
Mécanique Numérique des Fluides Compressibles

Dr. A. Drotz

2005-2006



2



CONTENTS

I Introduction aux écoulements instationnaires 9

1 Introduction 13

2 Les équations d�Euler tridimensionnelles 15
2.1 Formulation intégrale . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Conservation de la masse . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Conservation de la quantité de mouvement . . . . . . . . . . . 15
2.1.3 Conservation de l�énergie . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Equation d�état pour un gaz idéal . . . . . . . . . . . . . . . . 15

2.2 Formulations di¤érentielles . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Forme conservative . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Forme quasi-conservative . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Forme non conservative . . . . . . . . . . . . . . . . . . . . . . 18

3 Les équations d�Euler monodimensionnelles 19
3.1 Formulation complète . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Forme non-conservative . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Forme conservative . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Forme quasi-conservative ou linéaire . . . . . . . . . . . . . . . 20

3.2 Formulation avec variation de section . . . . . . . . . . . . . . . . . . 22
3.2.1 Cas où la section dépend de x et du temps t . . . . . . . . . . 22
3.2.2 Cas où la section dépend seulement de x . . . . . . . . . . . . 23

3.3 Formulations particulières . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Formulation isentrope . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Formulation isotherme . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Formulation linéarisée . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Les équations monodimensionnelles instationnaires . . . . . . . . . . . 24
3.4.1 Relation de similitude . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Valeurs propres et vecteurs propres . . . . . . . . . . . . . . . 25
3.4.3 Variables caractéristiques . . . . . . . . . . . . . . . . . . . . . 26



4 CONTENTS

4 Ecoulement instationnaire monodimensionnel d�un gaz idéal 29
4.1 Etude théorique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Les équations de base . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Mise en forme des équations . . . . . . . . . . . . . . . . . . . 30
4.1.3 Recherche des caractéristiques . . . . . . . . . . . . . . . . . . 32
4.1.4 Onde simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.5 Valeurs propres, vecteurs propres, équations caractéristiques et

variables caractéristiques du système . . . . . . . . . . . . . . 35
4.2 Etude d�un écoulement isentrope en régime de détente . . . . . . . . . 39

4.2.1 Expérience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Etude théorique pour le régime de détente . . . . . . . . . . . 40
4.2.3 Exemple: expansion dans le vide . . . . . . . . . . . . . . . . 45

4.3 Propagation d�une onde de choc . . . . . . . . . . . . . . . . . . . . . 47
4.4 Etude du tube à choc . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Calculs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Introduction au problème de Riemann 55
5.1 Etude théorique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 L�équation de convection scalaire linéaire . . . . . . . . . . . . 55
5.1.2 L�équation de convection scalaire non-linéaire . . . . . . . . . 58
5.1.3 Système d�équations . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Système linéarisée de la dynamique des gaz . . . . . . . . . . . 67

II Construction de schémas d�ordre supérieur 73

6 Schémas de discrétisation aux di¤érences �nies classiques 75
6.1 L�équation scalaire de convection linéaire . . . . . . . . . . . . . . . . 75
6.2 Principe de discrétisation . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Schémas du premier ordre décentré . . . . . . . . . . . . . . . . . . . 79

6.3.1 Schéma CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Schéma CIR uni�é . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Schéma de Lax-Friedrich (L.F.) . . . . . . . . . . . . . . . . . 81
6.3.4 Généralisation à des systèmes d�équations linéaires . . . . . . 82
6.3.5 La dissipation : atténuation du signal . . . . . . . . . . . . . . 84
6.3.6 La monotonicité . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Schémas linéaires du second ordre et plus . . . . . . . . . . . . . . . . 86
6.4.1 Construction de schémas linéaires de précision donnée . . . . . 86
6.4.2 Le schéma de Lax-Wendro¤ . . . . . . . . . . . . . . . . . . . 87
6.4.3 Le théorème de Godunov pour les schémas linéaires d�ordre � 2 88
6.4.4 Les solutions parasites des schémas d�ordre supérieur . . . . . 90



CONTENTS 5

6.4.5 Quelques autres schémas classiques . . . . . . . . . . . . . . . 91
6.4.6 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Problèmes non linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.1 Formulation non conservative et discontinuités . . . . . . . . . 94

6.6 Formulation conservative . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.6.1 Quand deux caractéristiques se rencontrent . . . . . . . . . . . 96
6.6.2 Le concept de solution faible . . . . . . . . . . . . . . . . . . . 99
6.6.3 La formulation conservative mathématique ou physique . . . . 102
6.6.4 Non-unicité de la solution . . . . . . . . . . . . . . . . . . . . 102
6.6.5 La condition d�entropie . . . . . . . . . . . . . . . . . . . . . . 102

7 Schémas de discrétisation conservatifs 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Première approche . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Formulation intégrale simpli�ée au problème monodimensionnel . . . 107

7.3.1 Application à l�équation de Burgers . . . . . . . . . . . . . . . 109
7.3.2 Consistance de la formulation conservative . . . . . . . . . . . 110

7.4 Extension des schémas-q sous forme conservative . . . . . . . . . . . . 111
7.4.1 Schémas-q pour l�équation de Burgers . . . . . . . . . . . . . . 111
7.4.2 Schémas q sous forme conservative . . . . . . . . . . . . . . . 112

7.5 Autres schémas numériques sous forme conservative . . . . . . . . . . 112
7.5.1 Schémas du premier ordre . . . . . . . . . . . . . . . . . . . . 113
7.5.2 Schémas du second ordre . . . . . . . . . . . . . . . . . . . . . 113
7.5.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Méthode de Godunov . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.6.2 Elaboration de la méthode de Godunov avec l�équation scalaire

de convection . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.6.3 Deuxième approche de Godunov . . . . . . . . . . . . . . . . . 120
7.6.4 La méthode de Godunov pour les systèmes linéaires . . . . . . 121

7.7 Méthode de Godunov pour des problèmes non-linéaires . . . . . . . . 126
7.7.1 La base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.7.2 Le schéma de Godunov . . . . . . . . . . . . . . . . . . . . . . 129

7.8 La méthode de décomposition des �ux . . . . . . . . . . . . . . . . . 131
7.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.8.2 Principe de la méthode . . . . . . . . . . . . . . . . . . . . . . 131
7.8.3 Application aux équations d�Euler isotherme . . . . . . . . . . 132

7.9 Le problème de Riemann et le solveur de Roe . . . . . . . . . . . . . 135
7.9.1 Le problème de Riemann et le �ux de Godunov . . . . . . . . 135
7.9.2 Le problème de Riemann et les relations intégrales . . . . . . . 135
7.9.3 Les approximations des lois de conservations . . . . . . . . . . 137



6 CONTENTS

7.9.4 L�approximation du problème de Riemann . . . . . . . . . . . 138
7.9.5 La méthode originale de Roe . . . . . . . . . . . . . . . . . . . 140

8 La viscosité arti�cielle 143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 MacCormack et Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 Jameson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Von Neumann-Richtmyer . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.5 Landsho¤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.6 Tyler & Ellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Les schémas FCT (Flux-Corrected Transport) 147
9.1 Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

III Les schémas monotones d�ordre supérieur 149

10 Les schémas conservatifs monotones non oscillants 153
10.1 Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2 Schéma du premier ordre optimal . . . . . . . . . . . . . . . . . . . . 154
10.3 Construction d�un schéma du second ordre monotone . . . . . . . . . 155

10.3.1 Schémas - q et contrôleur de régularité . . . . . . . . . . . . . 155
10.3.2 Le contrôleur de régularité . . . . . . . . . . . . . . . . . . . . 158

10.4 In�uence de la forme de la distribution des données initiales . . . . . 159
10.4.1 Distribution linéaire par morceaux des données . . . . . . . . 159
10.4.2 Principe pour préserver la monotonicité . . . . . . . . . . . . . 159
10.4.3 Choix dans la détermination des gradients ou de la pente de la

distribution linéaire . . . . . . . . . . . . . . . . . . . . . . . . 160
10.4.4 Principe de prévention des oscillations . . . . . . . . . . . . . 163

10.5 Les fonctions limiteurs . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.5.1 Dé�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.5.2 Compatibilité des données . . . . . . . . . . . . . . . . . . . . 167
10.5.3 Quelques autres limiteurs . . . . . . . . . . . . . . . . . . . . 169
10.5.4 Dissipation arti�cielle des schémas . . . . . . . . . . . . . . . 171
10.5.5 In�uence du nombre de courant sur les limiteurs . . . . . . . . 173

11 Le fondement des schémas TVD 175
11.1 Dé�nitions de schémas TVD . . . . . . . . . . . . . . . . . . . . . . . 175
11.2 Schémas préservant la monotonicité . . . . . . . . . . . . . . . . . . . 176
11.3 Conditions su¢ santes pour qu�un schéma soit TVD . . . . . . . . . . 176

11.3.1 Approche théorique pour les schémas TVD explicites . . . . . 176
11.3.2 Application avec le schéma C.I.R. . . . . . . . . . . . . . . . . 178



CONTENTS 7

11.3.3 Le problème des extrémas . . . . . . . . . . . . . . . . . . . . 179
11.3.4 Méthode de construction de schémas TVD du second ordre ex-

plicites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

12 Références 185
12.1 Chapitre 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.2 Chapitre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.3 Chapitre 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.4 Chapitre 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.5 Chapitre 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.6 Chapitre 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
12.7 Chapitre 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
12.8 Chapitre 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



8 CONTENTS



Part I

Introduction aux écoulements
instationnaires

9





11

L�écoulement instationnaire d�un �uide idéal compressible présente des car-
actéristiques particulières. La propagation des ondes de chocs et de détente, leur
interactions mutuelles ou leurs interactions avec les surfaces-frontières du �uide con-
stituent une propriété fondamentale de ces écoulements. Pour étudier les méthodes
numériques permettant de capter correctement les chocs et les détentes, il est néces-
saire d�avoir une connaissance su¢ sante des aspects physiques des phénomènes en
question. Cette partie a pour but de rappeller les équations fondamentales de ces
écoulements ainsi que l�étude de quelques phénomènes physiques les plus marquants,
tels que les ondes de détente, les ondes de compression et le tube à choc.
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Chapter 1

INTRODUCTION

Une di¢ culté majeure dans les approximations numériques des équations aux dérivées
partielles non-linéaires hyperboliques, et en particulier les équations d�Euler, est la
présence de discontinuités dans les solutions (les chocs). Les schémas traditionnels
(ou classiques) tels que les schémas de MacCormack, de Jameson etc., génèrent des os-
cillations non physiques plus ou moins importantes selon les schémas au voisinage des
discontinuités. C�est ce que l�on constate sur la �gure 1 lors du calcul de l�écoulement
supersonique-subsonique dans une tuyère avec le schéma de MacCormack. Ces oscil-

Figure 1 Schéma de MacCormack sans viscosité arti�cielle

lations numériques sont généralement ampli�ées aux cours des itérations temporelles.
Malgré tous les e¤orts de ces dernières décades, obtenir des solutions propres pour la
résolution des équations d�Euler compressible en présence de chocs reste un problème
majeur en CFD. Depuis une cinquantaine d�années, un très grand nombre de schémas
numériques a été proposé pour la capture des chocs. Déjà en 1950, une solution à
ce problème a été proposée par Neumann et Richtmeyer, qui introduisirent de la vis-
cosité arti�cielle (viscosité numérique) dans des schémas aux di¤érences �nies. Cette
approche est simple à mettre en oeuvre. Un exemple est donné sur la �gure 2: Une
alternative à cette approche consiste à construire une solution en introduisant des ap-
proximations discontinues constantes par morceaux (Godunov). De telles solutions
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Figure 2 Schéma de MacCormack avec viscosité arti�cielle

conduisent à de bonnes appproximations, et sont capables de représenter correcte-
ment le choc dans une petite région du maillage mais en utilisant des solveurs de
Riemann (Roe, Van Leer etc.). Harten proposa alors une méthode de type TVD

Figure 3 Schéma TVD de Harten

(Total Variation Diminishing) pour réduire les oscillations présentes dans la solu-
tion numérique. L�idée générale de ce type de schéma est d�utiliser le stencil le plus
régulier pour approximer les �ux aux frontières des cellules et en même temps de sup-
primer les oscillations au voisinage des chocs. Cette méthode fut généralisée plus tard
par une méthode de type ENO ( Essentially Non-Oscillatory). Des ra¢ nements de
cette dernière technique (WENO, Weighted ENO) sont actuellement opérationnelle.
La �gure (3) montre un exemple typique de résultat pour le calcul d�un écoulement
supersonique-subsonique dans une tuyère, en utilisant un schéma TVD de Harten.



Chapter 2

LES ÉQUATIONS D�EULER TRIDIMENSIONNELLES

Dans ce chapitre nous rappelons les équations d�Euler tridimensionnelles non station-
naires. Ces équations forment un système d�équations non-linéaires qui gouverne le
comportement de la dynamique de �uides compressibles tels que les gaz ou les liquides
à très hautes pressions et pour lesquelles on néglige les forces gravitationnelles, les
e¤ets visqueux et les �ux de chaleur. Diverses formulations sont proposées : forme
intégrale, forme di¤érentielle mais aussi les formes conservatives, quasi-conservatives
et non-conservatives. Pour la formulation non conservative, on introduit les variables
primitives ou variables physiques : la masse volumique � (ou la pression), les com-
posantes du vecteur vitesse (u; v; w) et l�énergie interne e (ou l�enthalpie h) tandis
que pour les formulations conservative et quasi-conservative les variables utilisées, les
variables conservatives, sont : la masse volumique �, les composantes �u; �v; �w de
la quantité de mouvement volumique et �et l�énergie interne totale volumique. Cette
dernière formulation a des avantages car elle dérive naturellement de la formulation
conservative des équations de la mécanique des �uides.

2.1 Formulation intégrale

2.1.1 Conservation de la masse
d

dt

Z Z Z
�dV +

Z Z
�~v:~dS = 0 (2.1)

2.1.2 Conservation de la quantité de mouvement
d

dt

Z Z Z
�~vdV +

Z Z
�~v
�
~v:~dS

�
= �

Z Z
p~dS+

Z Z Z
�~fdV (2.2)

2.1.3 Conservation de l�énergie
d

dt

Z Z Z
�etdV +

Z Z
(�et + p) ~v:~dS = +

Z Z Z
�~f :~vdV (2.3)

avec :

et = e+
v2

2
= e+

u2 + v2 + w2

2
(2.4)

2.1.4 Equation d�état pour un gaz idéal

e =
p

� (�� 1) (2.5)
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Par suite :

et =
p

� (�� 1) +
v2

2
(2.6)

et en introduisant la vitesse du son a = a(p; �):

a2 =

�
@p

@�

�
s

= �
p

�
(2.7)

on obtient aussi :

et =
a2

� (�� 1) +
v2

2
(2.8)

2.2 Formulations di¤érentielles

2.2.1 Forme conservative
@�

@t
+
@�u

@x
+
@�v

@y
+
@�w

@z
= 0 (2.9)

@�u

@t
+
@ (�u2 + p)

@x
+
@ (�uv)

@y
+
@ (�uw)

@y
= 0 (2.10)

@�v

@t
+
@ (�vu)

@x
+
@ (�v2 + p)

@y
+
@ (�vw)

@z
= 0 (2.11)

@�w

@t
+
@ (�wu)

@x
+
@ (�wv)

@y
+
@ (�w2 + p)

@z
= 0 (2.12)

@�et
@t

+
@ [u (�et + p)]

@x
+
@ [v (�et + p)]

@y
+
@ [w (�et + p)]

@z
= 0 (2.13)

ou sous forme vectorielle :

@U

@t
+
@f(U)

@x
+
@g(U)

@y
+
@h(U)

@z
= 0 (2.14)

avec :

U =

266664
�
�u
�v
�w
�et

377775 ; f =

266664
�u

�u2 + p
�uv
�uw

u (�et + p)

377775 (2.15)

g =

266664
�v
�vu

�v2 + p
�vw

v (�et + p)

377775 ;h =

266664
�w
�wu
�wv

�w2 + p
w (�et + p)

377775 (2.16)
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2.2.2 Forme quasi-conservative

Une autre forme des équations d�Euler, très utile pour la connaissance de ses pro-
priétés mathématiques est sa formulation quasi-linéaire. On écrit :

@U

@t
+
@f(U)

@U

@U

@x
+
@g(U)

@U

@U

@y
+
@h(U)

@U

@U

@z
= 0 (2.17)

ou :
@U

@t
+A@U

@x
+ B@U

@y
+ C @U

@z
= 0 (2.18)

avec les matrices jacobiennes :

A = @f(U)

@U
;B = @g(U)

@U
; C = @h(U)

@U
(2.19)

Si U = [U1; U2; :::; U5], les matrices A;B; C sont construites de telle manière que les
colonnes, par exemple de A, soient formées par les vecteurs colonnes @f(U)

@Uj
:

A =
�
@f(U)

@U1
;
@f(U)

@U2
; :::;

@f(U)

@U5

�
soit :

A =

266664
0 1 0 0 0

�u2+ (��1)
2
~v2 (3� �)u � (�� 1) v � (�� 1)w �� 1

�uv v u 0 0
�uw w 0 u 0

�u [vet � (�� 1)~v2] vet� (��1)
2
(~v2 + 2u2) � (�� 1)uv � (�� 1)uw �u

377775
(2.20)

B =

266664
0 0 1 0 0

�uw v u 0 0

�v2+ (��1)
2
~v2 � (�� 1)u (3� �) v � (�� 1)w �� 1

�vw 0 w v 0

�v [vet � (�� 1)~v2] � (�� 1)uv vet� (��1)
2
(~v2 + 2v2) � (�� 1) vw �v

377775
(2.21)

C =

266664
0 0 1 0 0

�uw w 0 u 0
�vw 0 w v 0

�w2+ (��1)
2
~v2 � (�� 1)u � (�� 1) v (3� �)w �� 1

�w [vet � (�� 1)~v2] � (�� 1)uw � (�� 1) vw vet� (��1)
2
(~v2 + 2w2) �w

377775
(2.22)
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2.2.3 Forme non conservative

La formulation classique des équations d�Euler sous forme non-conservative est celle
obtenue en e¤ectuant toutes les opérations de dérivation, à partir, par exemple de la
forme conservative, avec les variables primitives �; u; v; w; p soit :

@�

@t
+ �

@u

@x
+ u

@�

@x
+ �

@v

@y
+ v

@�

@y
+ �

@w

@z
+ w

@�

@z
= 0 (2.23)

@u

@t
+ u

@u

@x
+ v

@u

@y
+ w

@u

@z
+
1

�

@p

@x
= 0 (2.24)

@v

@t
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z
+
1

�

@p

@y
= 0 (2.25)

@w

@t
+ u

@w

@x
+ v

@w

@y
+ w

@w

@z
+
1

�

@p

@z
= 0 (2.26)

@p

@t
+ �a2

�
@u

@x
+
@v

@y
+
@wt
@z

�
+ u

@p

@x
+ v

@p

@y
+ w

@p

@z
= 0 (2.27)

ou sous forme vectorielle :

@U0

@t
+A0@U

0

@x
+ B0@U

0

@y
+ C 0@U

0

@z
= 0 (2.28)

U0 =

266664
�
u
v
w
p

377775 (2.29)

A0=

266664
u � 0 0 0
0 u 0 0 1=�
0 0 u 0 0
0 0 0 u 0
0 �a2 0 0 u

377775 (2.30)

B0=

266664
v 0 � 0 0
0 v 0 0 0
0 0 v 0 1=�
0 0 0 v 0
0 0 �a2 0 v

377775 (2.31)

C 0=

266664
w 0 � 0 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1=�
0 0 0 �a2 w

377775 (2.32)



Chapter 3

LES ÉQUATIONS D�EULER MONODIMENSIONNELLES

Ce cours étant un cours élémentaire pour présenter les méthodes numériques de type
TVD basées sur les équations de convection, nous restreindrons leurs applications
aux équations d�Euler pour des écoulements monodimensionnels stationnaires et in-
stationnaires. Dans ce chapitre, on rappelle quelques formulations, dans le cas de gaz
parfaits, nécessaires pour la compréhension du code Euler-1D utilisé pour les labora-
toires de mécanique des �uides compressibles.

3.1 Formulation complète

On considère l�écoulement monodimensionnel instationnaire d�un gaz parfait véri�ant
les relations :

e =
p

� (�� 1) (3.1)

et :

et =
p

� (�� 1) +
v2

2
(3.2)

ou en introduisant la vitesse du son :

a = a(p; �) : a2 = �
p

�
(3.3)

et =
a2

� (�� 1) +
v2

2
(3.4)

3.1.1 Forme non-conservative

On a :
@�

@t
+ �

@u

@x
+ u

@�

@x
= 0 (3.5)

@u

@t
+ u

@u

@x
+
1

�

@p

@x
= 0 (3.6)

@et
@t
+ u

@et
@x

+
u

�

@p

@x
+
p

�

@u

@x
= 0 (3.7)

ou :
@ho
@t

+ u
@ho
@x

� 1
�

@p

@t
= 0 (3.8)
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ou :
@p

@t
+ u

@p

@x
+ �a2

@u

@x
= 0 (3.9)

avec, puisque le gaz est parfait :

ho =
�

�� 1rT +
1

2
u2 (3.10)

On peut écrire le système précédent en fonction des variables primitives �, u et p
sous la forme suivante :

@U0

@t
+A0@U

0

@x
= 0 (3.11)

avec :

U0 =

24 �
u
p

35 ;A0 =
24 u � 0
0 u 1=�
0 �a2 u

35 (3.12)

3.1.2 Forme conservative
@�

@t
+
@�u

@x
= 0 (3.13)

@�u

@t
+
@ (�u2 + p)

@x
= 0 (3.14)

@�et
@t

+
@ [u (�et + p)]

@x
= 0 (3.15)

ou :
@U

@t
+
@f(U)

@x
= 0 (3.16)

avec :

U =

24 �
�u
�et

35 ; f =

24 �u
�u2 + p

u (�et + p)

35 (3.17)

où les variables �; �u; �et sont les variables conservatives.

3.1.3 Forme quasi-conservative ou linéaire

La linéarisation de l�équation 3.16 conduit, en introduisant la matrice Jacobienne
A = @f(U)

@U
à :

@U

@t
+A@U

@x
= 0 (3.18)

avec :

A =

24 0 1 0
1
2
(�� 3)u2 � (�� 3)u �� 1
��uet + (�� 1)u3 �et � 3

2
(�� 1)u2 �u

35 (3.19)

ou en remplaçant et par :

et =
a2

� (�� 1) +
1

2
u2 (3.20)
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A =

24 0 1 0
1
2
(�� 3)u2 � (�� 3)u �� 1
� ua2

��1 +
�
�
2
� 1
�
u3 a2

��1 +
�
3
2
� �
�
u2 �u

35 (3.21)

On véri�era la propriété d�homogénéité suivante, valable pour les équations d�Euler
avec l�équation d�état 2.5:

f = AU (3.22)

� Méthode pour obtenir la formulation quasi-linéaire

A partir de :
@U

@t
+
@f(U)

@x
= 0 (3.23a)

on écrit :
@U

@t
+

@f

@U

@U

@x
= 0 (3.24)

où @f
@U
est la matrice jaconienne A telle que :

@f

@U
=

�
@f

@�
;
@f

@�u
;
@f

@�et

�
(3.25)

Posons :
u1 = �; u2 = �u; u3 = �et (3.26)

soit :

U =

24 �
�u
�et

35 =
24 u1
u2
u3

35 (3.27)

On en déduit :

f =

24 �u
�u2 + p

u (�et + p)

35 =
2664

u2
u22
u1
+ (�� 1)

h
u3 � u22

2u1

i
u2u3
u1
+ (�� 1)

h
u2u3
u1
� u32

2u21

i
3775 (3.28)

soit :

@f

@�
=

@f

@u1
=

2664
0

�u22
u21
+ (�� 1)

h
u22
2u21

i
�u2u3

u21
+ (�� 1)

h
�u2u3

u21
+

u32
u31

i
3775 (3.29)

@f

@�
=

24 0
1
2
(�� 3)u2

��uet + (�� 1)u3

35 (3.30)

puis :
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@f

@�u
=

@f

@u2
=

2664
1

2u2
u1
� (�� 1)

h
u2
u1

i
u3
u1
+ (�� 1)

h
u3
u1
� 3u22

2u21

i
3775 (3.31)

@f

@�u
=

24 1
� (�� 3)u

�et � 3
2
(�� 1)u2

35 (3.32)

et :

@f

@�et
=

@f

@u3
=

264 0
(�� 1)

u2
u1
+ (�� 1)

h
u2
u1

i
375 (3.33)

@f

@�et
=

24 0
�� 1
�u

35 (3.34)

d�où �nalement :

@f

@U
= A =

24 0 1 0
1
2
(�� 3)u2 � (�� 3)u �� 1

��uet + (�� 1)u3 �et � 3
2
(�� 1)u2 �u

35 (3.35)

3.2 Formulation avec variation de section

On considère l�écoulement monodimensionnel instationnaire d�un gaz parfait. On
donnera la formulation pour des variations faibles de section.

3.2.1 Cas où la section dépend de x et du temps t

@U

@t
+
@f(U)

@x
= S (U) (3.36)

U =

24 �
�u
�et

35 ; f =

24 �u
�u2 + p

u (�et + p)

35 (3.37)

S (U) = � 1
S

24 �u@S
@t
� �@S

@x

�u2 @S
@x

u (�et + p) @S
@x

35 (3.38)
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3.2.2 Cas où la section dépend seulement de x
@U

@t
+
@f(U)

@x
= S (U) (3.39)

U =

24 �S
�uS
�etS

35 ; f =

24 �uS
(�u2 + p)S
[u (�et + p)]S

35 (3.40)

S (U) =

24 0
p@S
@x

0

35 (3.41)

Ces équations sont celles qui sont utilisées dans le code EULER1D.

3.3 Formulations particulières

3.3.1 Formulation isentrope

Dans ce cas, l�entropie est constante partout et l�on a :

p = p(�) = C�� (3.42)

@U

@t
+
@f(U)

@x
= 0 (3.43)

avec :

U =

�
�
�u

�
; f =

�
�u

�u2 + p

�
(3.44)

3.3.2 Formulation isotherme

Cette formulation est un cas particulier de la formulation isentrope. Dans ce cas :

p = p(�) = �a2 (3.45)

@U

@t
+
@f(U)

@x
= 0 (3.46)

avec :

U =

�
�
�u

�
; f =

�
�u

�u2 + �a2

�
(3.47)

3.3.3 Formulation linéarisée

Considérons une perturbation in�nitésimale du champ de vitesse û et de masse volu-
mique �̂ autour de l�état de repos du �uide u = 0; p = p0; � = �0. On a alors:

p = p(�0) + �̂
@p

@�
(�0) = p(�0) + �̂a2 (3.48)

Les équations isothermes deviennent alors :

@�̂

@t
+ �0

@û

@x
= 0 (3.49)
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@û

@t
+
a2

�0

@�̂

@x
= 0 (3.50)

soit, sous forme matricielle :
@U0

@t
+A0@U

0

@x
= 0 (3.51)

avec :

U0 =

�
�̂
û

�
; A0 =

�
0 �0

a2=�0 0

�
(3.52)

L�élimination de û ou de �̂ donne :

@2�̂

@t2
� a2

@2�̂

@x2
= 0 (3.53)

@2û

@t2
� a2

@2û

@x2
= 0 (3.54)

3.4 Les équations monodimensionnelles instationnaires

Dans ce chapitre, on étudiera certaines propriétés des équations d�Euler pour un
écoulement monodimentionnel instationnaire pour di¤érentes con�gurations thermo-
dynamiques.

3.4.1 Relation de similitude

On étudie tout d�abord le lien existant entre la formulation non conservative et la
formulation quasi linéaire. Considérons les deux systèmes :

@U0

@t
+A0@U

0

@x
= 0 (3.55)

et :
@U

@t
+A@U

@x
= 0 (3.56)

Ces deux équations représentent les mêmes lois physiques, par conséquent on doit
pouvoir relier ces deux équations par une similitude. On écrit :

@U

@U0
@U0

@t
+A @U

@U0
@U0

@x
= 0 (3.57)

On dé�nit :
@U

@U0 =M (3.58)

Par suite :
@U0

@t
+M�1AM@U0

@x
= 0 (3.59)

La comparaison avec l�équation 3.55 donne :

A0 =M�1AM (3.60)



Les équations monodimensionnelles instationnaires 25

ou dans le cas des équations d�Euler monodimensionnelles instationnaires :

M =

24 1 0 0
u � 0
1
2
u2 �u 1= (�� 1)

35 (3.61)

et :

M�1=

24 1 0 0
�u
�

1
�

0
1
2
(�� 1)u2 (�� 1)u (�� 1)

35 (3.62)

Or, d�après les propriétés des déterminants des matrices, on a pour la recherche des
valeurs propres:

det [A0 � �I] = det
�
M�1AM��I

�
= det

�
M�1 �A��MIM�1�M�

(3.63)

ou :
det [A0] = det

�
M�1� det [A��I] det [M] = det [A��I] (3.64)

Par suite, les valeurs propres des matrices A0 et A sont identiques.
3.4.2 Valeurs propres et vecteurs propres

Les deux matrices A et A0 ont les mêmes valeurs propres �1 = u, �2 = u + a et
�3 = u � a . Le système est donc hyperbolique, avec en tout point M(x; t), trois
caractéristiques, dé�nies par leurs pentes locales :

dx

dt
= �1 = u

dx

dt
= �2 = u+ a

dx

dt
= �3 = u� a (3.65)

On dé�nit alors la matrice diagonale D :

D =

24 u 0 0
0 u+ a 0
0 0 u� a

35 (3.66)

ainsi que les vecteurs propres droits �(i):

�(1) =

24 1
u
1
2
u2

35 ; �(2) =
24 1

u+ a
1
2
u2 + ua+ a2

��1

35 (3.67)

et :

�(3) =

24 1
u� a

1
2
u2 � ua+ a2

��1

35 (3.68)

On a alors la relation :
A = RDR�1 (3.69)
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avec :

R =

264 1 � 1
u � (u+ a) � (u� a)
1
2
u2 �

�
1
2
u2 + ua+ a2

��1

�
�
�
1
2
u2 � ua+ a2

��1

�
375 (3.70)

et :

R�1=

24 1� u2

2
��1
a2

(�� 1) u
a2

� (��1)
a2

�
�
1
2
u2 (�� 1)� ua

�
� [a� (�� 1)u] � (�� 1)

�
�
1
2
u2 (�� 1) + ua

�
� [a+ (�� 1)u] � (�� 1)

35 (3.71)

avec les coe¢ cients de normalisation � et �:

� =
�

a
p
2
; � =

1

�a
p
2

(3.72)

3.4.3 Variables caractéristiques

On peut écrire le système précédent en fonction des variables primitives �, u et p
sous la forme suivante :

@U0

@t
+A0@U

0

@x
= 0 (3.73)

avec :

U0 =

24 �
u
p

35 ;A0 =
24 u � 0
0 u 1=�
0 �a2 u

35 (3.74)

Les valeurs propres de A0 sont :

�1 = u� a; �2 = u; �3 = u+ a

Introduisons un vecteurW. A partir de l�équation 3.73 écrivons :

@U0

@W

@W

@t
+A0 @U

0

@W

@W

@x
= 0 (3.75)

On dé�nit :
@U0

@W
= R (3.76)

Le vecteurW véri�ant la condition :

R�1A0R = D (3.77)

avec la matrice R:

R =

24 1 1 1
�a
�
0 a

�

a2 0 a2

35 (3.78)
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où les colonnes sont les composantes des vecteurs propres droits et la matrice R�1:

R�1=

24 0 � �
2a

1
2a2

1 0 � 1
a2

0 �
2a

1
2a2

35 (3.79)

où les rangées sont les composantes des vecteurs propres gauches (à un facteur près
de normalisation). Par suite :

@W

@t
+R�1A0R@W

@x
= 0 (3.80)

Le vecteurW est appelé vecteur des variables caractéristiques. On a donc le système:
@W

@t
+D@W

@x
= 0 (3.81)

ou le long des caractéristiques de pente locale �j = dx
dt
:

@wj
@t

+ �j
@wj
@x

=
@wj
@t

+
dx

dt

@wj
@x

) dwj = 0 (3.82)

Pour déterminerW; on e¤ectuera le calcul :

W =

Z
R�1dU0 ) U0 =

Z
RdW (3.83)

Or, d�après les propriétés des matrices et des vecteurs propres, si ~L est la matrice
dont les lignes sont formées des composantes des vecteurs propres gauches, on a :

R = ~L�1;R�1 = ~L (3.84)

Par suite, on a aussi :

W =

Z
~LdU0 (3.85)

Le vecteurW est le vecteur des variables caractéristiques. On a donc le système :
@W

@t
+D@W

@x
= 0 (3.86)

où le long des caractéristiques de pente locale �j = dx
dt
:

~LdU0 = dW = 0 (3.87)

Pour déterminer dW; on e¤ectuera le calcul :

l(j)d

24 �
u
p

35 = dwj (3.88)

soient, le long de chaque caractéristique :

dp� �adu = 0; dx
dt
= �1 = u� a

dp� a2d� = 0; dx
dt
= �2 = u

dp+ �adu = 0; dx
dt
= �3 = u+ a

(3.89)
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Chapter 4

ECOULEMENT INSTATIONNAIRE MONODIMENSIONNEL
D�UN GAZ IDÉAL

Dans ce chapitre, nous allons présenter quelques résultats importants sur les pro-
priétés des écoulements monodimensionnels compressibles instationnaires qui seront
très utiles pour une meilleure compréhension de la construction de schémas numériques
permettant de capturer des discontinuités et en particuliers des chocs. Les équations
correspondantes étant de type hyperbolique, nous introduirons les équations instation-
naires sous une forme particulière mettant en évidence les invariants de Riemann le
long des caractéristiques. Après l�étude simpli�ée de deux cas physiques élémentaires,
les problèmes de détente et les problèmes avec choc, nous introduirons comme con-
séquence, une approche théorique, la méthode de Riemann, qui sera utilisée plus loin
lors de la mise en place de schémas de discrétisation.

4.1 Etude théorique

Par hypothèse, le �uide n�est ni visqueux, ni conducteur; par ailleurs l�apport de
chaleur extérieur et les forces volumiques sont nulles. On se proposera dans la suite
d�étudier un écoulement monodimensionnel instationnaire isentrope d�un gaz parfait.

4.1.1 Les équations de base

Avec les hypothèses précédentes, considérons les équations fondamentales régissant
l�écoulement :

@�

@t
+ �

@u

@x
+ u

@�

@x
= 0 (4.1)

@u

@t
+ u

@u

@x
+
1

�

@p

@x
= 0 (4.2)

@ho
@t

+ u
@ho
@x

� 1
�

@p

@t
= 0 (4.3)

où, puisque le gaz est parfait :
p = �rT (4.4)

ho =
�

�� 1rT +
1

2
u2 (4.5)
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et où la vitesse du son a est donnée par:

a =

�
@p

@�

�1=2
s

= (�rT )1=2 =

�
�p

�

�1=2
(4.6)

Comme le �uide est isentrope (adiabatique et non visqueux), on utilisera la relation
thermodynamique suivante:

p = p(�) (4.7)

avec la relation isentropique, qui remplace l�équation d�énergie :

p = k�� (4.8)

4.1.2 Mise en forme des équations

On élimine la pression dans 4.2 en introduisant 4.6 et en écrivant :

@p

@x
=
dp

d�

@�

@x
=

�
@p

@�

�
s

@�

@x
= a2

@�

@x
(4.9)

Le système 4.1 à 4.3 est alors remplacé par :

@�

@t
+ u

@�

@x
+ �

@u

@x
= 0 (4.10)

@u

@t
+ u

@u

@x
+
a2

�

@�

@x
= 0 (4.11)

A partir de 4.8, on en déduit :

pa��=(��1) = Cte (4.12)

ou
�a�2=(��1) = Cte (4.13)

On di¤érentie l�équation 4.13 par rapport à t et à x :

1

�

@�

@t
+

2

�� 1
1

a

@a

@t
= 0 (4.14)

1

�

@�

@x
+

2

�� 1
1

a

@a

@x
= 0 (4.15)

On remplace alors 4.14 et 4.15 dans 4.10 et 4.11, il vient :

@a

@t
+ u

@a

@x
+
�� 1
2

a
@u

@x
= 0 (4.16)

@u

@t
+ u

@u

@x
+

2

�� 1a
@a

@x
= 0 (4.17)
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A cause de la symmétrie des deux équations, multiplions la première, par exemple,
par un facteur � à déterminer et additionnons les deux relations obtenues:

@ (u+ �a)

@t
+ u

@ (u+ �a)

@x
+
�� 1
2

�a
@

@x

"
u+

�
2

�� 1

�2
1

�
a

#
= 0 (4.18)

Pour que le terme de droite ait la même forme que les deux autres, on doit avoir :

� = � 2

�� 1 (4.19)

Par conséquent, avec le signe +, on obtient :

@

@t

�
u+

2

�� 1a
�
+ (u+ a)

@

@x

�
u+

2

�� 1a
�
= 0 (4.20)

et avec le signe � :

@

@t

�
u� 2

�� 1a
�
+ (u� a)

@

@x

�
u� 2

�� 1a
�
= 0 (4.21)

On pose :

u+
2

�� 1a = P = u+ P (4.22)

et :

u� 2

�� 1a = Q = u+Q (4.23)

avec :

P = 2

�� 1a (4.24)

et :

Q =� 2

�� 1a (4.25)

on obtient alors :
@P

@t
+ (u+ a)

@P

@x
= 0 (4.26)

@Q

@t
+ (u� a)

@Q

@x
= 0 (4.27)

ce qui est équivalent à :

@wj
@t

+ �j
@wj
@x

= 0 (4.28)

avec :
w1 = P;w2 = Q;�1 = u+ a; �2 = u� a (4.29)
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Introduisons les dé�nitions suivantes :

D+

Dt
=

@

@t
+ (u+ a)

@

@x
(4.30)

D�

Dt
=

@

@t
+ (u� a)

@

@x
(4.31)

Ces opérateurs sont les dérivées temporelles mesurées par un observateur se déplacant
dans la direction +x(�x) à la vitesse u+a; (u� a) c0est-à-dire à la vitesse d�une onde
sonore. Dans le plan x� t, les directions dx=dt = u� a sont les directions locales des
caractéristiques. On obtient �nalement :

D+P

Dt
=
D+ (u+ P)

Dt
= 0 (4.32)

D�Q

Dt
=
D� (u+Q)

Dt
= 0 (4.33)

4.1.3 Recherche des caractéristiques

Les grandeurs P et Q sont appelées les invariants de Riemann. On cherche alors les
lignes le long desquelles les grandeurs P et Q sont constantes. Pour cela exprimons
P et Q en fonction de x et t et calculons les di¤érentielles totales de P et Q. Prenons
le cas de P :

dP =
@P

@x
dx+

@P

@t
dt (4.34)

Or, avec 4.26, on a :
@P

@t
= � (u+ a)

@P

@x
(4.35)

d�où :

dP =
@P

@x
[dx� (u+ a) dt] (4.36)

Lorsque dP est nul, P est constant sur la ligne :

dx

dt
= (u+ a) (4.37)

Cette ligne est la courbe caractéristique C+ véri�ant la condition:

P = u+
2

�� 1a = u+ P = Cte (4.38)

où la caractéristique C+ est déterminée par sa pente locale :

C+ :
dx+

dt
= (u+ a) (4.39)

De même pour Q; on aura la caractéristique C� telle que :

Q = u� 2

�� 1a = u+Q = Cte (4.40)
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où la caractéristique C� est déterminée par sa pente locale

C� :
dx�

dt
= (u� a) (4.41)

Si maintenant on associe aux lignes caractéristiques C+ et C� passant par un point
M, le système de coordonnées (�, �) tel que le long de C�; � = Cte et le long de
C+; � = Cte, on a (�gure 1) :

Figure 1 Onde simple

� Le long de C+ :
@u

@�
+

2

�� 1
@a

@�
= 0 (4.42)

avec :

C+ :

�
dx+

dt

�
�

= u+ a (4.43)

et :
P = u+

2

�� 1a = u+ P = Cte (4.44)

� Le long de C� :
@u

@�
� 2

�� 1
@a

@�
= 0 (4.45)

avec :

C� :

�
dx�

dt

�
�

= u� a (4.46)

et :
Q = u� 2

�� 1a = u+Q = Cte (4.47)
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On remarquera qu�une caractéristique C+; � = Cte se présente toujours avec
une pente positive dans le plan (x; t). En revanche, une caractéristique C�; � =
Cte a une pente positive ou négative selon que l�écoulement est subsonique ou
supersonique.

4.1.4 Onde simple

Considérons une onde quelconque dans le plan xt représentée par les lignes carac-
téristiques. Cette onde est dite simple si elle se trouve adjacente à un domaine
d�écoulement invariable. Celle-ci est constituée par des lignes caractéristiques droites
appartenant à l�une des familles � ou � constantes. Cette propriété découle directe-
ment des relations (4.43 � 4.46). Considérons par exemple une onde décrite par
une famille de caractéristiques � constantes (�gure 2). Sur cette �gure deux car-
actéristiques � constantes sont issues du domaine où l�état d�écoulement est invari-
able. Ces caractéristiques rencontrent en R et S un membre de la famille de courbes
� = constante. En appliquant (4.44) et (4.47) pour les variables de l�écoulement aux
points R et S on obtient

uS +
2
��1 aS = uR +

2
��1 aR

uS � 2
��1 aS = Q = constante

uR � 2
��1 aR = Q = constante

9>>>>=>>>>;

Figure 2 Série d�ondes simples

d�où l�on tire aS = aR et uS = uR. u et a sont donc constantes le long d�une courbe
� = constante. Selon (4.43) la pente d�une ligne � = constante est invariable et par
conséquent les lignes � sont des lignes droites.
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4.1.5 Valeurs propres, vecteurs propres, équations caractéristiques et variables car-
actéristiques du système

Considérons de nouveau le système suivant:

@�

@t
+ u

@�

@x
+ �

@u

@x
= 0 (4.48)

@u

@t
+ u

@u

@x
+
a2

�

@�

@x
= 0 (4.49)

Ecrivons ce système sous forme matricielle; on obtient :

@u0

@t
+A0@u

0

@x
= 0 (4.50)

avec :

u0=

�
�
u

�
;A0 =

�
u �
a2

�
u

�
(4.51)

où u0 est le vecteur des variables primitives.

Les valeurs propres

Les valeurs propres de A0 s�obtiennent en calculant le déterminant :

det jA0 � �Ij = 0 (4.52)

soit:

�1 = u+ a; �2 = u� a (4.53)

Vecteurs propres droits

Cherchons ensuite les deux vecteurs droits �(1) =
h
�
(1)
1 ; �

(1)
2

iT
et �(2) =

h
�
(2)
1 ; �

(2)
2

iT
associés aux valeurs propres �1 et �2. On doit véri�er, par exemple avec �(1) :

A0�(1) = �1�
(1) (4.54)

soit : �
u �

a2=� u

�"
�
(1)
1

�
(1)
2

#
=

"
(u+ a) �

(1)
1

(u+ a) �
(1)
2

#
(4.55)

d�où :

��
(1)
2 = a�

(1)
1

a2

�
�
(1)
1 = a�

(1)
2 (4.56)
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Ces deux relations sont identiques. Par conséquent, on peut introduire un facteur
d�échelle arbitraire, par exemple k1 et écrire :

�(1) = k1

�
1
a=�

�
(4.57)

Pour le vecteur propre �(2), on introduira le facteur d�échelle k2 et on écrira :

�(2) = k2

�
1

�a=�

�
(4.58)

Si on pose k1 = k2 = 1, on aura:

�(1) =

�
1
a=�

�
; �(2) =

�
1

�a=�

�
(4.59)

Vecteurs propres gauches

On peut aussi déterminer les vecteurs propres gauches l(1) =
h
l
(1)
1 ; l

(1)
2

i
et l(2) =h

l
(2)
1 ; l

(2)
2

i
. Ainsi, pour l(1) on a:

l(1)A0 = l(1)�1 (4.60)

soit h
l
(1)
1 l

(1)
2

i � u �
a2=� u

�
=
h
l
(1)
1 l

(1)
2

i
�1 (4.61)

On obtient :

l
(1)
2

a2

�
= +l

(1)
1 a l

(1)
1 � = �l(1)2 a (4.62)

Ces deux relations sont identiques. Par conséquent, on peut encore introduire un
facteur d�échelle arbitraire, par exemple k01 et écrire :

l(1) =
h
l
(1)
1 ; l

(1)
2

i
= k01

�
a

�
; 1

�
(4.63)

De même, pour l(2) on aura :

l(2) =
h
l
(2)
1 ; l

(2)
2

i
= k02

�
�a
�
; 1

�
(4.64)

En posant k01 = k02 = 1, on a:

l(1) =

�
a

�
; 1

�
; l(2) =

�
�a
�
; 1

�
(4.65)
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Equations caractéristiques

Reprenons l�équation 4.50 et multiplions la par les vecteurs propres gauches l(i) :

l(i):
@u0

@t
+ l(i):A0@u

0

@x
= 0 (4.66)

ou en introduisant 4.60 avec (1) = (i) :

l(i):

�
@u0

@t
+ �i

@u0

@x

�
= 0 (4.67)

Or, comme �i = dx
dt
:

l(i):

�
@u0

@t
+
dx

dt

@u0

@x

�
= 0) l(i):du0 = 0 (4.68)

Soit pour �1 = dx
dt
avec l(1) :�

a

�
; 1

�
:

�
d�
du

�
= 0) du+

a

�
d� = 0 (4.69)

Si on multiplie 4.50 par l(2), on obtient pour �2 = dx
dt
:�

�a
�
; 1

�
:

�
d�
du

�
= 0) du� a

�
d� = 0 (4.70)

On peut d�ailleurs réécrire 4.69 et 4.70 en introduisant :

�a�2=(��1) = Cte (4.71)

du+
a

�
d� = 0) du+

2

�� 1da = 0

du� a

�
d� = 0) du� 2

�� 1da = 0 (4.72)

On retrouve les résultats obtenus sous 4.22 et 4.23 :

u+
2

�� 1a = P = u+ P (4.73)

et :

u� 2

�� 1a = Q = u+Q (4.74)
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Variables caractéristiques

Si on introduit les 2 variables caractéristiques �w1 et �w2 où � représente les variations
@
@t
; @
@x
, on a par dé�nition :

�w = R�1�u0 (4.75)

ou :

w =

Z
R�1du0 (4.76)

où R�1 est la matrice formée par les vecteurs propres gauches :

R�1 =

� a
�

1

�a
�
1

�
(4.77)

Les variables wj véri�ent les équations :

@wj
@t

+ �j
@wj
@x

= 0; j = 1; 2 (4.78)

soit :
@w1
@t

+ (u+ a)
@w1
@x

= 0 (4.79)

@w2
@t

+ (u� a)
@w2
@x

= 0 (4.80)

On calcule alors les variables wj :

w =

Z � a
�

1

�a
�
1

�
d

�
�
u

�
(4.81)

soit :

w =

�
w1
w2

�
=

Z "
ad�
�
+ du

ad�
�
� du

#
=

�
u+ 2

��1a

u� 2
��1a

�
=

�
P
Q

�
=

�
u+ P
u+Q

�
(4.82)

Les équations 4.78 valables pour chacune des valeurs propres de la matrice A0 du
système original 4.50 n�implique chacune que l�inconnu wj(x; t). On dira que ce
système est une représentation découplée du système 4.50 puisque on peut y revenir
en écrivant, par exemple 4.75 sous la forme :

�u0 = R�w (4.83)

Les vitesses caractéristiques sont alors les valeurs propres �j et il y a m = 2 carac-
téristiques satisfaisant les équations :

dx

dt
= �j; j = 1; 2
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Figure 3 Trajectoire du piston

4.2 Etude d�un écoulement isentrope en régime de détente

4.2.1 Expérience

Considérons un tube semi-in�ni limité d�un coté par un piston et rempli d�un gaz
initialement au repos (�gure 3).

A l�instant t = 0, le piston est en x = 0 tandis que le gaz est contenu dans la
partie des x positifs. Le piston est mis progressivement en accélération dans le sens
des x négatifs et est animé d�une vitesse V variant de V = 0 à V = VF uniforme par
exemple. Au cours du mouvement les particules en contact avec le piston ont pour
vitesse VM = �V . On constate qu�au cours du mouvement du piston, dans certaines
régions du tube, le gaz refroidit, la pression baisse ainsi que la masse volumique et
que la vitesse du son. Ce phénomène est caractéristique d�une détente dans un �uide.

Figure 4 Caractéristiques en un point P
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4.2.2 Etude théorique pour le régime de détente

En tout point de l�écoulement, donc pour chaque particule �uide, passent deux car-
actéristiques (�gure 4), l�une montante C+; � = Cte, l�autre descendante C�; � = Cte
dans le plan (x; t).

Lieu des particules aux repos

Figure 5 Réseaux de caractéristiques C+ et C�

Considérons le point C1 à l�intersection des caractéristiques issues des points
Bo et Co, situés sur les x positifs (�gure 5). On a :

uBo + PBo = uC1 + PC1 = Cte (4.84)

uCo �QCo = uC1 �QC1 = Cte (4.85)

Or, le �uide est initialement au repos, par suite :

PAo = PBo = PCo = Po (4.86)

et :
uAo = uBo = uCo = 0 (4.87)

On en déduit :
PC1 = Po =) aC1 = ao et uC1 = 0 (4.88)

Ce résultat est valable pour tous les points se situant sur les caractéristiques
C+ issues des points pour lesquels xBo > 0. Or la caractéristique C

+
orig: limite, issue

de l�origine, a pour pente :

C+orig: :

�
dx+

dt

�
�;orig:

= (u+ a)orig: = ao (4.89)
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Figure 6 Zone grisée : �uide au repos

ou :

C+orig: :

�
dt

dx

�
�;orig:

=
1

ao
(4.90)

Par conséquent, au dessous de cette caractéristique C+orig: le �uide est au repos (�gure
6).

Propriétés le long des caractéristiques C+

Considérons la caractéristique C+ issue du point A (piston), provenant elle même du
point Ao par une caractéristique C�. Au points B2 et C3, on a :

uA + PA = uB2 + PB2 = uC3 + PC3 = Cte = K (4.91)

Mais en B2 passe une caractéristique C� issue de Bo et en C3 une caractéristique C�

issue de Co; on a donc :

uB2 � PB2 = uBo � PBo = Cte (4.92)

uC3 � PC3 = uCo � PCo = Cte (4.93)

Or, comme :
PBo = PCo = Po (4.94)

et :
uBo = uCo = 0 (4.95)

On en déduit:
uB2 � PB2 = �Po (4.96)

uC3 � PC3 = �Po (4.97)
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et avec 4.91, on obtient :

uB2 = uC3 et PB2 = PC3 =) aB2 = aC3 (4.98)

On en déduit que les vitesses u et a sont constantes sur les caractéristiques.
Par ailleurs au point A la vitesse de la particule �uide est égale à la vitesse du piston,
on a donc au point C3 par exemple :

uA + PA = uC3 + PC3 = K (4.99)

et :
uC3 � PC3 = �Po (4.100)

Or A provient de A0 par une caractéristique C�, d�où :

uA � PA = Po (4.101)

On en déduit, puisque,
uA = (uB2 = uC3) = �V (4.102)

PC3 = Po � V =) aC3 = ao �
�� 1
2

V (4.103)

La vitesse du son diminue, donc la pression baisse ainsi que la masse volumique : on
a bien une détente. Finalement la pente de la caractéristique est constante et donnée
par :

C+ :

�
dt

dx

�+
�

=
1

uC3 + PC3
=

1

�V + ao � [(�� 1) =2]V
=

1

ao � [(�+ 1) =2]V
(4.104)

Comme V augmente, de même la pente augmente, on a donc un faisceau divergent
(�gure 7). Au point F où la vitesse est constante, on a un régime uniforme. Lorsque la
vitesse du piston augmente, pour une certaine valeur de V , u+a = 0, le dénominateur
de 4.104 s�annule, la caractéristique C+ est verticale et on a la condition:

u = �V = � 2

�+ 1
ao (4.105)

On a ainsi un écoulement sonique vers la gauche :

jujson: =
2

�+ 1
ao (4.106)

Cette relation est à comparer avec la vitesse sonique d�un écoulement isentrope sta-
tionnaire :

jujson: =
r

2

�+ 1
ao (4.107)



Etude d�un écoulement isentrope en régime de détente 43

Figure 7 Caractéristiques et piston en mouvement

Pour de très grandes valeurs de V la vitesse du son a tend vers zéro, ainsi que toutes
les grandeurs thermodynamiques correspondantes, p; �; T , on a alors :

jujfuite: =
2

�� 1ao (4.108)

Pour cette vitesse les caractéristiques C+ et C� et la trajectoire des particules sont
confondus. Il n�est plus possible au �uide de rester en contact avec le piston. Une zone
de vide apparaît. C�est la vitesse maximum que l�on peut atteindre quand un gaz se
détend dans le vide : on l�appelle vitesse de fuite ou d�échappement. De nouveau, on
peut comparer cette valeur avec la vitesse correspondante dans le cas d�un écoulement
isentrope stationnaire :

jujfuite;isen: =
r

2

�� 1ao (4.109)

Calcul des grandeurs physiques de l�écoulement

Comme l�écoulement est isentropique, la pression, la température et la masse vo-
lumique du gaz peuvent être reliées à la vitesse du son a au moyen des relations
isentropiques que l�on peut mettre sous la forme :

p

po
=

�
a

ao

�2�=(��1)
(4.110)
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T

To
=

�
a

ao

�2
(4.111)

�

�o
=

�
a

ao

�2=(��1)
(4.112)

Trajectoire d�une particule en régime de détente

Considérons l�équation de la pente de la caractéristique C+ :

C+ :

�
dt

dx

�+
�

=
1

ao � [(�+ 1) =2]V
=

1

ao + [(�+ 1) =2]u
(4.113)

A partir d�un point de la trajectoire du piston , M(tM ; xM) par exemple on écrit :

C+M :
t� tM
x� xM

=
1

ao + [(�+ 1) =2]u
(4.114)

L�équation d�une trajectoire d�une particule est par dé�nition :

u =
dx

dt
(4.115)

En introduisant cette dé�nition dans 4.114, on a :

dx

dt
=

2

�+ 1

�
(x� xM)� ao (t� tM)

(t� tM)

�
(4.116)

Posons x� xM = x�; t� tM = t� :

dx�

dt�
= � 2

�+ 1
ao +

2

�+ 1
ao
x�

t�
(4.117)

On obtient après intégration :

x� = � 2

�� 1aot
� + A (t�)2=(�+1) (4.118)

Comme la particule est initialement en x = xo, l�expansion commence en to = xo=ao
le long de la caractéristique C+ issue de l�origine. Il su¢ t alors de poser tM = 0
et xM = 0. Lorsque t < to, on se trouve dans le domaine au repos et la solution
précédente n�est pas applicable. On a dans cette région x = x0 = Cte.
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Figure 8 Expansion dans un tube

4.2.3 Exemple: expansion dans le vide

Considérons un tube obstrué au milieu par un diaphragme et rempli d�un côté du
diaphragme par un gaz parfait. La pression dans ce gaz et sa vitesse du son sont
respectivement p0 et a0. De l�autre côté du diaphragme il règne un vide parfait, et
donc a = 0. Lors de la rupture du diaphragme (t = t0), le gaz s�échappe à grande
vitesse dans la partie vide du tube et une onde de détente se propage dans le gaz
parfait. Le front de cette onde se déplace à la vitesse a = a0 en accélérant les particules
de gaz vers le vide (�gure 8a) etc.). En appliquant la relation 4.73 au travers de l�onde
simple ainsi créée, c�est-à-dire entre l�état régnant dans le gaz parfait (u = 0; a = a0)
et l�état limite du gaz qui s�échappe dans le tube vide (u = umax; a = 0), on obtient

umax =
2

�� 1 a0 (4.119)
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La vitesse maximale résultant d�une onde simple dans une expansion instationnaire est
donc considérablement plus élevée que celle obtenue dans un écoulement stationnaire.
L�onde simple représentée sur la �gure 8 b est donc délimitée dans le plan xt par les
lignes � = constantes

x = �a0t (u = 0; a = a0)

x = 2
��1 a0t (u = umax; a = 0)

(4.120)

Puisque u et a sont constantes le long d�une ligne xt�1 = constante, la variation de
l�état de l�écoulement au travers de cette onde, à un instant t = t1, peut se déduire
analytiquement à partir des équations de base. On est donc amené à introduire dans
4.16 et 4.17 une variable indépendante s = xt�1 dont u et a deviennent des fonctions.
Les dérivées par rapport à x et t d�une fonction f = f(s) s�écrivent

@f(s)
@x

= df
ds

@s
@x
= 1

t
f 0; f 0 = df

ds

@f(s)
@t

= df
ds

@s
@t
= � s

t
f 0

9=; (4.121)

Par conséquent 4.16 et 4.17 sont ramenées à la forme

2

�� 1(u� s) a0 + a u0 = 0 (4.122)

u0(u� s) +
2

�� 1 a a
0 = 0 (4.123)

Une solution de ces équations s�écrit :

u = A1 + A2 s ; A1; A2 = constantes (4.124)

a = B1 +B2 s ; B1; B2 = constantes (4.125)

Par substitution de ces expressions dans 4.122 et 4.123 on obtient :

u = A1 +
2

�+ 1
s (4.126)

a = �A1 �
�� 1
�+ 1

s (4.127)

En utilisant la variante de 4.127 où A1 possède un signe positif, on obtient avec 4.126:

u = a+
�� 1
�+ 1

s+
2

�+ 1
s = a+ s (4.128)

L�application de la condition u = 0 et a = a0 donne pour s la valeur s = �a0.
Finalement on déduit de 4.126 la valeur de A1 :

u = 0 = A1 +
2

�+ 1
(�a0) (4.129)
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d�où:

A1 =
2

�+ 1
a0 (4.130)

Par conséquent, au travers de l�onde simple les grandeurs u; a et p s�expriment par :

u

a0
=

2

�+ 1

�
1 +

x

a0t

�
(4.131)

a

a0
=

2

�+ 1

�
1� �� 1

2

x

a0t

�
= 1� �� 1

�+ 1

�
1 +

x

a0t

�
(4.132)

p

p0
=

�
a

a0

� 2�
��1

=

�
1� �� 1

�+ 1

�
1 +

x

a0t

�� 2�
��1

(4.133)

On véri�e la validité des conditions (4.120) à partir de ces dernières expressions. En
x = 0, correspondant à l�emplacement du diaphragme, on obtient

u = a =
2

�+ 1
a0 (4.134)

Donc en x = 0, u = a et l�écoulement devient critique à cet endroit du tube. Pourtant,
les valeurs de a=a0 et p=p0 sont di¤érentes des valeurs correspondantes dans un cas
stationnaire. En e¤et, pour une valeur de � = 1; 4, on obtient:

a
a0
= 2

�+1
= 0; 833

p
p0
=
�

2
�+1

� 2�
��1 = 0; 279

(4.135)

Les variation de la vitesse et de la pression dans le tube à l�instant t = t1 exprimées
selon (4.131 et 4.133) sont représentées sur la �gure 8 (c et d).

4.3 Propagation d�une onde de choc

Figure 9 Onde de choc engendré par le mouvement instantané du piston
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Figure 10 Onde choc dans un repère �xe attaché au choc

Les relations obtenues dans le cours de Mécanique des Fluides Compressible,
traduisant la discontinuité des variables au travers d�une onde de choc normale, sont
exprimées pour un repère �xe avec le choc. On rappelle quelques relations utiles :

�1
�2
=M�2

1

�
1 +

�� 1
�+ 1

�
M2
1 � 1

��
=
v2
v1

(4.136)

p2
p1
= 1 +

2�

�+ 1

�
M2
1 � 1

�
(4.137)

T2
T1
=M�2

1

�
1 +

2�

�+ 1

�
M2
1 � 1

�� �
1 +

�� 1
�+ 1

�
M2
1 � 1

��
(4.138)

Pour une onde de choc se propageant à la vitesse Vc dans un gaz parfait au repos,
les conditions de saut à travers le choc sont obtenues en appliquant la superposition
(�gures 9 et 10) :

Vc = �v1; Vc � u = �v2 (4.139)

Compte tenu du déplacement du choc, la vitesse u du gaz devient avec (4.136) :

u = �(v1 � v2) = Vc

�
1� v2

v1

�
=

2

�+ 1
Vc

�
1� a21

V 2
c

�
(4.140)

Dans (4.136) M2
1 a donc été remplacé par V

2
c =a

2
1, où a1 décrit la vitesse du son dans

le gaz au repos. En e¤ectuant la même substitution dans (4.136), (4.137) et (4.138)
on obtient :

�1
�2
=

a21
V 2
c

�
1 +

�� 1
�+ 1

�
V 2
c

a21
� 1
��

= 1� 2

�+ 1

�
1� a21

V 2
c

�
(4.141)

p2
p1
= 1 +

2�

�+ 1

�
V 2
c

a21
� 1
�

(4.142)

T2
T1
=

a21
V 2
c

�
1 +

2�

�+ 1

�
V 2
c

a21
� 1
���

1 +
�� 1
�+ 1

�
V 2
c

a21
� 1
��

(4.143)

Dans le cas d�une onde de choc forte pour laquelle Vc=a1 � 1, on obtient les résultats
:

u �=
2

�+ 1
Vc (4.144)
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�2
�1
�=
�+ 1

�� 1;
p2
p1
�=

2�

�+ 1

V 2
c

a21
;
T2
T1
=
p2
p1

�1
�2
�=
2�(�� 1)
(�+ 1)2

V 2
c

a21
(4.145)

Dans le cas d�une onde de choc faible on a (p2=p1�1)� 1 correspondant à une valeur
de (Vc=a1 � 1)� 1. On obtient alors les relations suivantes :

u

Vc
�=

4

�+ 1

�
Vc
a1
� 1
�

(4.146)

�2
�1
�= 1 +

4

�+ 1

�
Vc
a1
� 1
�
= 1 +

u

Vc
(4.147)

p2
p1
�= 1 +

4�

�+ 1

�
Vc
a1
� 1
�
= 1 + �

u

Vc
(4.148)

T2
T1
�= 1 + 4

�� 1
�+ 1

�
Vc
a1
� 1
�
= 1 + (�� 1) u

Vc
(4.149)

Figure 11 Choc au voisinage d�un col de tuyère
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4.4 Etude du tube à choc

Figure 12 Tube à choc

4.4.1 Principe

Un tube à choc est obtenu en remplaçant dans l�exemple illustré au paragraphe 1.2 le
vide par un gaz à basse pression p1 � p0. Lors de la rupture du diaphragme équipant
le tube, une onde de choc et une onde de détente se propagent respectivement dans
le gaz à basse pression et le gaz à haute pression. Si les deux gaz sont, comme c�est
normalement le cas, de nature di¤érente, la surface de séparation entre les deux gaz
se propage dans le gaz à basse pression à la manière d�un piston.

L�état caractéristique des zones d�écoulement in�uencées par chaque type
d�onde est représenté sur les �gures 12 et 13 Ainsi au temps initial, à la rupture
du diaphragme, la distribution de pression est un �saut idéal�limité par les état (L)
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et (R). Cette distribution se décompose, en une onde de choc qui se propage dans la
chambre de détente, avec la vitesse Vc, et une onde de détente qui se propage dans
la chambre de compression avec la vitesse a1 sur le front d�onde. On désigne par
2 l�état du �uide traversé par l�onde de choc et par 3 l�état du �uide traversé par
l�onde de détente. L�interface entre les régions 2 et 3 est la surface de contact, limite
entre les �uides initialement situés de part et d�autre du diaphragme. En négligeant
le phénomène de di¤usion, les �uides ne se mélangent pas et sont donc séparés en
permanence par cette surface de contact ou de séparation. La zône 5 est le domaine
de la détente limité par les états L et 3:

Figure 13 Lignes caractéristiques

On remarquera sur la �gure 13 les grandeurs w1; w2; w3, dans les domaines
R et L, représentant les variables caractéristiques dans les directions respective des
vecteurs propres �(j) associés à chacune des valeurs propres �j.
4.4.2 Calculs

Les conditions initiales sont les suivantes :

u = uL; p = pL; � = �L x < 0; t = 0 (4.150)

u = uR; p = pR; � = �R x > 0; t = 0 (4.151)

avec :
pR < pL (4.152)
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La surface de contact :

Au travers de la surface de séparation, on a les conditions :

p2 = p3 (4.153)

u2 = u3 (4.154)

La zône 3 :

La vitesse u3 se calcule dans la zône 3 en appliquant l�invariant de Riemann au travers
de l�onde simple de détente entre les états L et 3, d�où, le long d�une caractéristique
de pente u+ a entre les points L et 3 :

uL +
2

�L � 1
aL = u3 +

2

�L � 1
a3 (4.155)

Au travers du choc l�équation de continuité (4.140) s�écrit:

u2 = Vc

�
1� �1

�2

�
(4.156)

Par substitution de (4.155) et (4.156) dans (4.154), on obtient:

McaR

�
1� �R

�2

�
=

2

�L � 1
aL

�
1� a3

aL

�
(4.157)

où Mc = Vc=a1 représente le nombre de Mach du choc. Au travers de l�onde simple,
la variation de pression est exprimée, en utilisant également (4.153), par:

p3
pL
=

�
a3
aL

� 2�L
�L�1

=
p2
pL

(4.158)

Onde de choc :

Au travers du choc l�équation de continuité (4.156) s�écrit

u2 = Vc

�
1� �R

�2

�
(4.159)

Les valeurs du saut de densité et de pression au travers du choc sont fournies par:

1� �R
�2
=

2

�1 + 1

M2
c � 1
M2
c

(4.160)

p2
pR
= 1 +

2�1
�1 + 1

(M2
c � 1) (4.161)
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Zône 5 :

Dans la région 5, domaine de la détente formé des caractéristiques centrées de pente
u5�a5, les informations sont transmises le long des caractéristiques de pente u5+a5,
on a donc, pour un point 5 quelconque L < 5 < 3 :

uL +
2

�L � 1
aL = u5 +

2

�L � 1
a5 (4.162)

et :
p5
pL
=

�
a5
aL

� 2�L
�L�1

(4.163)

On a aussi, le long de dx
dt
= x

t
= u5 � a5 :

u5 �
2

�L � 1
a5 = Cte (4.164)

Chaque caractéristique étant dé�nie par :

dx

dt
=
�L + 1

2
u5 � aL �

�L � 1
2

uL (4.165)

Comme dx
dt
= x

t
; on a:

� (uL + aL) <
x

t
<
�L + 1

2
u3 + aL +

�L � 1
2

uL (4.166)

Relation du tube à choc

Ainsi, la combinaison de (4.161) et (4.158) fournit pour pL=pR la relation

pL
pR
=

�
1 +

2�R
�R + 1

(M2
c � 1)

��
a3
aL

�� 2�L
�L�1

(4.167)

De plus, en utilisant (4.157), a3=aL peut être exprimée en fonction deMc. On obtient
ainsi la relation fondamentale du tube à choc

pL
pR
=

�
1 +

2�R
�R + 1

(M2
c � 1)

� �
1� aR

aL

�L � 1
�1 + 1

M2
c � 1
Mc

�� 2�L
�L�1

(4.168)

Cette relation démontre qu�on peut obtenir des nombres de Mach élevés dans un tube
à choc. Ceci se produit avec de très grandes valeurs de p4=p1. En e¤et, à la limite
quand pL=pR !1, on obtient

M2
c � 1
Mc

=
�R + 1

�L � 1
aL
aR
=
�R + 1

�L � 1

�
�LMR1 TL
�RML TR

�1=2
(4.169)
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Dans la pratique TL = TR �= 300 K. Par conséquent, pour obtenir un nombre de Mach
Mc élevé il faut queMR=ML soit aussi grand que possible. En utilisant comme gaz
moteur un gaz léger, par exemple l�hydrogène (ML = 2 et �L = 1:4), et comme
gaz de refoulement un gaz lourd, par exemple l�argon (MR = 40 et �R = 1; 66), on
obtient Mc

�= 27. Dans un tel cas le saut de température théorique pour un gaz
parfait devient selon (4.149)

T2
TR

�=
2�R1(�R � 1)
(�R + 1)2

M2
c = 234 (4.170)

De ce fait, le tube à choc peut servir à étudier les phénomènes liés aux gaz à hautes
températures comme, par exemple, l�ionisation et les e¤ets de relaxation.



Chapter 5

INTRODUCTION AU PROBLÈME DE RIEMANN

On vient de voir, par l�étude du tube à choc et tout particulièrement du choc lui-même
que au temps t=0, on se trouve avec un discontinuité avec à gauche des valeurs (in-
dice L) constantes et à droite des valeurs (indice R) constantes. Un tel problème
s�appelle aussi problème de Riemann. Il est important d�approfondir les propriétés au
voisinage de cette discontinuité lors de la mise en place de méthode de discrétisation.
En e¤et, lorsque on utilisera des formulations numériques conservatives, en partic-
ulier à distribution à valeurs constantes par morceaux, et cela même si le problème à
résoudre est continu, au bord de chaque cellule apparaissent automatiquement des dis-
continuités (plateau de valeurs constantes di¤érentes d�une cellule à l�autre). C�est en
particulier pour traiter ces discontinuités non physique en plus des chocs qui peuvent
naturellement apparaître que la méthode de Riemann est importante à analyser.

5.1 Etude théorique

5.1.1 L�équation de convection scalaire linéaire

Considérons le problème simple suivant :

@u

@t
+ a

@u

@x
= 0;�1 < x <1; t > 0 (5.1)

avec :
u(x; 0) = u0(x) (5.2)

Les caractéristiques

Dans le domaine x�t, les caractéristiques peuvent être considérées comme des courbes
telles que x = x(t). Par conséquent, comme u = u(x; t), on peut aussi écrire :

u(x; t) = u(x(t); t) (5.3)

Le taux de variation de u le long d�une courbe x = x(t) s�écrit alors :

du

dt
=
@u

@t
+
dx

dt

@u

@x
(5.4)
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Or, si l�on veut que la courbe x = x(t) soit une caractéristique et par suite satisfasse
l�équation scalaire 5.1, on doit avoir :

dx

dt
= a (5.5)

On en déduit alors :
du

dt
=
@u

@t
+ a

@u

@x
= 0 (5.6)

Par conséquent, le taux de variation de u le long de la courbe x = x(t) est nul : u
est donc constant le long de la courbe x = x(t). Etant donnée la condition initiale
x = x0 au temps t = 0, on a immédiatement que la caractéristique associée à notre
équation scalaire passant par le point x = x0, t = 0 est la droite :

x = x0 + at (5.7)

Ainsi pour une famille de points x0;j, on obtient une famille de caractéristiques for-
mant un ensemble de droites parallèles (�gure 1); toutes les droites ayant la même
pente 1=a, ce qui est typique d�une équation scalaire. D�après la propriété que u est
constant le long de x = x(t), on en déduit :

u(x; t) = u0(x0;j) = u0;j(x� at) (5.8)

Figure 1 Caractéristique pour l�équation scalaire linéaire



Etude théorique 57

Figure 2 Problème de Riemann

Le problème de Riemann

Considérons maintenant le problème suivant (�gure 2), appelé problème de Riemann
pour l�équation scalaire:

@u

@t
+ a

@u

@x
= 0;�1 < x <1; t > 0 (5.9)

avec :

u(x; 0) = u0(x)

�
uL si x < 0
uR si x > 0

�
(5.10)

D�après l�étude précédente, la solution au problème de Riemann est avec 5.8:

Figure 3 Solution du problème de Riemann
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u(x; t) = u0(x� at)

�
uL si x� at < 0
uR si x� at > 0

�
(5.11)

soit la �gure 3.

5.1.2 L�équation de convection scalaire non-linéaire

Considérons ensuite le problème suivant, avec l�équation de Burgers:

@u

@t
+
@f(u)

@x
= 0;

@u

@t
+
@ (u2=2)

@x
= 0�1 < x <1; t > 0 (5.12)

avec :
u(x; 0) = u0(x) (5.13)

L�équation de conservation peut s�écrire :

@u

@t
+
df

du

@u

@x
= 0;

@u

@t
+ f 0

@u

@x
= 0; (5.14)

où df
du
= �(u) est la vitesse caractéristique. Dans le cas de l�équation scalaire,

df
du
= a et avec l�équation de Burgers df

du
= u. Le comportement de la fonction

f(u) à des conséquences importantes sur celui de la solution. Une propriété très
importante, qui sera utilisée plus loin, est la monotonicité de la vitesse caractéristique
dx
dt
= �(u) = df

du
= f 0(u). On a trois possibilités :

1. �(u) est une fonction monotone croissante de u :

d�(u)

du
= �0(u) = f 00(u) > 0 flux convexe (5.15)

2. �(u) est une fonction monotone décroissante de u :

d�(u)

du
= �0(u) = f 00(u) < 0 flux concave (5.16)

3. �(u) a des extréma :

d�(u)

du
= �0(u) = f 00(u) = 0 flux ni concave ni convexe (5.17)

Les caractéristiques

Dans le domaine x � t, comme dans le cas linéaire, les caractéristiques peuvent être
tout simplement considérées comme des courbes telles que x = x(t). Par conséquent,
on peut aussi écrire :

dx

dt
= �(u) = f 0(u) (5.18)
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Le taux de variation de u le long d�une courbe x = x(t) s�écrit alors :

du

dt
=
@u

@t
+ �(u)

@u

@x
= 0 (5.19)

Par suite, le taux de variation de u le long de la courbe x = x(t) est nul : u est donc
constant le long de la courbe x = x(t). Etant donné la condition initiale x(0) = x0
au temps t = 0, on a immédiatement que la caractéristique associée à notre équation
scalaire passant par le point x = x0, t = 0 est la droite:

x = x0 + �(u0(x0))t (5.20)

Ainsi, pour une famille de points x0, on obtient une famille de caractéristiques formant
un ensemble de droites (�gure 4); les droites ont la pente 1=�(u0(x0)). D�après la
propriété que u est constant le long de x = x(t), on en déduit :

u(x; t) = u0(x0) = u0(x� �(u0(x0))t) (5.21)

Figure 4 Caractéristique pour l�équation scalaire non linéaire

Le problème de Riemann pour l�équation non linéaire de Burgers

Considérons maintenant le problème de Riemann appliquée à l�équation de Burgers
non linéaire:

@u

@t
+
@f(u)

@x
= 0 =

@u

@t
+ u

@u

@x
= 0;�1 < x <1; t > 0 (5.22)
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avec :

u(x; 0) = u0(x)

�
uL si x < 0
uR si x > 0

�
(5.23)

Cas où uL > uR : Supposons tout d�abord que uL > uR . Comme le �ux f(u) est
convexe les vitesses des caractéristiques dans le domaine de gauche sont plus grandes
que celles dans le domaine de droite. Par suite :

�L = � (uL) > �R = � (uR) (5.24)

On obtient la �gure 5. La solution au problème de Riemann est :

Figure 5 Le problème de Riemann pour l�équation non linéaire de Burgers

u(x; t) = u0(x� ut)

�
uL si x� Vct < 0
uR si x� Vct > 0

�
(5.25)
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où Vc est la vitesse de propagation du choc :

Vc =
1

2
(uL + uR)

On remarquera que les caractéristiques dans chaque région où u est constant se diri-
gent vers le choc lorsque le temps évolue.

Cas où uL < uR Dans ce cas, il y a une in�nité de solutions. L�une d�elles est de
nouveau (�gure 6):

u(x; t) =

�
uL si x� Vct < 0
uR si x� Vct > 0

�

Figure 6 Onde de choc violant le second principe

Le choc se déplace à la vitesse Vc. Mais dans ce cas, les caractéristiques
s�éloignent du choc. Cette solution est instable et viole le second principe de la
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thermodynamique. Une autre solution est l�onde de détente (�gure 7):

u(x; t) =

8<:
uL si x < uLt

x=t si uLt � x � uRt
uR si x > uRt

9=; (5.26)

Cette solution est stable.

Figure 7 Onde de détente

5.1.3 Système d�équations

Considérons maintenant le problème suivant consistant en m équations scalaires hy-
perboliques.

@u

@t
+A@u

@x
= 0 (5.27)

La matrice A possède m valeurs propres réelles �j et par conséquent m vecteurs
propres �(j).



Etude théorique 63

Diagonalisation

On suppose que la matrice A est diagonalisable, c�est à dire que l�on peut écrire :

A = RDR�1 (5.28)

avec :

D =

266664
�1

�2
:
�m�1

�m

377775 (5.29)

et :
R =

�
�(1); �(2); ; :::; �(m�1); �(m)

�
(5.30)

avec la propriété :
A�(i)=�i�(i) (5.31)

Variables caractéristiques

On introduit alors les m variables caractéristiques wj en utilisant la transformation
suivante :

w = R�1u (5.32)

Multiplions l�équation 5.27 par la matrice R�1

R�1
�
@u

@t
+A@u

@x

�
= R�1

�
@u

@t
+RDR�1@u

@x

�
= 0 (5.33)

Comme la matrice A est constante, il en est de même de K et par suite on peut écrire:

@R�1u

@t
+D@R

�1u

@x
=
@w

@t
+D@w

@x
= 0 (5.34)

ou :
@wj
@t

+ �j
@wj
@x

= 0; j = 1; :::;m (5.35)

On a donc découplé le système 5.27. Chacune des équations est équivalente à l�équation
de convection 5.27. La vitesse des caractéristiques est maintenant �j et on a m car-
actéristiques satisfaisant les relations :

dx

dt
= �j (5.36)
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Le problème aux valeurs initiales

On a maintenant un problème avec m conditions initiales :

u0 = [u1;0; u2;0; :::um;0]
T (5.37)

Introduisant les variables caractéristiques pour les conditions initiales :

w0 = R�1u0 (5.38)

Chacune des solutions aux équations @wj
@t
+ �j

@wj
@x
= 0 s�écrit avec 5.21 :

wj(x; t) = wj;0(x� �jt); j = 1; :::;m (5.39)

Pour obtenir la solution u, il su¢ t d�écrire que :

u = Rw (5.40)

soit :
u1 = w1�

(1)
1 + w2�

(2)
1 + :::+ wm�

(m)
1

:

ui = w1�
(1)
i + w2�

(2)
i + :::+ wm�

(m)
i

:

um = w1�
(1)
m + w2�

(2)
m + :::+ wm�

(m)
m

(5.41)

ou:

u(x; t) =
mX
j=1

wj(x; t)�
(j) (5.42)

Ainsi la fonction wj(x; t) est le coe¢ cient de �(j) dans un développement de u(x; t)
en fonction des vecteurs propres. Mais comme avec 5.21 :

wj(x; t) = wj;0(x� �jt) (5.43)

on a :

u(x; t) =
mX
j=1

wj;0(x� �jt)�
(j) (5.44)

Par conséquent, étant donné un point x; t; la solution u(x; t) en ce point ne dépend
que des conditions initiales aux m points xo;j = x��jt: Ce sont les intersections avec
l�axe des x des caractéristiques de pentes �j.
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Le problème de Riemann

Le problème de Riemann appliqué à un système d�équations est alors le suivant :

@u

@t
+A@u

@x
= 0;�1 < x <1; t > 0 (5.45)

avec :

u(x; 0) = u0(x)

�
uL si x < 0
uR si x > 0

�
(5.46)

On suppose alors que l�on a m valeurs propres �j toutes réelles et ordonnées :

�1 < �2 < �3 < ::: < �m (5.47)

Dans le plan x � t, on a les caractéristiques suivantes issues de l�origine (�gure 8):

Figure 8 Caractéristiques

Chaque caractéristique propage un saut de u à la vitesse �j. A la gauche de �1 l�état
est constant, caractérisé par uL. A droite de �m il est aussi constant et est caractérisé
par l�état UR. On cherche alors a déterminer u en un point (x; t) situé entre les deux
caractéristiques extrêmes. On décompose les états uR et uL en fonction des vecteurs
propres �(j) qui sont linéairement indépendants :

uL =
mX
j=1

�j�
(j) (5.48)
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et :

uR =

mX
j=1

�j�
(j) (5.49)

où les coe¢ cients �j et �j sont constants. On peut alors calculer le saut entre les
deux états extrêmes R et L:

�u = uR � uL=
mX
j=1

(�j � �j) �
(j) (5.50)

L�intensité de l�onde j est �j � �j et le saut à travers l�onde j est :

(�u)j =(�j � �j) �
(j) (5.51)

Ces sauts satisfont la condition de Rankine-Hugoniot puisque avec :

f(u) = Au (5.52)

on a :
[f(u)]j = A [u]j = (�j � �j)A�(j) = (�j � �j)�j�

(j) (5.53)

soit :
[f(u)]j = �j (�j � �j) �

(j) = �j (�u)j (5.54)

où �j est la vitesse de propagation de ce saut. Si on exprime alors le problème en
fonction des variables caractéristiques, on a pour chaque �j l�équation :

@wj
@t

+ �j
@wj
@x

= 0 (5.55)

En comparant les équations 5.46, 5.48 et 5.49, on a :

wj;0(x) =

�
�j si x < 0
�j si x > 0

�
(5.56)

Par suite :

wj(x; t) = wj;0(x� �jt) =

�
�j si x� �jt < 0
�j si x� �jt > 0

�
(5.57)

Finalement la solution u pour un point (x; t) quelconque devient :

u(x; t) =
mX

j=J+1

�j�
(j) +

JX
j=1

�j�
(j) (5.58)

où J est la valeur maximum de j pour laquelle x� �jt > 0. On peut aussi écrire :

u(x; t) = uL +

JX
�j<x=t

(�j � �j) �
(j) (5.59)
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ou :

u(x; t) = uR �
JX

�j<x=t

(�j � �j) �
(j) (5.60)

5.2 Applications

5.2.1 Système linéarisée de la dynamique des gaz

Considérons à titre d�application le problème suivant consistant en m = 2 équations
scalaires hyperboliques.

@

@t

�
�
u

�
+

�
0 �0

a2=�0 0

�
@

@x

�
�
u

�
= 0 (5.61)

ou :
@u

@t
+A@u

@x
= 0 (5.62)

La matrice A possède 2 valeurs propres réelles �1 et �2 par conséquent 2 vecteurs
propres �(1)et �(2): On réécrira le système sous la forme :

@

@t

�
u1
u2

�
+

�
0 �0

a2=�0 0

�
@

@x

�
u1
u2

�
= 0 (5.63)

avec les conditions initiales suivantes :�
u1(x; 0)
u2(x; 0)

�
=

�
u1;0(x)
u2;0(x)

�
(5.64)

Diagonalisation

On véri�e que la matrice A est diagonalisable, c�est à dire que l�on peut écrire :

A = RDR�1 (5.65)

avec :

D =
�
�1 0
0 �2

�
=

�
�a 0
0 a

�
(5.66)

et :

R =
�
�(1) �(2)

�
=

�
�0 �0
�a a

�
(5.67)

ainsi que :

R�1=
1

2a�0

�
a ��0
a �0

�
(5.68)
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Variables caractéristiques

On introduit alors les 2 variables caractéristiques w1 et w2 en utilisant la transforma-
tion :

w = R�1u (5.69)

soit : �
w1
w2

�
=

1

2a�0

�
a ��0
a �0

� �
�
u

�
=
1

2

�
�=�0 � u=a
�=�0 + u=a

�
(5.70)

On a:
@wj
@t

+ �j
@wj
@x

= 0; j = 1; 2 (5.71)

soit :
@w1
@t

� a
@w1
@x

= 0 (5.72)

dt
@w1
@t

+ dx
@w1
@x

= 0) dw1 = 0) d�=�0 � du=a = 0 (5.73)

et:
@w2
@t

+ a
@w2
@x

= 0 (5.74)

dt
@w2
@t

+ dx
@w2
@x

= 0) dw2 = 0) d�=�0 + du=a = 0 (5.75)

On a donc découplé le système initial. La vitesse des caractéristiques est maintenant
�a et on a 2 caractéristiques satisfaisant les relations :

dx

dt
= �a; dx

dt
= a (5.76)

Le problème aux valeurs initiales

On a un problème avec 2 conditions initiales :

u0 = [u1;0; u2;0]
T (5.77)

Introduisant les variables caractéristiques pour les conditions initiales :

w0 = R�1u0 (5.78)

soient :
w1;0(x) =

1

2a�0
[au1;0(x)� �0u2;0(x)] (5.79)

w2;0(x) =
1

2a�0
[au1;0(x) + �0u2;0(x)] (5.80)

Chacune des solutions aux équations @wj
@t
+ �j

@wj
@x
= 0 s�écrit avec 5.57 :

wj(x; t) = wj;0(x� �jt); j = 1; :::; 2 (5.81)
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soient :
w1(x; t) = w1;0(x+ at) (5.82)

w2(x; t) = w2;0(x� at) (5.83)

et avec 5.79 et 5.80 :

w1(x; t) =
1

2a�0
[au1;0(x+ at)� �0u2;0(x+ at)] (5.84)

w2(x; t) =
1

2a�0
[au1;0(x� at) + �0u2;0(x� at)] (5.85)

Pour obtenir la solution u, il su¢ t d�écrire que :

u =Rw (5.86)

ou :

u(x; t) =
2X
j=1

wj(x; t)�
(j) =

2X
j=1

wj;0(x� �jt)�
(j) (5.87)

soit :

u1(x; t) =
1

2a
[au1;0(x+ at)� �0u2;0(x+ at)] (5.88)

+
1

2a
[au1;0(x� at) + �0u2;0(x� at)]

u2(x; t) = �
1

2a
[au1;0(x+ at)� �0u2;0(x+ at)] (5.89)

+
1

2a
[au1;0(x� at) + �0u2;0(x� at)]

Le problème de Riemann

A partir de l�origine dans le plan x � t, deux ondes se déplacent avec les vitesses
�1 =

dx
dt
= �a et �2 = dx

dt
= a tel que �1 < �2: La solution à la gauche de la

caractéristique dé�nie par �1 est l�état constant :

uL = �1�
(1) + �2�

(2) (5.90)

soit : �
�L
uL

�
= �1

�
�0
�a

�
+ �2

�
�0
a

�
(5.91)

On en déduit les valeurs de �1 et �2 :

�1 =
a�L � �0uL
2a�0

; �2 =
a�L + �0uL
2a�0

(5.92)
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et la solution à la droite de la caractéristique dé�nie par �2 est l�état constant:

uR = �1�
(1) + �2�

(2) (5.93)�
�R
uR

�
= �1

�
�0
�a

�
+ �2

�
�0
a

�
(5.94)

On en déduit les valeurs de �1 et �2 :

�1 =
a�R � �0uR
2a�0

; �2 =
a�R + �0uR
2a�0

(5.95)

Il est alors possible de trouver la solution pour u et � dans la région comprise en-
tre les caractéristiques associées à �1 et �2. Considérons un point P situé dans ce

t

uL
uR

0 x

λ 1

λ 2

P(x,t)

xo(1)xo(2)

Figure 9 Recherche de la solution en P

domaine (�gure 9). Traçons deux droites parallèles respectivement à chacune des
caractéristiques. L�une coupe l�axe des x en x1;0 = x � �2t = x � at et l�autre en
x2;0 = x � �1t = x + at: Par conséquent, les coe¢ cients de la relation déterminant
u sont alors connus. En e¤et, pour choisir correctement les coe¢ cients, on choisit
un temps t quelconque et un point xL à gauche de la caractéristique �1; uL est alors
dé�ni par 5.90.

uL = �1�
(1) + �2�

(2) (5.96)

Le point (xL; t) est tel que tous les coe¢ cients de 5.90 sont des �j. Lorsqu�on se
déplace vers la droite (�gure 10), au passage de la caractéristique �1, x� �1t change



Applications 71

Figure 10 Recherche des coe¢ cients

de signe et devient positif et par suite le coe¢ cient d�après 5.93 se change en �1. Par
conséquent, la solution devient :

u = �1�
(1) + �2�

(2) (5.97)

soit : �
�
u

�
= �1

�
�0
�a

�
+ �2

�
�0
a

�
�
�
u

�
=
a�R � �0uR
2a�0

�
�0
�a

�
+
a�L + �0uL
2a�0

�
�0
a

�
�
�
u

�
=
1

2

�
(�R + �L)
(uR + uL)

�
� �0
2a

�
(uR � uL)
(�R � �L)

�
(5.98)

En�n lorsqu�on traverse la caractéristique de pente �2 on obtient :

uR = �1�
(1) + �2�

(2) (5.99)

On en déduit avec 5.96 le saut entre l�état R et l�état L:

�u = uR � uL = (�1 � �1) �
(1) + (�2 � �2) �

(2) (5.100)
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Chapter 6

SCHÉMAS DE DISCRÉTISATION AUX DIFFÉRENCES FINIES
CLASSIQUES

On suppose connus les concepts de base des méthodes numériques (cours de Simula-
tion Numérique B) pour les équations aux dérivées partielles, en particulier pour les
équations hyperboliques :

� Les erreurs de troncature

� La précision d�un schéma

� La consistance

� L�équation modi�ée

� La stabilité

� La convergence

� Les erreurs de dissipation et de dispersion

6.1 L�équation scalaire de convection linéaire

Considérons un problème aux valeurs initiales et aux limites pour l�équation de con-
vection scalaire, dans le domaine [0; L]� [0; T ] du plan x� t, soit :

� Equation :

@u

@t
+ a

@u

@x
= 0; a > 0 (6.1)

� Condition initiale :

u(x; 0) = u0(x) (6.2)

Conventions :
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� u;ou u seront les notations utilisées pour la solution exacte de l�équation ou du
système d�équations à résoudre. En un point j, la solution exacte sera notée :
uj ou uj

� Û ou Û seront les notations utilisées pour la solution exacte de l�équation mod-
i�ée. En un point j, la solution exacte sera notée : Ûj ou Ûj

� Unj ou U
n
j seront les notations utilisées pour la solution approximative après n

itérations de l�équation discrète ou du système d�équations discrètes à résoudre.
Aux points discrets j, on notera : Unj ou U

n
j

� Ainsi en un point j :

8<:
uj;uj solution exacte de l0�equation continue

Ûj; Ûj solution exacte de l0�equation discr�etis�ee
Unj ;U

n
j solution approch�ee de l0�equation discr�etis�ee

9=; (6.3)

6.2 Principe de discrétisation

Le principe de la discrétisation consiste à remplacer un problème continu, représenté,
par exemple, par une équation aux dérivées partielles, au moyen d�un ensemble �ni
de valeurs discrètes. Pour cela on discrétise tout d�abord le domaine de calcul, en
un ensemble �ni de points (méthode aux di¤érences �nies) ou de volume (méthodes
aux volumes �ns) dé�nissant un maillage. Dans l�approche aux di¤érences �nis ces
valeurs sont des valeurs ponctuelles dé�nies aux points de la grille. Pour la méthode
aux volumes �nis, les valeurs discrètes sont des valeurs moyennes de distribution
constantes ou linéaires par morceau sur des volumes �nis. Nous introduirons tout
d�abord les principes de discrétisation par la méthode aux di¤érences �nies. Soit
une grille régulière en espace et en temps. On introduit l�espace régulier des points
espacés de �x sur le domaine [0; L] en introduisant M points tels que :

�x =
L

M
(6.4)

et l�espace régulier dans la direction temporelle�t sur le domaine [0; T ]. Les points de
la grille sont alors positionnés en (j�x; n�t) dans le plan x�t avec j = 1; :::;M et n =
0; 1; :::N . Par conséquent, les valeurs discrètes de la fonction u(x; t) en (j�x; n�t)
sont dé�nies par :

Unj = U(j�x; n�t) = U(xj; t
n) (6.5)

L�observation du domaine de discrétisation (�gure 1) montre que :

� pour la discrétisation de la dérivée temporelle une di¤érence progressive peut
être utilisée : �

@u

@t

�
'
Un+1j � Unj

�t
(6.6)



Principe de discrétisation 77

Figure 1 Domaine de discrétisation

où Un+1j est la nouvelle valeur que l�on cherche, Unj étant connu 8j = 1; ::;M .

� pour la discrétisation spatiale, une di¤érence centrée faisant intervenir les valeurs
connues unj+1 et u

n
j�1 devrait être une bonne approximation :�

@u

@x

�
'
Unj+1 � Unj�1

2�x
(6.7)

L�approximation de l�équation aux dérivées partielles prend alors la forme suiv-
ante : �

@u

@t
+ a

@u

@x

�
'
Un+1j � Unj

�t
+ a

Unj+1 � Unj�1
2�x

= 0 (6.8)

On a alors une équation aux di¤érences �nies. Comme toutes les valeurs dis-
crètes au temps n sont supposées connues, il su¢ t de résoudre la relation pour
l�inconnue Un+1j :

Un+1j = Unj �
1

2
c
�
Unj+1 � Unj�1

�
(6.9)

où c est le nombre de Courant, ou nombre CFL (Courant-Friedrich-Levy):

c =
a�t

�x
=

a

�x=�t
(6.10)
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C�est le rapport de deux vitesses : la vitesse de propagation a et �x=�t une
vitesse de propagation numérique lié au maillage dans le domaine discret. Si nous
cherchons les solutions obtenues pour des pas de temps allant de 0 à 4 avec un nombre
de Courant de c = 0:5, avec les conditions initiales suivantes:

U0j = 1; j < 5;U
0
j = 0; j � 5 (6.11)

on obtient : 26666664
n n j 0 1 2 3 4 5 6 7 8 9

P
0 1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 5

4
1
4

0 0 0 0 5:5
2 1 1 1 15

16
23
16

9
16

1
16

0 0 0 6
3 1 1 65

64
53
64

98
64

58
64

13
64

1
64

0 0 6:5
4 1 255

256
271
256

179
256

387
256

317
256

109
256

17
256

1
256

0 7

37777775 (6.12)

d�où la �gure 2: La solution exacte à ce problème devrait montrer que les données

Figure 2 Schéma de discrétisation centrée

initiales sont transportées vers la droite de 1
2
�x à chaque pas de temps. On constate

que cette solution développe une oscillation et si l�on continue elle diverge. L�analyse
de la stabilité de ce schéma (von Neumann) montre e¤ectivement que ce schéma centré
en espace est inconditionnellement instable. Il y a cependant quelque chose de juste,
puisque la somme des termes (colonne de droite) augmente de 0.5 à chaque itération.
On rappelle que le critère CFL stipule que le domaine de dépendance numérique doit
inclure le domaine de l�équation di¤érentielle.
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6.3 Schémas du premier ordre décentré

L�utilisation du schéma centré précédent n�a pas tenu compte de la physique. En e¤et
pour le problème de convection donné, la vitesse a a un signe, celui de la propagation
de l�information : soit dans le sens des x positif, soit dans le sens des x négatif.
Reprenons le problème à zéro. Si la vitesse de propagation de l�onde a est positive,
l�information quelle transporte se trouve en amont du point où l�on fait le calcul; en
conséquence, il ne faut pas introduire à priori de point situé en aval puisque l�onde
n�a pas encore atteint ce point.

6.3.1 Schéma CIR

Considérons donc maintenant comme choix de schéma de discrétisation pour la dérivée
spatiale un schéma décentré rétrograde lorsque a est positif:�

@u

@x

�
'
Unj � Unj�1

�x
(6.13)

Dans ce cas la nouvelle équation discrète devient:

Un+1j = Unj � c
�
Unj � Unj�1

�
(6.14)

Ce schéma appelé, le schéma CIR (Courant-Isaacson-Reeves), est du premier ordre
en espace et en temps. Il est stable conditionnellement et véri�e la condition CFL:

0 < c � 1 (6.15)

Comme précédemment, si nous cherchons les solutions obtenues pour des pas de
temps allant de 0 à 4 avec un nombre de Courant de c = 0:5, avec les conditions
initiales :

U0j = 1; j < 5;U
0
j = 0; j � 5 (6.16)

on obtient : 26666664
n n j 0 1 2 3 4 5 6 7 8 9

P
0 1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 1 1

2
0 0 0 0 5:5

2 1 1 1 1 1 3
4

1
4

0 0 0 6
3 1 1 1 1 1 7

8
4
8

1
8

0 0 6:5
4 1 1 1 1 1 15

16
11
16

5
16

1
16

0 7

37777775 (6.17)

soit le graphe 3. Que constate-t-on ? Tout d�abord, la vitesse de déplacement de la
discontinuité est correcte. Ensuite, si l�on augmente le nombre d�itération, il n�y a
pas de divergence, en�n et surtout le choc est fortement atténué. Le schéma est donc
dissipatif et suivant la valeur du nombre de Courant, l�amortissement au voisinage
du choc sera d�autant plus important que c sera plus petit. En e¤et, son équation
modi�ée a la forme :

@Û

@t
+ a

@Û

@x
= �CIR

@2Û

@x2
(6.18)
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Figure 3 Schéma de discrétisation rétrograde

avec :

�CIR =
1

2
�xa (1� c) (6.19)

Il n�y pas d�oscillations. De même, si la vitesse a est négative, on aurait :

Un+1j = Unj � c
�
Unj+1 � Unj

�
(6.20)

Il sera stable si la condition précédente, mais avec jcj est aussi véri�é. Un autre

Figure 4 Schéma CIR

exemple est donnée, toujours avec un schéma CIR, en présence d�un saut (�gure 4).
La solution exacte est en bleu. La solution numérique en rouge.
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6.3.2 Schéma CIR uni�é

Mais que se passe-t-il lorsqu�on ne sait pas dans quelle direction s�e¤ectue la prop-
agation des ondes ? On doit e¤ectuer une combinaison de ces deux schémas. Pour
cela, on introduit les notations suivantes :

a+ = max(a; 0) =
1

2

�
a+ + jaj

�
) c+ =

a+�t

�x
(6.21)

a� = min(a; 0) =
1

2

�
a� � jaj

�
) c� =

a��t

�x

On véri�e que si a > 0) a� = 0 et que si a < 0) a+ = 0: On en déduit le nouveau
schéma:

Un+1j = Unj � c+
�
Unj � Unj�1

�
� c�

�
Unj+1 � Unj

�
(6.22)

avec la condition de stabilité :
0 � jcj � 1 (6.23)

Par ailleurs son équation modi�ée a la forme :

@Û

@t
+ a

@Û

@x
= �CIR

@2Û

@x2
(6.24)

avec :
�CIR =

1

2
�xa (1� jcj) (6.25)

Ce schéma est dissipatif.
6.3.3 Schéma de Lax-Friedrich (L.F.)

Le schéma C.I.R. est du premier ordre en espace. Il est malgré tout possible d�obtenir
un schéma stable à partir du schéma centré 6.9, qui pourtant est instable. En e¤et,
si on modi�e le schéma en remplaçant Unj par:

Unj !
1

2

�
Unj+1 + Unj�1

�
(6.26)

on obtient le schéma de Lax-Friedrich :

Un+1j =
1

2

�
Unj+1 + Unj�1

�
� 1
2
c
�
Unj+1 � Unj�1

�
(6.27)

Si on e¤ectue un calcul avec les mêmes conditions que pour les cas précédents, on
aura : 26666664

n n j 0 1 2 3 4 5 6 7 8 9
P

0 1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 3

4
3
4

0 0 0 0 5:5
2 1 1 1 15

16
15
16

9
16

9
16

0 0 0 6
3 1 1 63

64
63
64

54
64

54
64

27
64

27
64

0 0 6:5
4 1 255

256
255
256

243
256

243
256

189
256

189
256

81
256

81
256

0 7

37777775 (6.28)
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Figure 5 Schéma de Lax-Friedrich

soit la �gure 5. On constate que le comportement global est correct, malgré une
atténuation du signal au niveau de la discontinuité. C�est encore l�e¤et de la dissipa-
tion.

6.3.4 Généralisation à des systèmes d�équations linéaires

Considérons maintenant le système d�équations linéaires suivant :

@u

@t
+A@u

@x
= 0;u(x; 0) = uo(x) (6.29)

où A est une matrice constante M �M . Si on utilise un schéma de discrétisation
décentré en espace et en temps, on peut approximer 6.29 sous la forme :

Un+1
j = Un

j �A
�t

�x

�
Un
j �Un

j�1
�

(6.30)

Comme Un+1
j ne dépend que de Un

j et de U
n
j�1, la condition CFL sera véri�ée si pour

toutes les valeurs propres �p de A on a :

0 � �t�p
�x

� 1 (6.31)

c�est à dire si toutes les valeurs propres �p sont positives. Dans ce cas, on utilise
l�information, en provenance de la direction amont, c�est-à-dire de la direction d�où
provient l�information. De même, si toutes les valeurs propres �p étaient négatives,
on devrait choisir le schéma:

Un+1
j = Un

j �A
�t

�x

�
Un
j+1 �Un

j

�
(6.32)
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Quant est-il, si les valeurs propres n�ont pas le même signe ? Ce peut être le cas avec
les équations d�Euler monodimensionelles instationnaires où les valeurs propres sont
égales à u; u+ a et u� a et en particulier dans le cas d�un écoulement subsonique où
juj < a; on aura alors des ondes se propageant dans les deux directions. On est alors
amené à utiliser la méthode de décomposition associée au champ des caractéristiques
(dx
dt
= �p). Or, on a vu 5.35 que le système 6.29 pouvait être découplé en posant :

w(x; t) = R�1u(x; t) (6.33)

et s�écrire :
@w

@t
+D@w

@x
= 0;w(x; 0) = R�1uo(x) (6.34)

où R�1 est la matrice des vecteurs propres gauches de A et D la matrice diagonale
associée avec:

D = R�1AR (6.35)

On est amené alors à résoudre M équations :

@wp
@t

+ �p
@wp
@x

= 0; (p = 1; 2; :::;M) (6.36)

chacune avec sa propre méthode décentrée suivant le signe de �p. On dé�nit alors :

�+p = max (�p; 0) ;D+ = diag
�
�+1 ; �

+
p ; :::�

+
M

�
��p = min (�p; 0) ;D� = diag

�
��1 ; �

�
p ; :::�

�
M

� (6.37)

avec la propriété :
D = D+ +D� (6.38)

Par suite la méthode décentrée pour le système 6.36 s�écrira :

wn+1
j = wn

j �D+
�t

�x

�
wn
j �wn

j�1
�
�D��t

�x

�
wn
j+1 �wn

j

�
(6.39)

Mais comme on peut revenir aux équations originales en multipliant l�équation 6.39
par R, on obtient :

Un+1
j = Un

j �A+
�t

�x

�
Un
j �Un

j�1
�
�A��t

�x

�
Un
j+1 �Un

j

�
(6.40)

avec :
A+ = RD+R�1

;A� = RD�R�1 (6.41)

et évidemment :
A = A+ +A� (6.42)

La formulation 6.40 est donc la généralisation pour des systèmes d�équations de la
forme scalaire 6.22.
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6.3.5 La dissipation : atténuation du signal

Reprenons le schéma CIR pour une équation scalaire :

Un+1j = Unj � c
�
Unj � Unj�1

�
(6.43)

avec c > 0. Son équation modi�ée associée est :

@Û

@t
+ a

@Û

@x
= �CIR

@2Û

@x2
=
1

2
�xa (1� c)

@2Û

@x2
(6.44)

On constate que ce schéma est dissipatif, puisque l�équation modi�ée qui est l�équation
réellement calculée fait apparaître un terme du second ordre avec comme viscosité
numérique �CIR = 1

2
�xa (1� c) : Sa dissipation est d�autant plus importante que la

nombre de courant est faible. Reprenons le schéma purement rétrograde du premier
ordre 6.43. On peut le réécrire sous la forme suivante :

Un+1j = Unj �
1

2
c
�
Unj+1 � Unj�1

�
+
1

2
c
�
Unj+1 � 2Unj + Unj�1

�
(6.45)

Cette forme du schéma montre qu�il est autodissipatif, puisque sans rajouter aucun
terme de dissipation dans la formulation 6.43, elle apparaît de manière naturelle avec
le terme 1

2
c
�
Unj+1 � 2Unj + Unj�1

�
. Mais on peut aussi constater que ce schéma peut

être obtenu en prenant le schéma centré du début de cette étude, mais instable,
auquel on a rajouté de la dissipation numérique soit 1

2
c
�
Unj+1 � 2Unj + Unj�1

�
: De

même, considérons le schéma de Lax-Friedrich:

Un+1j =
1

2

�
Unj+1 + Unj�1

�
� c

�
Unj � Unj�1

�
(6.46)

ou :

Un+1j = Unj �
1

2
c
�
Unj+1 � Unj�1

�
+
1

2

�
Unj+1 � 2Unj + Unj�1

�
(6.47)

Son équation modi�ée a la forme :

@Û

@t
+ a

@Û

@x
= �LF

@2Û

@x2
(6.48)

avec :

�LF =
�xa

2c

�
1� c2

�
(6.49)

Ce schéma est aussi dissipatif. Si on le compare avec le schéma CIR, il est cependant
beaucoup plus dissipatif; en e¤et, on a :

2 � �LF
�CIR

=
1 + c

c
<1 (6.50)
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La plupart des schémas linéaires précis au premier ordre atténue plus ou moins forte-
ment la solution à cause de la présence de cette dissipation. Comme ces schémas ne
présentent pas d�oscillation, justement à cause de la dissipation plus ou moins im-
portante, il en découle une propriété importante : ces schémas sont monotones
(�gure 6).

Figure 6 La monotonicité

6.3.6 La monotonicité

Dé�nition

Pour dé�nir la notion de monotonicité, il su¢ t de savoir que, dans le cas de l�équation
d�onde, la solution exacte au temps t+�t, ne faisant que translater les conditions ini-
tiales, si les données initiales u(x; t = 0) sont représentées par des fonctions monotones
(croissantes ou décroissantes), alors il en sera de même pour la solution u(x; t+�t).
Or, en général, un schéma numérique ne conduit pas à la solution exacte, mais quelque
soit le niveau de l�approximation, il devrait transformer les fonctions initiales en so-
lutions elle-même monotones.

Schémas monotones

Les schémas linéaires de la forme 6.43 font partis d�une classe de schémas plus large
et dé�nie par :

Un+1j = H
�
Unj�l; :::; U

n
j+m

�
=
Pm

k=�lbkU
n
j+k (6.51)

où l etm sont des entiers positifs. On dira qu�un schéma de la forme 6.51 est monotone
si tous ces coe¢ cients bk sont positifs ou nuls. Ceci découle du théorème suivant:
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Le théorème de Godunov

Un schéma de la forme 6.51 préserve la monotonicité si et seulement si aucun de ces
coe¢ cients bk n�est négatif. On a :

@H

@Unj
� 0;8j (6.52)

Démonstration
Considérons un gradient de la solution 6.51 sous la forme suivante :

Un+1j+1 � Un+1j =
Pm

k=�lbkU
n
j+k+1 �

Pm
k=�lbkU

n
j+k =

Pm
k=�lbk

�
Unj+k+1 � Unj+k

�
(6.53)

Si les données sont monotones, chacun des gradients du terme de droite ont le même
signe, et si tous les bk sont positifs, les gradients Un+1j+1 � Un+1j auront aussi le même
signe. Par conséquent, la condition su¢ sante pour que la monotonicité soit préservée
est que les coe¢ cients de 6.51 soient tous positifs. Supposons, maintenant que l�un
des coe¢ cients soit négatifs, par exemple bk. Prenons le cas simple où :

U0j = 1; j � 0; U0j = 0; j < 0 (6.54)

Toutes ces données sont monotones, avec des gradients nuls, excepté pour u01�u00 qui
est négatif. Dans la solution, il y a un gradient u0j+1 � u0j avec j = �k, égal à :

Un+1�k+1 � Un+1�k =
Pm

k=�lbk
�
U0j+k+1 � U0j+k

�
= bk

�
U01 � U00

�
(6.55)

qui est positif. Par suite, les coe¢ cients bk positifs sont aussi nécessaires pour garantir
la monotonicité.

6.4 Schémas linéaires du second ordre et plus

Une approximation au premier ordre d�un schéma numérique permet d�obtenir rapi-
dement des résultats (les schémas ne sont pas très complexes), mais en général avec
des amortissement plus ou moins important au voisinage de discontinuité ou avec des
di¢ cultés dans les zônes soniques par exemple. Dans la pratique, et en particulier
dans le milieu industriel, on demande au moins une précision d�ordre deux en espace
pour les problèmes stationnaires et de plus d�ordre deux en temps pour les problèmes
instationnaires.
6.4.1 Construction de schémas linéaires de précision donnée

Il est possible de construire des schémas linéaires ayant la forme 6.51 et qui soit du
second ordre ou plus. Pour le montrer, considérons l�expression :

Un+1j �
Pm

k=�lbkU
n
j+k (6.56)

où l�on remplace Unj par u
n
j :

un+1j �
Pm

k=�lbku
n
j+k (6.57)
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Cette di¤érence représente l�erreur locale " du schéma, on a donc :

" = un+1j �
Pm

k=�lbku
n
j+k (6.58)

Pour l�équation de convection scalaire, l�erreur de troncature pour un schéma quel-
conque s�écrit :

" =
X
j

(�t)j

j!

�
@ju

@tj

�
�
X
j

X
k

bk
(k�x)j

j!

�
@ju

@xj

�
(6.59)

Or, par induction, à partir de l�équation de convection, on a :�
@ju

@tj

�
= (�a)j

�
@ju

@xj

�
(6.60)

Par suite, les termes contenant une valeur particulière de j dans l�expression de "
sont :

(�t)j

j!

�
@ju

@tj

�
�
X
k

bk
(k�x)j

j!

�
@ju

@xj

�
(6.61)

Par conséquent, pour obtenir un schéma précis à l�ordre m = j, ces termes doivent
disparaître et l�on a les conditions suivantes, dites conditions de consistances :

kRX
k=�kL

bkk
j = (�c)j ; o � j � m (6.62)

6.4.2 Le schéma de Lax-Wendro¤

Considérons maintenant une généralisation de 6.22 sous la forme suivante :

Un+1j = Unj � b1a�t

�
Unj � Unj�1

�x

�
� b2a�t

�
Unj+1 � Unj

�x

�
(6.63)

Si on pose :

b1 =
1

2
(1 + c); b2 =

1

2
(1� c) (6.64)

on obtient après arrangement le schéma appelé schéma de Lax-Wendro¤ :

Un+1j =
1

2
c(1 + c)Unj�1 + (1� c2)Unj �

1

2
c(1� c)Unj+1 (6.65)

ou :

Un+1j = Unj �
1

2
c
�
Unj+1 � Unj�1

�
+
c2

2

�
Unj+1 � 2Unj + Unj�1

�
(6.66)

Si on compare 6.65 avec 6.51, on a :

b�1 =
1

2
c(1 + c); b0 = (1� c2); b+1 = �

1

2
c(1� c) (6.67)
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Or, d�après 6.62 avec 6.67:
1X

k=�1

bkk
0 = 1 = (�c)0 (6.68)

1X
k=�1

bkk
1 = �c = (�c)1 (6.69)

1X
k=�1

bkk
2 = c2 = (�c)2 (6.70)

1X
k=�1

bkk
3 = �c 6= (�c)3 (6.71)

Le schéma de Lax-Wendro¤ est donc du second ordre en espace et en temps. Par
ailleurs, son équation modi�ée a la forme :

@Û

@t
+ a

@Û

@x
= �LW

@3Û

@x3
(6.72)

avec :

�LW = �a(�x)
2

6

�
1� c2

�
(6.73)

Ce schéma est donc dispersif. Une question maintenant se pose, d�après l�étude e¤ec-
tuée sur les schémas du premier ordre : ceux-ci sont en général dissipatif et monotone.
Or, la propriété de monotonicité est une propriété que l�on aimerait garantir pour les
schémas d�ordre supérieur. Car, en e¤et, un schéma non monotone sera un schéma qui
pourra générer des oscillations dans la solution. Est-il possible d�obtenir des schémas
d�ordre supérieur qui soit monotone ? On n�oublie pas cependant, que pour l�instant
ne sont envisagés que des schémas linéaires. Le théorème suivant va répondre à cette
question.
6.4.3 Le théorème de Godunov pour les schémas linéaires d�ordre � 2
Il n�y a pas de schéma linéaire et monotone de la forme

Un+1j =
mP

k=�l
bkU

n
j+k (6.74)

ayant une précision du second ordre ou supérieur. En e¤et, reprenons le cas du schéma
de Lax-Wendro¤ qui est du second ordre en espace et en temps. On se rappelle que
pour préserver la monotonicité, les coe¢ cients bk doivent être positifs ou nuls. Or, les
coe¢ cients de ce schéma (voir 6.67) ne sont pas tous positifs ou nuls : par conséquent
ce schéma n�est pas monotone. En e¤et, posons :

Sj =

kRX
k=�kL

bkk
j (6.75)
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On a en supposant que les bk sont positif et en posant bk = d2k:

S0 =

kRX
k=�kL

d2k = 1 (6.76)

S1 =

kRX
k=�kL

kd2k = �c (6.77)

S2 =

kRX
k=�kL

k2d2k = c2 (6.78)

Or, avec 6.75:

S2 =

kRX
k=�kL

bkk
2 (6.79)

on peut écrire :

S2 =

kRX
k=�kL

bk (k + c)2 � 2c
kRX

k=�kL

bkk � c2
kRX

k=�kL

bk (6.80)

soit :

S2 =

kRX
k=�kL

bk (k + c)2 � 2cS1 � c2S0 (6.81)

et avec 6.76 et 6.77 :

S2 =

kRX
k=�kL

bk (k + c)2 + c2 � c2 (6.82)

Or cette relation a été obtenue en supposant que bk � 0: On en conclut qu�un schéma
linéaire du second ordre à coe¢ cient positif est impossible. En conséquence, on est
obligé de se résigner au fait que les schémas linéaires du second ordre (ou supérieur)
ne sont pas monotones : ce qui signi�e qu�ils sont générateurs d�oscillations. Ce
résultat est la raison fondamentale pour laquelle les problèmes hyperboliques sont
numériquement plus di¢ ciles à résoudre que les problèmes elliptiques ou paraboliques.
Si l�on reprend les mêmes données initiales que pour le schéma centré et le schéma
CIR, on obtient pour le schéma de Lax-Wendro¤ :26666664

n n j 0 1 2 3 4 5 6 7 8 9
P

0 1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 1 0:125 0 0 0 0 5:125
2 1 1 1 1 1:109 0:468 0:047 0 0 0 5:624
3 1 1 1 0:986 1:148 0:762 0:211 0:018 0 0 6:125
4 1 1 1:002 0:971 1:135 0:975 0:418 0:093 0:0067 0 6:6

37777775
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Figure 7 Schéma de Lax-Wendro¤

soit la �gure 7. On véri�e que le schéma est légèrement dispersif (décalage de la
solution numérique par rapport à la solution exacte). On voit aussi apparaître une
oscillation à l�amont de la discontinuité. Si on continue à itérer, cette oscillation
sera toujours présente mais ne s�ampli�era pas. Un autre exemple avec un saut fait
clairement apparaître les oscillations en amont des discontinuités (�gure 8).
6.4.4 Les solutions parasites des schémas d�ordre supérieur

Un autre problème avec les schémas linéaires d�ordre supérieur est qu�ils admettent des
solutions parasites. Par exemple, considérons de nouveau le schéma de Lax-Wendro¤
(d�ordre 2 en espace et en temps) sous la forme :

Un+1j = Unj +
1

2
c(1 + c)Unj�1 � c2Unj �

1

2
c(1� c)Unj+1 (6.83)

On a une solution stationnaire indépendante de n si U satisfait la relation de récur-
rence :

1

2
c(1 + c)Uj�1 � c2Uj �

1

2
c(1� c)Uj+1 = 0 (6.84)

Les solutions pour cette relation sont de la forme :

Uk = rk (6.85)

qui satisfait 6.83 si :
1

2
c(1 + c)� c2r � 1

2
c(1� c)r2 = 0 (6.86)

On peut réécrire cette relation sous forme factorisée :

c

2
(1� r) [(1 + c) + (1� c)r] = 0 (6.87)
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Figure 8 Schéma de Lax-Wendro¤

Maintenant, la seule solution stationnaire est U = Cte; c�est le cas pour r = 1. La
seconde solution de 6.86 est :

r = �1 + c
1� c

(6.88)

qui correspond à une solution oscillante qui s�ampli�e dans la direction de l�écoulement
(sens des j positif) :

Uk = rk = (�1)k
�
1 + c

1� c

�k
(6.89)

L�expérience montre que ces oscillations peuvent apparaître et par suite il faudra
trouver un moyen de les éliminer.

6.4.5 Quelques autres schémas classiques

Schéma de Warming et Beam

un+1j =
1

2
c(c� 1)unj�2 + c(2� c)unj�1 +

1

2
(c� 1)(c� 2)unj (6.90)

basé sur la formulation :

un+1j = b�2u
n
j�2 + b�1u

n
j�1 + b0u

n
j+1 (6.91)

ou :

Un+1j = Unj � c
�
Unj � Unj�1

�
+
1

2
c(c� 1)

�
Unj � 2Unj�1 + Unj�2

�
(6.92)
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Son équation modi�ée a la forme :

@Û

@t
+ a

@Û

@x
= �BW

@3Û

@x3
(6.93)

avec :

�BW = a
(�x)2

6
(1� c)(2� c) (6.94)

et véri�ant la condition CFL :

1 � c � 2 (6.95)

Ce schéma est dispersif. Avec les même conditions initiales que les autre cas traités,
on a: 26666664

n n j 0 1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 5

8
�1
8

0 0 0 0
2 1 1 1 1 1 43

64
19
64

�11
64

2
64

0 0
3 1 1 1 1 1 449

512
251
512

38
512

�79
512

33
512

� 2
512

4 1 1 1 1 1 3907
4096

2895
4096

11717
4096

� 260
4096

413
4096

271
4096

37777775 (6.96)

On obtient la �gure 9. On remarquera que contrairement au schéma de Lax-Wendro¤,

Figure 9 Schéma de Beam et Warming

l�oscillation apparaît après la discontinuité. La raison provient du signe de la disper-
sion. En présence d�un saut on a la �gure ??:

Dans le cas d�un écoulement unidimensionnel dans une tuyère et en présence
d�un choc on obtient la �gure 11:
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Figure 10 Schéma de Beam-Warming sans dissipation

Famille des schémas-q

Les schémas L.F., C.I.R. et L.W. appartiennent à la famille des schéma-q :

Un+1j = Unj �
1

2
c
�
Unj+1 � Unj�1

�
+
q

2

�
Unj+1 � 2Unj + Unj�1

�
(6.97)

avec, en particulier :

q =

8<:
1; L:F:
jcj ; C:I:R:
c2; L:W:

9=; (6.98)

Une étude de stabilité conduit au facteur d�ampli�cation G(�; c; q) suivant :

G(�; c; q) = 1� q(1� cos�)� ic sin� (6.99)

avec :

jG(�; c; q)j =
�
1� 4

�
q � c2 �

�
q2 � c2

�
sin2

�

2

�
sin2

�

2

�1=2
(6.100)

En choisissant � petit on constate que q � c2 ne doit pas être négatif si l�on veut
que le facteur d�ampli�cation jG(�; c; q)j soit inférieur à 1. On doit alors véri�er la
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Figure 11 Schéma de Beam&Warming

condition :
c2 � q � 1 (6.101)

On a pour � petit :

jG(�; c; q)j = 1� 1
2

�
q � c2

�
�2 (6.102)

et pour le déphasage �:

�

�conv:
= 1� 1

6

�
1 + 2c2 � 3q

�
�2 (6.103)

6.4.6 Résumé

A ce stade de l�étude, qu�avons nous ? Nous avons étudié deux types de schémas:
les schémas linéaires du premier ordre et les schémas linéaires du second
ordre. Nous avons vu que les schémas linéaires du premier ordre avaient trois
caractéristiques essentielles: leur faible précision, leur forte dissipation au voisinage
de discontinuité et en�n leur monotonicité. Les schémas linéaires du second ordre
(ou plus) ont évidemment une meilleure précision mais générent des oscillations au
voisinage de discontinuité et par conséquent sont non-monotones. Jusqu�à présent,
nous n�avons traité que de problèmes avec des équations linéaires. Que se passe-t-il
si l�on passe à un problème non linéaire, ce qui sera le cas lors de la résolution des
équations d�Euler ?

6.5 Problèmes non linéaires

6.5.1 Formulation non conservative et discontinuités

On écrit l�équation de Burgers non-visqueuse (cas limite non-linéaire des équations
d�Euler (quantité de mouvement) monodimensionnelles instationnaires) sous la forme
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suivante :
@u

@t
+ u

@u

@x
= 0 (6.104)

on peut choisir le schéma suivant avec �t
�x
= � :

Un+1j = Unj � �Unj (U
n
j � Unj�1) (6.105)

si on suppose que � = 0:5, on obtient avec les conditions initiales classiques d�un saut:26666664
n n j 0 1 2 3 4 5 6 7 8 9

P
0 1 1 1 1 1 0 0 0 0 0 5
1 1 1 1 1 1 0 0 0 0 0 5
2 1 1 1 1 1 0 0 0 0 0 5
3 1 1 1 1 1 0 0 0 0 0 5
4 1 1 1 1 1 0 0 0 0 0 5

37777775 (6.106)

Cette méthode convergera pour des solutions régulières, mais ne convergera pas en
présence de discontinuités si le maillage est ra¢ né. En e¤et, si l�on a :

u(x; 0) = u0(x) =

�
0; pour j < 0
1; pour j � 0

�
(6.107)

pour laquelle la solution de l�équation de Burgers est :

u(x; t) = u0(x� t=2) (6.108)

les données discrètes correspondantes sont :

U0j =

�
0; pour j < 0
1; pour j � 0

�
(6.109)

On peut alors véri�er que U1j = U0j pour tout j et de même U
n
j = U0j et par suite la

solution converge vers u(x; t) = u0(x). Dans cette exemple, la solution est évidem-
ment fausse; mais des comportements similaires peuvent apparaître avec d�autres
données initiales qui peuvent donner des solutions qui paraissent correctes mais qui
sont fausses. La �gure 12 montre la solution exacte et la solution calculée au temps
t = 1 avec des données suivantes UL = 1:2 et UR = 0:5.26666664

n n j 0 1 2 3 4 5 6 7 8 9
P

0 1:2 1:2 1:2 1:2 1:2 0:5 0:5 0:5 0:5 0:5 8:5
1 1:2 1:2 1:2 1:2 1:2 0:675 0:5 0:5 0:5 0:5 8:675
2 1:2 1:2 1:2 1:2 1:2 0:852 0:544 0:5 0:5 0:5 8:9
3 1:2 1:2 1:2 1:2 1:2 1:000 0:628 0:511 0:5 0:5 9:14
4 1:2 1:2 1:2 1:2 1:2 1:1 0:745 0:54 0:497 0:5 9:38

37777775 (6.110)

On obtient un résultat admissible mais avec une vitesse de propagation totalement
fausse.
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Figure 12 Problème non linéaire

Conclusion

Manifestement, pour ce schéma de discrétisation simple appliqué à l�équation de Burg-
ers non linéaire, on constate que la capture d�un choc n�est pas correcte. Ou bien la
solution est complètement fausse, ou bien elle paraît correcte mais avec une vitesse
de propagation fausse. On peut se poser alors la question de savoir si avant toute
chose, il ne serait pas important d�introduire dès le départ de l�étude une technique
de discrétisation permettant de capter automatiquement le choc. Par ailleurs, nous
avons constaté que les schémas linéaires avaient des di¢ cultés pour capter les chocs.
Aussi allons-nous d�une certaine manière de nouveau repartir de zéro. Tout d�abord,
nous allons rechercher une formulation discrète permettant de garantir la capture des
chocs. Comme par ailleurs la monotonicité est une propriété importante garantis-
sant que des oscillations n�apparaissent pas, nous partirons d�un schéma du premier
ordre. Nous chercherons ensuite à augmenter la précision de notre schéma.Ce n�est
qu�ensuite que l�on cherchera à garantir la monotonicité ainsi que la précision.

6.6 Formulation conservative

6.6.1 Quand deux caractéristiques se rencontrent

Considérons une équation aux dérivées partielles non linéaire sous forme conservative
pour une fonction scalaire f(u) :

@u

@t
+
@f(u)

@x
= 0 (6.111)

avec la condition initiale suivante :

u(x; 0) = �(x) (6.112)
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Dans la suite, on supposera que la fonction f(u) est convexe, c�est-à-dire qu�elle véri�e
la propriété :

@2f(u)

@u2
> 0 (6.113)

A titre d�exemple, considérons l�équation de Burgers pour laquelle :

f(u) =
1

2
u2 (6.114)

Soit a la vitesse de l�onde dé�nie par :

a(u) =
@f(u)

@u
(6.115)

La convexité implique que :
@a(u)

@u
> 0 (6.116)

En supposant que u(x; t) soit di¤érentiable, l�équation 6.111 peut être écrite sous sa
forme quasi linéaire :

@u

@t
+ a(u)

@u

@x
= 0 (6.117)

Considérons maintenant les solutions x(t) de l�équation :

dx

dt
= a(u(x(t); t)) (6.118)

u(x; 0) = �(x) (6.119)

En di¤érentiant u(x(t); t) par rapport à t, on peut voir que :

u(x(t); t) = u(x� at; 0) = �(xo � at) (6.120)

est une solution de 6.111. La fonction x(t) est une caractéristique. Que devient u le
long de cette courbe ? Pour cela calculons la dérivée totale de u :

du(x(t); t)

dt
=
@u

@t
+
dx

dt

@u

@x
=
@u

@t
+ a(u(x(t); t))

@u

@x
(6.121)

Or, d�après 6.117 le membre de droite est nul. Par suite la dérivée totale de u le long
de la courbe est nulle : par conséquent u est constant le long des caractéristiques.
Comment évolue la vitesse a de l�équation de Burgers le long d�une caractéristique ?
On a :

dx

dt
= a(u(x(t); t)) = a(u(xo; 0)) (6.122)

ou :
dx

dt
= �(xo) (6.123)
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Figure 13 Choc

puisque sur la caractéristique, on a :

u(x; t) = u(xo; 0) (6.124)

Par conséquent, pour l�équation de Burgers, les caractéristiques sont des droites de
pente �(xo): La di¤érence entre les cas linéaires et non linéaires est que les pentes
des caractéristiques ne sont pas nécessairement constantes dans le second cas. Par
suite, lorsque on voit évoluer ces caractéristiques au cours du temps, elles peuvent
se rencontrer (�gure 13). Ainsi, si on a �(x1) > �(x2) pour x1 > x2; alors les
deux caractéristiques se rencontreront pour un temps �ni. Même si les conditions
initiales sont régulières, il existe alors un temps critique Tc pour lequel la solution
n�est plus unique. La solution est-elle celle provenant de la caractéristique 1 ou de la
caractéristique 2 ou des deux? Pour le savoir, considérons le comportement spatial
de u. On connaît la solution exacte pour tout temps t :

u(x; t) = �(x� a(u(x(t); t))t) (6.125)

La dérivée partielle de u par rapport à x donne :

@u

@x
= �0 � t

@a(u(x(t); t))

@x
�0 (6.126)

ou :
@u

@x
= �0 � t

da

du

@u

@x
�0 (6.127)

soit :
@u

@x
=

�0

1 + t da
du
�0

(6.128)
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Si �0 est négatif, alors @u
@x
diverge, car le dénominateur tend vers zéro au temps Tc où:

Tc = �
1

da
du
�0

(6.129)

On pourrait alors penser que la solution ne peut continuer après le temps Tc: Cepen-
dant, d�un point de vue physique, on sait qu�il existe des solutions pour des équations
hyperboliques non linéaires après le temps critique. Pour connaître la manière dont
évolue cette solution, il est nécessaire d�introduire le concept de solution faible.

6.6.2 Le concept de solution faible

Dé�nition

Il n�est pas toujours possible de dé�nir une solution classique d�une équation ou d�un
système hyperbolique, c�est-à-dire une solution qui soit dé�nie et continue pour tout
t. Dans le cas de problèmes où les solutions des équations peuvent être discontinues,
on dé�nit une classe de solutions plus étendue que celle des solutions classiques,
ce sont les solutions faibles d�un système hyperbolique, solutions qui admettent des
discontinuités. De telles solutions existent pour des équations instationnaires de la
dynamique des gaz si l�on considère le cas d�écoulements avec ondes de choc. On sait
que dans un écoulement supersonique on peut rencontrer des chocs, c�est-à-dire des
lignes ou surfaces à la traversée desquelles les grandeurs caractérisant l�écoulement
sont discontinues. Les valeurs des grandeurs physiques de part et d�autre de la
discontinuité sont reliées par les équations du choc ou équations de conservation de
Rankine-Hugoniot. On dé�nit pour ce problème une classe de solutions faibles, c�est-
à-dire de solutions qui véri�ent les équations de Rankine-Hugoniot.

Démonstration

Considérons un système hyperbolique sous forme conservative :

@u

@t
+
@f(u)

@x
= 0 (6.130)

Ce système représente par exemple les équations d�Euler (conservation de la masse,
de la quantité de mouvement et conservation de l�énergie). Introduisons le vecteur :

~v =u~t+f~x (6.131)

On a : Z Z
D

div (~v) =

Z
C

~v:~nds (6.132)

mais : Z
C

~v:~nds =

Z
C

[udx�fdt] (6.133)
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Figure 14 Choc et volume de contrôle

Ainsi donc, pour le volume de contrôle [xL; xR] � [t0; tN ] une formulation intégrale
des équations de conservations s�écrit:I

C

[udx�fdt] = 0

Soit alors AB un arc de courbe le long duquel u(x; t) est discontinue (�gure 14) et
notons par uL et uR les valeurs de u de part et d�autre de AB: De même introduisons
fL et fR: On peut écrire :Z xR

xL

u
�
x; tN

�
dx�

Z xL

xR

u
�
x; t0

�
dx+

Z tN

t0
f (u (xR; t)) dt+

Z t0

tN
f (u (xL; t)) dt = 0

(6.134)
Soit :Z xR

xL

u
�
x; tN

�
dx =

Z xL

xR

u
�
x; t0

�
dx+

Z tN

t0
f (u (xL; t)) dt�

Z tN

t0
f (u (xR; t)) dt

(6.135)
Calculons tout d�abord

R xR
xL

�
u
�
x; tN

�
� u (x; t0)

�
dx:R xR

xL

�
u
�
x; tN

�
� u (x; t0)

�
dx =

uR
�
�R � Vc

�
tN � t0

��
+ uL

�
�L + Vc

�
tN � t0

��
� (uL�L + uR�R)

(6.136)
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ou : Z xR

xL

�
u
�
x; tN

�
� u

�
x; t0

��
dx = (uL � uR)Vc

�
tN � t0

�
(6.137)

puis : Z tN

t0
(f (u (xL; t))� f (u (xR; t))) dt = (f (uL)� f (uR))

�
tN � t0

�
(6.138)

Soit �nalement :

(uL � uR)Vc
�
tN � t0

�
= (f (uL)� f (uR))

�
tN � t0

�
(6.139)

Posons :
[u] = uL � uR; [f (u)] = f (uL)� f (uR) (6.140)

Ainsi si u(x; t) est discontinue sur un arc de courbe, une solution faible satisfait alors
les conditions de saut :

Vc [u] = [f (u)] (6.141)

soit :

Vc =
[f (u)]

[u]
=
f (uL)� f (uR)
uL � uR

(6.142)

où Vc = dx
dt
est la vitesse de propagation du choc. Cette relation est la relation de

Rankine-Hugoniot. Si f est une fonction régulière, on a :

f (uL)� f (uR)
uL � uR

=

�
@f

@u

�
�

(6.143)

où � est une valeur intermédiaire entre uR et uL. Ainsi, lorsque uL ! uR, alors :

Vc !
�
@f

@u

�
UL+UR

2

= a

�
uL + uR

2

�
(6.144)

Cela signi�e que les ondes se propage le long des caractéristiques.

Conclusion

La conclusion de ces résultats est clair. La solution faible permet de capter automa-
tiquement les chocs dans le cas d�une formulation obtenue à partir des équations de
conservations de la dynamique des gaz, puisque on véri�e les relations de Rankine-
Hugoniot. On pourrait en conclure qu�il su¢ t pour un problème donné, en présence
de discontinuités d�introduire une formulation conservative. Ce n�est cependant pas
si simple.
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6.6.3 La formulation conservative mathématique ou physique

Le problème est de savoir si l�on parle de conservation au sens purement mathéma-
tique ou si l�on parle de conservation mathématique ayant un sens physique. Pour le
montrer, considérons les équations d�un écoulement isotherme de la dynamique des
gaz. Sous forme conservative, issues des principes physiques de conservation, on a :

@

@t

�
�
�u

�
+

@

@x

�
�u

�u2 + a2�

�
= 0 (6.145)

où a, la vitesse du son est constante. Ces équations peuvent être réécrite sous la
forme suivante où interviennent les variables primitives:

@�

@t
+ u

@�

@x
+ �

@u

@x
= 0 (6.146)

et :
@u

@t
+ u

@u

@x
+
a2

�

@�

@x
= 0 (6.147)

On peut alors reconstruire un nouveau système conservatif en écrivant :

@

@t

�
�
u

�
+

@

@x

�
�u

1
2
u2 + a2 ln �

�
= 0 (6.148)

Mathématiquement, on a bien une formulation conservative, cependant ces dernières
équations 6.148 n�ont pas de sens physique, car elles expriment la conservation de la
masse et de la vitesse ! On en déduit que la formulation conservative doit faire inter-
venir les variables conservatives issues de la formulation mathématique des principes
de conservation physique.

6.6.4 Non-unicité de la solution

Quand bien même, la formulation conservative serait correcte, un autre problème se
présente : la solution faible n�est pas unique ! En d�autres termes, pour les mêmes
conditions initaiales, on peut obtenir plusieurs solutions faibles. Ceci est immédiat
si on se réferre à la solution pour la vitesse du choc, c�est-à-dire à la relation de
Rankine-Hugoniot. En e¤et, on peut écrire :

Vc =
f (uL)� f (uR)

uL � uR
=
f (uR)� f (uL)

uR � uL
(6.149)

Quelle est la bonne solution ? Il est clair alors qu�il faudra choisir la solution physique.
Pour cela, on introduit la condition d�entropie.

6.6.5 La condition d�entropie

D�après l�analyse précédente, comment alors déterminer, ou plutôt choisir la bonne
solution ? La réponse à cette question est d�imposer que la bonne solution faible soit
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la limite de solutions associés à la formulation visqueuse (problème physique réel) du
problème lorsque l�on fait tendre la viscosité vers zéro. Soit u� la solution de :

@u�

@t
+
@f (u�)

@x
= �

@2u�

@x2
(6.150)

où � est la viscosité. On impose alors que :

lim
�!0

u� = u (6.151)

La solution faible qui véri�e cette condition conduit alors à une problème bien posé.
La solution existe et elle est unique. On dit alors que les solutions qui satisfont
cette condition véri�ent la condition d�entropie. En fait, on sait que physiquement,
l�entropie ne peut qu�augmenter à travers un choc, et la condition 6.150 est
l�un des mécanismes permettant d�identi�er la solution physique ayant cette propriété.
Il existe un critère équivalent que l�on peut utiliser pour choisir la bonne solution et
qui est plus pratique à mettre en place. Rappelons que la vitesse Vc de la discontinuité
est donnée par :

Vc =
f (uL)� f (uR)

uL � uR
(6.152)

et considérons le cas de l�équation de Burgers, avec la condition :

uL > uR (6.153)

Or, puisque f est une fonction convexe, c�est-à-dire puique @
2f
@u2

> 0, alors da
du
= @2f

@u2
> 0

et avec uL > uR on a :
a (uL) > a (uR) (6.154)

et comme :

Vc =
a (uL) + a (uR)

2
(6.155)

la condition d�entropie est véri�ée si :

a (uL) > Vc > a (uR) (6.156)

Les pentes des caractéristiques à gauche (indice L) sont plus grandes que celles à
droite (indice R) et par conséquent les caractéristiques s�entrecroisent au niveau du
choc. On a bien une onde de compression. Par contre, si on prenait comme condition
:

uL < uR (6.157)

alors :

a (uL) < a (uR) (6.158)

Les caractéristiques s�éloigneraient du choc. On aurait un choc de raréfaction, qui
violerait la condition d�entropie 6.156.
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Conclusion

En dé�nitive, pour capter correctement un choc, il faut utiliser la formulation conser-
vative mathématique issue des principes de conservation physique, avec les variables
conservatives, et pour garantir l�unicité, imposer la condition d�entropie. On verra
par la suite que lors de la formulation discrète des équations certains schémas véri�ent
automatiquement la condition d�entropie.



Chapter 7

SCHÉMAS DE DISCRÉTISATION CONSERVATIFS

7.1 Introduction

La recherche de solution à des problèmes numériques où apparaissent des discon-
tinuités, telles que les ondes de choc, imposent des contraintes, d�une part sur la
formulation mathématique des équations de base, et d�autre part sur les schémas
numériques mis en oeuvre. Ainsi, il est possible de formuler les équations de base,
soit sous forme di¤érentielle non conservative, soit sous forme intégrale. Par ailleurs,
les variables utilisées peuvent être les variables primitives ou les variables conserva-
tives. Or, on a vu précédemment que les formulations basés sur les variables autres
que les variables conservatives donnent de mauvaises conditions de choc : l�intensité
du choc, sa vitesse et sa position sont fausses. En fait, on peut démontrer que les
schémas dit non-conservatifs ne convergent pas vers la bonne solution.

Ainsi, pour l�équation linéaire sous forme non-conservative @u
@t
+ a@u

@x
= 0,

avec des valeurs initiales régulières, les méthodes classiques donnent des résultats
relativement corrects. Par contre, si des discontinuités apparaissent, les di¢ cultés
commencent. Ainsi, les techniques du premier ordre ont tendance à atténuer les
discontinuités de manière inacceptable (de tels schémas sont dissipatifs). Les schémas
classiques du second ordre ou d�ordre supérieur génèrentquant-à-eux des oscillations
aux voisinages des discontinuités.

Mais en plus, les schémas sous forme non conservative, ne peuvent trouver les
chocs sans l�utilisation explicite des relations de Rankine-Hugoniot pour capturer les
chocs (technique de capture de choc).

Il faut cependant aussi noter qu�il y a des di¢ cultés supplémentaires pour les
problèmes non-linéaires, qui n�apparaissent pas pour les problèmes linéaires. Ainsi,
on peut dériver une in�nité de loi de conservation qui sont équivalentes pour des
solutions régulières, mais qui peuvent avoir di¤érentes solutions faibles. Ces solutions
si elles existent d�un point de vue mathématique n�ont pas nécessairement de sens
physique. En e¤et, les solutions faibles des lois de conservations hyperboliques ne sont
pas déterminées de manière unique par la donnée des valeurs initiales. En�n, même
si on a la bonne formulation mathématique, on a vu qu�une condition d�entropie est
parfois nécessaire pour obtenir la solution physique correcte.



106 Schémas de discrétisation conservatifs

7.2 Première approche

Considérons la formulation conservative de l�équation de Burgers non-linéaire :

@u

@t
+
@f(u(x; t))

@x
= 0 (7.1)

avec :
f(u(x; t)) =

1

2
u2(x; t) (7.2)

et introduisons le schéma rétrograde suivant :

Un+1j = Unj � �

"�
Unj
�2
2

�
�
Unj�1

�2
2

#
(7.3)

où � = �t
�x
. Si on e¤ectue les calculs avec les mêmes données déjà utilisée pour une

discontinuitée et avec � = 1=2, on obtient:26666664
n n j 0 1 2 3 4 5 6 7 8 9

P
0 1 1 1 1 1 0: 0: 0: 0: 0: 5
1 1 1 1 1 1 1:25 0: 0: 0: 0: 6:25
2 1 1 1 1 1 1:11 0:39 0: 0: 0: 6:5
3 1 1 1 1 1 1:05 0:66 0:038 0: 0: 6:75
4 1 1 1 1 1 1:02 0:826 0:1465 0: 0: 7

37777775 (7.4)

On voit donc bien sur la �gure 1 que la solution évolue correctement mais avec

Figure 1 Schéma conservatif avec f(Unj ) =
1
2
Unj

un certain amortissement. Cette forme n�est cependant pas la forme conservative
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numérique correcte comme nous allons le voir immédiatement. En e¤et, la formulation
n�est valable que pour une problème où la propagation des ondes va de la gauche vers
la droite (schéma rétrograde). On aura évidemment des di¢ cultés si les ondes se
propagent dans l�autre sens.

7.3 Formulation intégrale simpli�ée au problème monodimensionnel

Considérons pour notre problème monodimensionnel instationnaire (�gure 2) les cel-
lules de calculs sous forme rectangulaire [xj�1=2; xj+1=2]�[tn; tn+1]. On a maintenant à
faire à des moyennes sur les cellules dé�nies sur un volume �ni. Soit alors un domaine
[0; L] � [0; T ] dans le plan x; t. On décompose le domaine de longueur L selon xen
M �volumes �nis� tels que (�gure 2):

xj�1=2 = (j � 1)�x � x � xj+1=2 = (j + 1)�x (7.5)

avec :

xj�1=2 � xj+1=2 = �x =
L

M
(7.6)

et
tn+1 � tn = �t (7.7)

La valeur moyenne sur la face de la cellule j, au temps t = tn = n�t est :

Unj =
1

�x

Z xj+1=2

xj�1=2

u(x; tn)dx (7.8)

La valeur moyenne ainsi obtenue sera assignée au centre j de la face. L�équation sous
forme conservative est :

@u

@t
+
@f(u(x; t))

@x
= 0 (7.9)

On intègre alors sur le domaine de calcul dé�ni par le �volume�V = dxdt.Z
V

f@u
@t
+
@f(u(x; t))

@x
gdxdt = 0 (7.10)

Si u(x; t) est une solution de l�équation 7.9, elle satisfait la formulation intégrale de
la loi de conservation: Z xj+1=2

xj�1=2

fu(x; tn+1)gdx = (7.11)Z xj+1=2

xj�1=2

fu(x; tn)gdx�
�Z tn+1

tn

f(u(xj+1=2; t))dt�
Z tn+1

tn

f(u(xj�1=2; t))dt

�
(7.12)

En divisant par �x et en utilisant la dé�nition de la moyenne sur une face (voir 7.8),
il vient :

Un+1j = Unj �
1

�x

�Z tn+1

tn

f(u(xj+1=2; t))dt�
Z tn+1

tn

f(u(xj�1=2; t))dt

�
(7.13)
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Figure 2 Domaine de calcul

On introduit alors la fonction de �ux numérique F (Unj ; U
n
j+1) qui joue le rôle

d�un �ux moyen F nj+1=2 en xj+1=2 sur l�intervalle de temps [tn; tn+1].

F (Unj ; U
n
j+1) = F nj+1=2 =

1

�t

Z tn+1

tn

f(u(xj+1=2; t))dt (7.14)

Par suite, la relation 7.13 prend la forme :

Un+1j = Unj �
�t

�x

�
F nj+1=2 � F nj�1=2

�
(7.15)

Pour résoudre 7.15 il faut une relation pour déterminer le �ux sur les interfaces. En
e¤et, seules sont connues à priori, comme résultats de calcul les valeurs de Unj aux
centres des faces. On peut par exemple considérer l�approximation :

F nj+1=2 =
1

2

�
F nj
�
Unj
�
+ F nj+1

�
Unj+1

��
(7.16)

d�où :

Un+1j = Unj �
�t

2�x

�
F nj+1 � F nj�1

�
(7.17)

Ainsi, il existe un moyen pour garantir que la méthode numérique ne convergera pas
vers une fausse solution. On doit écrire la méthode numérique elle-même sous forme
conservative, c�est-à-dire si on considère la formulation semi-discrète :

dU

dt
= � 1

�x
[Fj+1=2(U

n
j�p; U

n
j�p+1; ::; U

n
j+q)� Fj�1=2(U

n
j�p�1; U

n
j�p; ::; U

n
j+q�1] (7.18)
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et, par exemple avec un schéma d�intégration temporel de type Euler :

Un+1j = Unj � �[Fj+1=2(Unj�p; Unj�p+1; ::; Unj+q)� Fj�1=2(Unj�p�1; Unj�p; ::; Unj+q�1] (7.19)

où F est la fonction de �ux numérique, fonction de de p + q + 1 arguments et � le
rapport �t

�x
. Ainsi dans le cas simple où p = 0 et q = 1, F est fonction de deux

variables et l�on obtient:

Un+1j = Unj � �[Fj+1=2(U
n
j ; U

n
j+1)� Fj�1=2(U

n
j�1; U

n
j ] (7.20)

La fonction �ux numérique Fj+1=2 sur l�interface j + 1=2 est une approximation du
�ux physique f(u):

7.3.1 Application à l�équation de Burgers

Si on applique tout d�abord la formulation 7.15 à l�équation scalaire de convection,
une formulation du �ux numérique peut s�écrire F = aU , et le schéma obtenu se
réduit à une formulation qui est instable. Pour le rendre stable, on introduit la
formulation de Lax-Friedrichs. La relation 7.17 devient alors :

Un+1j =
1

2

�
Unj+1 + Unj�1

�
� �t

2�x

�
F nj+1 � F nj�1

�
(7.21)

Cette relation n�a pas la forme conservative 7.17. Mais on peut écrire :

Un+1j = Unj +
1

2

�
Unj+1 � Unj � Unj + Unj�1

�
� �t

2�x

�
F nj+1 + F nj � F nj � F nj�1

�
(7.22)

Si maintenant on pose pour le �ux numérique :

F �nj+1=2 =
1

2

�
F nj+1 + F nj

�
� 1
2

�x

�t

�
Unj+1 � Unj

�
(7.23)

le schéma 7.24 peut être considéré comme formellement équivalent à 7.15 :

Un+1j = Unj �
�t

�x

�
F �nj+1=2 � F �nj�1=2

�
(7.24)

Appliquons le schéma 7.24 sur notre exemple de base, on obtient :26666664
n n j 0 1 2 3 4 5 6 7 8 9

P
0 1 1 1 1 1 0: 0: 0: 0: 0: 5
1 1 1 1 1 0:75 0:75 0: 0: 0: 0: 5:5
2 1 1 1 0:984 0:984 0:516 0:516 0: 0: 0: 6
3 1 1 0:999 0:999 0:925 0:925 0:324 0:324 0: 0: 6:5
4 1 1:00 1:00 0:997 0:997 0:812 0:812 0:188 0:188 0: 7

37777775
Cette solution est correcte (�gure 3), même si l�on obtiendra de meilleurs solutions
par la suite.
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Figure 3 Formulation conservative de LF

7.3.2 Consistance de la formulation conservative

La formulation du �ux numérique des schémas conservatifs doit être consistante avec
le �ux physique. La méthode 7.15 est dite consistante avec l�équation di¤érentielle
conservative de départ, si la fonction de �ux numérique Fj+1=2 calculée sur l�interface
j+1=2 se réduit à la valeur vraie du �ux f dans le cas d�écoulement uniforme constant,
c�est-à-dire si l�on a :

U(x; t) = V = Cte (7.25)

on doit véri�er que :
Fj+1=2(V; V ) = f(V ) 8V (7.26)

On demande en plus une certaine régularité, de manière à ce que lorsque les deux
arguments de Fj+1=2 approchent une valeur commune, U , par exemple, la valeur de
Fj+1=2 tend vers f(U) régulièrement. Pour la consistance, il su¢ t que Fj+1=2 soit une
fonction continue au sens de Lipschitz pour chacune des variables. On dira que Fj+1=2
est continue au sens de Lipschitz en U , s�il existe une constante K >> 0, qui peut
dépendre de U telle que :

jFj+1=2(V;W )� f(U)j = KMax(jV � U j; jW � U j) (7.27)

pour tout V;W avec jV � U et jW � U j su¢ samment petit. Plus généralement, si
le �ux dépend de plus de deux variables (et l�on verra que cela est nécessaire), la
méthode est consistante si :

F (U;U; :::; U) = f(U) (7.28)
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7.4 Extension des schémas-q sous forme conservative

Le schéma-q est un bon schéma pour comprendre les procédures de construction de
schémas de haute résolution que nous étudierons plus loin. Nous avons déjà vu qu�il
comprend les schémas L:F:; C:I:R et L:W .

Un+1j = Unj �
�

2
(fj+1 � fj�1) +

q

2

�
Unj+1 � 2Unj + Unj�1

�
(7.29)

7.4.1 Schémas-q pour l�équation de Burgers

Dans la formulation du schéma-q pour l�équation de Burgers linéaire, q est une fonc-
tion du nombre de Courant c :

c =
�t

�x
a (7.30)

Dans le cas non linéaire, avec des �ux f(u) non linéaires, la vitesse de propagation a
est donné par : a = df

du
et q est une fonction du nombre de Courant local :

c(u) =
�t

�x

df

du
(7.31)

Pour l�équation de Burgers non linéaire, a = df
du
= u le nombre de Courant, varable

s�exprime donc par :

c(u) =
�t

�x
u (7.32)

Lors de la formulation 7.29 du schéma-q, on doit réaliser que le paramètre q = q(c(u))
doit être évalué entre deux points successifs puisque il est fonction de c et que c est
lui-même fonction de u, et par conséquent re-écrire la relation 7.29 sous la forme
suivante:

Un+1j = Unj �
�

2
(fj+1 � fj�1) +

1

2

�
qnj+1=2

�
Unj+1 � Unj

�
� qnj�1=2

�
Unj � Unj�1

��
(7.33)

qnj+1=2 est une représentation de q(u) sur la cellule [xj; xj+1] calculée avec les valeurs
discrètes de u en xj, et xj+1, :

qnj+1=2 = q
n
j+1=2(U

n
j+1; U

n
j ) (7.34)

On a ainsi une fonction de deux arguments avec la propriété :

q(V; V ) = q(V ) (7.35)

Ainsi, pour l�équation de Burgers non linéaire, on introduira tout d�abord, pour dé�nir
df
du
= u :

Unj+1=2 =
1

2

�
Unj+1 + Unj

�
(7.36)

On calcule ensuite :

cnj+1=2 =
�t

�x
Unj+1=2 (7.37)
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On obtient alors facilement pour les schémas-q principaux les valeurs de qnj+1=2 suiv-
ants:

qnj+1=2 = 1 L:F: (7.38)

qnj+1=2 = �
��Unj+1=2�� = ��cnj+1=2�� C:I:R (7.39)

qnj+1=2 = (�U
n
j+1=2)

2 = (cnj+1=2)
2 L:W: (7.40)

7.4.2 Schémas q sous forme conservative

Considérons la formulation 7.33 du schéma-q :

Un+1j = Unj �
�

2
(fj+1 � fj�1) +

1

2

�
qnj+1=2

�
Unj+1 � Unj

�
� qnj�1=2

�
Unj � Unj�1

��
(7.41)

En remarquant que l�on peut écrire:

1

2
(fj+1 � fj�1) =

1

2
(fj+1 + fj)�

1

2
(fj�1 + fj) (7.42)

La relation 7.41 s�écrit sous la forme :

Un+1j = Unj � �

24 n
1
2
(fj+1 + fj)�

qn
j+1=2

2�

�
Unj+1 � Unj

�o
�
n
1
2
(fj�1 + fj)�

qn
j�1=2
2�

�
Unj � Unj�1

�o
35 (7.43)

En tenant compte de la formulation conservative avec F nj+1=2 = F (Unj+1; U
n
j ), c�est-à-

dire :

Un+1j = Unj � �
�
F nj+1=2 � F nj�1=2

�
(7.44)

On obtient le �ux numérique F nj+1=2 correspondant à la formulation conservative du
schéma q en posant :

F nj+1=2 =
1

2
(fj+1 + fj)�

qnj+1=2
2�

�
Unj+1 � Unj

�
(7.45)

7.5 Autres schémas numériques sous forme conservative

On considèrera donc dorénavant les schémas de la forme :

Un+1j = Unj � �
�
F nj+1=2 � F nj�1=2

�
(7.46)

où Fj+1=2, est la fonction de �ux numérique.



Autres schémas numériques sous forme conservative 113

7.5.1 Schémas du premier ordre

Considérons le schéma C:I:R. pour lequel :

qnj+1=2 = �
��Unj+1=2�� C:I:R (7.47)

La relation 7.45 s�écrit alors sous la forme :

F nj+1=2 =
1

2
(fj+1 + fj)�

1

2

��Unj+1=2�� �Unj+1 � Unj
�

(7.48)

et pour l�équation scalaire où Unj+1=2 = a:

F nj+1=2 =
1

2
(fj+1 + fj)�

1

2
jaj
�
Unj+1 � Unj

�
(7.49)

ou si a varie :
F nj+1=2 =

1

2
(fj+1 + fj)�

1

2

��anj+1=2�� �Unj+1 � Unj
�

(7.50)

7.5.2 Schémas du second ordre

Lax-Wendro¤

Considérons le schéma L:W . pour lequel :

qnj+1=2 = �2
�
Unj+1=2

�2
L:W: (7.51)

La relation 7.45 s�écrit sous la forme suivante pour l�équation de Burgers :

F nj+1=2 =
1

2
[(fnj+1 + fnj )� �

�
Unj+1=2

�2
(Unj+1 � Unj )] (7.52)

et pour l�équation de convection scalaire :

F nj+1=2 =
1

2
[(fnj+1 + fnj )� �a2(Unj+1 � Unj )] (7.53)

ou si a varie:

F nj+1=2 =
1

2
[anj+1=2(U

n
j+1 + Unj )� �

�
anj+1=2

�2
(Unj+1 � Unj )] (7.54)

Schéma de Warming et Beam

Considérons le schéma de Warming et Beam appliquée à l�équation d�onde scalaire :

Un+1j = Unj � c
�
Unj � Unj�1

�
+
1

2
c(c� 1)

�
Unj � 2Unj�1 + Unj�2

�
(7.55)

On peut écrire :

Un+1j = Unj � �

�
a
�
Unj � Unj�1

�
� 1
2
a(c� 1)

�
Unj � 2Unj�1 + Unj�2

��
(7.56)
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soit :

Un+1j = Unj � �

��
aUnj � aUnj�1

�
� 1
2
(c� 1)

�
aUnj � 2aUnj�1 + aUnj�2

��
(7.57)

ou :

Un+1j = Unj � �

��
fnj � fnj�1

�
� 1
2
(c� 1)

�
fnj � 2fnj�1 + fnj�2

��
(7.58)

Un+1j = Unj � �

�
1

2
(c� 1)fnj�1 +

1

2
(3� c)fnj �

1

2
(c� 1)fnj�2 �

1

2
(3� c)fnj�1

�
(7.59)

et �nalement, on obtient le �ux numérique de la forme conservative du schéma de
Warming et Beam :

F nj+1=2 =
1

2
(c� 1)fnj�1 +

1

2
(3� c)fnj (7.60)

7.5.3 Exemple

L�exemple suivant pour un écoulement subsonique-subsonique dans une tuyère mon-
tre clairement, pour un schéma donné (ici le schéma de Harten), la di¤érence de
comportement de ce schéma écrit sous forme non-conservative (�gure 4). et sous

Figure 4 Formulation non conservative du schéma de Harten

forme conservative (�gure 5).
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Figure 5 Formulation conservative du schéma de Harten

7.5.4 Conclusion

Par cette étude, on a montré comment construire des schémas conservatifs. Nous
savons que grâce à ce type de schéma, la méthode garantira que les chocs pourront
être capturer, puisque cette méthode véri�e automatiquement les relations du choc de
Rankine-Hugoniot. Dans la suite, nous allons chercher à construire des schémas qui
soient conservatifs et monotones.

7.6 Méthode de Godunov

7.6.1 Introduction

Godunov a été le premier à développer un schéma numérique conservatif du premier
ordre, extension du schéma C:I:R. pour les équations non-linéaires. Le principal
élément de la méthode de Godunov est l�introduction de la solution du problème de
Riemann qui peut être obtenue, soit de manière exacte, soit de manière approximée.

7.6.2 Elaboration de la méthode de Godunov avec l�équation scalaire de convection

La méthode de Godunov est une méthode conservative où les �ux numériques F nj+1=2
sont calculés en utilisant les solutions du problème local de Riemann. Une hy-
pothèse de base est que la distribution des données à un instant t est constante
par morceau. Les données sur l�interface j + 1=2 au temps n sont le couple de
valeurs

�
Unj ; U

n
j+1

�
représentant les valeurs moyennes de Unk sur les cellules j et j+1.
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Localement ont peut alors dé�nir le problème de Riemann :

@u

@t
+
@f (u)

@x
= 0 (7.61)

avec :

u(x; 0) = uo(x) =

�
uj si x < 0
uj+1 si x > 0

�
(7.62)

Ainsi à chaque pas de temps n, et sur chaque interface on a un problème local de
Riemann à résoudre. Et ce que l�on cherche est la solution globale au temps n + 1.
Trois étapes interviennent dans la méthode de Godunov pour trouver la solution Un+1j

au temps n+ 1 à partir de la solution Unj au temps n.

� Etape I (�gure 6)

Etant donnée une distribution complète de valeurs initiales, on détermine les
moyennes à un instant donné n sur chaque face j du maillage (x; tn).

Unj =
1

�x

Z xj+1=2

xj�1=2

U(x; t)dx; xj�1=2 < x < xj+1=2 (7.63)

Figure 6 Etape I

� Etape II (�gure 7)

Cette étape physique est obtenue de la solution exacte sur l�interface. Pour
l�équation linéaire de convection, la discontinuité est convectée sur une distance a�t
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Figure 7 Etape II

sans modi�cation. Lorsque a > 0, on obtient à partir des données initiales (au pas
de temps n) :

U(x; tn+1) = U(x; tn +�t) = U(x� a�t; tn) (7.64)

Le pas de temps devant véri�er la condition CFL :

c =
a�t

�x
� 1 (7.65)

ce qui implique que le déplacement ne sera jamais supérieur à �x:

� Etape III (�gures 8&9) : on détermine alors une nouvelle moyenne:

Or, sur chaque interface, sur l�interface j + 1=2 par exemple, un observateur
verrait en général, à sa droite une certaine valeur Unj+1 et à sa gauche une autre valeur
Unj puisque on a supposé que les valeurs de U

n
j étaient constantes par morceau sur

chaque cellule j: il serait sur une discontinuité. Comment alors calculer les �ux sur
cette interface ? On l�a vu dans la première partie: on doit chercher la solution du
problème de Riemann sur les interfaces j � 1=2 et j + 1=2. En e¤et, nous avons
deux problèmes de Riemann (p:R:) à résoudre sur chaque interface de la cellule j :
p:R:(Unj�1; U

n
j ) et p:R:(U

n
j ; U

n
j+1). La solution exacte du p:R:(U

n
j�1; U

n
j ) lorsque a > 0

est :

Unj�1=2(x=t) =

�
Unj�1 si x=t < a
Unj si x=t > a

�
(7.66)

où l�origine du problème de Riemann local est (0; 0) ou (xj�1=2 = (j � 1=2)�x; tn):
De même la solution exacte du p:R:(Unj ; U

n
j+1) est :

Uj+1=2(x=t) =

�
Unj si x=t < a
Unj+1 si x=t > a

�
(7.67)
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Figure 8 Etape IIIa

Figure 9 Etape IIIb

Le schéma de Godunov est alors :

Un+1j =
1

�x

"Z �x=2

0

Unj�1=2(x=�t)dx+

Z 0

��x=2
Unj+1=2(x=�t)dx

#
(7.68)

Cette intégrale est évalué au temps �t (temps local) entre les points A et D (�gure
10). On utilise seulement la moitié de la solution de Unj�1=2(x=t) et de U

n
j+1=2(x=t).

Chacune a son repère local d�origine (0; 0) correspondant aux interfaces xj�1=2 et
xj+1=2. Dans ces conditions, on impose la condition CFL sous la forme :

c =
a�t

�x
� 1

2
(7.69)
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Figure 10 Calculs aux interfaces

On a :

1

�x

Z �x=2

0

Unj�1=2(x=�t)dx =
1

�x

Z B

A

Unj�1=2(x=�t)dx+
1

�x

Z C

B

Unj�1=2(x=�t)dx

(7.70)
soit, sachant que AB = c�x et BC =

�
1
2
� c
�
�x

1

�x

Z �x=2

0

Unj�1=2(x=�t)dx = cUnj�1 +

�
1

2
� c

�
Unj (7.71)

et :
1

�x

Z 0

��x=2
Unj+1=2(x=�t)dx =

1

�x

Z D

C

Unj+1=2(x=�t)dx =
1

2
Unj (7.72)

soit :

Un+1j =

�
cUnj�1 +

�
1

2
� c

�
Unj

�
+

�
1

2
Unj

�
= Unj � c(Unj � Unj�1) (7.73)

Le résultat n�est rien d�autre, du point de vue de la forme, que le schéma C:I:R
décentré du premier ordre. Mais dans l�approche de Godunov, Unj et U

n
j�1 sont

des valeurs moyennes selon la dé�nition 7.63 et non des valeurs locales.

Résumé

Il est important de résumé le processus précédent. Dans l�approche de Godunov,
on utilise une approche intégrale conservative. Cela conduit à introduire des valeurs
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constantes par morceaux, et de déterminer sur chaque interface la valeur des �ux.
Ceci implique alors pour le calcul correct de ce �ux à introduire la résolution d�un
problème de Rieman local. Ce n�est qu�après avoir résolu ce problème que l�on peut
déterminer la solution au temps n+1. Le résultat �nal avec des valeurs constantes
par morceau est précis à l�ordre 1.

7.6.3 Deuxième approche de Godunov

Etant donnée une distribution complète de valeurs initiales, on détermine les moyennes
sur chaque face du maillage spatial au temps n+ 1.

Un+1j =
1

�x

Z xj+1=2

xj�1=2

�u(x; t)dx; xj�1=2 < x < xj+1=2 (7.74)

où �u(x; t) représente la solution combinée des problèmes de Riemann p:R:(Unj�1; U
n
j )

et p:R:(Unj ; U
n
j+1): La solution �u(x; t) est une solution exacte de l�équation originale

de conservation (nous verrons plus loin comment la calculer), par conséquent on
peut utiliser la formulation intégrale suivante appliquée au domaine

�
xj�1=2; xj+1=2

�
�

[0;�t] ; on a :Z xj+1=2

xj�1=2

�u(x;�t)dx =

Z xj+1=2

xj�1=2

�u(x; 0)dx+ (7.75)Z �t

0

f
�
�u(xj�1=2; t)

�
dt�

Z �t

0

f
�
�u(xj+1=2; t)

�
dt

En utilisant la dé�nition des moyennes selon x, on a :

Un+1j = Unj �
�t

�x

�
1

�t

Z �t

0

f
�
�u(xj+1=2; t)

�
dt� 1

�t

Z �t

0

f
�
�u(xj�1=2; t)

�
dt

�
(7.76)

soit :

Un+1j = Unj �
�t

�x

�
Fj+1=2 � Fj�1=2

�
(7.77)

avec, comme �ux numérique en j + 1=2 :

Fj+1=2 =
1

�t

Z �t

0

f
�
�u(xj+1=2; t)

�
dt (7.78)

et en j � 1=2 :

Fj�1=2 =
1

�t

Z �t

0

f
�
�u(xj�1=2; t)

�
dt (7.79)

Pour le cas particulier de l�équation de convection scalaire, on a :

Fj+1=2 = aUnj ; F (xj�1=2; t) = aUnj�1 (7.80)
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d�où, en introduisant le nombre de Courant c :

Un+1j = Unj � c
�
Unj � Unj�1

�
(7.81)

et on retrouve le schéma C.I.R. Ainsi, en utilisant la formulation intégrale de con-
servation sur un volume �ni

�
xj�1=2; xj+1=2

�
� [0;�t] de l�espace x� t on arrive à la

formulation conservative 7.77 avec les �ux sur les interfaces Fj+1=2 et Fj�1=2. Ces �ux
numériques sont les moyennes temporelles du �ux physique évalué sur les interfaces.
L�intégrant f (�u(x; t)) sur chaque interface dépend de la solution exacte �u(x; t) du
problème de Riemann le long de l�axe t dans le système local ; on posera :

�U(xj�1=2; t) = Uj�1=2(0); �U(xj+1=2; t) = Uj+1=2(0) (7.82)

où Uj+1=2(0) représente la solution exacte �U(xj+1=2; t) du p.R.(Unj ; U
n
j+1) en x=t = 0.

Par suite, les �ux numériques sur les interfaces deviennent:

Fj+1=2 = Fj+1=2
�
Uj+1=2(0)

�
; Fj�1=2 = Fj�1=2

�
Uj�1=2(0)

�
(7.83)

On appelera �ux de Godunov, le �ux :

Fj+1=2 = Fj+1=2
�
Uj+1=2(0)

�
(7.84)

On remarquera que dans cette approche, il n�y plus de restriction particulière sur le
nombre CFL.

7.6.4 La méthode de Godunov pour les systèmes linéaires

Jusqu�à présent nous ne nous sommes intéressé qu�à des équations scalaires linéaires.
Quelques complications apparaissent lorssque on doit traiter un problème réel ou
tout du moins proche de la réalité comme la résolution des équations d�Euler. Nous
allons étudier quelques éléments complémentaires pour l�étude de système d�équations
hyperboliques.

Formulation classique

Considérons le système hyperbolique linéaire à coe¢ cients constants sous la forme
conservative suivante (voir les équations d�Euler pour plus de détail):

@U

@t
+
@F(U)

@x
= 0 (7.85)

avec la propriété :
F(U) =AU (7.86)

La méthode de Godunov, décentrée du premier ordre, utilise la formulation conserv-
ative :

Un+1
j = Un

j �
�t

�x

�
Fj+1=2 � Fj�1=2

�
(7.87)
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où le �ux numérique de Godunov est donné par :

Fj+1=2 = Fj+1=2
�
Uj+1=2(0)

�
(7.88)

Cette méthode est du premier ordre; on utilise des fonctions qui sont constantes
par morceau: les valeurs de la fonction U sont alors une séquence d�états constants
séparés par des sauts au niveau des interfaces des cellules. Par conséquent, on doit
connaître la solution du problème de Riemann p:R:

�
Un
j ;U

n
j+1

�
;Uj+1=2(x=t) pour le

calcul du �ux Fj+1=2 (et Fj�1=2)sur l�interface des cellules en x=t = 0:

Approche découplée

Soit :

Fj+1=2 = AUj+1=2 (7.89)

Cela revient à déterminer :

U(x; 0) =

�
UL x < 0
UR x > 0

�
(7.90)

ou bien en introduisant les variables caractéristiquesW:

W(x; 0) =

�
R�1UL x < 0
R�1UR x > 0

�
; wk(x; 0) =

�
wk;L x < 0
wk;R x > 0

�
(7.91)

où la solution exacte est :

wk(x; t) = wk(x� �kt; 0) (7.92)

Considérons une onde isolée de vitesse �k. Que se passe-t-il pour U ? On a la
propriété :

l(k):A = �kl
(k) (7.93)

avec :

L = R�1 =

24 l(1)

:::
l(m)

35 (7.94)

On cherche alors les valeurs UL et UR du problème de Riemann telles que:

UL =

�
Uj�1 �k > 0
Uj �k < 0

�
(7.95)

et :

UR =

�
Uj �k > 0
Uj+1 �k < 0

�
(7.96)



Méthode de Godunov 123

On résoult alors le problème de Riemann avec :

U(x; 0) =

�
UL x < 0
UR x > 0

�
(7.97)

si bien que :
U(x; 0) = UL +

X
�k<x=t


k�
(k) (7.98)

où :

k = l

(k): (UR �UL) (7.99)

A partir de ce résultat, on peut écrire :

l(k):U(x; t) = l(k):UL + l
(k):

X
�k0<x=t


k0�
(k0) (7.100)

avec, pour �k � x=t :
l(k):U(x; t) = l(k):UL = wk;L (7.101)

et pour �k < x=t :

l(k):U(x; t) = l(k):UL + l
(k): (UR �UL) = l

(k):UR = wk;R (7.102)

wk représente l�amplitude de la perturbation pour l�onde k :

@wk
@t

+ �k
@wk
@t

= 0 (7.103)

Approche couplée

On peut déterminer la solution Uj+1=2(x=t) en décomposant les données initiales
Un
j ;U

n
j+1 en fonction des vecteurs propres droits :

Un
j =

k=mX
k=1

�k�
(k);Un

j+1 =

k=mX
k=1

�k�
(k) (7.104)

La solution générale en tout point x; t est donnée par :

Uj+1=2(x=t) =
k=IX
k=1

�k�
(k) +

k=mX
k=I+1

�k�
(k) (7.105)

où I est le plus grand entier pour lequel on a :

1 � I � m;x=t � �I (7.106)
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Pour x=t = 0, I est tel que �I � 0 et �I+1 � 0 , par suite on a :

Uj+1=2(0) = U
n
j +

k=IX
k=1

(�k � �k) �
(k) (7.107)

ou :

Uj+1=2(0) = U
n
j+1 �

mX
k=J+1

(�k � �k) �
(k) (7.108)

En combinant ces deux formulations, on obtient :

Uj+1=2(0) =
1

2

�
Un
j+1 +U

n
j

�
� 1
2

mX
k=1

sign(�k) (�k � �k) �
(k) (7.109)

Pour évaluer le �ux de Godunov, on écrit :

Fj+1=2(0) = AUj+1=2(0) = AUn
j +

k=IX
k=1

(�k � �k)A�(k) (7.110)

ou puisque A�(k) = �k�
(k):

Fj+1=2 = F
n
j +

k=IX
k=1

(�k � �k)�k�
(k) (7.111)

de même à partir de 7.108 :

Fj+1=2 = F
n
j �

mX
k=J+1

(�k � �k)�k�
(k) (7.112)

et après combinaison de 7.111 et 7.112 :

Fj+1=2(0) =
1

2

�
Fnj+1 + F

n
j

�
� 1
2

mX
k=1

j�kj (�k � �k) �
(k) (7.113)

Si Uj+1=2(0) est la solution du problème de Riemann où Uj et Uj+1 sont les valeurs
de U de chaque coté de l�interface, on peut mettre à jour la solution en écrivant :

Un+1
j = Uj �

�t

�x

�
Fj+1=2(0)� Fj�1=2(0)

�
(7.114)

où :
Fj+1=2 = AUj+1=2(0) (7.115)

Dé�nissons :
wnkj = lk:U

n
j (7.116)
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Multiplions le �ux Fj+1=2 par lk :

lk:Fj+1=2 = lk:AUj+1=2(0) = �klk:Uj+1=2(0) =

�
�kw

n
kj

�k > 0

wnkj+1 �k < 0

�
(7.117)

Par suite :

wn+1kj
=

8<: wnkj �
�t
�x
�k

h
wnkj � wnkj�1

i
�k > 0

wnkj �
�t
�x
�k

h
wnkj+1 � wnkj

i
�k < 0

9=; (7.118)

Autres formes du �ux de Godunov :

� Première forme

Tout d�abord, on rappelle que l�on peut écrire la matrice A sous la forme:

A = RDR�1 (7.119)

oùR est la matrice des vecteurs propres droits �(k) et D la matrice diagonale. Comme
pour le cas scalaire, on introduit les dé�nitions :

A = RDR�1 (7.120)

�+k = max (�k; 0) =
1
2
(�k + j�kj)

��k = min (�k; 0) =
1
2
(�k � j�kj)

(7.121)

on en déduit :
�k = �+k + ��k (7.122)

et :
j�kj = �+k � ��k (7.123)

On a aussi les propriétés suivantes, découlant de 7.119:

A+�(k) = �
+(k)
k ;A��(k) = �

�(k)
k (7.124)

On écrit alors 7.113 sous la forme :

Fj+1=2(0) =
1

2

�
Fnj+1 + F

n
j

�
� 1
2

mX
k=1

�
�+k � ��k

�
(�k � �k) �

(k) (7.125)

soit :

Fj+1=2(0) =
1

2

�
Fnj+1 + F

n
j

�
� 1
2

mX
k=1

(�k � �k)
�
�+k �

(k) � ��k �
(k)
�

(7.126)
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et d�après 7.124 :

Fj+1=2(0) =
1

2

�
Fnj+1 + F

n
j

�
� 1
2

mX
k=1

(�k � �k)
�
A+�(k) �A��(k)

�
(7.127)

ou :

Fj+1=2(0) =
1

2

�
Fnj+1 + F

n
j

�
� 1
2

mX
k=1

(�k � �k)
��
A+ �A�

�
�(k)
�

(7.128)

et comme : �
A+ �A�

�
= jAj (7.129)

on a �nalement :

Fj+1=2(0) =
1

2

�
Fnj+1 + F

n
j

�
� 1
2
jAj

mX
k=1

(�k � �k) �
(k) (7.130)

� Deuxième forme

Puisqu, pour les équations d�Euler, on a:

Fj+1=2(0) = AUj+1=2(0) (7.131)

en utilisant les principes de calcul précédents, on peut aisément montrer que :

Fj+1=2(0) = A+
mX
k=1

�k�
(k) +A�

mX
k=1

�k�
(k) (7.132)

soit :
Fj+1=2 = A+Un

j +A�Un
j+1 = F

+
j+1=2 + F

�
j+1=2 (7.133)

7.7 Méthode de Godunov pour des problèmes non-linéaires

7.7.1 La base

L�étude de la méthode de Godunov étudié pour des équations ou des systèmes d�équations
reste valable. Nous renvoyons donc l�étudiant au chapitre concerné. Pour une
meilleure compréhension de l�étude nous considèrerons le système des équations d�Euler
sous leur forme conservative :

@�

@t
+
@�u

@x
= 0 (7.134)

@�u

@t
+
@ (�u2 + p)

@x
= 0 (7.135)

@�et
@t

+
@ [u (�et + p)]

@x
= 0 (7.136)
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Figure 11 Di¤érentes solutions aux interfaces

ou :
@u

@t
+
@f(u)

@x
= 0 (7.137)

avec :

u =

24 �
�u
�et

35 ; f =

24 �u
�u2 + p

u (�et + p)

35 (7.138)

ou l�énergie interne totale et est :

et =
1

2
u2 + e (7.139)

et l�énergie interne e:
e =

p

� (�� 1) (7.140)

avec les conditions initiales :

u(x; 0) = uo(x) =

�
uL si x < 0
uR si x > 0

�
(7.141)
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Physiquement la structure du problème de Riemann pour les équations d�Euler est
très proche du problème du tube à choc. Dans le cas qui nous intéresse, à savoir une
cellule quelconque où sur les interfaces on doit résoudre un problème de Riemann, on
supposera que le vide n�est pas présent d�un coté ou de l�autre des faces. Dans ces
conditions les structures d�onde possibles, suivant le signe de la vitesse des particules à
l�intérieur du domaine limité par les ondes extrêmes de droite et gauche, qui peuvent
apparaître sont schématisées sur la �gure 11. A gauche de la �gure les particules
�uides ont une vitesse positive et le contraire sur les �gures de droite. On discrétise le
domaine spatial [0; L] enM cellule

�
xj�1=2; xj+1=2

�
avec �x = xj+1=2�xj�1=2 = L=M:

Dans ces conditions, les caractéristiques des cellules j sont données par :

xj�1=2 = (j � 1)�x; xj =
�
j � 1

2

�
�x; xj+1=2 =

�
j +

1

2

�
�x (7.142)

On se donne une série de valeurs supposées déjà calculées au temps tn, soit Û(x; tn).
Considérons alors l�hypothèse de base de la méthode de Godunov, en introduisant
une distribution de données constante par morceau. On dé�nit la moyenne sur une
cellule en écrivant :

Un
j =

1

�x

Z xj+1=2

xj�1=2

Û(x; tn)dx (7.143)

et qui conduit e¤ectivement à une distribution constante par morceau avec :

U(x; tn) = Un
j pour x 2

�
xj�1=2; xj+1=2

�
;8j (7.144)

Les données ainsi modi�ées conduisent alors pour chaque interface limite d�une cellule
spatiale à un problème de Riemann. Ainsi sur l�interface j + 1=2 le P:R:

�
Un
j ;U

n
j+1

�
en xj+1=2 avec les données Un

j à gauche et U
n
j+1 à droite. On a vu que pour les

équations d�Euler, la solution du problème de Riemann local étaient une solution
auto-similaire dépendant localement du rapport �x

�t
: La solution locale est notée :

Un
j+1=2

�
�x
�t

�
où �x; �t sont les coordonnées locales avec xj+1=2 (l�interface) pour origine.

Considérons alors une solution type du problème de Riemann (�gure 12) : On choisit
un pas de temps �t su¢ samment petit mais permettant des interactions d�ondes. On
pourra alors dé�nir une solution globale dans le domaine:

0 � x � L; tn � t � tn+1 (7.145)

en fonction des solutions locales :

Û(x; t) = Un
j+1=2

� �x
�t

�
; �x 2 [xj; xj+1] (7.146)

et où :
�x = x� xj+1=2; �t = t� tn (7.147)

x 2 [xj; xj+1] ; t 2
�
tn; tn+1

�
(7.148)
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Figure 12 Modèle d�ondes, problème local de Riemann aux interfaces j�1=2 et j+1=2

Figure 13 Solution locale

�x 2
�
��x
2
;
�x

2

�
; �t 2 [0;�t] (7.149)

selon la �gure 13. Ainsi ayant trouvé une solution Û(x; t) en fonction de solutions
locales Un

j+1=2

�
�x
�t

�
du problème de Riemann, la méthode de Godunov avance alors au

temps n+ 1.

7.7.2 Le schéma de Godunov

On utilisera ici la deuxième approche de Godunov. On a vu que l�intégrant Û(x; t)
est une solution exacte des lois de conservation.. Ce moyennage est illustré sur la
�gure 14. Il faut cependant noté, et ce point est important, qu�il est nécessaire de
tenir compte de l�amplitude de �t. On imposera la condition suivante :

�t � �x

V n
max

(7.150)
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Figure 14 Godunov

où V n
max représente la vitesse maximum des ondes se propageant dans le domaine. On

applique alors la formulation intégrale suivante :Z x2

x1

U(x; t2)dx =

Z x2

x1

U(x; t1)dx+

Z t2

t1

F (U(x1; t)) dt�
Z t2

t1

F (U(x2; t)) dt (7.151)

pour tout "volume de contrôle" de la forme :[x1; x2]� [t1; t2] : En particulier on peut
l�appliquer sur le domaine :

�
xj�1=2; xj+1=2

�
� [tn; tn+1] : Avec 7.143, on a:R xj+1=2

xj�1=2
Û(�x; tn+1)d�x =

R xj+1=2
xj�1=2

Û(�x; tn)d�x+R �t
0
F
�
Û(x

j�1=2 ; �t)
�
dt�

R �t
0
F
�
Û(x

j+1=2
; �t)
�
d�t

(7.152)

En fonction des solutions locales, avec la condition 7.146, on a :

Û(xj+1=2; t) = Uj+1=2 (0) = Cte (7.153)

Û(xj�1=2; t) = Uj�1=2 (0) = Cte (7.154)

où Uj+1=2 (0) est la solution du problème de Riemann P:R: (Uj;Uj+1) le long de la
droite �x

�t
= 0 et Uj�1=2 (0) est la solution du problème de Riemann P:R: (Uj�1;Uj) le

long de l�axe �t. La relation 7.152 devient alors:

1
�x

R xj+1=2
xj�1=2

Û(�x; tn+1)d�x = 1
�x

R xj+1=2
xj�1=2

Û(�x; tn)d�x�
�t
�x

�
F
�
Uj+1=2 (0)

�
� F

�
Uj�1=2 (0)

�� (7.155)

ce qui conduit en dé�nitive au résultat suivant : La méthode de Godunov appliquée à
un système peut être écrite sous la forme conservative

Un+1
j = Un

j �
�t

�x

�
Fj+1=2 � Fj�1=2

�
(7.156)

avec les �ux :
Fj+1=2 = F

�
Uj+1=2 (0)

�
(7.157)
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et la condition :

�t � �x

V n
max

(7.158)

Pour déterminer V n
max, il existe plusieurs méthode. On peut par exemple pour des

problèmes monodimensionnels dé�nir V n
max par:

V n
max = max

j

���V L
j+1=2

�� ; ��V R
j�1=2

��	 (7.159)

pour j = 0; :::;M , et où V R
j+1=2 et V

L
j+1=2 sont les vitesses des ondes non-linéaires de

droite et de gauche.

7.8 La méthode de décomposition des �ux

7.8.1 Introduction

Un trait caractéristique des méthodes de discrétisation décentrées est le fait que la
discrétisation des équations sur un maillage est mis en place de manière à tenir compte
de la direction de propagation de l�information. Ainsi la physique est déjà incorporée
dans le schéma numérique. Deux approchessont proposées : l�approche de Godunov,
déjà traitée et l�approche de décomposition des �ux (FVS = Flux Vector Splitting).
7.8.2 Principe de la méthode

Considérons un système hyperbolique à m équations :

@u

@t
+
@f(u)

@t
= 0 (7.160)

On introduit alors la matrice jacobienne A :

A = @f

@u
(7.161)

Cette matrice s�exprime sous la forme :

A = RDR�1 (7.162)

où D est la matrice diagonale des valeurs propres de la matrice A et la matrice R
telle que les vecteurs colonnes soient les vecteurs propres droits �(r) de A .

R =
�
�(1); �(2); :::�(m)

�
(7.163)

Si l�on décompose la matrice D en deux matrices formées l�une D+ de valeurs propres
positives et l�autre D� de valeurs propres négatives, on a :

D = D++D� (7.164)

avec les valeurs propres :

�j = �+j + ��j �+j � 0; ��j � 0 (7.165)
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On en déduit :

A = RDR�1 = R
�
D++D�

�
R�1 = RD+R�1 +RD�R�1 (7.166)

soit:

A = RD+R�1+RD�R�1 = A+ +A� (7.167)

Par suite, si l�on utilise la propriété d�homogénéité dans le cas des équations d�Euler:

f = Au =
�
A++A�

�
u = f+ + f� (7.168)

On a :

f+= A+u;f�= A�u (7.169)

On utilise alors un schéma numérique sous forme conservative :

Un+1
j = Un

j �
�t

�x

�
Fnj+1=2 � Fnj�1=2

�
(7.170)

avec :

Fnj+1=2 = F
+
j

�
Un
j

�
+F�j

�
Un
j+1

�
(7.171)

Un+1
j = Un

j �
�t

�x

��
A+Un

j +A�U
n
j+1

�
�
�
A+Un

j�1 +A�U
n
j

��
(7.172)

Un+1
j = Un

j �
�t

�x

�
A+
�
Un
j �Un

j�1
�
+A�

�
Un
j+1 �Un

j

��
(7.173)

On retrouve le schéma CIR.

7.8.3 Application aux équations d�Euler isotherme

Equations isotherme

@u

@t
+
@f(u)

@x
= 0 (7.174)

avec :

u =

�
�
�u

�
; f =

�
�u

�u2 + �a2

�
(7.175)

et :

p = p(�) = �a2 (7.176)
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Formulation de la méthode

La matrice A est :

A = @f(u)

@u
=

�
0 1

a2 � u2 2u

�
(7.177)

Les deux valeurs propres sont alors :

�1 = u� a; �2 = u+ a (7.178)

La matrice des vecteurs propres droits est :

R =

�
1 1

u� a u+ a

�
(7.179)

ainsi que la matrice des vecteurs propres gauches :

R�1 =
1

2a

�
u+ a �1
a� u 1

�
(7.180)

Etant donnée alors une méthode de décomposition donnée avec :

D+ =
�
�+1 0
0 �+2

�
;D� =

�
��1 0
0 ��2

�
(7.181)

On calcule les matrices As avec s = sign(�j).

As = RDsR�1 (7.182)

On a :

As =
�
�s1 (u+ a)� �s2 (u� a) �s2 � �s1
(u2 � a2) (�s1 � �s2) �s2 (u+ a)� �s1 (u� a)

�
(7.183)

On en déduit les �ux :

Fs =
�

2

�
�s1 + �s2

�s1 (u� a) + �s2 (u+ a)

�
(7.184)

soient :

F+ =
�

2

�
�+1 + �+2

�+1 (u� a) + �+2 (u+ a)

�
(7.185)

F� =
�

2

�
��1 + ��2

��1 (u� a) + ��2 (u+ a)

�
(7.186)

On applique en�n un schéma numérique sous forme conservative :

Un+1
j = Un

j �
�t

�x

�
Fnj+1=2 � Fnj�1=2

�
(7.187)
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Figure 15 Flux dans les cellules

Figure 16 Trois con�gurations

avecle �ux :
Fnj+1=2 = F

+
j

�
Un
j

�
+F�j+1

�
Un
j+1

�
(7.188)

dé�nit sur la �gure 15. Pour le problème traité, trois con�gurations sont possibles
(�gure 16):

� Cas 1) Ecoulement supersonique amont: �2 = unj + anj � 0 on a :8<:
�+1 = 0; �

�
1 = �1 = Unj � anj

�+2 = 0; �
�
2 = �2 = Unj + anj

F+j = 0;F
�
j = F

n
j

9=; (7.189)

� Cas 2) Ecoulement supersonique aval: �1 = unj � anj � 0 on a :8<:
�+1 = �1 = Unj � anj ; �

�
1 = 0

�+2 = �2 = Unj + anj ; �
�
2 = 0

F+j = F
n
j ;F

�
j = 0

9=; (7.190)

� Cas 3) Ecoulement subsonique aval: �1 = unj � anj � 0 � �2 = unj + anj on a :
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�
�+1 = 0; �

�
1 = �1 = Unj � anj

�+2 = �2 = Unj + anj ; �
�
2 = 0

�
(7.191)

et :

F+j =
�nj
2

�
Unj + anj�
Unj + anj

�2 � ;F�j = �nj
2

�
Unj � anj�
Unj � anj

�2 � (7.192)

7.9 Le problème de Riemann et le solveur de Roe

Les principes de base de la méthode de Riemann ont été présentés dans le chapitre 4
de ces notes.

7.9.1 Le problème de Riemann et le �ux de Godunov

Soit le système suivant à résoudre :

@u
@t
+ @f(u)

@x
= 0

u(x; 0) = uo(x)
u(0; t) = ul(x);u(L; t) = ur(x)

(7.193)

dans une domaine xl � x � xr, en utilisant la formulation conservative :

Un+1
j = Un

j +
�t

�x

�
Fnj�1=2 � Fnj+1=2

�
(7.194)

On introduit le �ux de Godunov :

Fj+1=2 = F
�
Uj+1=2 (0)

�
(7.195)

pour lequel la valeur Uj+1=2 (0) est la solution exacte Uj+1=2 (x=t) évaluée en x=t = 0
du problème de Riemann :

@u

@t
+
@f(u)

@x
= 0 (7.196)

avec :

u(x; t) =
uL si x < 0
uR si x > 0

(7.197)

Le but est maintenant de trouver une approximation directe du �ux Fj+1=2:;

7.9.2 Le problème de Riemann et les relations intégrales

Considérons la �gure 17 pour laquelle la structure de la solution exacte du problème
de Riemann apparait dans le domaine [xL; xR]� [0; T ] soit :

xL � TVL; xR � TVR (7.198)

où VL et VR sont les vitesses les plus rapides des signaux perturbant les valeurs initiales
uL et uR . La formulation intégrale de 7.196 peut s�écrire :
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Figure 17 Domaine de calcul

R xR
xL
u(x; T )dx =

R xR
xL
u(x; 0)dx+R T

0
f (u(xL; t)) dt�

R T
0
f (u(xR; t)) dt

(7.199)

. L�évaluation du membre de droite donne :Z xR

xL

u(x; T )dx = xRUR � xLUL + T (FL � FR) (7.200)

On évalue alors l�intégrale de xL à 0 :Z 0

xL

u(x; T )dx =

Z 0

TVL

u(x; T )dx = �TVLUL + T (FL � F0;L) (7.201)

puis, on évalue l�intégrale de 0 à xR :Z xR

0

u(x; T )dx =

Z TVR

0

u(x; T )dx = TVRUR � T (F0;R � FR) (7.202)

On évalue alors F0;L et F0;R :

F0;L = FL � VLUL �
1

T

Z 0

TVL

u(x; T )dx (7.203)

et :

F0;R = FR � VRUR +
1

T

Z TVR

0

u(x; T )dx (7.204)

et l�on véri�e que :
F0;L = F0;R (7.205)

condition qui s�appelle condition de consistance.
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7.9.3 Les approximations des lois de conservations

Considérons l�équation de conservation :

@u

@t
+
@f(u)

@x
= 0 (7.206)

L�idée générale est de déterminer la solution approchée U en résolvant un système à
coe¢ cients constants. Ainsi en introduisant la matrice jacobienne :

A (u) = @f

@u
(7.207)

l�équation de conservation 7.206 prend la forme :

@u

@t
+A (u) @u

@x
= 0 (7.208)

Roe cherche une approximation en remplaçant la matrice jacobienne A (u) par une
matrice moyenne A0 fonction des états uL et uR:

A0 = A0 (uL;uR) (7.209)

L�équation originale 7.206 est alors remplacée par :

@u

@t
+A0@u

@x
= 0 (7.210)

avec :

u (x; 0) =

�
uL; x < 0
uR; x > 0

�
(7.211)

Ce système est alors résolu exactement. Pour un problème général avec m lois de
conservation, les propriétés de la matrice de Roe A0 sont les suivantes:

� Propriété A : Hyperbolicité du système.

La matrice A0 doit avoir m valeurs propres ��j (UL;UR) réelles telles que :

��1 � ��2 � ::: � ��m (7.212)

et un ensemble complet de vecteurs propres droits indépendants :

��(1); ��(2); :::��(m) (7.213)

� Propriété B : Consistance

A0 (U;U) = A (U) (7.214)
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� Propriété C : Conservation à travers les discontinuités

F (UR)� F (UL) = A0 (UR �UL) (7.215)

En fait, la solution consiste en m ondes linéaires séparant m + 1 états; on
cherche le �ux correspondant à l�état en x = 0 pour t > 0. Dans les zones perturbées
par les ondes, le �ux physique doit être considéré comme une fonction linéaire de U .
Si la solution de Riemann approximée est notée parW (x=t;UR;UL) on a :

F (W (x=t;UR;UL)) = F (UL) +A0 (UR;UL) (W (x=t;UR;UL)�UL) (7.216)

Si alors on prend x=t su¢ sament grand pour queW = UR on obtient :

F (UR)� F (UL) = A0 (UR �UL) (7.217)

7.9.4 L�approximation du problème de Riemann

Calcul des variables

Supposons que la matrice A0 (UR;UL) et ses vecteurs ��(j) (UR;UL) et ses valeurs
propres ��j (UR;UL) soient calculées. A titre d�exemple, on traitera au paragraphe
suivant le cas des équations d�Euler isotherme. On doit alors résoudre le problème de
Riemann. En projetant le saut :

�U = UR �UL (7.218)

sur les vecteurs propres droits, on a :

�U = UR �UL =

j=mX
j=1

��j��
(j) (7.219)

d�où l�on déduit l�intensité ��j des ondes :

��j = ��j (UR;UL) (7.220)

La solution Uj+1=2 (x=t) évaluée le long de l�axe t pour x=t = 0 sur l�interface j+1=2
est alors donnée par :

Uj+1=2 (0) = UL +

j=mX
��j�0

��j��
(j) (7.221)

ou :

Uj+1=2 (0) = UR �
j=mX
��j�0

��j��
(j) (7.222)
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Calcul des �ux

Maintenant, il ne faut pas oublier qu�en fait on a résolu le système suivant :

@u0

@t
+
@f 0 (u0)

@x
= 0 (7.223)

avec :
f 0 (u0) = A0u0 (7.224)

et que l�on n�a pas :
Fj+1=2 = A0U0

j+1=2 (0) (7.225)

Pour obtenir le �ux correct, il faut utiliser les relations 7.203 et 7.204:

F0;L = FL � VLUL �
1

T

Z 0

TVL

u(x; T )dx (7.226)

et :

F0;R = FR � VRUR +
1

T

Z TVR

0

u(x; T )dx (7.227)

qui conduisent à la condition de consistance sur l�interface :

F0;L = F0;R (7.228)

Si U0
j+1=2 (x; t) est la solution de l�équation modi�ée 7.224 avec les données UR et

UL, on a avec 7.201 et 7.201:Z 0

TVL

U0
j+1=2 (x; T ) dx = �TVLUL + T

�
F0 (UL)� F0

�
U0
j+1=2 (0)

��
(7.229)

et: Z TVR

0

U0
j+1=2 (x; T ) dx = TVRUR + T

�
F0
�
U0
j+1=2 (0)

�
� F0 (UR)

�
(7.230)

La substitution de 7.229 et 7.230 dans 7.226 et 7.227 donne :

F0;L = F
0 �U0

j+1=2 (0)
�
+ FL (UL)� F0 (UL) (7.231)

et :
F0;R = F

0 �U0
j+1=2 (0)

�
+ FL (UR)� F0 (UR) (7.232)

En utilisant 7.221 ou 7.222 et la dé�nition du �ux F0 = A0U 0, les �ux numériques
s�expriment alors par :

Fj+1=2 (0) = FL +

j=mX
��j�0

��j��j��
(j) (7.233)

ou :

Fj+1=2 (0) = FR �
j=mX
��j�0

��j��j��
(j) (7.234)
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7.9.5 La méthode originale de Roe

Nous allons appliquer la méthode de Roe pour la recherche de la matrice A0; de
ces valeurs propres et de ses vecteurs propres ainsi que des coe¢ cients ��j, pour les
équations isothermes.

Equations isothermes

@u

@t
+
@f(u)

@x
= 0 (7.235)

avec :

u =

�
�
�u

�
; f =

�
�u

�u2 + �a2

�
(7.236)

et :

p = p(�) = �a2 (7.237)

La matrice A et ses propriétés

La matrice A est :

A = @f(u)

@u
=

�
0 1

a2 � u2 2u

�
(7.238)

Les deux valeurs propres sont alors:

�1 = u� a; �2 = u+ a (7.239)

La matrice des vecteurs propres droits est:

R =

�
1 1

u� a u+ a

�
(7.240)

Le principe de la méthode de Roe

On choisit le nouveau vecteur Z tel que :

Z =
u
p
�
=

� p
�p
�u

�
=

�
z1
z2

�
(7.241)

Par suite u et f peuvent s�exprimer en fonction des composantes de Z.

u =

�
u1
u2

�
= z1Z =

�
z21
z1z2

�
(7.242)

f =

�
f1
f2

�
=

�
z1z2

z22 + a2z21

�
(7.243)
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On cherche alors un vecteur �Z moyen, obtenue en e¤ectuant la moyenne arithmétique
suivante :

�Z =

�
�z1
�z2

�
=
1

2
(ZL+ZR) =

1

2

� p
�L +

p
�Rp

�LuL +
p
�RuR

�
(7.244)

La raison de ce changement de variable est que les vecteurs uR�uL et fR�fL peuvent
être exprimés sous forme de matrices multipliées par ZR�ZL. En e¤et :

uR�uL =
�
2�z1 0
�z2 �z1

�
(ZR�ZL) = B0 (ZR�ZL) (7.245)

et :

f (uR)�f (uL) =
�

�z2 �z1
2a2�z21 2�z22

�
(ZR�ZL) = C 0 (ZR�ZL) (7.246)

En notant par [:] le saut de la quantité, on a :

[u] = B0 [Z] (7.247)

et :
[f ] = C 0 [Z] (7.248)

d�où pour les valeurs discrètes :

[F] = CB0�1 [U] (7.249)

La condition 7.215 est alors satisfaite si l�on prend comme matrice A0:

A0 = CB0�1 (7.250)

soit :

A0 =
�

0 1
a2 � �z22=�z21 2�z2=�z1

�
=

�
0 1

a2 � �v2 2�v

�
(7.251)

où l�on a dé�ni la vitesse moyennée :

�u =

p
�LuL +

p
�RuRp

�L +
p
�R

(7.252)

Ayant trouvé la matrice A0, on en déduit les valeurs propres ��j qui sont réelles et les
vecteurs propres ��(j) qui sont linéairement indépendants:�

��1
��2

�
=

�
�u� a
�u+ a

�
(7.253)

et :

��(1) =
1

2

�
1

�u� a

�
(7.254)
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��(2) =
1

2

�
1

�u+ a

�
(7.255)

Par conséquent la condition A est véri�ée. On peut alors calculer l�intensité des ondes:

�u =

�
�u1
�u2

�
=

�
�R � �L

�RuR � �LuL

�
=

j=2X
j=1

��j��
(j) (7.256)

avec :

��1 =
�u1 (�u+ a)��u2

2a
; ��2 =

��u1 (�u� a) + �u2
2a

(7.257)



Chapter 8

LA VISCOSITÉ ARTIFICIELLE

On a vu que les schémas linéaires du second ordre généraient toujours des oscilla-
tions. Un moyen simple pour réduire l�amplitude de ces oscillations est d�ajouter des
termes du second et/ou du quatrième ordre. En général, les coe¢ cients de ces ter-
mes doivent être �xés par l�utilisateur et sont constant partout. L�introduction de ces
termes supplémentaires est simple. La di¢ culté réside dans le choix du coe¢ cient.
Il est possible de déterminer les limites du paramètre par une analyse de stabilité du
schéma utilisé. Cependant cette valeur limite dépend du problème à résoudre. Il faut
donc faire très attention dans la détermination de ces paramètres surtout lorsque le
problème physique à résoudre est de type �uide visqueux.

8.1 Introduction

Un terme de dissipation arti�cielle du second ordre aura la forme suivante:

D(1) = " (�x)2
@2u

@x2
(8.1)

soit :

D(1)j = "j (Uj+1 � 2Uj � Uj�1) (8.2)

ou :
D(1)j+1=2 = "j+1=2 (Uj+1 � Uj) (8.3)

et un terme du quatrième ordre :

D(2) = " (�x)4
@4u

@x2
(8.4)

soit :

D(2)j = �"j (Uj�2 � 4Uj�1 + 6Uj � 4Uj+1 + Uj+2) (8.5)

ou :
D(2)j+1=2 = �"j+1=2 (Uj+2 � 3Uj+1 + 3Uj � Uj�1) (8.6)

Nous donnons quelques exemples de viscosités numériques utilisées, en particulier
dans le code Euler-1D.
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8.2 MacCormack et Baldwin

Cette viscosité arti�cielle est obtenue de la manière suivante :

D(1)j+1=2 = "j+1=2 (Uj+1 � Uj) (8.7)

avec :

"j+1=2 =
1

2
("j + "j+1) (8.8)

ou :

"j = � (juj+ a)j
pj+1 � 2pj + pj�1
pj+1 + 2pj + pj�1

(8.9)

où � peut varier (� = 0:25)

8.3 Jameson

Cette viscosité arti�cielle est obtenue en combinant la viscosité arti�cielle de Mac-
Cormack et Baldwin avec une terme supplémentaire du quatrième ordre :

D(1+2)j+1=2 = "j+1=2 (Uj+1 � Uj)� "�j+1=2 (Uj+2 � 3Uj+1 + 3Uj � Uj�1) (8.10)

avec :

"�j+1=2 = max
�
0;
�
�� � "j+1=2

��
(8.11)

où �� est un paramètre dont la valeur typique est �� = 1=256. A titre d�exemple,
l�adjonction de cette viscosité pour le schéma de MacCormack appliqué à un écoule-
ment supersonique-subsonique dans une tuyère donne comme résultat (�gure 1):

8.4 Von Neumann-Richtmyer

Cette viscosité arti�cielle s�écrit :

D(1)j+1=2 = ��j+1=2

24 01
u

35
j+1=2

jUj+1 � Ujj (Uj+1 � Uj) (8.12)

avec :

� ' 1 (8.13)

La �gure 2 montre l�e¤et de cette viscosité arti�cielle.
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Figure 1 Viscosité arti�cielle de Jameson

8.5 Landsho¤

Cette viscosité arti�cielle s�écrit :

D(1)j+1=2 = � (�a)j+1=2

24 01
u

35
j+1=2

(Uj+1 � Uj) (8.14)

avec :

0 � � � 0:5 (8.15)

La �gure 3 montre l�e¤et de cette viscosité arti�cielle.

8.6 Tyler & Ellis

Cette viscosité arti�cielle s�écrit :

D(1)j+1=2 = ��j+1=2 (juj+ a)j+1=2

24 01
u

35
j+1=2

(Uj+1 � Uj) (8.16)
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Figure 2 Viscosité arti�cielle de Von Neumann-Richtmyer

Figure 3 Viscosité arti�cielle de Landsho¤



Chapter 9

LES SCHÉMAS FCT (FLUX-CORRECTED TRANSPORT)

L�addition de terme d�amortissement a été proposé au chapitre précédent a�n d�éliminer
ou d�atténuer les oscillations au voisinage de fort gradients. Une extension de cette
approche a été e¤ectuée en rajoutant un second terme. Cette modi�cation est ap-
pliquée sur des schémas de type prédicteur-correcteur. On ajoute un certain amor-
tissement (terme dissipatif) à la partie prédicteur du schéma et on enlève une partie
de cette amortissement (terme anti-dissipatif) au terme correctif du schéma. Un tel
schéma est appelé schéma FCT (Flux-Corrected Transport).

9.1 Principe

On part du schéma q :

U�j = Unj �
c

2

�
Unj+1 � Unj�1

�
+
q

2

�
Unj+1 � 2Unj + Unj�1

�
(9.1)

avec comme exemple, le schéma de Lax-Wendro¤ (q = c2) :

U�j = Unj �
c

2

�
Unj+1 � Unj�1

�
+
c2

2

�
Unj+1 � 2Unj + Unj�1

�
(9.2)

On ajoute le terme de dissipation du second ordre de la forme :

D = "1
�
Unj+1 � 2Unj + Unj�1

�
(9.3)

On obtient :

U�j = Unj �
c

2

�
Unj+1 � Unj�1

�
+
�
"1 +

q

2

� �
Unj+1 � 2Unj + Unj�1

�
(9.4)

On rajoute alors un pas de correction ou on inclut un terme anti-dissipatif :

Un+1j = U�j � "2
�
U�j+1 � 2U�j + U�j�1

�
(9.5)

Les valeurs de "1 et de "2 sont choisit selon les schémas. Ainsi avec un schéma de
Lax-Wendro¤ appliqué pour l�équation de continuité on peut choisir :

"1 =
1

6

�
1 + 2c2

�
(9.6)
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"2 =
1

6

�
1� c2

�
(9.7)

Par ailleurs, pour préserver la forme conservative des équations et dans le cas général
d�un problème non linéaire, on applique le terme antidi¤usif au points 1=2 :

Un+1j = U�j �
�
�Uj+1=2 � �Uj�1=2

�
(9.8)

avec :
�Uj+1=2 = "2

�
U�j+1 � U�j

�
(9.9)

�Uj�1=2 = "2
�
U�j � U�j�1

�
(9.10)



Part III

Les schémas monotones d�ordre
supérieur
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Ce titre semble être contradictoire. En e¤et, l�étude de la monotonicité a
montré que les schémas ayant cette propriété étaient au plus du premier ordre. Par
ailleurs les schémas (linéaires) d�ordre supérieur ou égal à deux sont oscillants, même
si l�on peut atténuer plus ou moins fortement ces oscillations par l�introduction de
viscosités arti�cielles. Cette contradiction est apparente. L�introduction de méthodes
TVD (Total Variation Diminishing) va permettre de lever la contradiction.
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Chapter 10

LES SCHÉMAS CONSERVATIFS MONOTONES NON
OSCILLANTS

10.1 Principe

Nous avons montré au chapitre II que les oscillations semblaient être inévitables
pour les schémas d�ordre supérieur ou égal à 2. Nous allons maintenant montrer
comment il est pourtant possible de les éviter. On cherche maintenant à construire
des schémas du second ordre non linéaires et non oscillants du second ordre à partir de
schémas-q mais sous forme conservative appliquée à l�équation de convection scalaire.
On considère la possibilité d�un schéma intermédiaire entre le schéma décentré (du
premier ordre et trop di¤usif) et le schéma de Lax Wendro¤ (du second ordre et
oscillant) avec la propriété d�être conservatif. Si 0 � c � 1, le �ux numérique sur
l�interface j + 1=2 est :

� Pour le schéma upwind :
Fj+1=2 = aUj (10.1)

� Pour le schéma de Lax Wendro¤ :

Fj+1=2 =
a

2
(1 + c)Uj +

a

2
(1� c)Uj+1 (10.2)

� On réécrit alors 10.2 sous la forme :

Fj+1=2 = a(Uj +
1

2
(1� c)(Uj+1 � Uj) (10.3)

� En�n, on modi�e le �ux numérique en remplaçant �j = (Uj+1�Uj) par �j;mono
:

Fj+1=2 = afUnj +
1

2
(1� c)�

j;mono
g (10.4)

Le gradient �
j
=Uj+1 � Uj est remplaçé par �j;mono

nouveau gradient qui est
construit de manière à limiter les oscillations qui sont générer par le
schéma de Lax-Wendro¤.



154 Les schémas conservatifs monotones non oscillants

10.2 Schéma du premier ordre optimal

On cherche tout d�abord à construire des schémas monotones et conservatifs à partir
de schémas du premier ordre non oscillants et dont l�erreur de troncature soit la plus
faible. Le théorème de Godunov a été appliqué pour les schémas qui ont la forme
suivante :

Un+1j =
X

ckU
n
j+k (10.5)

Ce schéma inclue toutes les opérations linéaires pour obtenir Un+1 à partir de Un .
Par une opération linéaire, on indique un procédé MfUg tel que :

a)MfU + V g =MfUg+MfV g (10.6)

b)MfkUg = kMfUg (10.7)

Nous avons introduit le théorème de Godunov, précisant qu�un schéma linéaire d�ordre
deux (ou supérieur) pour l�équation de conservation scalaire ne pouvait préserver la
monotonicité des distributions des données initiales convectées. Il y a pourtant un
moyen, si l�on réalise que ce résultat s�applique à tous les schémas linéaires pour
l�équation de convection linéaire. En e¤et, on peut se demander si des schémas de
discrétisations non-linéaires appliqués à l�équation de convection linéaire, peuvent
préserver cette propriété de monotonicité pour des schémas d�ordre supérieur ou égal
à deux. Comme, par ailleurs les équations d�Euler pour lesquelles ces schémas seront
appliquées sont, de fait, non-linéaires, cette idée parait raisonnable. Ainsi pour se
libérer des contraintes du théorème de Godunov, il faut abandonner l�une des condi-
tions précédentes 10.6 et 10.7. En fait, c�est la condition 10.6 qu�il faut abandonner.
L�approche la plus ancienne consiste à ajouter au schéma numérique des termes de
viscosité arti�cielle qui ont des e¤ets d�amortissement. Cependant, il serait préférable
d�avoir des schémas qui ne dépendent pas d�expériences comme c�est le cas avec cette
approche. Il faudrait par ailleurs qu�ils ne génèrent aucune oscillation. De tels sché-
mas existent mais sont, en général, plus coûteux en temps. Or, l�étude de la méthode
de Godunov pour la construction d�un schéma conservatif et monotone nous a con-
duit à un schéma particulier, le schéma C.I.R. On peut alors se demander quel est
le schéma du premier ordre qui a l�erreur de troncature la plus faible et qui est de
la forme 10.5. Si l�on substitue le développement en série de Taylor de la solution
exacte de u;t + f;x = 0 dans 10.5, on a :

� = [
X

bkk
2 � c2]uxx�x (10.8)

Le problème algébrique qui doit être résolu, est de trouver un ensemble de coe¢ cients
fbkg tels que :

bk � 0;8k (10.9)

[
X

bk] = 1 (10.10)
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[
X

bkk
2] = �c (10.11)

et que :
j
X

bkk
2 � c2j soit minimal (10.12)

On peut montrer que la solution à ce problème dépend du signe de c. Si 0 � c � 1,
le schéma optimal préservant la monotonicité est :

Un+1j = (1� c)Unj + Unj�1 (10.13)

Si �1 � c � 0, le schéma optimal est :

Un+1j = (1 + c)Unj � Unj+1 (10.14)

Ce schéma de type décentré est le schéma C.I.R.. Ce schéma est autodissipatif,
puisque, en e¤et, il peut s�écrire sous la forme :

Un+1j = Unj �
c

2
(Unj+1 � Unj�1) +

c

2
(Unj+1 � 2Unj + Unj�1) (10.15)

ou :
c

2
(Unj+1 � 2Unj + Unj�1) (10.16)

représente le terme de dissipation. Sous forme conservative, il vient :

F nj+1=2 = aUnj =
1

2
a(Unj+1 + Unj ) +

a

2
(Unj+1 � Unj ) (10.17)

et puisque :
fnj+1 = aUnj+1 (10.18)

on a :
F nj+1=2 =

1

2
(fnj+1 + fnj ) +

a

2
(Unj+1 � Unj ) (10.19)

10.3 Construction d�un schéma du second ordre monotone

On cherche ensuite à construire des schémas du second ordre à partir de sch�emas�q,
dont le schéma C.I.R. est un cas particulier, en les rendant non linéaires. Cette
approche nous permettra de comprendre le principe de la création de schémas non
linéaires.
10.3.1 Schémas - q et contrôleur de régularité

Le théorème de Godunov a été introduit en l�appliquant sur le schéma classique
de Lax-Wendro¤, qui est l�un des schémas les plus précis du second ordre parmi
les schémas-q. Par ailleurs, le schéma C:I:R. est du premier ordre. La première
généralisation consiste à introduire une version modi�ée du schéma-q en remplaçant
la variable q par une fonction non linéaire. Considérons l�algorithme suivant :

Un+1j = Unj �
c

2
(Unj+1 � Unj�1) +

q

2
(Unj+1 � 2Unj + Unj�1)) (10.20)
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où c est le nombre de Courant c = a�t
�x

. Introduisons les notations classiques
suivantes :

�+Unj = Unj+1 � Unj (10.21)

��Unj = Unj � Unj�1 (10.22)

et dé�nissons le contrôleur de régularité �nj , et son inverse Rj tels que :

�j =
Unj+1 � Unj
Unj � Unj�1

=
�+Unj
��Unj

(10.23)

et:

Rj =
Unj � Unj�1
Unj+1 � Unj

=
��Unj
�+Unj

(10.24)

Le schéma de Lax-Wendro¤ modi�é (schéma q), inclue maintenant la variable q(�);
l�introduction d�une fonction qnj (�j) rend le schéma non linéaire. On a alors:

Un+1j = Unj �
c

2
(Unj+1 � Unj�1) +

qnj (�)

2
(Unj+1 � 2Unj + Unj�1) (10.25)

Pour c > 0, on dé�nit la fonction [qmono]nj pour rendre le schéma monotone :

[qmono]
n
j = c2 + c(1� c)S(�nj ) (10.26)

avec :

S(�nj ) = 0; si j�nj � 1j � 2 et 1�
2

j�nj � 1j
; si j�nj � 1j > 2 (10.27)

où S(q) peut aussi être considérer comme une fonction �bascule � permettant de
passer aux deux schémas extrêmes L:W: (S = 0) et C:I:R (S = 1).

Figure 1 Saut
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Figure 2 Extremum

Le schéma précédent a cependant deux défauts :
1) Premier défaut : le contrôleur de régularité ne fait pas la di¤érence entre

la base ou le sommet d�une structure locale de type saut (�gure 1) et les cotés d�un
extrémum dans une solution régulière (�gure 2).

A�n de distinguer les deux con�gurations, il est nécessaire de comparer deux
valeurs du contrôleur : a) une grande valeur suivie d�une petite valeur caractérise un
saut, b) une petite valeur suivie d�une grande valeur caractérise un extremum. En
d�autre termes, un saut est une grande di¤érence entourée par deux valeurs faibles
du contrôleur, tandis qu�un extremum doit montrer une petite di¤érence entourée
par deux grandes valeurs du contrôleur. Cette information doit être fournie par la
fonction de �ux numérique qui, par suite, doit dépendre d�au moins 4 arguments.
Par conséquent, les schémas incorporant une telle forme de �ux doivent dépendre au
moins de cinq arguments. On remarquera que la plupart des schémas sont basés sur
trois arguments. La conséquence est que les extrema pour des distributions régulières,
calculés par des schémas en trois points, sont applanis. Cette imprécision conduit à
la question de savoir, dans quel sens le schéma de L:W: �modifi�e ( par les valeurs
locale de q) peut être considéré comme étant du second ordre.

2) Deuxième défaut : ce schémal n�est pas conservatif : en e¤et, la fonction
de maillage �nj utilisent les trois valeurs U

n
j+1 , U

n
j , U

n
j�1 tandis que la formulation

conservative pour un schéma-q est basé sur une fonction de �ux numérique qui n�a
que deux arguments:

Unj+1 = Unj � �[F (Unj ; U
n
j+1)� F (Unj�1; U

n
j )] (10.28)

Or, a�n de construire un schéma préservant la monotonicité et étant conservatif, le
�ux numérique doit avoir au moins 3 arguments : par exemple :

F nj = F (Unj�1; U
n
j ; U

n
j+1) (10.29)
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10.3.2 Le contrôleur de régularité

On précise certaines propriétés du contrôleur de régularité, fonction essentielle dans
la construction des schémas non-oscillants. Supposons que la distribution convectée
soit régulière. Dé�nissons le contrôleur de régularité par :

�(x) =
U(x+�x)� U(x)

U(x)� U(x��x) (10.30)

D�après les �gures 3 et 4; il est évident que �(x) tend vers 1 presque partout et
S(�(x)) = 0. En e¤et, on remarque que pratiquement dans tout l�écoulement, on

Figure 3 Courbe continu

Figure 4 Maxima/minima

doit s�attendre à ce que �(x) soit proche de 1. E¤ectuons un développement limité
en série de Taylor de �(x) :
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�(x) =
�xU 0 + 1=2(�x)2U"

�xU 0 � 1=2(�x)2U" (10.31)

�(x) = 1��xU"
U 0

(10.32)

et l�on voit que dans les régions régulières de l�écoulement �(x) ou R(x) est proche
de 1, à l�exception des maxima/minima de U 0. En chaque point x, le schéma tend
vers un schéma de L:W . non modi�é lorsque �x tend vers zéro, sauf éventuellement
en un point x où U(x) est un extremum. En un tel point la valeur de �(x) tend
vers �1, et de nouveau S(q) = 0. Mais pratiquement, l�abscisse de l�extremum ne
sera que très rarement aux points nodaux du maillage et par suite, il y aura toujours
un point au voisinage de l�extremum où �(x) << �1 ou �(x) >> 3, permettant
alors à la fonction S d�être non nulle. Cela signi�e que la convergence uniforme de
l�erreur de discrétisation O(�x)2 n�est pas possible, mais que la convergence locale
ne devrait pas être a¤ectée. Le point crucial est que le nombre de points, où l�erreur
de discrétisation est O(�x), devient de plus en plus petit, relativement au nombre
total de points M (M = 1=�x) de la grille lorsque �x tend vers zéro.

10.4 In�uence de la forme de la distribution des données initiales

10.4.1 Distribution linéaire par morceaux des données

Si on utilise une distribution linéaire par morceau dans chaque cellule, centrée sur
la valeur moyenne à cause de la conservation, on obtient automatiquement un
schéma aux volumes �nis du second ordre. On procède de la manière suivante
:

1) Approximation par une distribution linéaire (ligne droite) de la distribution
initiale (�gure 5).

2) Distribution des valeurs initiales avant (ligne simple) et après le décalage
(ligne pleine) (�gure 6).

3) Détermination de la nouvelle distribution linéaire (ligne simple) de la dis-
tribution convectée (ligne pleine) (�gure 7).

4) Valeurs initiales pour la prochaine itération (�gure 8).

10.4.2 Principe pour préserver la monotonicité

Une condition su¢ sante pour préserver la monotonicité d�une séquence de moyennes
cellulaires est illustrée sur la �gure 9: la distribution linéaire dans une cellule ne doit
pas prendre de valeur en dehors du domaine dé�ni par les valeur moyennes des cellules
adjacentes.

� La pente de la distribution linéaire dans la cellule j � 1=2; j + 1=2 est réduite
(ligne pleine) de manière à ce que les valeurs dans la cellule ne dépassent pas le
niveau moyen des cellules adjacentes (traits tillés),
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Figure 5 Données initiales

� Si la moyenne sur la cellule atteint un maximum, la pente est réduite à zéro,

� Si la pente ne suit pas l�évolution des cellules adjacentes, elle est aussi réduite
à zéro.

10.4.3 Choix dans la détermination des gradients ou de la pente de la distribution
linéaire

Dans ce paragraphe nous allons, mettre en place une nouvelle approche essentielle-
ment pour augmenter la précision des méthodes mais à partir de la formulation con-
servative. Pour cela, on va déterminer la pente (�gure 10) d�une distribution linéaire
à partir de moyennes pondérées de di¤érences consécutives a�n d�obtenir un schéma
du second ordre.

Considérons donc une distribution linéaire dans les domaines xj�1=2 < x <
xj+1=2 :

uj(x) = unj +
(x� xj)

�x
�ju

n
j ; x 2 [0;�x] (10.33)

où
�jU

n
j

�x
est une pente choisie judicieusement de Uj(x) entre xj et xj+1. La fonction

Uj(x) est dé�nie localement dans le domaine [0;�x]. Le centre de la cellule xj est
x = 1

2
�x et Uj(xj) = Unj : Aux extrêmes du domaine on a dans un référentiel local :

uLj = uj(0) = unj �
1

2
�ju

n
j (10.34)

uRj = uj(�x) = unj +
1

2
�ju

n
j (10.35)

avec :
�j = �ju

n
j (10.36)
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Figure 6 Décalage

Figure 7 Nouvelle distribution linéaire

Remarque : Si l�on voulait des précisions plus élevées on pourrait introduire une
distribution quadratique où � est un paramètre. :

uj(x) = unj +
(x� xj)

�x
�j+

3�

2 (�x)2

 
(x� xj)

2 � (�x)
2

12

!
�
(1)
j ; x 2 [0;�x] (10.37)

On détermine alors l�évolution de uLj et u
R
j au cours d�un demi-pas de temps :

�uLj = uLj �
1

2

�t

�x

�
f
�
uLj
�
� f

�
uRj
��

(10.38)

�uRj = uRj �
1

2

�t

�x

�
f
�
uLj
�
� f

�
uRj
��

(10.39)
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Figure 8 Nouvelles valeurs initiales

Ainsi ayant modi�é les données, on est amené à traiter un problème de Riemann à
valeurs constantes par morceau suivant :

@u

@t
+
@f

@x
= 0 (10.40)

u(x; 0) =

�
�uRj ; x < 0
�uLj+1; x > 0

�
(10.41)

On peut choisir la pente
�jU

n
j

�x
de la relation 10.33 sous la forme suivante où

��j est une moyenne de gradients :

��j =
1

2
(1 + k)�j�1=2 �U

n
j +

1

2
(1� k)�j+1=2

�Unj (10.42)

où k est un paramètre réel libre dé�ni dans le domaine [�1; 1]. La valeur de �Unj
représente la moyenne spatiale sur la cellule. Ce qui conduit à une famille de schémas
du seconde ordre. Reprenons la relation 10.3 qui conduit à la relation :

Un+1j = Unj � c(Unj � Unj�1)�
c

2
(1� c)[(Unj+1 � Unj )� (Unj � Unj�1)] (10.43)

Le schéma résultant pour l�équation de convection est alors, en remplacant les gradi-
ents suivants [(Unj+1 � Unj ); (U

n
j � Unj�1)] par ��j

et ��j�1 :

Un+1j = Unj � c(Unj � Unj�1)�
c

2
(1� c)[ ��

j
� ��j�1] si c � 0(a � 0) (10.44)

Le �ux numérique correspondant est alors :

Fj+1=2 = afUnj +
1

2
(1� c) ��Unj g (10.45)
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Figure 9 Comment préserver la monotonicité

10.4.4 Principe de prévention des oscillations

Nous pouvons montrer maintenant comment des oscillations numériques apparaissent
et comment on peut les prévenir. Supposons, par exemple que la valeur minimum (en
i�1=2) de la distribution linéaire dans une cellule j soit inférieure à la valeur moyenne
Unj�1 en xj�1=2. Dans le plus mauvais des cas (pour maintenir la monotonicité) U est
constant pour x < xj�1=2 et la distribution dans la cellule j suit un �plateau� au
niveau Unj�1 . Maintenant, convectons ces valeurs initiales sur une distance c�x vers
la droite (�gure 12) avec une valeur de c proche de 1.

On voit que la valeur moyenne dans la cellule j au temps n+ 1 est plus basse
que la valeur du plateau sur la gauche : par conséquent, la suite des valeurs moyennes
n�est plus monotone. De la même manière, si la distribution dans la cellule j dépasse
la valeur moyenne Unj+1 et que la cellule fait partie du plateau pour x > xj+1=2 ,
alors une convection avec une faible valeur de c fera augmenter Unj+1, détruisant la
monotonicité de la séquence des valeurs moyennes. On doit donc imposer :

Unj �
1

2
��j � Unj�1 (10.46)

Unj +
1

2
��j � Unj+1 (10.47)
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Figure 10 Choix de la pente

Figure 11 Problème de Riemann

soit :
��j � 2�j�1=2 (10.48)

��j � 2�j+1=2 (10.49)

Si la valeur de ��j dé�nit par l�algorithme de moyennage ne satisfait pas 10.48 ou
10.49, il faut la réduire de manière à ce qu�il n�y ait aucun dépassement (sur ou sous).
On dé�nira alors :

�j;mono = min(2�j�1=2; ��j; 2�j+1=2) (10.50)

Cette condition est valable pour le cas où �j�1=2; ��j;�j+1=2 � 0: La loi générale est
:

�j;mono = min(2
���j�1=2

�� ; �� ��j

�� ; 2 ���j+1=2

��) sgn�j) (10.51)
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Figure 12 Evolution de la solution

si sgn(�j+1=2) = sgn(�j�1=2)

�j;mono = 0 autrement (10.52)

L�équation 10.51 donne, en module, la plus grande valeur de ��j qui ne causera aucune
oscillation numérique pour toute valeur de c dans le domaine de stabilité. L�équation
10.52 assure que si Unj est un extremum, il ne sera pas rehausser par aucun gradient
�ni de U dans la cellule j. Ce mécanisme n�est, bien sur, pas le seul. Ici on cherche à
montrer le principe. C�est le choix de�j;mono pour le limiter a�n d�empécher toutes
les oscillations qui introduit la notion de limiteur. Le problème est maintenant
de choisir correctement la pente de manière à ce que le schéma soit du second ordre
monotone. A�n de montrer la liberté que l�on a dans le choix de �j;mono on peut
écrire:

�j;mono =  j+1=2(Rj) ��j (10.53)

où Rj est le contrôleur de régularité et  j+1=2 un facteur de réduction (limiteur). En
choisissant ��j dé�nit par 10.42 avec par exemple k = 0, on a :

��j =
1

2

�
�j�1=2 +�j+1=2

�
(10.54)

Un exemple de fonction est celle obtenue à partir de la fonction harmonique suivante:

�j;mono =

�
1

2

�
1

�j�1=2
+

1

�j+1=2

���1
=
2�j�1=2�j+1=2

�j�1=2 +�j+1=2

(10.55)

d�où :

 j+1=2 =
2�j�1=2�j+1=2

�j�1=2 +�j+1=2

=
1

2

�
�j�1=2 +�j+1=2

�
=

4�j�1=2�j+1=2�
�j�1=2 +�j+1=2

�2 (10.56)
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avec :
sign�j�1=2 = sign�j+1=2 (10.57)

soit avec la dé�nition de Rj :

Rj =
�j�1=2

�j+1=2

(10.58)

 j+1=2 =  vl =
4Rj
Rj + 1

;Rj � 0 (10.59)

Ce limiteur est le limiteur de Van Leer. Il peut être étendu aux régions R < 0 par la
condition classique  vl(R) = 0 , R < 0.

10.5 Les fonctions limiteurs

Le limiteur est une fonction du contrôleur de régularité et son introduction dans les
schémas permet en limitant les gradients d�empêcher l�apparition des oscillations.

10.5.1 Dé�nition

A�n de voir la liberté que l�on a dans le choix de la valeur absolue de �j ou en
limitant cette valeur, on a donc avec 10.53 la fonction limiteur à partir de la relation:

�j;mono =  j+1=2(Rj) ��j (10.60)

Tout d�abord, la fonction  doit être limitée à être une fonction positive. D�autre
part, lorsque R < 0 c�est-à-dire lorsqu�on rencontre un extremum dans la variation
de la solution U , il semble logique de poser  = 0 correspondant à une pente nulle
dans l�intervalle considéré. Cela interdit des comportements non monotones lors de
changement de direction de pentes, avec pour conséquences une certaine perte de
précision. On considére alors le �ux numérique pour l�équation scalaire sous la forme
suivante :

Fj+1=2 = a(Uj +
1

2
(1� c) j+1=2(Uj+1 � Uj) (10.61)

où  j+1=2 est pour l�instant une fonction libre. Si l�on choisit  j+1=2 = 0, on retrouve
le schéma décentré et avec  j+1=2 = 1, on obtient le schéma de Lax Wendro¤. L�indice
j+1=2 indique que  j+1=2 prendra des valeurs di¤érentes sur les di¤érentes interfaces.
Introduisons 10.61 dans l�expression :

Un+1j = Unj � �(Fj+1=2 � Fj�1=2) (10.62)

Il vient :

Un+1j = Unj � c(Unj � Unj�1)
�1
2
c(1� c) j+1=2(U

n
j+1 � Unj )

+1
2
c(1� c) j�1=2(U

n
j � Unj�1)

(10.63)
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10.5.2 Compatibilité des données

Un schéma est dit compatible avec les données si la solution Un+1j en chaque point j ,
résultat de l�algorithme est borné par le couple décentré (Unj ; U

n
j�s), où s = sign(c) =

sign(a). Cela signi�e que la solution Un+1j doit se situer entre Unj ;et U
n
j�s soit :

min(Unj ; U
n
j�s) � Un+1j � max(Unj ; Unj�s) (10.64)

Ce qui implique la relation :

0 �
(Un+1j � Unj )

(Unj�s � Unj )
� 1 (10.65)

Par suite, on en déduit avec 10.63:

(Un+1j � Unj )

(Unj�1 � Unj )
= c[1� 1

2
(1� c) j�1=2] +

1

2
c(1� c)

 j+1=2
Rj

(10.66)

avec le contrôleur de régularité Rj:

Rj =
(Unj � Unj�1)

(Unj+1 � Unj )
(10.67)

Une condition su¢ sante pour supprimer les oscillations est donc que le terme
de gauche varie entre 0 et 1, a�n que Un+1j se situe entre Unj et U

n
j�1. De même, on

doit imposer la même condition pour le membre de droite, par suite :

0 � c� 1
2
c(1� c) j�1=2 +

1

2
c(1� c)

 j+1=2
Rj

� 1 (10.68)

Considérons tout d�abord l�inégalité de gauche :

�c � �1
2
c(1� c) j�1=2 +

1

2
c(1� c)

 j+1=2
Rj

(10.69)

En supposant que 0 � c � 1; et en divisant par �1
2
c(1� c), il vient :

2

(1� c)
�  j�1=2 �

 j+1=2
Rj

(10.70)

Avec l�inégalité de droite, on écrit :

�1
2
c(1� c) j�1=2 +

1

2
c(1� c)

 j+1=2
Rj

� 1� c (10.71)

soit :

 j�1=2 �
 j+1=2
Rj

� �2
c

(10.72)
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et �nalement les résultats 10.70 et 10.72 peuvent être combinés:

�2
c
�  j�1=2 �

 j+1=2
Rj

� 2

(1� c)
(10.73)

Remarque : Si  j�1=2 =  j+1=2 = 1, on a le schéma de Lax-Wendro¤; on constate
alors que ce schéma n�est pas compatible avec toutes les données, puisque il sera
compatible uniquement si les données véri�ent la condition :

�1 + c
1� c

� 1

Rj
� c+ 2

c
si 0 � c � 1 (10.74)

�1� c

1 + c
� Rj �

c� 2
c

si � 1 � c � 0 (10.75)

Il y a di¤érents moyens de continuer. Le plus simple est de rechercher seulement les
conditions su¢ santes. Ainsi, pour 0 � c � 1; est véri�ée la condition forte :

�2 �  j�1=2 �
 j+1=2
Rj

� 2 (10.76)

On introduit alors l�hypothèse que  j+1=2 devrait être une fonction de Rj+1=2. Si cette
fonction est telle que :

0 �  j+1=2 � 2 (10.77)

0 �
 j+1=2
Rj

� 2 (10.78)

alors les conditions 10.76 sont automatiquement véri�ées. On peut illustrer ces con-
ditions sur la �gure 13. D�après le diagramme, si Rj � 0, on doit choisir  j+1=2 = 0.

Figure 13 Domaine d�application de la fonction  j+1=2: la zone hachurée

Mais si Rj > 0 on a une certaine liberté. Or, pratiquement dans tout le domaine
de calcul, Rj est proche de 1. Puisque Rj est proche de 1, on aimerait que  j+1=2
soit aussi proche de 1 pour obtenir une précision du second ordre. Le diagramme
précédent montre que la combinaison R =  = 1 est dans la région permise. En fait,
une condition pour que le schéma soit du second ordre presque partout est que la
fonction  (R) passe par le point (1; 1) avec une pente �ni.
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10.5.3 Quelques autres limiteurs

Le limiteur de VAN ALBADA :

 va(R) =
R (R + 1)

R2 + 1
;R � 0 (10.79)

Le limiteur MINMOD ou (minbee) :

Figure 14 Limiteur de van Albada

 mb(R) =

8<:
0; R � 0
R; 0 � R � 1
1; R � 1

9=; (10.80)

Dans ces cas,  (R) n�est pas utilisé pour préserver la monotonicité, mais pour générer

Figure 15 Limiteur minmod

de nouveaux schémas. Ces schémas ont  (R > 1 pour R > 1 (LW ) ou 0 = R < 1
(Moretti). Cela suggère que l�on doit considérer un schéma pour lequel la valeur de
�U soit exagérée : prendre la plus grande valeur entre �+U et ��U pour toute valeur
de R pour laquelle  (R) reste dans le domaine permis.
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Le limiteur SUPERBEE

 sb(R) =Max[0;min(2R; 1);min(R; 1)]) (10.81)

ou :

 sb(R) =

8>>>><>>>>:
0; R � 0
2R; 0 � R � 1=2
1; 1=2 � R < 1
R; 1 � R < 2
2; R � 2

9>>>>=>>>>; (10.82)

Ce limiteur est appelé Superbee car il utilise comme fonction de moyenne, la fonction

Figure 16 Limiteur SuperBee

B(�j+1=2U ,�j�1=2U) ou B(R; 1) et telle que :

�U = B(R; 1)�j�1=2U (10.83)

Ce schéma est excellent au voisinage des discontinuités de contact.26666664
n n j 0 1 2 3 4 5 6 7 8 9

P
0 1 1 1 1 1 0: 0: 0: 0: 0: 5
1 1 1 1 1 1 1

2
0: 0: 0: 0: 5:5

2 1 1 1 1 1 3
4

1
4

0: 0: 0: 6
3 1 1 1 1 1 7

8
1
2

1
8

0: 0: 6:5
4 1 1 1 1 1 60

64
44
64

20
64

1
64

0: 7

37777775 (10.84)

Il faut aller au moins à une dizaine d�itérations pour voir l�e¤et du Superbee.
Le limiteur ULTRABEE :
ou :

 ub(R) =

8><>:
0; R � 0

2
jcjR; 0 � R < jcj

1�jcj
2

1�jcj ; R � jcj
1�jcj

9>=>; (10.85)
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Figure 17 Superbee après quatres itérations

Les limiteurs � :

 �(R) =Max[0;min(�R; 1);min(R; �)] avec 1 < � < 2 (10.86)

ou :

 �(R) =

8>>>><>>>>:
0; R � 0
2R; 0 � R � 1=2
1; 1=2 � R < 1
R; 1 � R < �
2; R > �

9>>>>=>>>>; (10.87)

Figure 18 Limiteur �

10.5.4 Dissipation arti�cielle des schémas

Une valeur de  (R) > 1 signi�e que la fonction �balance �S , précédemment dé�nie
est négative. On a en e¤et :

 (R) = 1� S(R) (10.88)
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Considérons en e¤et le schéma q modi�é (1.2.1 -4) et remplacons la fonction bascule
S(R) par la relation 10.88, il vient :

Un+1j = Unj �
c

2
(Unj+1 � Unj�1) +

1

2
[c2 + c(1� c)S(R)](Unj+1 � 2Unj + Unj�1) (10.89)

ou

Un+1j = Unj �
c

2
(Unj+1�Unj�1)+

1

2
[c2+c(1�c) (1�  (R))](Unj+1�2Unj +Unj�1) (10.90)

Un+1j = Unj � c(Unj � Unj�1)�
1

2
c(1� c) (R)(Unj+1 � 2Unj + Unj�1) (10.91)

et on obtient �nalement la formulation :

Un+1j = Unj � c(Unj � Unj�1) (10.92)

�1
2
c(1� c) (R)j+1=2(U

n
j+1 � Unj ) (10.93)

+
1

2
c(1� c) (R)j�1=2(U

n
j � Unj�1) (10.94)

Or, S est proportionnelle à la dissipation arti�cielle du schéma. En e¤et, pour une
fonction régulière  (R) la dissipation arti�cielle peut être aisément identi�ée, par
exemple, dans le cas d�un schéma utilisant la moyenne harmonique de Van Leer ou
le limiteur de Van Albada, en prenant les formes non normalisées (avec le facteur
(R + 1)=2) :

Cas du limiteur de Van Leer :

1�  (R) = S(R) = 1� 4R

(R + 1)2
=
(1�R)2

(1 +R)2
(10.95)

S(R) =
(�+U ���U)2

(�+U +��U)2
� 1

4
(�x)2[

@

@x
(ln

@U

@x
)]2 (10.96)

Cas du limiteur de Van Albada :

1�  (R) = S(R) = 1� 2R

1 +R2
=
(1�R)2

1 +R2
(10.97)

S(R) =
(�+U ���U)2

(�+U)2 + (��U)2
� 1

2
(�x)2[

@

@x
(ln

@U

@x
)]2 (10.98)

On constate alors que le taux de variation du gradient @
@x
(ln@U

@x
), soit :

@

@x
(ln

@U

@x
) =

@2U
@x2

@U
@x

(10.99)

semble être la bonne fonction pour traiter la régularité d�une solution et pour indiquer
les endroits où les oscillations numériques peuvent apparaître.
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Figure 19 In�uence du nombre de Courant

10.5.5 In�uence du nombre de courant sur les limiteurs

Tous les limiteurs étudiés dans les paragraphes précédents sont indépendants du nom-
bre de Courant c (formulation forte). Or, le gradient d�une fonction linéaire représen-
tant l�approximation de la fonction dans une cellule est limité sans tenir compte de la
grandeur du pas de temps. Il est alors évident qu�une formulation plus faible devrait
être formulée si l�on doit tenir compte de c. Sur la �gure 19 le gradient de U a été
réduit su¢ samment pour que la moyenne convectée soit égale à Uj+1, plutôt que de
convecter la valeur maximum.

On a :
Unj +

1

2
(1� c) �Unj;mono � Unj+1 (10.100)

soit :
�Unj;mono �

2

1� c

�
Unj+1 � Unj

�
(10.101)

Une limite similaire peut-être obtenue lorsque c est proche de 1, et en considérant la
cellule j � 1: on obtient �nalement les conditions suivantes (Van Leer) 1977):

�Unj;mono �

8<:
min

�
2
c

��Unj � Unj�1
�� ; �Unj ; 2

1�c

��Unj+1 � Unj
��	

si sign
��Unj � Unj�1

�� = sign
��Unj+1 � Unj

��
0 autrement

9=; (10.102)

Ce genre de limiteur, dépendant de c peut être dangereux, car il peut provoquer des
dégradations dans les régions continues.
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Chapter 11

LE FONDEMENT DES SCHÉMAS TVD

Dans les chapitres précédents, nous avons montré en détails comment, à partir d�un
schéma du premier ordre linéaire classique, il était possible, moyennant une analyse
�ne des propriétés physiques d�une part et des propriétés des schémas numériques
d�autre part, de construire des schémas non linéaires d�ordre supérieur monotones,
conservatifs et non oscillants. Nous avons essayé de montrer la plupart des propriétés
requises pour de tels schémas. Nous allons dans la suite e¤ectuer une approche plus
générale permettant de construire des classes plus larges de schémas d�ordre supérieur.

11.1 Dé�nitions de schémas TVD

En 1983, Harten développa des schémas non oscillants plus acceptables pour l�analyse
numérique, en introduisant le concept de schéma TV D (Total Variation Diminishing).
Considérons le cas de la solution d�une équation scalaire monodimensionnelle; On
dé�ni la variation totale d�une variable u par :

TV (u) =

Z ����@u@x
���� dx (11.1)

qui sous forme discrète s�écrit :

TV (Un) =

j=1X
j=�1

jUnj � Unj�1j (11.2)

Un schéma TV D, plus précisément TV NI (Total Variation Non Increasing), permet
de dé�nir Un tel que :

TV (Un+1) � TV (Un)) (11.3)

Etant donnée une séquence de valeurs monotones de Un la valeur de TV est égale à :

TV (Un) = jUn1 � Un�1j (11.4)

et est indépendant des valeurs intermédiaires. Si une telle suite de valeurs est convec-
tée par un schéma qui introduit de nouveaux extrêma, la valeur de TV augmentera.
Il su¢ t de voir la �gure ?? pour s�en convaincre : De nombreux schémas TVD ont
été développés au cours des années. On peut classer ses schémas en schémas TVD
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Figure 1

du premier ordre, en schémas TVD du second ordre et en schéma TVD de type
prédicteur correcteur. Par ailleurs dans chaque catégorie, on introduit les formu-
lation explicite et implicite. Pour les schémas aux di¤érences �nies, on peut aussi
introduire les classes centré et décentré. En plus pour chaque formulation diverses
fonctions limiteurs peuvent être utilisées. D�autre part, pour chaque catégorie, des
formulations numériques diverses peuvent être choisies. Dans ces notes, on ne traitera
que l�approche générale pour les schémas explicites.

11.2 Schémas préservant la monotonicité

Si les propriétés de monotonicité suivantes sont garanties aux cours du temps :

� a) Localement aucun nouvel extremum ne peut être crée;

b) La valeur d�un minimum local ne peut décroître et la valeur d�un maximum
local ne peut augmenter.

On dit alors que le schéma préserve la monotonicité. Donc si Unj est monotone;
alors Un+1j l�est aussi.

Dans ces conditions, aucun dépassement local ne peut arriver et l�on peut
montrer que :

� a) Tous les schémas monotones sont TV D

b) Tous les schémas TV D préserve la monotonicité.
Tous les schémas linéaires qui préservent la monotonicité ne sont précis qu�au

premier ordre. Par contre les schémas non linéaires TV D peuvent avoir une précision
d�ordre supérieur.

11.3 Conditions su¢ santes pour qu�un schéma soit TVD

11.3.1 Approche théorique pour les schémas TVD explicites

Harten donna une condition su¢ sante pour qu�un schéma ait la propriété d�être TV D.
A�n de pouvoir utiliser le critère de Harten, le schéma numérique doit être écrit sous
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la forme suivante, dans le cas de schémas explicites :

Un+1j = Unj � C+j�1=2[U
n
j � Unj�1] + C�j+1=2[U

n
j+1 � Unj ] (11.5)

que l�on peut écrire sous la forme condensée :

Un+1j = Unj � C+j�1=2�j�1=2U
n
j + C�j+1=2�j+1=2U

n
j (11.6)

on en déduit :

Un+1j�1 = Unj�1 � C+j�3=2�j�3=2U
n
j + C�j�1=2�j�1=2U

n
j (11.7)

d�où en soustrayant 11.7 de 11.6 :

�j�1=2U
n+1
j = Un+1j � Un+1j�1 (11.8)

�j�1=2U
n+1
j = �j�1=2U

n
j � C+j�1=2�j�1=2U

n
j + C+j�3=2�j�3=2U

n
j (11.9)

+C�j+1=2�j+1=2U
n
j � C�j�1=2�j�1=2U

n
j (11.10)

�j�1=2U
n+1
j =

�
1� C+j�1=2 � C�j�1=2

�
�j�1=2U

n
j + C+j�3=2�j�3=2U

n
j + C�j+1=2�j+1=2U

n
j

(11.11)
Par suite :

TV (Un+1j ) =
X����1� C+j�1=2 � C�j�1=2

�
�j�1=2U

n
j + C+j�3=2�j�3=2U

n
j + C�j+1=2�j+1=2U

n
j

���
(11.12)

TV (Un+1j ) �
X����1� C+j�1=2 � C�j�1=2

�
�j�1=2U

n
j

���
+
X���C+j�3=2�j�3=2U

n
j

���+X���C�j+1=2�j+1=2U
n
j

��� (11.13)

Si les trois conditions suivantes sont véri�ées pour tout j :

1� C+j�1=2 � C�j�1=2 � 0
C+j�1=2 � 0
C�j�1=2 � 0

(11.14)

alors 11.13 peut s�écrire :

TV (Un+1j ) �
X�

1� C+j�1=2 � C�j�1=2

� ���j�1=2U
n
j

��
+
X

C+j�3=2
���j�3=2U

n
j

��+XC�j+1=2
���j+1=2U

n
j

�� (11.15)

=
X�

1� C+j�1=2 � C�j�1=2

� ���j�1=2U
n
j

��+XC+
j�1=2

���j�1=2U
n
j

��+XC�j�1=2
���j�1=2U

n
j

��
(11.16)

= TV (Unj ) (11.17)
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11.3.2 Application avec le schéma C.I.R.

Pour comprendre les conditions 11.14 considérons le schéma C:I:R du premier ordre;
exemple de base de 11.5 :

Un+1j = Unj � c+�j�1=2U
n
j � c��j+1=2U

n
j (11.18)

avec :

c+ = max(0; c) =
c+ jcj
2

� 0 (11.19)

c� = min(0; c) =
c� jcj
2

� 0 (11.20)

D�après (11.14 ce schéma est TVD si :

1� c+ � c� � 0
c+ � 0
�c� � 0

(11.21)

La première condition peut être écrite jcj � 1; ce qui est la condition CFL, les deux
autres sont véri�ées par dé�nition. La condition globale 11.14 a été réduite à
une condition su¢ sante local; on notera qu�en général les coe¢ cients C+ et C�

dépendront de grandeurs, telles que � ou R (contrôleur de régularité) a�n que le
schéma soit TV D. Le problème avec le système 11.14 est que sa forme n�est pas
unique. Ainsi, la relation 11.5 peut s�écrire :

Un+1j = Unj � fC+j�1=2 � C�j+1=2
�j+1=2U

n
j

�j�1=2Unj
g�j�1=2U

n
j (11.22)

qui conduit aux conditions :

0 � C+j�1=2 � C�j+1=2
�j+1=2U

n
j

�j�1=2U
n
j

� 1 (11.23)

et l�on peut montrer que les schémas satisfaisant les conditions 11.23 ne sont pas
TV D. Ainsi, à titre d�exemple, lorsque on prend le simple schéma �upwind� avec
c = c� < 0; la condition 11.23 devient :

0 � c�
�j+1=2U

n
j

�j�1=2U
n
j

� 1 (11.24)

et cette condition ne peut être véri�er que pour des valeurs négatives de � ou R;
et par suite, pas pour toutes les valeurs initiales. En conséquence, il est néces-
saire de mettre en forme un schéma sous la forme 11.5 qui donnent les conditions
TV D les moins restrictives. Pour trouver de telles formes, on doit être guidé par
d�autres principes, et en particulier les lois d�interpolation non-oscillantes (les limi-
teurs), présentées précédemment.



Conditions su¢ santes pour qu�un schéma soit TVD 179

11.3.3 Le problème des extrémas

Par ailleurs, les schémas TV D auront pratiquement toujours tendance à applanir les
extréma; considérons le schéma du second ordre LW modi�é réécrit sous la forme
suivante :

Un+1j = Unj � c(Unj � Unj�1)�
c

2
(1� c)(�Unj � �Unj�1) si c � 0(a � 0) (11.25)

Parmi les schémas de cette forme, la propriété TV D est requise seulement si :

�Unj;mono = 0 pour �
n
j+1=2 � 0 (11.26)

A�n de permettre des valeurs au temps n+1, au voisinage d�extremum qui se trouve
en dehors des valeurs discrètes des valeurs au temps n, on doit a¤aiblir la condition :

TV (Un+1) � TV (Un) (11.27)

Une analyse de propriétés TVD du schéma 11.25 procède de la manière suivante :
tout d�abord; il faut identi�er C+ :

Un+1j = Unj � C+j�1=2�j�1=2U
n
j (11.28)

avec :

C+j�1=2 = c+
c

2
(1� c)f 

�
�nj
� �Unj
�j�1=2U

n
j

�  
�
�nj�1

� �Unj�1
�j�1=2U

n
j

g (11.29)

puis on impose 11.14 :

0 � c+
c

2
(1� c)f

 
�
�nj
�
�Unj

�j�1=2Unj
�
 
�
�nj�1

�
�Unj�1

�j�1=2Unj
g � 1 (11.30)

ce qui est équivalent à :

0 �
Unj � Un+1j

Unj � Unj�1
� 1 (11.31)

et implique que Un+1j se trouve entre Unj et U
n
j�1; une condition su¢ sante pour la

monotonicité peut s�écrire :

�Unj;mono
�j�1=2U

n
j

�
�Unj�1;mono
�j�1=2U

n
j

� � 2

1� c
(11.32)

�Unj;mono
�j�1=2U

n
j

�
�Unj�1;mono
�j�1=2U

n
j

� 2

c
(11.33)

avec :
�Unj;mono =  

�
�nj
�
�Unj (11.34)
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Supposons que sgn
�
�Unj;mono

�
= sgn(�j�1=2U

n
j ) = sgn

�
�Unj�1;mono

�
; dans ce cas les

termes à gauche de 11.32 vont partiellement s�éliminer. Le plus mauvais cas pour
11.32 est celui où �Unj;mono = 0, et dans cette con�guration; on doit imposer :

�Unj�1;mono
�j�1=2U

n
j

� 2

1� c
(11.35)

Le plus mauvais cas pour 11.33 est �Unj�1;mono = 0; ce qui implique la condition :

�Unj;mono
�j�1=2Unj

� 2

c
(11.36)

D�autre part la condition 11.35 peut aussi s�exprimer :

�Unj;mono
�j+1=2U

n
j

� 2

1� c
(11.37)

car elle doit être valable pour tout point j. C�est la condition 10.100 que l�on a déjà
trouver par ailleurs. De même avec 11.36 et l�on retombe sur les conditions 10.101.

11.3.4 Méthode de construction de schémas TVD du second ordre explicites

Pour obtenir un schéma du second ordre TVD, il est nécessaire d�écrire
le schéma comme un schéma du premier ordre véri�ant la monotonicité,
auquel on rajoute des termes supplémentaires pour obtenir une précision
supérieure. Ces derniers termes sont limités de manière à satisfaire aussi
la condition de monotonicité. La méthode pour construire des schémas TVD du
second ordre est donc la suivante :

1) On choisit un �ux numérique monotone du premier ordre
A titre d�exemple, on prend le �ux numérique du schéma upwind du 1er ordre

de Roe :

F nj+1=2 =
1

2
(fj + fj+1 � janj+1=2j(Unj+1 � Unj )) (11.38)

avec :

a+ =
1

2
(a+ jaj) (11.39)

et :

a� =
1

2
(a� jaj) (11.40)

que l�on peut écrire avec le �ux physique f = aU sous la forme :

dU

dt
= � 1

�x
[a+j�1=2(U

n
j � Unj�1) + a�j+1=2(U

n
j+1 � Unj )] (11.41)

2) On introduit un �ux numérique du second ordre:
Par exemple:
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~F nj+1=2 = [F
n
j+1=2 +

1

2
(fj � F nj�1=2) +

1

2
(fj+1 � F nj+3=2)] (11.42)

que l�on peut écrire de nouveau avec f = aU et en tenant compte de 11.38 sous la
forme :

~F nj+1=2 = [F
n
j+1=2 +

1

2
a+j�1=2(U

n
j � Unj�1)�

1

2
a+j+3=2(U

n
j+2 � Unj+1)] (11.43)

où l�on tenu compte du fait que :

(fj � F nj�1=2) =
1

2

�
a+j�1=2 +

���a+j�1=2���� (Unj � Unj�1) (11.44)

(fj � F nj+3=2) =
1

2

�
a+j+1=2 +

���a+j+1=2���� (Unj+1 � Unj ) (11.45)

Par suite sous la formulation non linéaire, on obtient :

dU

dt
= � 1

�x
[a+j�1=2(U

n
j � Unj�1) +

a�j+1=2
2

(Unj � Unj�1)�
a�j+3=2
2

(Unj+2 � Unj+1)] (11.46)

� 1

�x
[a�j�1=2(U

n
j+1 � Unj ) +

a+j�3=2
2

(Unj�1 � Unj�2)�
a�j+1=2
2

(Unj�1 � Unj )] (11.47)

et sous la formulation linéaire, on aurait :

dU

dt
= � a+

�x
[(Unj � Unj�1) +

1

2
(Unj � Unj�1)�

1

2
(Unj�1 � Unj�2)] (11.48)

� a�

�x
[(Unj+1 � Unj ) +

1

2
(Unj+1 � Unj )�

1

2
(Unj+2 � Unj+1)] (11.49)

3) On restreint l�amplitude des gradients apparaissant par des limi-
teurs non linéaires véri�ant les conditions TVD

L�introduction de limiteurs se fait sur les termes de dissipation; on aura donc
la formulation suivante du �ux à partir de 11.43 :

~F nj+1=2 = [F
n
j+1=2+

1

2
a+j�1=2	

+
j�1=2(U

n
j �Unj�1)�

1

2
a+j+3=2	

�
j+3=2(U

n
j+2�Unj+1)] (11.50)

d�où :

dU
dt
= � 1

�x

h
a+j�1=2(U

n
j � Unj�1) +

1
2
a+j�1=2	

+
j�1=2(U

n
j � Unj�1)� 1

2
a�j+3=2	

�
j+3=2(U

n
j+2 � Unj+1)

i
� 1
�x

h
a�j�1=2(U

n
j+1 � Unj ) +

1
2
a+j�3=2	

+
j�3=2(U

n
j�1 � Unj�2)� 1

2
a�j+1=2	

�
j+1=2(U

n
j+2 � Unj+1)

i
(11.51)

avec :
	+j�1=2 = 	(R

+
j�1=2) (11.52)
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	�j+3=2 = 	(R
�
j+3=2) (11.53)

	�j+1=2 = 	(R
�
j+1=2) (11.54)

	�j�3=2 = 	(R
�
j�3=2) (11.55)

Les contrôleurs de régularité sont alors dé�nis par :

R+j�1=2 =
a+j+1=2(U

n
j+1 � Unj )

a+j�1=2(U
n
j � Unj�1)

(11.56)

R�j+3=2 =
a�j+1=2(U

n
j+1 � Unj )

a�j+3=2(U
n
j+2 � Unj+1)

(11.57)

R�j+1=2 =
a�j+1=2(U

n
j � Unj�1)

a�j�1=2(U
n
j+1 � Unj )

(11.58)

R�j�3=2 =
a�j+1=2(U

n
j � Unj�1)

a�j�3=2(U
n
j�1 � Unj�2)

(11.59)

4) On choisit ensuite un schéma d�intégration temporel, véri�ant les con-
ditions TVD

Pour simpli�er; on prendra le schéma d�Euler. Dans ce cas, on reécrit la
relation 11.51 sous la forme :

Un+1j = Unj (11.60)

��[a+j�1=2(U
n
j � Unj�1) +

1

2
	+j�1=2a

+
j�1=2(U

n
j � Unj�1)�

1

2
	�j+3=2a

�
j+3=2(U

n
j+2 � Unj+1)]

(11.61)

��[a�j�1=2(U
n
j+1 � Unj ) +

1

2
	�j+1=2a

�
j+1=2(U

n
j+1 � Unj )�

1

2
	+j�3=2a

+
j�3=2(U

n
j�1 � Unj�2)]

(11.62)

Un+1j = Unj � �[1 +
1

2
	+j�1=2 �

1

2

	+j�3=2

R+j�3=2
]a+j�1=2(U

n
j � Unj�1) (11.63)

��[1 + 1
2
	�j+1=2 �

1

2

	�j+3=2

R�j+3=2
]a�j�1=2(U

n
j+1 � Unj ) (11.64)

ou :

Un+1j = Unj � �[1 +
1

2
	+j�1=2 �

1

2

	+j�3=2

R+j�3=2
](fj � F nj�1=2) (11.65)

��[1 + 1
2
	�j+1=2 �

1

2

	�j+3=2

R�j+3=2
](F nj+1=2 � fj) (11.66)

D�après 11.5 et avec c = �a :

Un+1j = Unj � C+j�1=2[(U
n
j � Unj�1)] + C�j+1=2[(U

n
j+1 � Unj )] (11.67)
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C+j�1=2 = �[1 +
1

2
	+j�1=2 �

1

2

	+j�3=2

R+j�3=2
]c+j�1=2 (11.68)

C�j�1=2 = [1 +
1

2
	�j+1=2 �

1

2

	�j+3=2

R�j+3=2
]c�j�1=2 (11.69)

Le schéma est TVD s�il véri�e les conditions suivantes :

1� C+j�1=2 � C�j�1=2 � 0 (11.70)

C+j�1=2 � 0 (11.71)

C�j�1=2 � 0 (11.72)

soit :

C+j�1=2 = �[1 +
1

2
	+j�1=2 �

1

2

	+j�3=2

R+j�3=2
]c+j�1=2 � 0 (11.73)

C�j�1=2 = [1 +
1

2
	�j+1=2 �

1

2

	�j+3=2

R�j+3=2
]c�j�1=2 � 0 (11.74)

et avec la condition sur le limiteur 	(R) � 	(R0)
R

� � où 0 < � � 2; on a aussi la
nouvelle condition CFL :

C+j�1=2 + C�j�1=2 � jcj�1=2j
1 + �

2
� 1 (11.75)

5) On contrôle éventuellement la condition d�entropie.
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