

ME-351 : Thermodynamics and Energetics - II

Lecture 1 : Introduction

[COURSE DETAILS](#) | [WHAT IS THERMODYNAMICS?](#) | [BASIC DEFINITIONS](#) | [STATE & PATH VARIABLES](#) | [FIRST LAW OF THERMODYNAMICS](#)

Anirudh Raju Natarajan

anirudh.natarajan@epfl.ch

Introduction & Course organization

Location : MAA 112

Lectures : 15:15 – 17:00

Excercises : 17:15 – 18:00

Office Hours : *By appointment* (Friday 14:00-16:00)

Assistants : Deepak Soman (deepak.soman@epfl.ch)

Damien Lee (damien.lee@epfl.ch)

Course Language : English

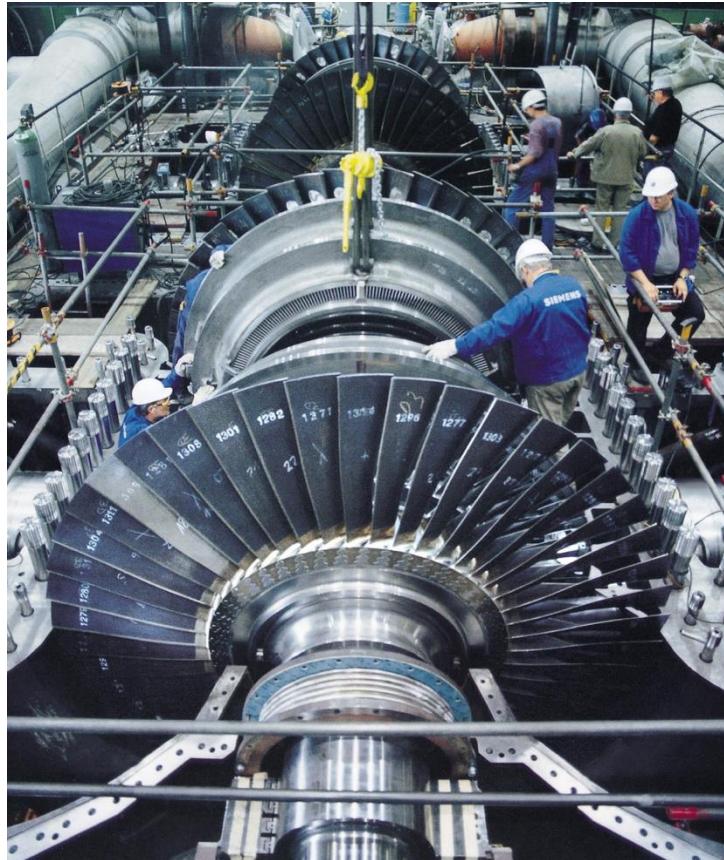
References:

- Principles of Classical Thermodynamics: Applied to Materials Science Didier de Fontaine (Available online through the library!)
- Introduction to the Thermodynamics of Materials : David R. Gaskell, David E. Laughlin
- Fundamentals of engineering thermodynamics : Moran and Shapiro
- An Introduction to Statistical Thermodynamics : D. Chandler
- Thermodynamics and an Introduction to Thermostatistics : Herbert B. Callen

3 credits ~ 3 x 30 hours = 90 hours

14 x 3 hours of lectures/exercise → 48 hours at home/library ~ 3.5 hours a week

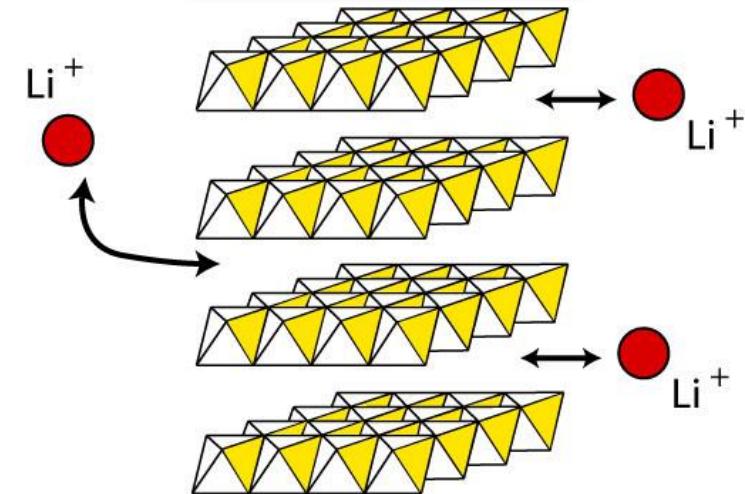
Midterm Exam : 40 % of the grade


Final Exam : 60 % of the grade

Final exam during the exam month. Date and location will be announced as soon as they are available.

Students will be provided with a single formula sheet along with the exam. No other papers/exam aids are allowed or required.

Thermodynamics & Energetics - II


This course will discuss *advanced topics in thermodynamics* with a focus on studying *gas phases, mixtures, phase transformations and combustion*. The application of these principles to various practical systems such as *batteries, fuel cells etc.* will be discussed.

Energy generation

Materials

Energy storage

Thermodynamics & Energetics - II

This course will discuss *advanced topics in thermodynamics* with a focus on studying *gas phases, mixtures, phase transformations and combustion*. The application of these principles to various practical systems such as *batteries, fuel cells etc.* will be discussed.

What do these have in common?

Course organization

Date	Topic
February 18	Introduction, overview, basic definitions, equilibrium & state variables, reversible work (<i>No exercise session</i>)
February 25	First law, heat capacity, Second law of thermodynamics
March 4	Mathematical structure of thermodynamics (<i>No exercise session</i>)
March 11	Equilibrium criteria
March 18	Phase transformations (<i>No exercise session</i>)
March 25	<i>Exercise session from 15:15 – 16:45 (No lecture)</i>
April 1	Multi-phase systems (<i>No exercise session</i>)
April 8	Solution equilibria - I
April 15	<u>Midterm examination (Room TBD)</u>
April 22	<i>Mid-semester break (No lecture)</i>
April 29	Solution equilibria – II
May 6	Multicomponent phase diagrams
May 13	Introduction to statistical mechanics
May 20	Canonical ensemble, probability distribution, partition function
May 27	Statistical mechanical interpretation of entropy, General structure of statistical mechanics

Thermodynamics & Energetics - II

This course will discuss *advanced topics in thermodynamics* with a focus on studying *gas phases, mixtures, phase transformations and combustion*. The application of these principles to various practical systems such as *batteries, fuel cells etc.* will be discussed.

Reading material for the first 2 lectures:
Chapters 1-4 of de Fontaine