug) (6.156)

Les pentes des caractéristiques a gauche (indice L) sont plus grandes que celles a
droite (indice R) et par conséquent les caractéristiques s’entrecroisent au niveau du
choc. On a bien une onde de compression. Par contre, si on prenait comme condition

ur, < UR (6157)

alors :

a(ug) < a(ug) (6.158)

Les caractéristiques s’éloigneraient du choc. On aurait un choc de raréfaction, qui
violerait la condition d’entropie 6.156.
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Conclusion

En définitive, pour capter correctement un choc, il faut utiliser la formulation conser-
vative mathématique issue des principes de conservation physique, avec les variables
conservatives, et pour garantir l'unicité, imposer la condition d’entropie. On wverra
par la suite que lors de la formulation discréte des équations certains schémas vérifient
automatiquement la condition d’entropie.



Chapter 7
SCHEMAS DE DISCRETISATION CONSERVATIFS

7.1 Introduction

La recherche de solution a des problémes numériques ol apparaissent des discon-
tinuités, telles que les ondes de choc, imposent des contraintes, d’une part sur la
formulation mathématique des équations de base, et d’autre part sur les schémas
numériques mis en oeuvre. Ainsi, il est possible de formuler les équations de base,
soit sous forme différentielle non conservative, soit sous forme intégrale. Par ailleurs,
les variables utilisées peuvent étre les variables primitives ou les variables conserva-
tives. Or, on a vu précédemment que les formulations basés sur les variables autres
que les variables conservatives donnent de mauvaises conditions de choc : l'intensité
du choc, sa vitesse et sa position sont fausses. En fait, on peut démontrer que les
schémas dit non-conservatifs ne convergent pas vers la bonne solution.

Ainsi, pour I’équation linéaire sous forme non-conservative %—? + a% = 0,
avec des valeurs initiales réguliéres, les méthodes classiques donnent des résultats
relativement corrects. Par contre, si des discontinuités apparaissent, les difficultés
commencent. Ainsi, les techniques du premier ordre ont tendance & atténuer les
discontinuités de maniére inacceptable (de tels schémas sont dissipatifs). Les schémas
classiques du second ordre ou d’ordre supérieur géneérentquant-a-eux des oscillations
aux voisinages des discontinuités.

Mais en plus, les schémas sous forme non conservative, ne peuvent trouver les
chocs sans 'utilisation explicite des relations de Rankine-Hugoniot pour capturer les
chocs (technique de capture de choc).

Il faut cependant aussi noter qu’il y a des difficultés supplémentaires pour les
problémes non-linéaires, qui n’apparaissent pas pour les problémes linéaires. Ainsi,
on peut dériver une infinité de loi de conservation qui sont équivalentes pour des
solutions réguliéres, mais qui peuvent avoir différentes solutions faibles. Ces solutions
si elles existent d’un point de vue mathématique n’ont pas nécessairement de sens
physique. En effet, les solutions faibles des lois de conservations hyperboliques ne sont
pas déterminées de maniére unique par la donnée des valeurs initiales. Enfin, méme
si on a la bonne formulation mathématique, on a vu qu’une condition d’entropie est
parfois nécessaire pour obtenir la solution physique correcte.



106 Schémas de discrétisation conservatifs

7.2 Premiére approche

Considérons la formulation conservative de I’équation de Burgers non-linéaire :

ou  Of(u(x,t))
TR e 0 (7.1)

avec :

Flul, 1) = 0 (1) (7.2)

et introduisons le schéma rétrograde suivant :

() (U,

n+1 __ n
Uj+—Uj—)\ 5 5

(7.3)

ou A\ = ﬁ—;. Si on effectue les calculs avec les mémes données déja utilisée pour une

discontinuitée et avec A = 1/2, on obtient:

n\j 012345 6 7 8 9 3

0 111110 0 0 0. 0. 5

1 1111112 0 O 0. 0. 625 (7.4)
2 11111 111 039 0. 0. 0. 65 '
3 11111 105 066 0038 0. 0. 675

(4 1 111 1 102 0826 01465 0. 0. 7 |

On voit donc bien sur la figure 1 que la solution évolue correctement mais avec

UA

[a—y
®;
C
J
[
¢
D

O  —TF—T——T—T7TTT1 .
012 3 4 56 7 8 9 10 X))

Figure 1 Schéma conservatif avec f(U}') = ;U7

un certain amortissement. Cette forme n’est cependant pas la forme conservative
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numérique correcte comme nous allons le voir immédiatement. En effet, la formulation
n’est valable que pour une probléme ot la propagation des ondes va de la gauche vers
la droite (schéma rétrograde). On aura évidemment des difficultés si les ondes se
propagent dans l’autre sens.

7.3 Formulation intégrale simplifiée au probléme monodimensionnel

Considérons pour notre probléme monodimensionnel instationnaire (figure 2) les cel-
lules de calculs sous forme rectangulaire [;_1 /2, Zj11/2] X [tn, tn+1]. On a maintenant a
faire & des moyennes sur les cellules définies sur un volume fini. Soit alors un domaine
[0, L] x [0,7T] dans le plan x,t. On décompose le domaine de longueur L selon xen
M 7wolumes finis” tels que (figure 2):

avec :
L
Tj-1/2 ~ Tjrij2 = BT = 57 (7.6)
et
T = At (7.7)
La valeur moyenne sur la face de la cellule j, au temps t = t" = nAt est :
U L[ d 7.8
= t" .
I Ax 5 1) u(z, t")dx (7.8)

La valeur moyenne ainsi obtenue sera assignée au centre j de la face. L’équation sous
forme conservative est :
Ou  Of(u(z,1))

St =0 (7.9)

On intégre alors sur le domaine de calcul défini par le ”volume” V = dxdt.

/{ ))}d dt = 0 (7.10)

Si u(z,t) est une solution de I'équation 7.9, elle satisfait la formulation intégrale de
la loi de conservation:

/ e Y Y = (7.11)

Tj—1/2
Tj+1/2 tn+1 tn+]_
[t enyas = | [T sttt [ e (@2
i-1/2 tn tn
En divisant par Az et en utilisant la définition de la moyenne sur une face (voir 7.8),

il vient :

p g Alx [ /t+ Fu(@jyo,t))dt — /t+ f(u(mj_l/g,t))dtl (7.13)
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t oA
n+1 -, o
n L &
e S
Yan Y Lun x

Figure 2 Domaine de calcul

On introduit alors la fonction de flux numérique F(U?',U},;) qui joue le role

d'un flux moyen F' , , en x;1/5 sur 'intervalle de temps [t,,, t,41]-

j+1/2
1 tnt1
F(Un g+1) an+1/2 = E/ f(u(xj+1/2,t))dt (7.14)
tn
Par suite, la relation 7.13 prend la forme :
Uyttt =07 Ar [F7 e = Filape] (7.15)

Pour résoudre 7.15 il faut une relation pour déterminer le flux sur les interfaces. En
effet, seules sont connues a priori, comme résultats de calcul les valeurs de UJ' aux
centres des faces. On peut par exemple considérer ’approximation :

n 1 mn n n

12 = 5 (77 (U7) + Fi (Uj) (7.16)
d’ou : A

vt =y - AL [ - 1) 717

Ainsi, il existe un moyen pour garantir que la méthode numérique ne convergera pas
vers une fausse solution. On doit écrire la méthode numérique elle-méme sous forme
conservative, ¢’est-a-dire si on considére la formulation semi-discréte :

aUu 1

ar = —M[F]HQ(UH an —p+1r U]nJrq) Fj_ 1/2(U —p— lﬂanfp"" Jnﬂzfl] (7‘18)



Formulation intégrale simplifiée au probléme monodimensionnel 109

et, par exemple avec un schéma d’intégration temporel de type Euler :

U;l+1 - U;L - )‘[Fj-i-l/?(U —p? UJn—ZH-l’ - Uf.

J+a

) F’] 1/2<U —p— 17U;Z—p7"7U]Z-q—1] (719)
ou F est la fonction de flux numérique, fonction de de p + g + 1 arguments et \ le
rapport %. Ainsi dans le cas simple ot p = 0 et ¢ = 1, F est fonction de deux
variables et ’on obtient:

Ut = UP = A[Fjajo(U2, U y) — Fyoaja(UF 4, UZ) (7.20)

La fonction flux numérique Fj.,/, sur l'interface j 4 1/2 est une approximation du
flux physique f(u).

7.8.1 Application o ’équation de Burgers

Si on applique tout d’abord la formulation 7.15 & 1’équation scalaire de convection,
une formulation du flux numérique peut s’écrire F' = alU, et le schéma obtenu se
réduit & une formulation qui est instable. Pour le rendre stable, on introduit la
formulation de Lax-Friedrichs. La relation 7.17 devient alors :

At

IAL [FJH Fn ] (7.21)

1
+1 __ n n
Uit =5 Ui+ Uj) =
Cette relation n’a pas la forme conservative 7.17. Mais on peut écrire :

n+1 n n n n n n n n n
Urtt = Uj 2(]H—Uj—UjJrUj,l) F' +F} —F—F"] (7.22)

el

j+1
Si maintenant on pose pour le flux numérique :
it1/2 = 5 [Eﬂ-l + Fj } 9 AL (Uj+1 —Uj ) (7.23)

le schéma 7.24 peut étre considéré comme formellement équivalent a 7.15 :

At

Unﬂ Uj' = Ax[ jt1/2 F*n1/2] (7.24)

Appliquons le schéma 7.24 sur notre exemple de base, on obtient :

[ n\j 0 1 2 3 4 3 6 7 8 9 >
0 11 1 1 1 0. 0. 0. 0. 0. 5
1 11 1 1 0.75 0.75 0. 0. 0. 0. 5.5
2 11 1 0.984 0.984 0.516 0.516 O. 0. 0. 6
3 11 0.999 0.999 0.925 0.925 0.324 0.324 0. 0. 6.5
K 1 1.00 1.00 0.997 0.997 0.812 0.812 0.188 0.183 0. 7 |

Cette solution est correcte (figure 3), méme si 'on obtiendra de meilleurs solutions
par la suite.
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UA

0

L L T
012 3 4 567 89 10 XD
Figure 3 Formulation conservative de LF

7.3.2  Consistance de la formulation conservative

La formulation du flux numérique des schémas conservatifs doit étre consistante avec
le flux physique. La méthode 7.15 est dite consistante avec ’équation différentielle
conservative de départ, si la fonction de flux numérique Fj, /5 calculée sur 'interface
Jj+1/2 se réduit a la valeur vraie du flux f dans le cas d’écoulement uniforme constant,
c’est-a-~dire si 'on a :

Uz, t) =V = Cte (7.25)

on doit vérifier que :
Fyap(V.V) = F(V) WV (7.26)

On demande en plus une certaine régularité, de maniére a ce que lorsque les deux
arguments de F}j,/; approchent une valeur commune, U, par exemple, la valeur de
Fj 11/ tend vers f(U) régulierement. Pour la consistance, il suffit que Fj/, soit une
fonction continue au sens de Lipschitz pour chacune des variables. On dira que F},1 /o
est continue au sens de Lipschitz en U, s’il existe une constante K >> 0, qui peut
dépendre de U telle que :

’Fj+1/2(V>W)_f(U)| :KMax(|V_U‘7|W_U|) (727)

pour tout V., W avec |V — U et |W — U| suffisamment petit. Plus généralement, si
le flux dépend de plus de deux variables (et I'on verra que cela est nécessaire), la
méthode est consistante si :

F(U,U,...U) = f(U) (7.28)
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7.4 Extension des schémas-q sous forme conservative

Le schéma-q est un bon schéma pour comprendre les procédures de construction de
schémas de haute résolution que nous étudierons plus loin. Nous avons déja vu qu’il
comprend les schémas L.F.,C.I.R et L.W.

n n )\ q n n n
Ut = Uj - 5 = fim) +5 (U1 = 207 + ULy (7.29)

7.4.1 Schémas-q pour l’équation de Burgers

Dans la formulation du schéma-q pour ’équation de Burgers linéaire, ¢ est une fonc-
tion du nombre de Courant c :

At
c=-—a 7.30
Ay (7.30)
Dans le cas non linéaire, avec des flux f(u) non linéaires, la vitesse de propagation a
est donné par : a = % et ¢ est une fonction du nombre de Courant local :
At df
= —— 7.31
c(u) = =~ (7.31)
Pour I’équation de Burgers non linéaire, a = % = u le nombre de Courant, varable
s’exprime donc par :
() = (7.32)
c(u) = —u .
Ax

Lors de la formulation 7.29 du schéma-q, on doit réaliser que le paramétre g = g(c(u))
doit étre évalué entre deux points successifs puisque il est fonction de ¢ et que ¢ est
lui-méme fonction de u, et par conséquent re-écrire la relation 7.29 sous la forme
suivante:

A 1

Ut = U7 = 5 (Fren = i) 5 (@2 (U = UF) = e (U5 = UF4)) (7.33)

n 2 . 2
qj,,, est une représentation de g(u) sur la cellule [z}, z;11] calculée avec les valeurs
discrétes de u en z;, et 41, :

Q?+1/2 = q?+1/2(Uf+1, Uf) (7.34)

On a ainsi une fonction de deux arguments avec la propriété :

q(V,V) =q(V) (7.35)
Ainsi, pour ’équation de Burgers non linéaire, on introduira tout d’abord, pour définir
a4 -
du : 1
2 =5 (U} + U7) (7.36)
On calcule ensuite :
At

Ciy1yp = EUJZ*l/Q (7.37)
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On obtient alors facilement pour les schémas-q principaux les valeurs de ¢7, /2 Suiv-
ants:

Qi1 =1 L.F. (7.38)
Ghaje = MUl je] = || CIR (7.39)
Q?+1/2 = ( gn+1/2)2 = (C;‘L+1/2)2 L.W. (7.40)

7.4.2 Schémas q sous forme conservative

Considérons la formulation 7.33 du schéma-q :

A 1
Uittt =U; - 2 (fir = fi-1) + 2 (@412 (Ufss = UF) = diype (U = UJLy)) (741)

En remarquant que I'on peut écrire:

S Ui = fra) = 5 Ui + 1) = 5 i + ) (7.4

La relation 7.41 s’écrit sous la forme :

(i1 + £5) — 2532 (U, - UP)

Uittt = U = A o
(fimr+ f3) = =52 (U = Uy)

(7.43)

NI— N

dE.n tenant compte de la formulation conservative avec F; 5 = F (U}, UL), cest-a-
ire :

Ut =Uj = M Fys = i) (7.44)

On obtient le flux numérique F7

T2 correspondant a la formulation conservative du
schéma ¢ en posant :

qiyo " "
(fira+ fi) — J;)\/ (Ura = U7) (7.45)

DN | —

n _
j+1/2 =

7.5 Autres schémas numériques sous forme conservative

On considérera donc dorénavant les schémas de la forme :
n+l __ n n n
Ut = U7 = A[Ffy s — Ly ] (7.46)

ou Fji1/2, est la fonction de flux numérique.
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7.5.1 Schémas du premier ordre

Considérons le schéma C.I.R. pour lequel :

Gajp = MUl CILR (7.47)
La relation 7.45 s’écrit alors sous la forme :
jn+1/2 (fJ-H + f] } g+1/2{ U]n+1 - an) (7-48)
et pour I’équation scalaire ou U” Frip =
/275 (fi+1 + f5) — 3 la| (U}, = U}) (7.49)
ou si a varie : { 1
2= (fi+1+f5) — 3 a1 | (U —UT) (7.50)

7.5.2 Schémas du second ordre
Lax-Wendroff

Considérons le schéma L.W. pour lequel :

n n 2
Grjp =N (Ulsrp)” LW (7.51)
La relation 7.45 s’écrit sous la forme suivante pour ’équation de Burgers :
n 1 n n n n
j+1/2 = 5 Sl + ) — ( j+1/2) (U = U] (7.52)

et pour ’équation de convection scalaire :

n 1 n n n n
J+1/2 = 5[( T ) = 2 (U = U] (7.53)

ou si g varie:
n 1 n n n n n n
412 = 5[%‘+1/2(Uj+1 +Uj") = A (aj+l/2) (U = U} (7.54)

Schéma de Warming et Beam

Considérons le schéma de Warming et Beam appliquée & ’équation d’onde scalaire :
mn n n n 1 n n n
Ui = U = e (Uf = Ujty) + 5ele = 1) (U} = 2U}L1 + ULy) (7.55)
On peut écrire :

1

Ui = U = A a (Uf =UjLy) = gale—1) (Uf = 2U7L, + UjLy) (7.56)
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soit :
n n n n 1 n n n
O {(an —all",) — 5(c —1) (aU} — 2aU}, + an_z)] (7.57)

ou :

Urtl = U — A [( =1 - %(c =1 (ff =2/ + f?z)} (7.58)

1 1 1 1
UJT‘“ =Uj = A {5(0— Dfi+ 5(3 —off - 5(0_ Dfis — 5(3 —c) Jn—l:| (7.59)

et finalement, on obtient le flux numérique de la forme conservative du schéma de
Warming et Beam :

1 1
Filyys = 5(0 —1fi + 5(3 —o)ff (7.60)

7.5.3 FEzxemple

L’exemple suivant pour un écoulement subsonique-subsonique dans une tuyere mon-
tre clairement, pour un schéma donné (ici le schéma de Harten), la différence de
comportement de ce schéma écrit sous forme non-conservative (figure 4). et sous

NOEZLE FLOW, HARTEMN SOHENE
Mashnumper Pressure

e 1 1 TR
1 | ) ."'-.\\
e argn 4
[ 837e y . ".'..‘.-'
== TI4A0 = =
. | ; - s
e I‘ *-b - .0
= B 591a0 - L A
7 £ \ S9NAD 1 »
- £ =
w ({{‘(‘( ) T 188D \
2 i = agap | ; , \\
E- : 1 g B in sagEe L - : - "
Sensily Eniriny
12 "-»--.,,h‘\ = TR E
1
: e 587 k
A3 i
g Pl
a3 =
N Ll L L LT L LT Sy
= -BE Y

2 4 g B

Figure 4 Formulation non conservative du schéma de Harten

forme conservative (figure 5).
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Figure 5 Formulation conservative du schéma de Harten

7.5.4  Conclusion

Par cette étude, on a montré comment construire des schémas conservatifs. Nous
savons que grace & ce type de schéma, la méthode garantira que les chocs pourront
étre capturer, puisque cette méthode vérifie automatiquement les relations du choc de
Rankine-Hugoniot. Dans la suite, nous allons chercher a construire des schémas qui

sotent conservatifs et monotones.

7.6 Meéthode de Godunov
7.6.1 Introduction

Godunov a été le premier & développer un schéma numérique conservatif du premier
ordre, extension du schéma C.I.R. pour les équations non-linéaires. Le principal
élément de la méthode de Godunov est 1'introduction de la solution du probléme de
Riemann qui peut étre obtenue, soit de maniere exacte, soit de maniére approximée.

7.6.2  FElaboration de la méthode de Godunov avec l’équation scalaire de convection
La méthode de Godunov est une méthode conservative ou les flux numériques F', /
sont calculés en utilisant les solutions du probleme local de Riemann. Une hy-
pothése de base est que la distribution des données & un instant t est constante
par morceau. Les données sur l'interface j + 1/2 au temps n sont le couple de

valeurs [U o ;Zrl} représentant les valeurs moyennes de U}’ sur les cellules j et j + 1.
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Localement ont peut alors définir le probleme de Riemann :

ou N Of (u)

5 T g =0 (7.61)

avec !

uj st ox <0 } (7.62)

Ujpr st x>0

ulw,0) = uy(z) = {

Ainsi & chaque pas de temps n, et sur chaque interface on a un probléme local de
Riemann & résoudre. Et ce que l'on cherche est la solution globale au temps n + 1.
Trois étapes interviennent dans la méthode de Godunov pour trouver la solution U ;‘“
au temps n + 1 & partir de la solution U}" au temps n.

e Etape I (figure 6)

Etant donnée une distribution compléte de valeurs initiales, on détermine les
moyennes & un instant donné n sur chaque face j du maillage (z, t").

1 Zjt1/2

Uur =— U(x, t)dCC, Tij—1/2 < T < Tjyi1/2 (763)

Tj-1/2

i-3n j-1 j-12 j jHr i+ jan

Figure 6 Etape |

e Etape II (figure 7)

Cette étape physique est obtenue de la solution exacte sur l'interface. Pour
I’équation linéaire de convection, la discontinuité est convectée sur une distance aAt
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!

j-3n2 j-1 j-12 i jHr j+ j+3nr

Figure 7 Etape

sans modification. Lorsque a > 0, on obtient & partir des données initiales (au pas
de temps n) :

Uz, "t = Uz, t" + At) = U(x — aAt, ") (7.64)
Le pas de temps devant vérifier la condition C'F'L :
alt
=—x<1 .
c=5, S (7.65)

ce qui implique que le déplacement ne sera jamais supérieur a Ax.
e Etape III (figures 8&9) : on détermine alors une nouvelle moyenne:

Or, sur chaque interface, sur l'interface j + 1/2 par exemple, un observateur
verrait en général, a sa droite une certaine valeur U}, et a sa gauche une autre valeur
Uj" puisque on a supposé que les valeurs de U;" étaient constantes par morceau sur
chaque cellule j: il serait sur une discontinuité. Comment alors calculer les flux sur
cette interface 7 On I’a vu dans la premiére partie: on doit chercher la solution du
probléme de Riemann sur les interfaces j — 1/2 et j + 1/2. En effet, nous avons
deux problémes de Riemann (p.R.) a résoudre sur chaque interface de la cellule j :
p-R.(U7,,UF) et p.R.(UF, U}, ). La solution exacte du p.R.(U} ;, U}') lorsque a > 0
est :

Uur, siz/t<a } (7.66)

n = J=
Ujaa(@/t) { Up six/t>a

ou l'origine du probleme de Riemann local est (0,0) ou (x;_1/2 = (j — 1/2) Az, t").
De méme la solution exacte du p.R.(U}', U}, ) est :

(7.67)

Uj+1/2(x/t)={ Ur siz/t<a }

T six/t>a
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j-32 j-1 j-12 i j+H2 j+ i3

Figure 8 Etape llla

i-3n j-1 j-12 j jHnr j+ j43n

Figure 9 Etape Illb

Le schéma de Godunov est alors :

1

Az/2 0
grtt = — / Ur .o (z/At)dz + / Ur o (x/At)dx 7.68
J Ax [ 0 J 1/2( / ) _As/2 ]+1/2( / ) ( )

Cette intégrale est évalué au temps At (temps local) entre les points A et D (figure
10). On utilise seulement la moiti¢ de la solution de U}, »(z/t) et de U}, »(x/1).
Chacune a son repére local d’origine (0,0) correspondant aux interfaces x;_1/o et

7;41/2. Dans ces conditions, on impose la condition C'F'L sous la forme :

alt
= — < .
c A, S (7.69)

N[ =



Méthode de Godunov 119

| AX-aALL- |
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At | |
| |
| |
| |
| |
v £ o
jmnrz  jH
| AX |
| |
Figure 10 Calculs aux interfaces
On a:
1 Az/2 1 B 1 C
(7.70)
soit, sachant que AB = cAx et BC' = (% — c) Ax
1 Az/2 1
A_:L‘ ; U;L_I/Q(I/At)dl‘ = CU;’L_I + (5 — C) U]n (771)
et :
A_gj Aep U]+l/2(l’/At)dl' = A_x - UJ+1/2(Z’/At>dl’ = §U] (772)
soit :
n+1 __ n 1 n 1 n n n n
U™ = Uy + 3¢ Uil + §Uj =Uj —c(Uj - Ujy) (7.73)

Le résultat n’est rien d’autre, du point de vue de la forme, que le schéma C.I.R
décentré du premier ordre. Mais dans I’approche de Godunov, U et U;" ; sont
des valeurs moyennes selon la définition 7.63 et non des valeurs locales.

Résumé

Il est important de résumé le processus précédent. Dans [’approche de Godunov,
on utilise une approche intégrale conservative. Cela conduit o introduire des valeurs
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constantes par morceauz, et de déterminer sur chaque interface la valeur des flux.
Ceci implique alors pour le calcul correct de ce flux & introduire la résolution d’un
probléme de Rieman local. Ce n’est qu’aprés avoir résolu ce probléme que l’on peut
déterminer la solution au temps n+1. Le résultat final avec des valeurs constantes
par morceau est précis o l'ordre 1.

7.6.3 Deuzxiéme approche de Godunov

Etant donnée une distribution complete de valeurs initiales, on détermine les moyennes
sur chaque face du maillage spatial au temps n + 1.

+1 1 [rrz
U]n = A_/ U(.T,t)dl', Tj—172 < T < Tjy1/2 (774)
L Tj-1/2
ot u(x,t) représente la solution combinée des problémes de Riemann p.R.(U}" |, U}')
et p.R.(U},U7,,). La solution @(z,t) est une solution exacte de '’équation originale

de conservation (nous verrons plus loin comment la calculer), par conséquent on
peut utiliser la formulation intégrale suivante appliquée au domaine [:Ej_l /25 Tt /2} X
[0,At] ; on a:

Tj+1/2 Tj+1/2
/ u(z, At)dr = / u(x,0)dz+ (7.75)

o s Y
/ f (ﬂ(xj,l/g, t)) dt — / f (ﬂ(ﬂfj+1/2, t)) dt
0 0

En utilisant la définition des moyennes selon x, on a :

n+1 n At 1 A = 1 A =
soit :
At
Ui = Up = o [Five = B (7.77)
avec, comme flux numérique en j + 1/2 :
1 At -
Fjpap2 = At f(a(z41/2,1)) dt (7.78)
0
etenj—1/2:
/ 1 At
F’J',l/g = Kt ; f (a(.ﬁj,l/g,t)) dt (779)

Pour le cas particulier de I’équation de convection scalaire, on a :

Fiiijo = aU}', F(xj19,t) = aU}" (7.80)

J
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d’ot, en introduisant le nombre de Courant c :
n+1 n n n

et on retrouve le schéma C.I.R. Ainsi, en utilisant la formulation intégrale de con-
servation sur un volume fini [xj_l /25 Tjq1 /2] x [0, At] de I'espace « — t on arrive a la
formulation conservative 7.77 avec les flux sur les interfaces Fjj /2 et Fj_;/5. Ces flux
numériques sont les moyennes temporelles du flux physique évalué sur les interfaces.
L’intégrant f (u(x,t)) sur chaque interface dépend de la solution exacte u(z,t) du
probléme de Riemann le long de ’axe ¢ dans le systéme local ; on posera :

U(wj1/2:t) = Uj-172(0), U(x4172: t) = Ujy1/2(0) (7.82)
ol Uj41/2(0) représente la solution exacte U(zj41/2,t) du p.R.(UP, U",,) en ./t = 0.
Par suite, les flux numériques sur les interfaces deviennent:

Fi1j2 = Fyerz (Ujs17200)) , Fjmajo = Fj1y2 (Uj-1/2(0)) (7.83)

On appelera flux de Godunov, le flux :

Fii172 = Fiaya (Ujg2(0)) (7.84)

On remarquera que dans cette approche, il n’y plus de restriction particuliére sur le
nombre CFL.

7.6.4 La méthode de Godunov pour les systémes linéaires

Jusqu’a présent nous ne nous sommes intéressé qu’a des équations scalaires linéaires.
Quelques complications apparaissent lorssque on doit traiter un probléme réel ou
tout du moins proche de la réalité comme la résolution des équations d’Euler. Nous
allons étudier quelques éléments complémentaires pour I’étude de systéme d’équations
hyperboliques.

Formulation classique

Considérons le systeme hyperbolique linéaire & coefficients constants sous la forme
conservative suivante (voir les équations d’Euler pour plus de détail):

oUu OF(U)
En + o 0 (7.85)
avec la propriété :
F(U) =AU (7.86)

La méthode de Godunov, décentrée du premier ordre, utilise la formulation conserv-
ative :

. . Al
Uj+1 — Uj J— E |:Fj+1/2 — Fj_1/2:| (7.87)
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ol le flux numérique de Godunov est donné par :

Fii12 =Fji12 (Uji1/2(0)) (7.88)

Cette méthode est du premier ordre; on utilise des fonctions qui sont constantes
par morceau: les valeurs de la fonction U sont alors une séquence d’états constants
séparés par des sauts au niveau des interfaces des cellules. Par conséquent, on doit
connaitre la solution du probléme de Riemann p.R. (U7, U7, ), Uj1/5(x/t) pour le
calcul du flux Fj /5 (et F;_q/2)sur 'interface des cellules en x/t = 0:

Approche découplée

Soit :
Firi2=AUj 1 (7.89)
Cela revient a déterminer :
o U, <0
U(z,0) = { Uy >0 } (7.90)
ou bien en introduisant les variables caractéristiques W:
. R_lUL z <0 . Wgr T < 0
W(z,0) = { RUp 20 },wk(a:,O) = { won T >0 (7.91)
ou la solution exacte est :
wi(z,t) = wp(z — At, 0) (7.92)

Considérons une onde isolée de vitesse \p. Que se passe-t-il pour U 7?7 On a la
propriété :
10, A = X\ 18 (7.93)
avec :
1D
L=R'= (7.94)
1(m)
On cherche alors les valeurs Uy, et Ui du probléme de Riemann telles que:

o Uj_l )\k >0
U, = { U a0 } (7.95)

. Uj A >0
b { B 0 ) o
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On résoult alors le probléme de Riemann avec :

. U, z<0
U(z,0) = { Up >0 } (7.97)
si bien que :
U(z,0)=Up+ >  wr® (7.98)
Ap<z/t
ou :
= 1% (Up — Uy) (7.99)
A partir de ce résultat, on peut écrire :
19 Uz, t) =190, +10. Y~ 5™ (7.100)
Ay <zt
avec, pour \, > x/t :
1® Uz, t) =10.U, = wy g, (7.101)
et pour A\, < x/t :
1P U(z,t) =10 U, +10 (Ug — UL) = 19Up = wy 5 (7.102)
wy, représente 'amplitude de la perturbation pour 'onde & :
8U% 8um
— 4+ X—— =0 7.103
at o (7.103)

Approche couplée

On peut déterminer la solution Uj;iq/5(x/t) en décomposant les données initiales
U’, U}, en fonction des vecteurs propres droits :

k=m k=m
=Y a® Uy, =) g (7.104)
k=1 k=1

La solution générale en tout point x,t est donnée par :

U 1jo(z/t) = Zaku + Z Br® (7.105)

k=I+1

ou I est le plus grand entier pour lequel on a :

1<TI<myz/t>)\ (7.106)
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Pour xz/t =0, I est tel que A\; <0 et A\;;; > 0, par suite on a :

k=I
Uji12(0) = Uj + Y (B — ag) vV (7.107)
ou : .
Uji1/200) = Ufyy — > (B — ) v® (7.108)
k=J+1

En combinant ces deux formulations, on obtient :

—_

(U, +U7) — < Z sign(Ag) (Br — ag) v®) (7.109)
k=1

N —

U;11/2(0) =

\)

Pour évaluer le flux de Godunov, on écrit :
k=I
Fi12(0) = AU} 1(0) = AUY + > (B — o) AvH) (7.110)
k=1

ou puisque Av*) = \,v*)

k=I

Fiap=F)+> (B — ag) A (7.111)
k=1
de méme a partir de 7.108 :
Fiap=F— Y (B —a)\® (7.112)
k=J+1

et aprés combinaison de 7.111 et 7.112 :

Fji/2(0) = 5 (Fr., +F7) -5 > Al (Br = o) (7.113)
k=1

Si Uj11/2(0) est la solution du probléme de Riemann ott U; et U, sont les valeurs
de U de chaque coté de l'interface, on peut mettre & jour la solution en écrivant :

" At
Ut =U; - Az [Fji1/2(0) — Fj_1,2(0)] (7.114)
ou :
Fj+1/2 = AUJ'+1/2(0) (7115)
Définissons :

wp = 1,07 (7.116)
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Multiplions le flux F;,/, par 1 :

AWy A >0
1, Fjip12 = L AU 1 /2(0) = Mgl Uy 2(0) = { JZ ks )\: <0 } (7.117)
1
Par suite :
n At n n
wprt = § B T A T A0 (7.118)
! w — fLN, wi —wp | A <0

Autres formes du flux de Godunov :

e Premieére forme
Tout d’abord, on rappelle que 1’on peut écrire la matrice A sous la forme:
A=RDR™! (7.119)

ou R est la matrice des vecteurs propres droits *) et D la matrice diagonale. Comme
pour le cas scalaire, on introduit les définitions :

A=RDR™! (7.120)
)\2— = max (>\k 0) = % ()\k: + |)\k|)
v . ’ 7.121
on en déduit :
Mo =M+ A (7.122)
et :
Nel = A = Ay (7.123)
On a aussi les propriétés suivantes, découlant de 7.119:
ATk = /\;(k); A v®) = )\,;(k) (7.124)
On écrit alors 7.113 sous la forme :
1 n n 1 - — (k)
Fi12(0) = 5 (Fi +Fj) — 5 ; Be —ax)v (7.125)
soit :
1 n n 1 . — (k)
Fi1/2(0) :5(1? 1+ F) 52 L — ag) (M ® — A W] (7.126)
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et d’apres 7.124 :

1 1 —
Fj+1/2<0> = 5 (F;L_H + F?) — 5 Z (Bk — Ckk) [A+V(k) - A_l/(k)} (7127)
k=1
ou :
1 1 —
k=1
et comme :
(AT — A7) = |4] (7.129)
on a finalement :
1, o1 “
Fi1/2(0) = 5 (Fj + F) — 5 |4 ; (B — ax) vV (7.130)

e Deuxiéme forme
Puisqu, pour les équations d’Euler, on a:
Fji112(0) = AUj11/2(0) (7.131)

en utilisant les principes de calcul précédents, on peut aisément montrer que :

Fji12(0) = AT " a® + A7 " ga® (7.132)
k=1 k=1
soit :
Finp=A"U+ AU}, =F, ,+F  , (7.133)

7.7 Meéthode de Godunov pour des problémes non-linéaires

7.7.1 La base

L’étude de la méthode de Godunov étudié pour des équations ou des systémes d’équations
reste valable. Nous renvoyons donc 'étudiant au chapitre concerné. Pour une
meilleure compréhension de I’étude nous considérerons le systéme des équations d’Euler

sous leur forme conservative :
dp  Opu

— 134
T + 9 0 (7.134)
dpu 9 (pu® + p)
= Nl
T + 5 0 (7.135)

Ope: | Ofulpe: +p)]

5 > =0 (7.136)
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>

Figure 11  Différentes solutions aux interfaces

ou :
ou  Of(u)
— +

ot ox =0

avec :

et I’énergie interne e:

p(k—1)
avec les conditions initiales :

u(z,0) = u’(x) :{

u, stx<0
ugp stx >0

127

(7.137)

(7.138)

(7.139)

(7.140)

(7.141)
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Physiquement la structure du probléme de Riemann pour les équations d’Euler est
trés proche du probléme du tube a choc. Dans le cas qui nous intéresse, & savoir une
cellule quelconque ot sur les interfaces on doit résoudre un probléme de Riemann, on
supposera que le vide n’est pas présent d’un coté ou de l'autre des faces. Dans ces
conditions les structures d’onde possibles, suivant le signe de la vitesse des particules a
I’intérieur du domaine limité par les ondes extrémes de droite et gauche, qui peuvent
apparaitre sont schématisées sur la figure 11. A gauche de la figure les particules
fluides ont une vitesse positive et le contraire sur les figures de droite. On discrétise le
domaine spatial [0, L] en M cellule [ij_l/g, $j+1/2i| avec AT = Tji12—2j_1/2 = L/M.
Dans ces conditions, les caractéristiques des cellules j sont données par :

. o1 o1
Tiap=—1)Az, z; = (] — 5) Az, T2 = (j + 5) Az (7.142)

On se donne une série de valeurs supposées déja calculées au temps t", soit ﬂ(x, tm).
Considérons alors I’hypothése de base de la méthode de Godunov, en introduisant
une distribution de données constante par morceau. On définit la moyenne sur une
cellule en écrivant :

1 [Ttz

u” U(z,t")dx (7.143)

N

Tj—1/2

et qui conduit effectivement & une distribution constante par morceau avec :
U(x,t") = U? pour x € [ﬁj,l/g,xﬁl/g} Vi (7.144)

Les données ainsi modifiées conduisent alors pour chaque interface limite d’une cellule
spatiale & un probléme de Riemann. Ainsi sur Uinterface j + 1/2 le P.R. (U}‘, [8)4 +1)
en xj,1/o avec les données U7 a gauche et U7, ; a droite. On a vu que pour les
équations d’Euler, la solution du probleme de Riemann local étaient une solution
auto-similaire dépendant localement du rapport f: La solution locale est notée :

T/ (%) ou Z,t sont les coordonnées locales avec ;.12 (I'interface) pour origine.
Considérons alors une solution type du probléme de Riemann (figure 12) : On choisit
un pas de temps At suffisamment petit mais permettant des interactions d’ondes. On

pourra alors définir une solution globale dans le domaine:
0<az<Lit"<t<itt (7.145)

en fonction des solutions locales :

R " T\ _
U(z,t) = U}, (?> T € [T, Tjt1] (7.146)

et ou :
i':x_xj_‘_l/Q,E:t_tn (7147)

T € [rj,xj41],t € [t", "] (7.148)
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A¢

/ At

X
3
Figure 13 Solution locale
Az Ax| -
e {—Tw Tx} e 0,Af (7.149)

selon la figure 13. Ainsi ayant trouvé une solution U(z,t) en fonction de solutions
locales Ul /2 (%) du probléme de Riemann, la méthode de Godunov avance alors au
temps n + 1.

7.7.2 Le schéma de Godunov

On utilisera ici la deuxiéme approche de Godunov. On a vu que l'intégrant Ij(a:, t)
est une solution exacte des lois de conservation.. Ce moyennage est illustré sur la
figure 14. Il faut cependant noté, et ce point est important, qu’il est nécessaire de
tenir compte de "'amplitude de At. On imposera la condition suivante :

At < BT (7.150)

- n
Vm ax
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Y/ \ / N

VA

X
! o O
j-172 i j+12  j+1

O

Figure 14 Godunov

ou V. représente la vitesse maximum des ondes se propageant dans le domaine. On

applique alors la formulation intégrale suivante :

T T2 to t2
/ U, b)dz :/ Ule, t1)dz +/ F (U, ¢)) dt —/ F (U, ) dt (7.151)
T T1 t1 t1
pour tout "volume de controle" de la forme :[z1, x5] X [t1,t5] . En particulier on peut
Pappliquer sur le domaine Z[I‘j_l/g, xj+1/2] x [t "1 . Avec 7.143, on a:

[0z, e dz = 73002 O (x, 1) da+
e VR _ 7.152
JAE (U(le b)) dt= [SF (O, ,0) di (7.152)

En fonction des solutions locales, avec la condition 7.146, on a :

A

U($j+1/2, t) = Uj+1/2 (O) = (C'te (7153)

U(zj_1/2.1) =U,_, 5 (0) = Cte (7.154)
ot Uj,1/2(0) est la solution du probléeme de Riemann P.R.(U;,U;44) le long de la
droite £ = 0 et U;_y5 (0) est la solution du probléme de Riemann P.R. (U;_;,Uj) le
long de 'axe t. La relation 7.152 devient alors:

1 (Tit1/2 T7( n+1\Jm — L (X412 YT 5 40\ Jm
s Ja) 1 Uz, t")dz = ;[ 772 U(z,¢")dz

A [F (Uj41/2(0)) = F (U;1/2(0)) ]

ce qui conduit en définitive au résultat suivant : La méthode de Godunov appliquée a
un systéme peut étre écrite sous la forme conservative

Uj+1: U.7 — A_x |:Fj+1/2 — Fj*1/21| (7156)

(7.155)

avec les fluz :

Fi12 = F (Uji1/2(0)) (7.157)
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et la condition : A
At < VTx (7.158)

max
Pour déterminer V. _, il existe plusieurs méthode. On peut par exemple pour des

problémes monodimensionnels définir V.. par:

Viax = m?X {‘leh/ﬂ ) leil/z{} (7.159)

pour j = 0,..., M, et o Vi, /o €t Vi Jo sont les vitesses des ondes non-linéaires de
droite et de gauche.

7.8 La méthode de décomposition des flux

7.8.1 Introduction

Un trait caractéristique des méthodes de discrétisation décentrées est le fait que la
discrétisation des équations sur un maillage est mis en place de maniére a tenir compte
de la direction de propagation de I'information. Ainsi la physique est déja incorporée
dans le schéma numérique. Deux approchessont proposées : I’approche de Godunov,
déja traitée et approche de décomposition des flux (FVS = Flux Vector Splitting).
7.8.2  Principe de la méthode

Considérons un systéme hyperbolique & m équations :

Ou  Of(u)

——— =0 7.160
ot " o (7.160)

On introduit alors la matrice jacobienne A :

of
= — 7.161
A= (7.161)
Cette matrice s’exprime sous la forme :

A=RDR™! (7.162)

ou D est la matrice diagonale des valeurs propres de la matrice A et la matrice R
telle que les vecteurs colonnes soient les vecteurs propres droits v de A .

R =[vM, @ ™) (7.163)

Si I’'on décompose la matrice D en deux matrices formées 'une Dt de valeurs propres
positives et I'autre D~ de valeurs propres négatives, on a :

D=D"+D" (7.164)
avec les valeurs propres :

A=A+ AT >0, <0 (7.165)
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On en déduit :
A=RDR'=R(D"+D" )R '=RD'R"+RD R

Soit:
A=RD"RI4RD R 1=A"+ A

(7.166)

(7.167)

Par suite, si ’on utilise la propriété d’homogénéité dans le cas des équations d’Euler:

f=Au=(AH+A )u="f"+1"

ff=Atuf =Au
On utilise alors un schéma numérique sous forme conservative :

At
n+l __ n n n
Ui = U = T [Flie — Fiup)

avec :
je12 = Fj (U5) +F; (U7,

At n _ n n — n

Uit =07 - Ar [(ATU] + AU, ) — (ATUL, + ATUY)]
n+1 n At + n n - n n

Uit = U7 - AT (U) - ULy +47 (U, - U]

On retrouve le schéma CIR.

7.8.8  Application aux équations d’Fuler isotherme

Equations isotherme

ou Of(u)
ot + or 0
avec :
u= P 1= 2pu 2
pU pu + pa
et :

p =p(p) = pa’

(7.168)

(7.169)

(7.170)

(7.171)

(7.172)

(7.173)

(7.174)

(7.175)

(7.176)
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Formulation de la méthode

La matrice A est :

ou

Les deux valeurs propres sont alors :

A:afm):{cﬁo ) 1]

M=u—a, =u+a

La matrice des vecteurs propres droits est :

1 1
R= [u—a u—i—a}

ainsi que la matrice des vecteurs propres gauches :

B 1 u+a —1
1—_
R _2a[a—u 1 }

Etant donnée alors une méthode de décomposition donnée avec :

AT 0 A0
+ _ 1 - 1
D_[O A;]’D_{O /\2—}

On calcule les matrices A* avec s = sign(J;).

A® = RD*R!

AS:[Ai(qua)—A;(u—a) A3 — A
(u* =a®) AL =A3) A3 (uta) = Al (u—a)

On en déduit les flux :

o r AL+ A
2| A5 (u—a)+ A3 (u+a)
solent :
F+_£ )‘1++)‘2+
T2 A (u—a)+ Ay (uta)
F_? AL+ Ay
2| A (u—a)+ A, (u+a)

On applique enfin un schéma numérique sous forme conservative :

At
n+1l __ n n n
Ui = U = o [Flie — Fip)
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(7.177)

(7.178)

(7.179)

(7.180)

(7.181)

(7.182)

(7.183)

(7.184)

(7.185)

(7.186)

(7.187)
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i-1 j-12 i j+12  jt1

Figure 15  Flux dans les cellules

e Az At Az
i Al

j-12 j j+12 j-12 j j+12 j-12 j j+112
Cas1 Cas 2 Cas 3

Figure 16 Trois configurations

avecle flux :
Fi 1 =F; (U)) +F; (Uf) (7.188)

définit sur la figure 15. Pour le probléme traité, trois configurations sont possibles
(figure 16):

e Cas 1) Ecoulement supersonique amont: Ay = ui +aj <Oona:

AN =0, =\ =U—a}

A =00 = =U"+a! (7.189)
F!=0,F; =F!

e Cas 2) Ecoulement supersonique aval: A\; = ui —aj >0ona:
/\fz)\le;‘—a;‘,/\sz

M=X=Ur+al\ =0 (7.190)
F/=F"F, =0

e Cas 3) Ecoulement subsonique aval: A\; = ui —ay <0< Ay = uj +ajona:
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AN =0\ =\ =U}~a}
’ _ 7.191
{A;:AQZUf+a?,>\2:0 ( )
et :
o Ur + a” _pt ur—a?
72 | (U +a}) 72 L (U —a))

7.9 Le probléme de Riemann et le solveur de Roe

Les principes de base de la méthode de Riemann ont été présentés dans le chapitre 4
de ces notes.

7.9.1 Le probléme de Riemann et le flur de Godunov

Soit le systéme suivant a résoudre :
=u’(z) (7.193)

dans une domaine x; < r < z,., en utilisant la formulation conservative :

UjJrl _ Uj + M [ e j+1/2] (7194)
On introduit le flux de Godunov :
Fii12 = F (U172 (0)) (7.195)

pour lequel la valeur Uj /5 (0) est la solution exacte Uj 1,2 (x/t) évaluée en x/t =0
du probléme de Riemann :

a_u N of (u)
ot ox

=0 (7.196)

avec :
u; stx <0

u(z,t) = ug six >0

(7.197)

Le but est maintenant de trouver une approzimation directe du flux Fjiy/.,
7.9.2  Le probléeme de Riemann et les relations intégrales

Considérons la figure 17 pour laquelle la structure de la solution exacte du probléme
de Riemann apparait dans le domaine [z, 2| X [0, T] soit :

Iy, S TVL, TR S TVR (7198)

ou V7, et Vg sont les vitesses les plus rapides des signaux perturbant les valeurs initiales
u; et up . La formulation intégrale de 7.196 peut s’écrire :
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A%
Vi "
(u - a) ! (uta)
() ,
1
!
/
]
1
!
£ et £
XL TV, Ve |xg

Figure 17 Domaine de calcul

jfszR u(z, T)dx = f;R u(z,0)dz+
fo f(u(xp,t))dt — fo f(u(zg,t))dt
L’évaluation du membre de droite donne :
TR
/ u(x,T)dmszUR—xLUL+T(FL—FR)
xr
On évalue alors I'intégrale de xy a 0 :
0 0
/ u(z, T)dx = / u(z,T)dx = =TV, U, +T (Fr, —Fo 1)

Ty, TVL

puis, on évalue I'intégrale de 0 a zp :
TR TVR
/ U(IL', T)dl’ = / U(IL', T)dl’ = TVRUR -T (F[)’R — FR)
0 0
On évalue alors F 1, et Fo p :

1 0
FO,L = FL — VLUL — —/ 11($, T)dl’
T TV,

et :

1 TVRr
F07R:FR—VRUR+?/ u<.I’,T)d£C
0

et ’on vérifie que :
For=For

condition qui s’appelle condition de consistance.

(7.199)

(7.200)

(7.201)

(7.202)

(7.203)

(7.204)

(7.205)
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7.9.3  Les approximations des lois de conservations

Considérons 1’équation de conservation :

ou  Of(u)

— +

ot Ox
L’idée générale est de déterminer la solution approchée U en résolvant un systéeme a
coefficients constants. Ainsi en introduisant la matrice jacobienne :

=0 (7.206)

of
= — 2
A (u) 7a (7.207)
I’équation de conservation 7.206 prend la forme :
Ju Ju

Roe cherche une approximation en remplagant la matrice jacobienne .4 (u) par une
matrice moyenne A’ fonction des états uy, et ug:

A= A (ug,up) (7.209)

L’équation originale 7.206 est alors remplacée par :

Ju ,0u
5 +A e 0 (7.210)
avec :
- u,, <0
u(z,0)= { up >0 } (7.211)

Ce systéme est alors résolu exactement. Pour un probléme général avec m lois de
conservation, les propriétés de la matrice de Roe A’ sont les suivantes:

e Propriété A : Hyperbolicité du systéme.
La matrice A’ doit avoir m valeurs propres \; (Uy, Up) réelles telles que :

M< <<, (7.212)

et un ensemble complet de vecteurs propres droits indépendants :
70 @ pm) (7.213)

e Propriété B : Consistance

A'(U,U) = A(U) (7.214)



138 Schémas de discrétisation conservatifs

e Propriété C : Conservation & travers les discontinuités

F(Ug) —F(Uy) = A (Ugp - Uy) (7.215)

En fait, la solution consiste en m ondes linéaires séparant m + 1 états; on
cherche le flux correspondant a I’état en © = 0 pour ¢t > 0. Dans les zones perturbées
par les ondes, le flux physique doit étre considéré comme une fonction linéaire de U.
Si la solution de Riemann approximée est notée par W (z/t, Ug, U) on a :

F (W (Q}/t, UR, UL)) =F (UL) + .AI (UR, UL) (W (l‘/t, UR, UL) — UL) (7216)
Si alors on prend z/t suffisament grand pour que W = Uy, on obtient :
F(Ug)—F(Up)=A (Ug—Uyp) (7.217)

7.9.4  L’approximation du probléme de Riemann

Calcul des variables

Supposons que la matrice A’ (Ug,Up) et ses vecteurs V) (Ug, Uy) et ses valeurs
propres 5\j (Ug,Uyp) soient calculées. A titre d’exemple, on traitera au paragraphe
suivant le cas des équations d’Euler isotherme. On doit alors résoudre le probléme de
Riemann. En projetant le saut :

AU =Ugp - U, (7.218)

sur les vecteurs propres droits, on a :

j=m
AU=Up-U, =) a;p" (7.219)
j=1
d’ott 'on déduit I'intensité a; des ondes :
O_éj == O_éj (UR, UL> (7220)

La solution Uj /5 (x/t) évaluée le long de I'axe ¢ pour x/t = 0 sur I'interface j +1/2
est alors donnée par :

J=m
Ui 0)=Up+ > apV (7.221)
;<0
ou :
J=m
Uj+1/2 (0) == UR - Z @jﬂ(‘j) (7222)

;>0
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Calcul des flux

Maintenant, il ne faut pas oublier qu’en fait on a résolu le systéme suivant :

ou’  of' (v)
=0 7.223
ot " on (7.223)
avec :
f' (u') = AW (7.224)
et que 'on n’a pas :
Fip = AUj (0 (7.225)
Pour obtenir le flux correct, il faut utiliser les relations 7.203 et 7.204:
1 0
F(),L = FL — VLUL — —/ ll(CE, T)dl’ (7226)
T TV,
et :
1 TVgr
For=Fr—VrUr+ ?/ u(x, T)dx (7.227)
0
qui conduisent a la condition de consistance sur I'interface :
For=For (7.228)
Si U}, (z,t) est la solution de I'équation modifiée 7.224 avec les données Up, et

Uj, on a avec 7.201 et 7.201:

0
Uy (@,7)de = =TV, UL+ T (F' (Uy) — F (U, 5 (0))) (7.229)

VL,

et:
TVgk

U,y (2,T)de =TVRUg +T (F' (U}, (0)) —F (Ug)) (7.230)
La substitution de 7.229 et 7.230 dans 7.226 et 7.227 donne :

For=F (U, /2 (0)) +F, (UL) —F' (Uy) (7.231)

et :
For=F (U, (0) +FL(Ug) - F (Ug) (7.232)

En utilisant 7.221 ou 7.222 et la définition du flux ¥/ = A'U’, les flux numériques
s’expriment alors par :

j=m
Fiap (0)=F,+ ) a\o? (7.233)
;<0
ou :
Jj=m

;>0
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7.9.5 La méthode originale de Roe

Nous allons appliquer la méthode de Roe pour la recherche de la matrice A, de
ces valeurs propres et de ses vecteurs propres ainsi que des coefficients &, pour les

équations isothermes.

Equations isothermes

du  Of(u)
E—'— ox =0
avec :
PR P
puU pu + pa
et :

La matrice A et ses propriétés

La matrice A est :

o [0

Les deux valeurs propres sont alors:
M=u—a, a=u+a

La matrice des vecteurs propres droits est:

1 1
R = [ u—a u-+ta }
Le principe de la méthode de Roe
On choisit le nouveau vecteur Z tel que :

-]

Par suite u et f peuvent s’exprimer en fonction des composantes de Z.

(7.235)

(7.236)

(7.237)

(7.238)

(7.239)

(7.240)

(7.241)

(7.242)

(7.243)
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On cherche alors un vecteur Z moyen, obtenue en effectuant la moyenne arithmétique

suivante : . .
> 21 VPL T /PR
Z=| " | ==(Z;+2Zp) = -

{ 2 } 2 (Z1t2x) 2 [ VPLUL + \/PRUR

(7.244)

La raison de ce changement de variable est que les vecteurs ug—uy, et fr—f; peuvent

étre exprimés sous forme de matrices multipliées par Zr—Z;. En effet :

2Zz1 0
Z 2

- = | | @n-20) = 5 @)

2o 21

flun) ~F(ur) = |y Y | (Ba20) =C'(Zn-2)

En notant par [.] le saut de la quantité, on a :

[u] = B'[Z]
et :
[f] = C'[Z]
d’ou pour les valeurs discrétes :
[F] =cB~'[U]

La condition 7.215 est alors satisfaite si ’on prend comme matrice A’:

A =cB™!
soit :
- 0 1 B 0 1
T a? =227 2%z | | a® =12 20
ou l'on a défini la vitesse moyennée :

VPLUL + \/PRUR
VPL T /PR

u =

(7.245)

(7.246)

(7.247)

(7.248)

(7.249)

(7.250)

(7.251)

(7.252)

Ayant trouvé la matrice A’, on en déduit les valeurs propres 5\j qui sont réelles et les

vecteurs propres 7) qui sont linéairement indépendants:

e

et :

(7.253)

(7.254)



142 Schémas de discrétisation conservatifs

7 = % { - Jlr . } (7.255)
Par conséquent la condition A est vérifiée. On peut alors calculer 'intensité des ondes:
Au:[Aul]:{ PR = PL }:jz_éaﬁ(j) (7.256)
Auy PRUR — PLUL — ! '
avec :
Gy — Auy (U + a) — Aug Gy = —Auy (u— a) + Aug (7.257)

2a 2a



Chapter 8
LA VISCOSITE ARTIFICIELLE

On a vu que les schémas linéaires du second ordre généraient toujours des oscilla-
tions. Un moyen simple pour réduire ’amplitude de ces oscillations est d’ajouter des
termes du second et/ou du quatriéme ordre. En général, les coefficients de ces ter-
mes doivent étre fixés par l'utilisateur et sont constant partout. L’introduction de ces
termes supplémentaires est simple. La difficulté réside dans le choix du coefficient.
1l est possible de déterminer les limites du paramétre par une analyse de stabilité du
schéma utilisé. Cependant cette valeur limite dépend du probléme a résoudre. Il faut
donc faire trés attention dans la détermination de ces paramétres surtout lorsque le
probléme physique a résoudre est de type fluide visqueuz.

8.1 Introduction

Un terme de dissipation artificielle du second ordre aura la forme suivante:

0?u
soit :
Day; =€ (Uj1 — 2U; — Uj-1) (8.2)
ou :
Dwyjs1/2 = €js1/2 (Ui — Uj) (8.3)
et un terme du quatriéme ordre :
O*u
soit :
Dya); = =€ (Uj—2 = 4Uj1 + 6U; — 4Uju1 + Ujy2) (8.5)
ou :
Deyjsrj2 = =€js172 (Ujra — 3Uj1 + 3U; — Uj1) (8.6)

Nous donnons quelques exemples de viscosités numériques utilisées, en particulier
dans le code Euler-1D.
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8.2 MacCormack et Baldwin

Cette viscosité artificielle est obtenue de la maniére suivante :

Dayja/z = €412 Ui = Uj) (8.7)
avec :
1
ez = 5 (5 + i) (8.8)
ou :
1 — 2p; + Dy
e =a(lu] +a), S R (8.9)

T pjs1+2p+ 0

ol « peut varier (o = 0.25)

8.3 Jameson

Cette viscosité artificielle est obtenue en combinant la viscosité artificielle de Mac-
Cormack et Baldwin avec une terme supplémentaire du quatriéme ordre :

Dayayirise = €172 Ujrr = Uj) — €541/2 (Ujpo — 3Ujp1 +3U; = Uj—1)  (8.10)
avec :
€511/ = max [0, (& — gj41/2) ] (8.11)

ol o est un paramétre dont la valeur typique est a* = 1/256. A titre d’exemple,
I’adjonction de cette viscosité pour le schéma de MacCormack appliqué & un écoule-
ment supersonique-subsonique dans une tuyére donne comme résultat (figure 1):

8.4 Von Neumann-Richtmyer

Cette viscosité artificielle s’écrit :

Dyj1/2 = apjriy2 \Ujs1 — Uj| (Ujp1 — Uy) (8.12)

L

j+1/2

avec !

a~1 (8.13)

La figure 2 montre l'effet de cette viscosité artificielle.
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Figure 1 Viscosité artificielle de Jameson

8.5 Landshoff
Cette viscosité artificielle s’écrit :

0

Dyjs12 = (pa)j+1/2 1 (Uj+1 - Uj)

j+1/2
avec :
0<a<05

La figure 3 montre 'effet de cette viscosité artificielle.

8.6 Tyler & Ellis
Cette viscosité artificielle s’écrit :

0

Dayjri2 = apjiaye (Jul + a)j+1/2 1
u

(Ujs1 —Uj)

J+1/2

145

(8.14)

(8.15)

(8.16)
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Chapter 9
LES SCHEMAS FCT (FLUX-CORRECTED TRANSPORT)

L’addition de terme d’amortissement a été proposé au chapitre précédent afin d’éliminer
ou d’atténuer les oscillations au voisinage de fort gradients. Une extension de cette
approche a été effectuée en rajoutant un second terme. Cette modification est ap-
pliquée sur des schémas de type prédicteur-correcteur. On ajoute un certain amor-
tissement (terme dissipatif) a la partie prédicteur du schéma et on enléve une partie
de cette amortissement (terme anti-dissipatif) au terme correctif du schéma. Un tel
schéma est appelé schéma FCT (Flux-Corrected Transport).

9.1 Principe

On part du schéma q :

Uy = U} = 5 (U = Ul) +

J J

[\ R et

(U =207 + Uy) (9.1)

avec comme exemple, le schéma de Lax-Wendroff (¢ = ¢?) :

c c?
U*:U”——( ;L+1_Un—1)+§( f+1_2Uf+Uf_1) (9.2)

J J 2 J

On ajoute le terme de dissipation du second ordre de la forme :

D=e (U}, =207 +U") (9.3)
On obtient :
U =0 =5 W = Ul) + (s g) (=207 4 U) 94)

On rajoute alors un pas de correction ou on inclut un terme anti-dissipatif :
+1 * * * *

Les valeurs de €; et de &9 sont choisit selon les schémas. Ainsi avec un schéma de
Lax-Wendroff appliqué pour I’équation de continuité on peut choisir :

1= é (1+42¢%) (9.6)
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n=c(1-0) (9.7)

Par ailleurs, pour préserver la forme conservative des équations et dans le cas général
d’un probléme non linéaire, on applique le terme antidiffusif au points 1/2 :

Uittt = U = (Ujsa2 — Ujapa) (9.8)

avec :

Uj+1/2 = &9 (Uﬁk—f—l — U*) (99)

J J

Uj,1/2 = &9 (UJ* — U;—l) (910)
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Ce titre semble étre contradictoire. En effet, l’étude de la monotonicité a
montré que les schémas ayant cette propriété étaient au plus du premier ordre. Par
ailleurs les schémas (linéaires) d’ordre supérieur ou égal o deux sont oscillants, méme
st l'on peut atténuer plus ou moins fortement ces oscillations par lintroduction de
viscosités artificielles. Cette contradiction est apparente. L’introduction de méthodes
TVD (Total Variation Diminishing) va permettre de lever la contradiction.
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Chapter 10

LES SCHEMAS CONSERVATIFS MONOTONES NON
OSCILLANTS

10.1 Principe

Nous avons montré au chapitre II que les oscillations semblaient étre inévitables
pour les schémas d’ordre supérieur ou égal & 2. Nous allons maintenant montrer
comment il est pourtant possible de les éviter. On cherche maintenant & construire
des schémas du second ordre non linéaires et non oscillants du second ordre a partir de
schémas-q mais sous forme conservative appliquée a I’équation de convection scalaire.
On considére la possibilité d’un schéma intermédiaire entre le schéma décentré (du
premier ordre et trop diffusif) et le schéma de Lax Wendroff (du second ordre et
oscillant) avec la propriété d’étre conservatif. Si 0 < ¢ < 1, le flux numeérique sur
'interface j + 1/2 est :

e Pour le schéma upwind :
Fji1/2 = aUj (10.1)

e Pour le schéma de Lax Wendroff :

a a
Firpp = 5(1+U; + 5(1 = )Ujn (10.2)

e On réécrit alors 10.2 sous la forme :

1
Fyop = (U + 5(1= (U1 - U)) (10.3)

e Enfin, on modifie le flux numérique en remplagant A; = (U1 —U;) par A,

j,mono*

a1
Fiop=a{U7 +5(1-9A,,,.} (10.4)
Le gradient A, =U;; — U; est remplagé par A, mnouveau gradient qui est

construit de maniére a limiter les oscillations qui sont générer par le
schéma de Lax-Wendroff.
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10.2 Schéma du premier ordre optimal

On cherche tout d’abord & construire des schémas monotones et conservatifs & partir
de schémas du premier ordre non oscillants et dont ’erreur de troncature soit la plus
faible. Le théoréeme de Godunov a été appliqué pour les schémas qui ont la forme
suivante :

Ut =Y Ul (10.5)

Ce schéma inclue toutes les opérations linéaires pour obtenir U™™! & partir de U™ .
Par une opération linéaire, on indique un procédé M{U?} tel que :

Q)M{U +V} = M{U} + M{V} (10.6)

DYM{kU} = kM{U} (10.7)

Nous avons introduit le théoréme de Godunov, précisant qu’un schéma linéaire d’ordre
deux (ou supérieur) pour I’équation de conservation scalaire ne pouvait préserver la
monotonicité des distributions des données initiales convectées. Il y a pourtant un
moyen, si I'on réalise que ce résultat s’applique a tous les schémas linéaires pour
I’équation de convection linéaire. En effet, on peut se demander si des schémas de
discrétisations mon-linéaires appliqués a 1’équation de convection linéaire, peuvent
préserver cette propriété de monotonicité pour des schémas d’ordre supérieur ou égal
a deux. Comme, par ailleurs les équations d’Euler pour lesquelles ces schémas seront
appliquées sont, de fait, non-linéaires, cette idée parait raisonnable. Ainsi pour se
libérer des contraintes du théoréme de Godunov, il faut abandonner 'une des condi-
tions précédentes 10.6 et 10.7. En fait, c’est la condition 10.6 qu’il faut abandonner.
L’approche la plus ancienne consiste a ajouter au schéma numérique des termes de
viscosité artificielle qui ont des effets d’amortissement. Cependant, il serait préférable
d’avoir des schémas qui ne dépendent pas d’expériences comme c’est le cas avec cette
approche. Il faudrait par ailleurs qu’ils ne générent aucune oscillation. De tels sché-
mas existent mais sont, en général, plus cotiteux en temps. Or, I’étude de la méthode
de Godunov pour la construction d’un schéma conservatif et monotone nous a con-
duit & un schéma particulier, le schéma C.I.R. On peut alors se demander quel est
le schéma du premier ordre qui a 'erreur de troncature la plus faible et qui est de
la forme 10.5. Si 'on substitue le développement en série de Taylor de la solution
exacte de u; + f, = 0 dans 10.5, on a :

€= [Z bik? — Plug Az (10.8)

Le probléme algébrique qui doit étre résolu, est de trouver un ensemble de coefficients
{br} tels que :
b, > 0,Vk (10.9)

D b =1 (10.10)



Construction d’un schéma du second ordre monotone 155

D bk’ = —c (10.11)
et que :

] Z bik? — 2| soit minimal (10.12)

On peut montrer que la solution a ce probléme dépend du signe de ¢. Si0 < ¢ <1,
le schéma optimal préservant la monotonicité est :

Uttt =(1—-oUr+ur, (10.13)
Si —1 < ¢ <0, le schéma optimal est :
Urtt = 1+ Uy —-ury, (10.14)

Ce schéma de type décentré est le schéma C.I.R.. Ce schéma est autodissipatif,
puisque, en effet, il peut s’écrire sous la forme :
n n n C n n
Urtt =Up — 5( ra—UM) + 2( =20+ U) (10.15)
ou :
(U]’Zrl —2U7 + U ) (10.16)

représente le terme de dissipation. Sous forme conservative, il vient :

n n 1 n a n
Fiaye = aly = 54 a(U, +U}) + 2( = U (10.17)
et puisque :
T =aUly (10.18)
ona:
n 1 n n a n
j+1/2 = 5( )+ 2( = U (10.19)

10.3 Construction d’un schéma du second ordre monotone

On cherche ensuite a construire des schémas du second ordre & partir de schémas —q,
dont le schéma C.I.R. est un cas particulier, en les rendant non linéaires. Cette
approche nous permettra de comprendre le principe de la création de schémas non
linéaires.

10.3.1 Schémas - q et controleur de réqularité

Le théoreme de Godunov a été introduit en I'appliquant sur le schéma classique
de Lax-Wendroff, qui est I'un des schémas les plus précis du second ordre parmi
les schémas-q. Par ailleurs, le schéma C.I.R. est du premier ordre. La premiére
généralisation consiste & introduire une version modifiée du schéma-q en remplagant
la variable ¢ par une fonction non linéaire. Considérons ’algorithme suivant :

n n n n q n n
Urtt = Uj —5( M—Uj,l)+2( T =207+ U )) (10.20)
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ou c est le nombre de Courant ¢ = a% . Introduisons les notations classiques
suivantes :
+7rm __ n n
AU =U} U, (10.22)

et définissons le controleur de régularité 07, et son inverse R; tels que :

P N O

R e (10.23)

Ur—ur, AU

et: [n . A-[
Rj=— 1 _— 10.24
Tooun, -Ur ATUR ( )

Le schéma de Lax-Wendroff modifié (schéma q), inclue maintenant la variable ¢(6);
Iintroduction d'une fonction ¢} (6;) rend le schéma non linéaire. On a alors:

)

n n c n n n n n
Ut = U7 = S(Up = Upy) + 5= (U = 207 + ULy) (10.25)

Pour ¢ > 0, on définit la fonction [qmno]}1 pour rendre le schéma monotone :
[Gmonol} = ¢ + (1 —¢)S(67) (10.26)
avec :

2
SO =0; si |07 — 1] <2et 1—m, si |07 —1] > 2 (10.27)
J

ou S(q) peut aussi étre considérer comme une fonction ”bascule ” permettant de
passer aux deux schémas extrémes L.W. (S =0) et C.I.R (S =1).

p<0

0=>0

 J

Figure 1 Saut
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0<0 0==0

\j

Figure 2 Extremum

Le schéma précédent a cependant deux défauts :

1) Premier défaut : le controleur de régularité ne fait pas la différence entre
la base ou le sommet d’une structure locale de type saut (figure 1) et les cotés d’'un
extrémum dans une solution réguliére (figure 2).

Afin de distinguer les deux configurations, il est nécessaire de comparer deux
valeurs du controleur : a) une grande valeur suivie d’une petite valeur caractérise un
saut, b) une petite valeur suivie d’'une grande valeur caractérise un extremum. En
d’autre termes, un saut est une grande différence entourée par deux valeurs faibles
du controleur, tandis qu'un extremum doit montrer une petite différence entourée
par deux grandes valeurs du controleur. Cette information doit étre fournie par la
fonction de flux numérique qui, par suite, doit dépendre d’au moins 4 arguments.
Par conséquent, les schémas incorporant une telle forme de flux doivent dépendre au
moins de cinqg arguments. On remarquera que la plupart des schémas sont basés sur
trois arguments. La conséquence est que les extrema pour des distributions réguliéres,
calculés par des schémas en trois points, sont applanis. Cette imprécision conduit a
la question de savoir, dans quel sens le schéma de L.W. — modifié ( par les valeurs
locale de q) peut étre considéré comme étant du second ordre.

2) Deuxiéme défaut : ce schémal n’est pas conservatif : en effet, la fonction
de maillage 07 utilisent les trois valeurs U, , U}, Ul tandis que la formulation
conservative pour un schéma-q est basé sur une fonction de flux numérique qui n’a
que deux arguments:

T = Up = AF (U ULy — F(UL U] (10.28)

Or, afin de construire un schéma préservant la monotonicité et étant conservatif, le
flux numérique doit avoir au moins 3 arguments : par exemple :

J
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10.3.2  Le contréleur de régularité

On précise certaines propriétés du controleur de régularité, fonction essentielle dans
la construction des schémas non-oscillants. Supposons que la distribution convectée
soit réguliere. Définissons le controleur de régularité par :

U(x+ Azx) —U(x)

o(x) = OEICEYY) (10.30)

D’apres les figures 3 et 4; il est évident que 6(z) tend vers 1 presque partout et
S(0(x)) = 0. En effet, on remarque que pratiquement dans tout ’écoulement, on

0=1+0(AX)

Figure 3 Courbe continu

0 =-1+0( AX)

i1 i

A J

Figure 4 Maxima/minima

doit s’attendre a ce que 6(z) soit proche de 1. Effectuons un développement limité
en série de Taylor de 0(z) :
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_ AxU' 4+ 1/2(Ax)?U”

0@) = Noo =128 207 (10:31)
O(x)=1-— Am% (10.32)

et l'on voit que dans les régions régulieres de I’écoulement 6(z) ou R(z) est proche
de 1, a 'exception des maxima/minima de U’. En chaque point z, le schéma tend
vers un schéma de L.WW. non modifié lorsque Az tend vers zéro, sauf éventuellement
en un point z ou U(z) est un extremum. En un tel point la valeur de 6(x) tend
vers —1, et de nouveau S(q) = 0. Mais pratiquement, I’abscisse de I'extremum ne
sera que tres rarement aux points nodaux du maillage et par suite, il y aura toujours
un point au voisinage de l'extremum ou f(z) << —1 ou f(z) >> 3, permettant
alors a la fonction S d’étre non nulle. Cela signifie que la convergence uniforme de
lerreur de discrétisation O(Ax)? n’est pas possible, mais que la convergence locale
ne devrait pas étre affectée. Le point crucial est que le nombre de points, ot I’erreur
de discrétisation est O(Ax), devient de plus en plus petit, relativement au nombre
total de points M (M = 1/Ax) de la grille lorsque Ax tend vers zéro.

10.4 Influence de la forme de la distribution des données initiales

10.4.1 Distribution linéaire par morceauz des données

Si on utilise une distribution linéaire par morceau dans chaque cellule, centrée sur
la valeur moyenne & cause de la conservation, on obtient automatiquement un
schéma aux volumes finis du second ordre. On procéde de la maniére suivante

1) Approximation par une distribution linéaire (ligne droite) de la distribution
initiale (figure 5).

2) Distribution des valeurs initiales avant (ligne simple) et apres le décalage
(ligne pleine) (figure 6).

3) Détermination de la nouvelle distribution linéaire (ligne simple) de la dis-
tribution convectée (ligne pleine) (figure 7).

4) Valeurs initiales pour la prochaine itération (figure 8).

10.4.2  Principe pour préserver la monotonicité

Une condition suffisante pour préserver la monotonicité d’une séquence de moyennes
cellulaires est illustrée sur la figure 9: la distribution linéaire dans une cellule ne doit
pas prendre de valeur en dehors du domaine défini par les valeur moyennes des cellules
adjacentes.

e La pente de la distribution linéaire dans la cellule j — 1/2,5 4+ 1/2 est réduite
(ligne pleine) de maniére a ce que les valeurs dans la cellule ne dépassent pas le
niveau moyen des cellules adjacentes (traits tillés),
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j-3z j-1 j-1z i jHe j+ j+3n

Figure 5 Données initiales

e Si la moyenne sur la cellule atteint un maximum, la pente est réduite a zéro,

e Si la pente ne suit pas I’évolution des cellules adjacentes, elle est aussi réduite
a zéro.

10.4.3 Choizx dans la détermination des gradients ou de la pente de la distribution
linéaire

Dans ce paragraphe nous allons, mettre en place une nouvelle approche essentielle-

ment pour augmenter la précision des méthodes mais & partir de la formulation con-

servative. Pour cela, on va déterminer la pente (figure 10) d’une distribution linéaire

a partir de moyennes pondérées de différences consécutives afin d’obtenir un schéma
du second ordre.

Considérons donc une distribution linéaire dans les domaines z;_;,; < z <

Tj+1/2 ¢

n (.’17 —Z ) n
uj(r) = uj + A—xjAjuj x € [0, Ax] (10.33)
ou Aﬁ’n est une pente choisie judicieusement de U;(x) entre x; et 2;+1. La fonction
U;(z) est définie localement dans le domaine [0, Az]. Le centre de la cellule z; est
r=1Az et Uj(z;) =U 7. Aux extrémes du domaine on a dans un référentiel local :
L n 1 n
uj = u;(0) = uj — §Ajuj (10.34)
R n 1 n
ujt = uj(Ar) = uj + §Ajuj (10.35)
avec :
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j-3z j-1 j-1z i jHe j+ j+an

Figure 6 Décalage

j-32 j-1 j-12 i j+z Jj+1 i+

Figure 7 Nouvelle distribution linéaire

Remarque : Si 'on voulait des précisions plus élevées on pourrait introduire une
distribution quadratique ou k est un paramétre. :

uj(w) = ul+ (‘"”;;’J’)AﬁQ (ZZ)Z ((m — ) — M) AWM we0,Ad] (10.37)

On détermine alors I'évolution de u} et uf au cours d’un demi-pas de temps :

0 = =55 U () = ()] (10.38)
R _ R 1 At L R
;= =g () = f ()] (10.39)



162 Les schémas conservatifs monotones non oscillants

j-a3n i-1 j-1e i jHe j+ j+3n

Figure 8 Nouvelles valeurs initiales

Ainsi ayant modifié les données, on est amené a traiter un probléme de Riemann &
valeurs constantes par morceau suivant :

ou  of

B 10.4
5 + D 0 (10.40)
alt x <0
= Y
u(z,0) { aleyz >0 } (10.41)

. . A;UT . .
B On peut choisir la pente i—[i” de la relation 10.33 sous la forme suivante ot

A; est une moyenne de gradients :
A 1 rrn 1 rrn

ol k est un parametre réel libre défini dans le domaine [—1,1]. La valeur de Uj’?
représente la moyenne spatiale sur la cellule. Ce qui conduit & une famille de schémas
du seconde ordre. Reprenons la relation 10.3 qui conduit a la relation :

n n n n C n n n n
Uj = Uj - C(Uj - Uj—l) - 5(1 —o)[( 41 Uj ) — (Uj - Uj—l)] (10.43)

Le schéma résultant pour I’équation de convection est alors, en remplacant les gradi-
ents suivants (U7, — U7), (Uy — U7 ;)] par A et Aj ;-

C

Uit = U} = e(Uf = Uj) — 5

J J

(1=0o)A, —Aj1] sic>0(a>0) (10.44)

Le flux numérique correspondant est alors :

J

1 -
Fijiy2 = a{U}' + 5(1 —¢)AU}} (10.45)
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74-

1 | I 1 I | | I
J-32 J1 J12  J J+12 J+1 J+32 J-32 J1 J12 J J+12 J+1  J+32

2

I 1 I I
J32 J1 J12 J J+12 J+1 J+32

Figure 9 Comment préserver la monotonicité

10.4.4 Principe de prévention des oscillations

Nous pouvons montrer maintenant comment des oscillations numériques apparaissent
et comment on peut les prévenir. Supposons, par exemple que la valeur minimum (en
i—1/2) de la distribution linéaire dans une cellule j soit inférieure a la valeur moyenne
Uj ) en x;_15. Dans le plus mauvais des cas (pour maintenir la monotonicité) U est
constant pour x < x;_1/2 et la distribution dans la cellule j suit un ”plateau” au
niveau U ; . Maintenant, convectons ces valeurs initiales sur une distance cAz vers
la droite (figure 12) avec une valeur de ¢ proche de 1.

On voit que la valeur moyenne dans la cellule j au temps n + 1 est plus basse
que la valeur du plateau sur la gauche : par conséquent, la suite des valeurs moyennes
n’est plus monotone. De la méme maniére, si la distribution dans la cellule j dépasse
la valeur moyenne U, ; et que la cellule fait partie du plateau pour x > xj, 1/ ,
alors une convection avec une faible valeur de ¢ fera augmenter U} ;, détruisant la

monotonicité de la séquence des valeurs moyennes. On doit donc imposer :

A; > U7, (10.46)

A; <UL, (10.47)
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A
Ui(x) R
Uj *
)}
@, 9, ‘O_Xb
0 AX/2 AX
j-172 J j+1/2

Figure 10 Choix de la pente

A interface

Uy(x —R /

O T !
R e
/ Ujl;l *-
N_
Usa X
O O T O 8, P
j-1/2 j jt+1/2 jt1 j+312

Figure 11 Probléme de Riemann

soit :
Aj <20 4 (10.48)

Aj <20 i1 (10.49)

Si la valeur de A; définit par lalgorithme de moyennage ne satisfait pas 10.48 ou
10.49, il faut la réduire de maniére a ce qu'il n’y ait aucun dépassement (sur ou sous).
On définira alors :

Aj,mono = min(2Aj—1/27 Aj; 2Aj+1/2) (1050)

Cette condition est valable pour le cas ot A;_y /s, A, Aji1/2 > 0. La loi générale est

Aj,mono = ’ITLZ’/L(2 ‘Aj_l/g ,2 |A]’+1/2|) Sg?’LAj) (1051)
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j-3n j-1 j-12 i j+r i+ j+an

Figure 12 Evolution de la solution

si sgn(Aji1/2) = sgn(Aj_12)
Ajmono = 0 autrement (10.52)

L’équation 10.51 donne, en module, la plus grande valeur de A; qui ne causera aucune
oscillation numérique pour toute valeur de ¢ dans le domaine de stabilité. L’équation
10.52 assure que si U} est un extremum, il ne sera pas rehausser par aucun gradient
fini de U dans la cellule j. Ce mécanisme n’est, bien sur, pas le seul. Ici on cherche a
montrer le principe. C’est le choix de A ,,on, pour le limiter afin d’empécher toutes
les oscillations qui introduit la notion de limiteur. Le probléme est maintenant
de choisir correctement la pente de maniére a ce que le schéma soit du second ordre
monotone. Afin de montrer la liberté que I'on a dans le choix de A ;,0n, on peut
écrire:

Aj,mono - ¢j+1/2(Rj)Aj (1053)
ol R; est le controleur de régularité et v; 11/, un facteur de réduction (limiteur). En
choisissant A; définit par 10.42 avec par exemple k =0, on a :

L 1
Aj =5 (Bjap+ D) (10.54)

Un exemple de fonction est celle obtenue a partir de la fonction harmonique suivante:

1 1 L2004,
Ajmono = F( + )} — IPT (10.55)

2\Aj_12 Ajjape Aj_12+ D511
d’ou :
20, 120412 1 A0 120112
Yiv12 = ! /= Aj_1a+Aj0) = (10.56)
! Aj—1/2 + Aj—l—l/? 2 ( ! ! ) (Aj—l/Z + Aj+1/2)2
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avec :
signAj_l/g == signAj+1/2 (1057)
soit avec la définition de R; :
AV
R, =12 (10.58)
AVERY
4R;
Yit12 = Yy = ¢ Ry >0 (10-59)
i+l Ri+1"Y

Ce limiteur est le limiteur de Van Leer. 1l peut étre étendu aux régions R < 0 par la
condition classique 9,;(R) =0, R < 0.

10.5 Les fonctions limiteurs

Le limiteur est une fonction du contréleur de réqularité et son introduction dans les
schémas permet en limitant les gradients d’empécher ’apparition des oscillations.

10.5.1 Définition

Afin de voir la liberté que I'on a dans le choix de la valeur absolue de A; ou en
limitant cette valeur, on a donc avec 10.53 la fonction limiteur & partir de la relation:

Aj,m(mo = wj+1/2(Rj)Aj (1060)

Tout d’abord, la fonction 1 doit étre limitée a étre une fonction positive. D’autre
part, lorsque R < 0 c’est-a-dire lorsqu’on rencontre un extremum dans la variation
de la solution U, il semble logique de poser 1) = 0 correspondant a une pente nulle
dans l'intervalle considéré. Cela interdit des comportements non monotones lors de
changement de direction de pentes, avec pour conséquences une certaine perte de
précision. On considére alors le flux numérique pour I’équation scalaire sous la forme
suivante :

1
Fjrip = a(Us + 5(1 = )i 2(Ujn = Uj) (10.61)

ol Yj41/2 est pour I'instant une fonction libre. Si I'on choisit ;12 = 0, on retrouve
le schéma décentré et avec 1,1/, = 1, on obtient le schéma de Lax Wendroff. L’indice
J+1/2 indique que 1)} 1/ prendra des valeurs différentes sur les différentes interfaces.
Introduisons 10.61 dans 'expression :

U;-Hrl — U]n - )\(Fj+1/2 - ijl/Z) (1062)
Il vient :

n+1 n n n
1UjJr =U} — C(an — Uj_711)
—?C(l — C)ijrl/Z(UjJ,-l — Uj ) (1063)
+§C(1 - C)¢j—1/2(an - U]n—l)
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10.5.2  Compatibilité des données

Un schéma est dit compatible avec les données si la solution U ]7”1 en chaque point j ,
résultat de I’algorithme est borné par le couple décentré (U, UT ), ot s = sign(c) =
sign(a). Cela signifie que la solution U ;”1 doit se situer entre Ul",et U ; soit :

min(U}, U ) < UM < max (U}, U ) (10.64)
Ce qui implique la relation :

n+1 n
- up)

0< ———F—+ <1 (10.65)
(Ujfs - U] )
Par suite, on en déduit avec 10.63:
(ijrl - Up) 1 1 VYit1/2
———— =]l — = (1 - - —c(l —c)——=— 10.66
(Ujp;l _ U]n) C[ 2( C)wj 1/2] + 20( C) R] ( )
avec le controleur de régularité R;:
Un — n
R; = (b7 ~ Ui (10.67)

U — 07

Une condition suffisante pour supprimer les oscillations est donc que le terme
de gauche varie entre 0 et 1, afin que U ;‘H se situe entre Ul et U ;. De méme, on
doit imposer la méme condition pour le membre de droite, par suite :

1 1 -
0<c—=c(l—c)hj1yn+ ~c(l— c)M <1 (10.68)
2 2 R,

Considérons tout d’abord I'inégalité de gauche :

Y172

1 1
—c< —50(1 —c)Yj_1ye + 50(1 —c) R, (10.69)
En supposant que 0 < ¢ < 1; et en divisant par —%c(l —¢), il vient :
2 Vit1/2
> 1 — —= (10.70)
1-c) =" R;
Avec I'inégalité de droite, on écrit :
1 1 j
——c(l =c)pj_1j0 + zc(1 — c)M <l-c (10.71)
2 2 R;
soit : v 5
gy — 2 > 2 (10.72)

Rj - &



168 Les schémas conservatifs monotones non oscillants

et finalement les résultats 10.70 et 10.72 peuvent étre combinés:

2 Yit1/2 2
—— < — <
o SVimr T TRT S g

Remarque : Si 9¥j_1/2 = 9412 = 1, on a le schéma de Lax-Wendroff; on constate
alors que ce schéma n’est pas compatible avec toutes les données, puisque il sera
compatible uniquement si les données vérifient la condition :

(10.73)

si0<c<1 (10.74)

1— -2
c R < c
1+c™ - ¢
Il y a différents moyens de continuer. Le plus simple est de rechercher seulement les

conditions suffisantes. Ainsi, pour 0 < ¢ < 1, est vérifiée la condition forte :

si —1<e<0 (10.75)

@Dj4—1/2

7

—2< i 12—

<2 (10.76)

On introduit alors I'hypothése que 1.1/, devrait étre une fonction de R;;/,. Si cette
fonction est telle que :
0<jr12 <2 (10.77)

0< Ytz g (10.78)
R

alors les conditions 10.76 sont automatiquement vérifiées. On peut illustrer ces con-

ditions sur la figure 13. D’apres le diagramme, si ; < 0, on doit choisir ¢;41/2 = 0.

LP:Q/ LIJ

4 (1)

r=90 r=1 r=2

Figure 13 Domaine d'application de la fonction ¢);,1/2: la zone hachurée

Mais si R; > 0 on a une certaine liberté. Or, pratiquement dans tout le domaine
de calcul, R; est proche de 1. Puisque R; est proche de 1, on aimerait que ;12
soit aussi proche de 1 pour obtenir une précision du second ordre. Le diagramme
précédent montre que la combinaison R = 1) = 1 est dans la région permise. En fait,
une condition pour que le schéma soit du second ordre presque partout est que la
fonction ¢ (R) passe par le point (1, 1) avec une pente fini.
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10.5.3 Quelques autres limiteurs

Le limiteur de VAN ALBADA :

R(R+1
Yua(R) = %; R>0 (10.79)

Le limiteur MINMOD ou (minbee) :

‘\_P(r) ‘P:ZV Y=r

> |
: >
r
r=190 r=1 r=2
Figure 14 Limiteur de van Albada
0, R<O
Ymp(R) =4 R, 0<R<1 (10.80)
1, R>1

r=»90 r=1 r=2

Figure 15 Limiteur minmod

de nouveaux schémas. Ces schémas ont ¢)(R > 1 pour R > 1 (LW)ou0 =R <1
(Moretti). Cela suggére que 'on doit considérer un schéma pour lequel la valeur de
0U soit exagérée : prendre la plus grande valeur entre A+U et A~U pour toute valeur
de R pour laquelle ¢)(R) reste dans le domaine permis.
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Le limiteur SUPERBEE

Ysap(R) = Max[0,min(2R, 1), min(R, 1)]) (10.81)
ou :
0, R<O
2R, 0<R<1/2
Ya(R)=¢ 1, 1/2<R<1 (10.82)
R, 1<R<2
2, R>2

Ce limiteur est appelé Superbee car il utilise comme fonction de moyenne, la fonction

“{J(r) ‘P=2/ ¥=r~

>
r
r=0 r=1 r=2
Figure 16  Limiteur SuperBee
B(Aj+1/QU,Aj_1/2U) ou B(R, 1) et telle que :
U = B(R,1)A;_15U (10.83)

Ce schéma est excellent au voisinage des discontinuités de contact.

(n\j 01 2345 6 7 8 9 > ]
0 111110 0 0 0.0 5
1 111114 0 0. 0 0. 55
2
2 111112 7 0 0 06 (10.84)
3 11111%%%0.0.65
4 111118 5 2 &4 07 |

Il faut aller au moins a une dizaine d’itérations pour voir I'effet du Superbee.
Le limiteur ULTRABEE :
ou :

R<
Yw(R)={ HR O0<R < = |L| (10.85)
R>
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UA

| I | | | | | I g
0123 4567 8 910 XD
Figure 17 Superbee aprés quatres itérations

Les limiteurs [ :

Yg(R) = Maz[0,min(BR, 1), min(R, B)] avec 1 < f < 2

ou :
0, R<O
2R, 0<R<1/2
Ys(R) =14 1, 1/2<R<1
R, 1<R<p

r=0 r=1 r=2

Figure 18 Limiteur 3

10.5.4 Dissipation artificielle des schémas

171

(10.86)

(10.87)

Une valeur de ¢(R) > 1 signifie que la fonction ” balance ” S, précédemment définie

est négative. On a en effet :

(R) =1-5(R)

(10.88)
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Considérons en effet le schéma ¢ modifié (1.2.1 -4) et remplacons la fonction bascule
S(R) par la relation 10.88, il vient :

L 4 el -SRI, — 207 +UT,) (10.89)

UP = U7 = S~ Up) + 5

ou

1
Uyt = U7 = S (U7 = Ujy) + 5[ +e(1=0) (1 = 9(R))(Ufy, =207 + U}y (10.90)

J

U = U (U - U ) %c(l PR,y — 20T AU, (10.91)
et on obtient finalement la formulation :
Urtt = Uy — (U} = U} ) (10.92)
—5el = Y(R)yaa Uy~ U) (10.93)
—|—%c(1 (RN — UT) (10.94)

Or, S est proportionnelle a la dissipation artificielle du schéma. En effet, pour une
fonction réguliere ¢ (R) la dissipation artificielle peut étre aisément identifiée, par
exemple, dans le cas d’un schéma utilisant la moyenne harmonique de Van Leer ou
le limiteur de Van Albada, en prenant les formes non normalisées (avec le facteur
(R+1)/2) :

Cas du limiteur de Van Leer :
4R B (1-— R)2

1— = =1- = 10.
W(R) = S(R) =1~ o = (T4 (10.95)
(ATU -A"U)? 1 9 0 OU
= ~ —(Azx) [ (In—— 10.
S = mrrrave ¥ 18 g gy (10.96)
Cas du limiteur de Van Albada :
B B 2R (1-R)?
1—1/J(R)—S(R)—1—1+R2— T (10.97)
(ATU — A~U)? 1 2p 0, OU
S(R) = ~ - A In— 10.98
On constate alors que le taux de variation du gradient a%(ln%), soit :
9, 0Uu. %L

semble étre la bonne fonction pour traiter la régularité d’une solution et pour indiquer
les endroits ou les oscillations numériques peuvent apparaitre.
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AU(x) sU,

8 Uj.monn

\ is

b ) 'S, 8, U’ 'S e
j-1 j-12 j j+12 j+1  j+32

Figure 19  Influence du nombre de Courant

10.5.5 Influence du nombre de courant sur les limiteurs

Tous les limiteurs étudiés dans les paragraphes précédents sont indépendants du nom-
bre de Courant ¢ (formulation forte). Or, le gradient d’une fonction linéaire représen-
tant ’approximation de la fonction dans une cellule est limité sans tenir compte de la
grandeur du pas de temps. Il est alors évident qu'une formulation plus faible devrait
étre formulée si 'on doit tenir compte de c¢. Sur la figure 19 le gradient de U a été
réduit suffisamment pour que la moyenne convectée soit égale a Uj;1, plutot que de
convecter la valeur maximum.

On a: .
U + 5 (1= ) 0 gno < Uy (10.100)
soit : )
6 mono S T (Ur, = Up) (10.101)

Une limite similaire peut-étre obtenue lorsque c est proche de 1, et en considérant la
cellule j — 1: on obtient finalement les conditions suivantes (Van Leer) 1977):

min {2 [U} — U, |, 6UF, 7% [Uf = U7}
Ufmono < § i sign [U = UL, | = sign |Ufy, = U'| (10.102)

Jj,mono J
0 autrement

Ce genre de limiteur, dépendant de ¢ peut étre dangereux, car il peut provoquer des
dégradations dans les régions continues.
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Chapter 11
LE FONDEMENT DES SCHEMAS TVD

Dans les chapitres précédents, nous avons montré en détails comment, & partir d’un
schéma du premier ordre linéaire classique, il était possible, moyennant une analyse
fine des propriétés physiques d’une part et des propriétés des schémas numériques
d’autre part, de construire des schémas non linéaires d’ordre supérieur monotones,
conservatifs et non oscillants. Nous avons essayé de montrer la plupart des propriétés
requises pour de tels schémas. Nous allons dans la suite effectuer une approche plus
générale permettant de construire des classes plus larges de schémas d’ordre supérieur.

11.1 Deéfinitions de schémas TVD

En 1983, Harten développa des schémas non oscillants plus acceptables pour ’analyse
numérique, en introduisant le concept de schéma 7'V D (Total Variation Diminishing).
Considérons le cas de la solution d’une équation scalaire monodimensionnelle; On
défini la variation totale d’une variable u par :

TV (u) :/

J=00
TV(U) = > U -U | (11.2)

j=—o00

ou

5| (11.1)

qui sous forme discréte s’écrit :

Un schéma TV D, plus précisément TV NI (Total Variation Non Increasing), permet
de définir U™ tel que :
TV (U™ <TV(U™) (11.3)

Etant donnée une séquence de valeurs monotones de U™ la valeur de T'V est égale a :
TV(U™) =|UL —U" | (11.4)

et est indépendant des valeurs intermédiaires. Si une telle suite de valeurs est convec-
tée par un schéma qui introduit de nouveaux extréma, la valeur de 7'V augmentera.
Il suffit de voir la figure 7?7 pour s’en convaincre : De nombreux schémas TVD ont
été développés au cours des années. On peut classer ses schémas en schémas TVD
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U A vk °®
Q o le]
Q QO
o] O
Q 8]
0] Q
X X
> >
Figure 1

du premier ordre, en schémas TVD du second ordre et en schéma TVD de type
prédicteur correcteur. Par ailleurs dans chaque catégorie, on introduit les formu-
lation explicite et implicite. Pour les schémas aux différences finies, on peut aussi
introduire les classes centré et décentré. En plus pour chaque formulation diverses
fonctions limiteurs peuvent étre utilisées. D’autre part, pour chaque catégorie, des
formulations numériques diverses peuvent étre choisies. Dans ces notes, on ne traitera
que 'approche générale pour les schémas explicites.

11.2 Schémas préservant la monotonicité

Si les propriétés de monotonicité suivantes sont garanties aux cours du temps :
e a) Localement aucun nouvel extremum ne peut étre crée;

b) La valeur d’un minimum local ne peut décroitre et la valeur d’'un maximum
local ne peut augmenter.

On dit alors que le schéma préserve la monotonicité. Donc si U} est monotone;
alors U ;‘“ I’est aussi.

Dans ces conditions, aucun dépassement local ne peut arriver et I'on peut
montrer que :

e a) Tous les schémas monotones sont 7V D

b) Tous les schémas 7V D préserve la monotonicité.

Tous les schémas linéaires qui préservent la monotonicité ne sont précis qu’au
premier ordre. Par contre les schémas non linéaires T'V D peuvent avoir une précision
d’ordre supérieur.

11.3 Conditions suffisantes pour qu’un schéma soit TVD

11.8.1 Approche théorique pour les schémas TVD explicites

Harten donna une condition suffisante pour qu’un schéma ait la propriété d’étre TV D.
Afin de pouvoir utiliser le critére de Harten, le schéma numérique doit étre écrit sous
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la forme suivante, dans le cas de schémas explicites :

Ut = UF = CF U7 = U3 ) 4 Oy U7y — U1 (11.5)
que l'on peut écrire sous la forme condensée :
Un+1 Un Cj—l/QAj_l/QU‘;L + Og+1/2Aj+1/2an (116)
on en déduit :
U;lel = an—l - Cffs/zAjf?»/?UJn + C 1/2AJ 1/2U (11.7)
d’ott en soustrayant 11.7 de 11.6 :
AjapUptt = Ut — Uit (11.8)
Aj,1/2U}1+1 — Aj71/2U]ﬂ — 0;71/2Aj,1/2U]n -+ C 3/2A] 3/2U (119)
C]_+1/2Aj+1/2Ugn - Cj_,l/gAjﬂpUj (11.10)
AUt = (1= CF s = G5 ) AjapUf + Gy s U+ iy 1A 1207
(11.11)

Par suite :

Un+1 Z ‘ ( J 1/2 C’j_f]./2> Aj71/2U;'1 + CJ 3/2A‘j73/2U‘;‘1 + CJ+1/2A]'+1/2U;L)

(11.12)
n+1 —
VUi = Z‘( Clpe Cj—1/2> Ay~
+ Y (O A + 3 |Ch R (11.13)
Si les trois conditions suivantes sont vérifiées pour tout j :
—-Cr 12 Cj 1/2 >0
Cilip 2 (11.14)
Cr “12 2 0
alors 11.13 peut s’écrire :
V) < S (1=CF = O ) 185007
Z —3/2 }AJ 3/2U ‘+Z +1/2 ‘A]-‘rl/QU | (11.15)

= Z ( C;L 1/2 — ]'_71/2> ‘Aj*1/2an|+Z 0;1/2 |Aj,1/2Uﬂ+Z Cj11/2 |A.i*1/2UJTL|
(11.16)
=TV(U?Y) (11.17)

J
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11.3.2  Application avec le schéma C.1LR.

Pour comprendre les conditions 11.14 considérons le schéma C.I.R du premier ordre;
exemple de base de 11.5 :

U;H_l = UJn — C+Aj_1/2an - C_Aj+1/2UJ1-1 (1118)
avec :
¢ = maz(0,¢) = C+2|C| >0 (11.19)
¢ =min(0,c) = < _2|C| <0 (11.20)
D’apres (11.14 ce schéma est T'VD si :
l—ct—c >0
ct>0 (11.21)
—c >0

La premiére condition peut étre écrite |c| < 1; ce qui est la condition CFL, les deux
autres sont vérifiées par définition. La condition globale 11.14 a été réduite a
une condition suffisante local; on notera qu’en général les coefficients C* et C~
dépendront de grandeurs, telles que # ou R (controleur de régularité) afin que le
schéma soit TV D. Le probleme avec le systéeme 11.14 est que sa forme n’est pas
unique. Ainsi, la relation 11.5 peut s’écrire :

A ur
ntl _ 7 + - J+1/2Y;
U™ =U7 ={C, ), —

j+1/2m}A]‘—1/2UJn (11.22)

qui conduit aux conditions :

Ajq U7
—C7 T < (11.23
Jj+1/2 Aj_l/QUJn )
et 'on peut montrer que les schémas satisfaisant les conditions 11.23 ne sont pas
TV D. Ainsi, a titre d’exemple, lorsque on prend le simple schéma ”upwind” avec
¢ =c¢~ < 0; la condition 11.23 devient :

Aji1U7
¢ ——= <1 11.24

et cette condition ne peut étre vérifier que pour des valeurs négatives de 6 ou R;
et par suite, pas pour toutes les valeurs initiales. En conséquence, il est néces-
saire de mettre en forme un schéma sous la forme 11.5 qui donnent les conditions
TV D les moins restrictives. Pour trouver de telles formes, on doit étre guidé par
d’autres principes, et en particulier les lois d’interpolation non-oscillantes (les limi-
teurs), présentées précédemment.
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11.8.3 Le probléme des extrémas

Par ailleurs, les schémas TV D auront pratiquement toujours tendance & applanir les
extréma; considérons le schéma du second ordre LW modifié réécrit sous la forme
suivante :

n n n n c n n N
Urtt =up — (U} = UJy) — 5(1 —¢)(6U] = 6U} ) sic>0(a>0) (11.25)

J J

Parmi les schémas de cette forme, la propriété TV D est requise seulement si :

ou? = 0 pour 07, <0 (11.26)

j,mono

Afin de permettre des valeurs au temps n + 1, au voisinage d’extremum qui se trouve
en dehors des valeurs discrétes des valeurs au temps n, on doit affaiblir la condition :

TV (U™ <TV(U") (11.27)

Une analyse de propriétés T'VD du schéma 11.25 proceéde de la maniére suivante :
tout d’abord; il faut identifier C* :

Ut = U = CF p Ao U (11.28)
avec :
ouUr our
ot —e1 1 O (o7 ) —ITL 11.29
j—1/2 c—+ 2( C){w( ]) Aj_l/Qan w ( j*l) Aj—l/QU]n} ( )

puis on impose 11.14 :

v (07)8Uy o (05-,) SUT,

c
0<c+-(1-c <1 11.30
ce qui est équivalent a :
ur —urtt
() | 11.31
< T < (1131)

et implique que U;‘H se trouve entre U}' et Uj";; une condition suffisante pour la
monotonicité peut s’écrire :

5Unm(mo 5Un— mono 2
J, - — =1 ) > (11.32)
Ajfl/ZUj Aj*l/QUj 1-c
SU™ our 2
],monon o J 17m07;0 < = (1133)
Aj—1/2Uj AJ'—1/2Uj ¢

avec :

U7 omo = ¥ (07) 6U! (11.34)

j,mono
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n

Supposons que sgn (5U” ) = sgn(A;_12U7) = sgn (5U]_17mono); dans ce cas les

j,mono
termes & gauche de 11.32 vont partiellement s’éliminer. Le plus mauvais cas pour
11.32 est celui ou 6U},,,,,, = 0, et dans cette configuration; on doit imposer :
5Un— mono 2
JoLmono. < (11.35)
Aj—l/QUj 1—c¢
Le plus mauvais cas pour 11.33 est oU" ; ,,,,, = 0; ce qui implique la condition :
ou? 2
L 11.36
Ajfl/ngn T c ( )

D’autre part la condition 11.35 peut aussi s’exprimer :

ou? 2
LIORE L 11.37
Aj_;,_l/ngn ~1—c ( )

car elle doit étre valable pour tout point j. C’est la condition 10.100 que 'on a déja
trouver par ailleurs. De méme avec 11.36 et 1’on retombe sur les conditions 10.101.

11.8.4 Méthode de construction de schémas TVD du second ordre explicites

Pour obtenir un schéma du second ordre TVD, il est nécessaire d’écrire
le schéma comme un schéma du premier ordre vérifiant la monotonicité,
auquel on rajoute des termes supplémentaires pour obtenir une précision
supérieure. Ces derniers termes sont limités de maniére a satisfaire aussi
la condition de monotonicité. La méthode pour construire des schémas TVD du
second ordre est donc la suivante :

1) On choisit un flux numérique monotone du premier ordre

A titre d’exemple, on prend le flux numérique du schéma upwind du 1er ordre
de Roe :

n 1 n n n

Fj+1/2 = §(fa + fi+1 — |aj+1/2|(Uj+1 - Uj ) (11.38)

avec : )
at = 3 (a+al) (11.39)

et : ]
a” = 3 (a —|al) (11.40)

que 'on peut écrire avec le flux physique f = aU sous la forme :

o _E[aj—l/Z(Uj - Ujfl) + aj+1/2( FAS Uj )] (11.41)

2) On introduit un flux numérique du second ordre:
Par exemple:
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[n n 1 n 1 n
e = e + SUi— i) + §<fj+1 — FJ3))] (11.42)

que 'on peut écrire de nouveau avec f = aU et en tenant compte de 11.38 sous la
forme :

. . 1 n " 1 . .
j+1/2 = [ j+12 T §a;r—1/2(Uj — Uj,l) — §aj+3/2(Uj+2 — Uj+1)] (11.43)

ou l'on tenu compte du fait que :

n 1 n n
(fi = Fae) = 5 (0 1o+ |0t 1ja| ) U7 = U0) (11.44)

n 1 n n
(fi = Fispp) = 5 (“311/2 + aﬁm‘) (U = UF) (11.45)

Par suite sous la formulation non linéaire, on obtient :

E = _A_:L'[a;rfl/2(Uj — Uj—l) + J 2_(U] - Uj_l) -2 2 (Uj+2 - U]-i—l)] (]‘]‘46)
oy U — U + R Uy - 2EE@, o] (1147)

et sous la formulation linéaire, on aurait :
At = _A_x[(Uj - Uj—l) + §(Uj - Uj—l) - §(Uj—1 - Uj—2)] (11.48)
—E[(Ujﬂ = U}) + §<Uj+1 = Uj) - §(Uj+2 — Uil (11.49)

3) On restreint ’amplitude des gradients apparaissant par des limi-
teurs non linéaires vérifiant les conditions TVD

L’introduction de limiteurs se fait sur les termes de dissipation; on aura donc
la formulation suivante du flux a partir de 11.43 :

1

n n 1 n n - n n
j+1/2 - [ J+1/2 + §a;_—1/2‘ll;_—1/2(Uj - Ujfl) - §CL;_+3/2 j+3/2(Uj+2 - UJ+1)] (1150)

d’ou :
Gt~ Az [ajtm(Uj —Uj ) + 5‘1?71/2‘1’;*1/2((]‘7 ~ Ui
L _

_ﬁ [aj__l/Q(UJnH —Up)+ %a;r—?’/?\llj—S/?(UJ?’zl —Ujy) - 2%41/2 j+1/z<UJ7'1+2 - an+1)}
(11.51)

) = 30510 %5 402 (Ut — Uf)

T 2%i43/2 7 j+3/2\Y 5

avec :
U, =U(RE ) (11.52)

j—
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\IJ;+3/2 = \II(R;+3/2)
\IJ;+1/2 = \D(R;+1/2)
\11]‘_—3/2 = \I’(RJ_ 3/2)

Les controleurs de régularité sont alors définis par :

R+ o j+1/2<an+1 Un)
e j 1/2(U - Un )
- aj_+1/2(an+1 - Uy)
T ;i 3(Ulyy = Ully)
R- - ]+1/2(U Un )
ez aj—l/Q(Uj-H —-Up)
R- . j+1/2(U Un )
R a;—3/2(U;l—1 - an—2)
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(11.53)
(11.54)
(11.55)

(11.56)

(11.57)

(11.58)

(11.59)

4) On choisit ensuite un schéma d’intégration temporel, vérifiant les con-

ditions TVD
Pour simplifier; on prendra le schéma d’Euler.
relation 11.51 sous la forme :

Dans ce cas, on reécrit la

urtt =uy (11.60)
_)‘[a;m(Uj N Uj—l) + 5‘11;1/2“;1/2([]3‘ o Uj—l) - §\Ijj+3/2aj+3/2(Uj+2 - Uj+1)]
(11.61)
—Ala; j— 1/2(U]+1 Uj)+§qjj+1/2aj+1/2(Ug+1 Uy) — 2\1;+ 3/2% 3/2(U —Ul,)]

(11.62)

n n 1 1 \Ij—'t3 2 n n
Pt = U = AL+ 50F ), — 2Ri—/]a;'_1/2(Uj —Ur) (11.63)

j—3/2

1 1V s, . N

_)‘[1 + 5\11]‘“/2 2 RJ_Jr / ]aj—1/2<Uj+1 - Uj ) (11-64)
j+3/2
ou : ot

n n 1 1 3/2 n

U = U = AL+ 500y = s (i = Fflaga) (11.65)
j—3/2
1V, 5
AL+ S0 = N(E e — £) (11.66)
9 Jtl/2 9o RJ+3/2 j+1/ J
D’aprés 11.5 et avec ¢ = \a :

Uit = U7 = CF WU = U )] + Oy o l(UF = UF)) (11.67)
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Cf =14 it LV a2 11
j71/2__[ +§ i-12 7 3 |F ] 172 (11.68)
j=3/2
1 19132
Co =1+, —-L"Fc (11.69)
j—1/2 9 j+1/2 9 Rj+3/2 j—1/2
Le schéma est TVD ¢g’il vérifie les conditions suivantes :
1-— C;r_1/2 — C;—I/Z >0 (11.70)
Cly,>0 (11.71)
Cj__l/2 >0 (11.72)
soit : ot
1 1% 32
Cj—l/Q = —[1 —+ 5@?_1/2 — §Ri ]Cj—l/Q 2 0 (1173)
§—3/2
_ | 1V g,
G =0+ 5%~ 55 161220 (11.74)
§+3/2
et avec la condition sur le limiteur ¥(R) — @ <aoul<a <2 onaaussila
nouvelle condition CFL :
_ 14+«
Clypy+Cyy < lejpl <1 (11.75)

5) On controle éventuellement la condition d’entropie.
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