

THERMODYNAMICS & ENERGETICS - II

What is thermodynamics?

Macroscopic framework of energy flows, and how they affect the properties of the system

— Macroscopic theory → no atomic scale information

— deals only with macroscopic variables

(eg) Volume (V)
pressure (p)

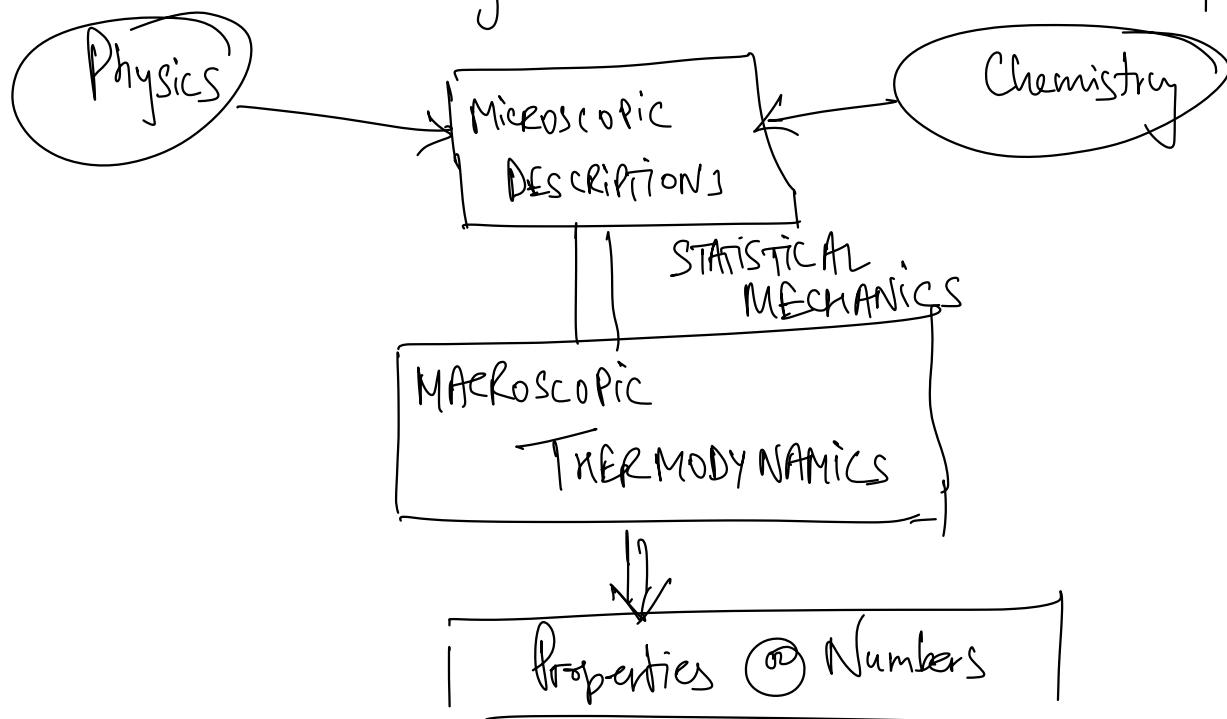
temperature (T) ...

— Completely general framework that does not rely on atomic details.

— Thermodynamics is a "processor" @ "accountant"
⇒ You have to put some information / physics into the framework to get other properties out

RELATION TO OTHER FIELDS:

Can derive thermodynamic relations from atomic / electronic



Thermo & ITS RELATIONSHIP TO OTHER FIELDS

field	Key equation	Important variables
Mechanics	Newton (1643 - 1727)	$(m) \vec{v}, \vec{F}, \vec{x}$
Elasticity	Hooke's law (eqns. of elasticity) (1635-1703)	$\sigma, \epsilon, (E, G)$
Electricity & Magnetism	Maxwells equations (1831- 1879)	$\vec{E}, \vec{B}, \vec{M}, \vec{H}$ (χ, ϵ)
Thermal Sciences	Fourier Law (1768 - 1830)	$T, \vec{J}, (C_p, C_v)$

all different ways of storing energy in a system

Thermo COUPLES THESE Disciplines INTO ONE FRAMEWORK

- treating energy flows leads to the emergence of couplings between fields!

(eg) elasticity & EM \Rightarrow piezoelectricity.

Thermo needs subdisciplines to provide data & constitutive relations on materials behavior

(e.g) elasticity $\epsilon = C \sigma$ Materials specific properties.

Magnetism $M = \chi n$ tensor
susceptibility.

DEFINITIONS:

* SYSTEM: Any collection of matter that can be uniquely specified (and over which macroscopic averages can be specified)

* SURROUNDING / ENVIRONMENT: Universe - System

VARIABLES:

- extensive: scale with the size of the system

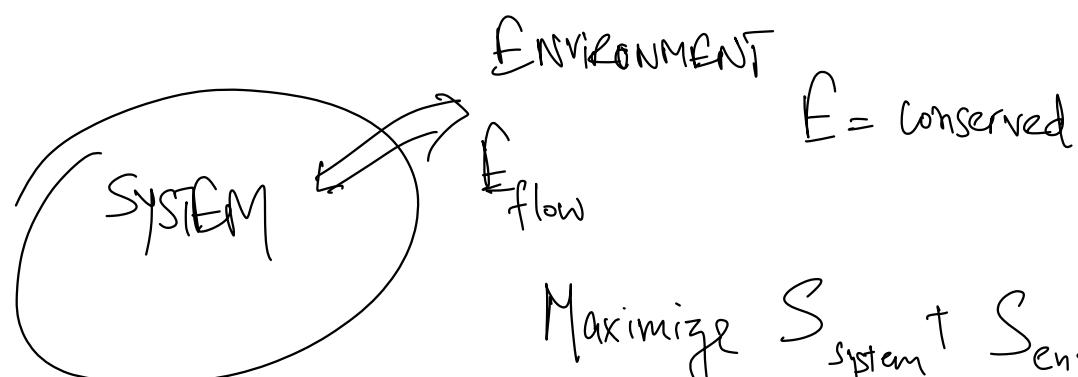
$$(V, N_i, U, \dots) \rightarrow \text{normalized extensive variables: } \frac{N_i}{V} = x_i$$

- intensive: do not scale with the size of the system

$$(T, p, \epsilon, \dots)$$

↓
"densities"

Thermo summarized



Maximize $S_{\text{system}} + S_{\text{environment}}$

$$\underline{\text{Solve}} \quad dS_{\text{system}}(dE_{\text{system}}) + dS_{\text{environment}}(-dE_{\text{system}})$$

STEPS TO SOLVING A THERMO PROBLEM

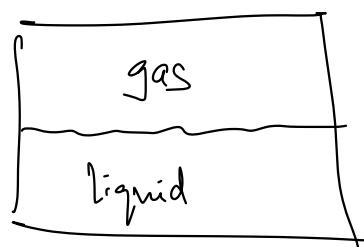
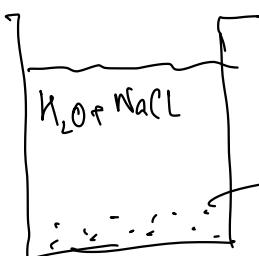
- ① Carefully define system
- ② Quantify the energy flows
- ③ Relate entropy to energy flows
- ④ Relate to properties

* BOUNDARIES

- permeable \rightarrow Open system N_i is allowed to change
- non-permeable \rightarrow N_i is constant \rightarrow closed $\xrightarrow{\quad}$ Open system
- Deformable \rightarrow V can change
- Adiabatic \textcircled{a} Insulated \rightarrow no heat flow
- Diathermic \rightarrow perfect heat flow (System is at same temperature as environment)
- Rigid \rightarrow $V = \text{constant}$

THERMODYNAMICS DEALS WITH EQUILIBRIUM STATES:

- * **HOMOGENEOUS EQUILIBRIUM:** All bulk physical properties of the system are uniform throughout and do not change with time
- * **HETEROGENEOUS EQUILIBRIUM:** Collection of equilibrium phases coexisting



undissolved $NaCl$ The beaker contains "distinct portions" whose properties markedly differ from one another

(eg) χ_{NaCl} in the liquid v/s χ_{NaCl} in the solid

$$\chi_{\text{liquid}} \neq \chi_{\text{solid}}$$

Each "distinct portion" \longrightarrow PHASE

IN EQUILIBRIUM: system has well-defined extensive & intensive variables eg (T, V, P, μ, \dots) that uniquely characterize the STATE of the system

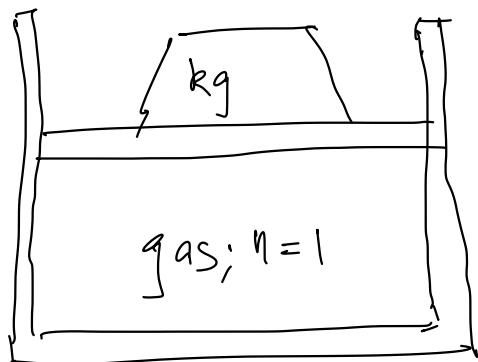
\longrightarrow These variables are called STATE VARIABLES

State Variables are independent of how equilibrium is reached.

EXAMPLE: ideal gas: Equation of state \rightarrow thermo does not predict this

Must be derived from

- experiment
- physics \Rightarrow STAT. MECH



$$pV = nRT$$

fix $p, T \rightarrow V$ is automatically determined in equilibrium

{

- does not depend on how the state was obtained
- fix 2-variables \rightarrow third is fixed by equilibrium

V = state function ; $V = f(T, p)$ [1 mole of gas]

$$\textcircled{w} \quad f(V, T, p) = 0$$

all equilibrium states for one mole of gas lie on this surface

CONSEQUENCE (Recall from calculus)

$$dV = \left(\frac{\partial V}{\partial p} \right)_T dp + \left(\frac{\partial V}{\partial T} \right)_p dT$$

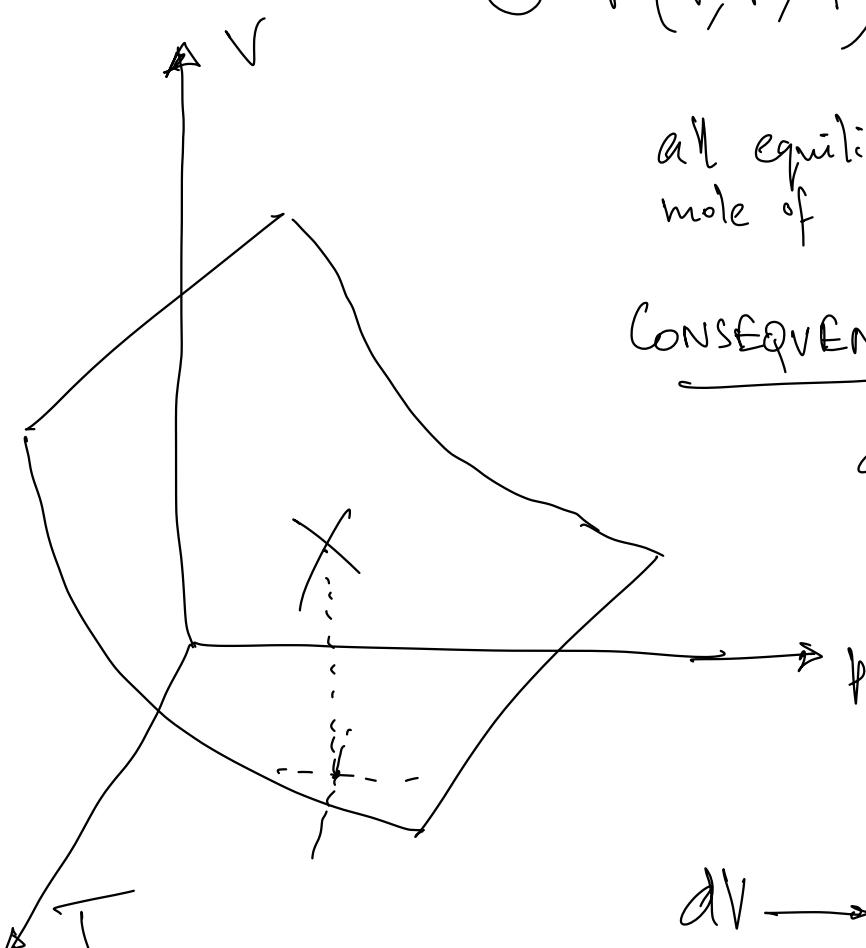
slope @

Constant T

slope @

Const. p

$dV \rightarrow$ total differential
exact differential



Measuring the equation of state

- ① Directly measure $V(T, p)$ → Several experiments @ $(T_1, p_1), (T_2, p_2), \dots$
- ② Measure derived quantities:
 - * Compressibility: $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$
 - * thermal volumetric expansion: $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$
$$\Rightarrow \boxed{dV = -V \kappa dp + V \beta dT}$$

NOTE: Can do the same thing for
 $p(V, T)$ or $T(V, p)$

* State Variables are determined by the allowed changes of the system

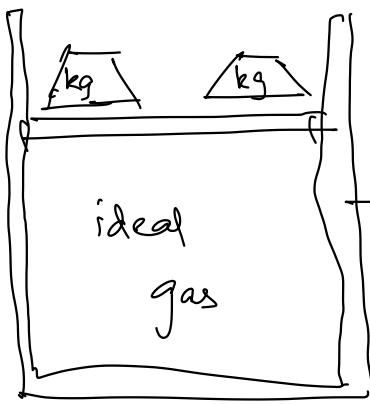
CHANGE OF STATE (process) - between stable and/or metastable states

- describe in terms of state variables
- $\left. \begin{array}{l} X \rightarrow \text{extensive } (V, N, \dots) \\ Y \rightarrow \text{intensive } (T, p, \mu, \dots) \end{array} \right\}$

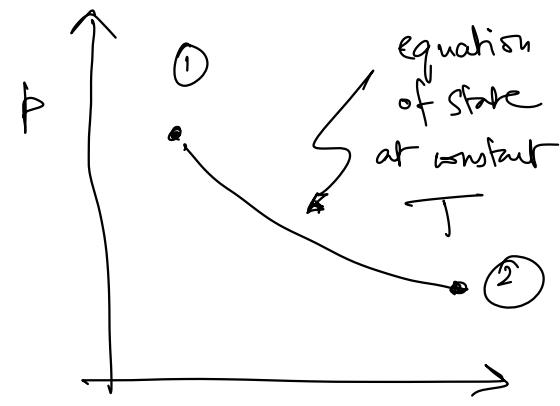
Two ways of changing the state of a system:

- * perform work W $W > 0$ if work is performed on the system
- * Exchange heat Q $Q > 0$ if heat is supplied to the system.

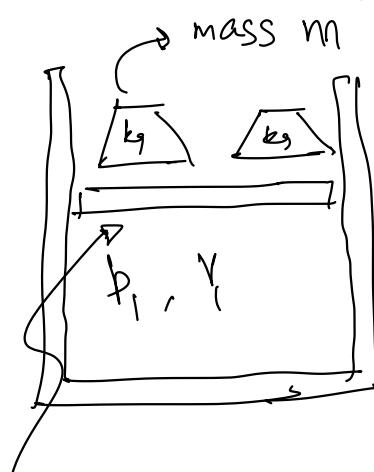
WORK



diathermal walls
⇒ constant T



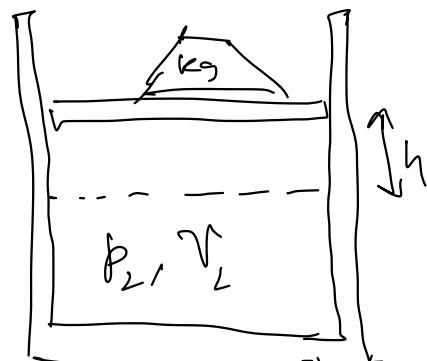
Change state from ① → ②



$$P_1 = \frac{mg}{A}$$

Cross-Section area

A

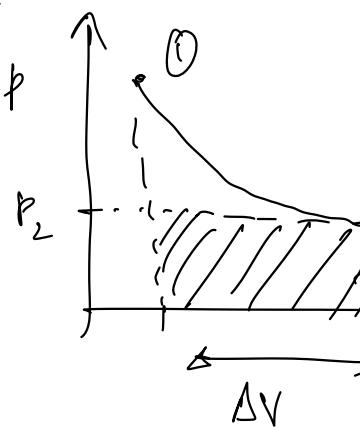


Work performed by the system to the environment

→ System lifted on weight of mass m by a height h

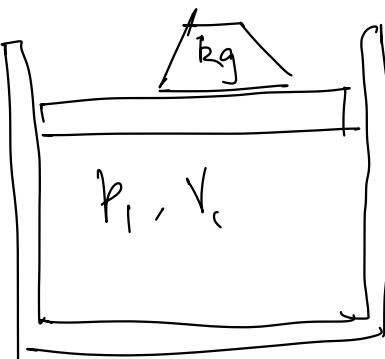
$$W = -mg \cdot h = -\frac{mg}{A} \cdot hA$$

$$W = -P_2 \cdot \Delta V$$

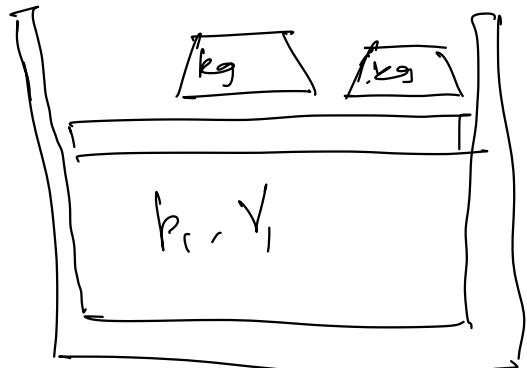


$$W_{1 \rightarrow 2} = -P_2 \Delta V$$

Go from ② \rightarrow ① :



②

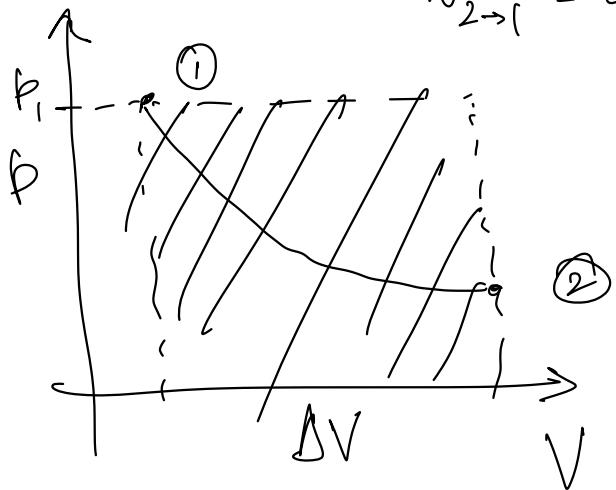


①

Work performed on the system

\rightarrow two weights of mass m were dropped a height h

$$W_{2 \rightarrow 1} = 2mg \cdot h = 2mg \cdot ht = p_1 \Delta V$$



\rightarrow To achieve a change of state in reality we need either an overpressure or an underpressure \rightarrow for a real change of state

$$p_{\text{system}} \neq p_{\text{environment}}$$

\rightarrow Work is different when reversing the process

REAL PROCESSES ARE IRREVERSIBLE

When is $|W_{1 \rightarrow 2}| = |W_{2 \rightarrow 1}|$?

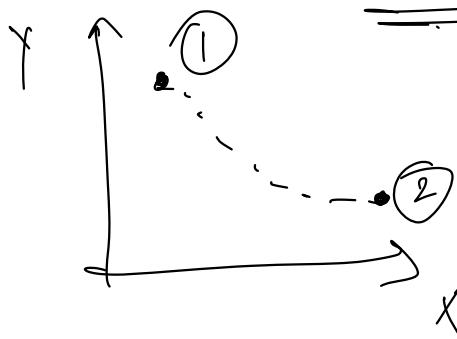
when $p_{\text{system}} = p_{\text{env}}$ at all stages

Idealized
REVERSIBLE
change of state

THREE TYPES OF PROCESSES

(I)

Discontinuous IRREVERSIBLE



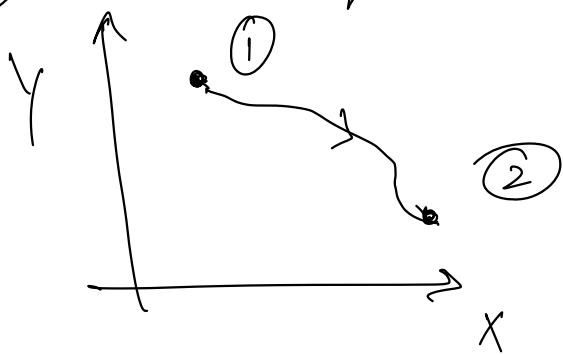
- X, Y cannot be measured along path

- change is fast & turbulent

(eg) H_2, O_2 combustion

(II)

Continuous quasi-static IRREVERSIBLE



- process is slow enough that X & Y can be specified along path

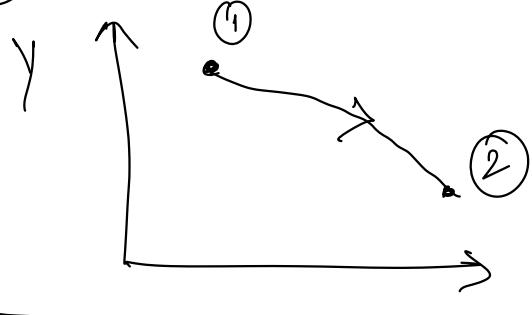
- System & environment are not in equilibrium

- make small changes to X & Y and allow to equilibrate

(eg) expansion of a gas $p_{env} < p_{sys}$

(III)

Continuous quasi-static REVERSIBLE



- same as II but the system is always in equilibrium with the surroundings

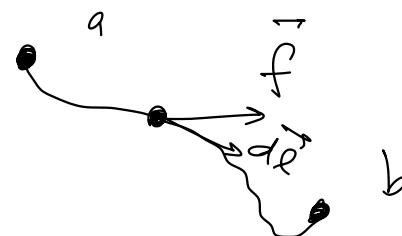
- can retrace steps restoring both system & environment to its original state

PURELY
MATHEMATICAL

Change of state (process) through exchange of work and heat between system & environment

WORK: energy transfer from "displacement" under a "force"

* classical mechanics



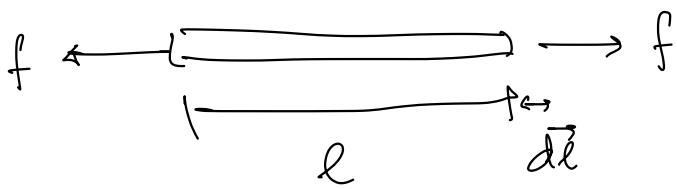
$$\delta W = \vec{f} \cdot \vec{dl}$$

$$\Delta W = \int_a^b \vec{f} \cdot \vec{dl}$$

$\delta W > 0$ if work is done on the system

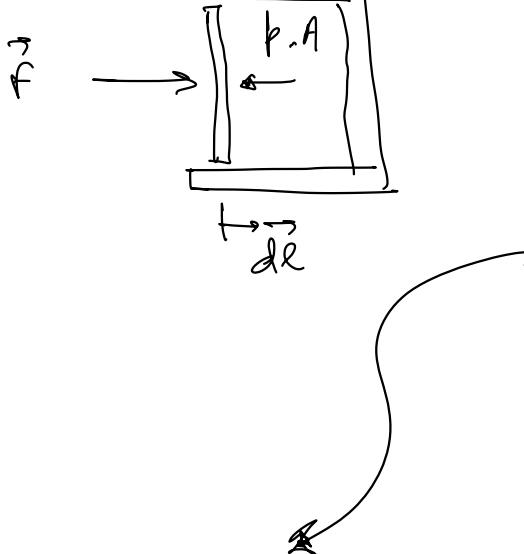
[path dependent]

elongation of a rod



$$\delta W = \vec{f} \cdot \vec{dl}$$

piston work



$$\delta W = \vec{F} \cdot \vec{dl}$$

Assume mechanical equilibrium

$$\Rightarrow F = pA$$

$$\delta W = pA \underbrace{dl}_{-dV} = -pdV$$

ONLY TRUE IF IN MECHANICAL EQUILIBRIUM

\Rightarrow ONLY FOR REVERSIBLE

PROCESSES

Work is expressed in terms of state variables of the system

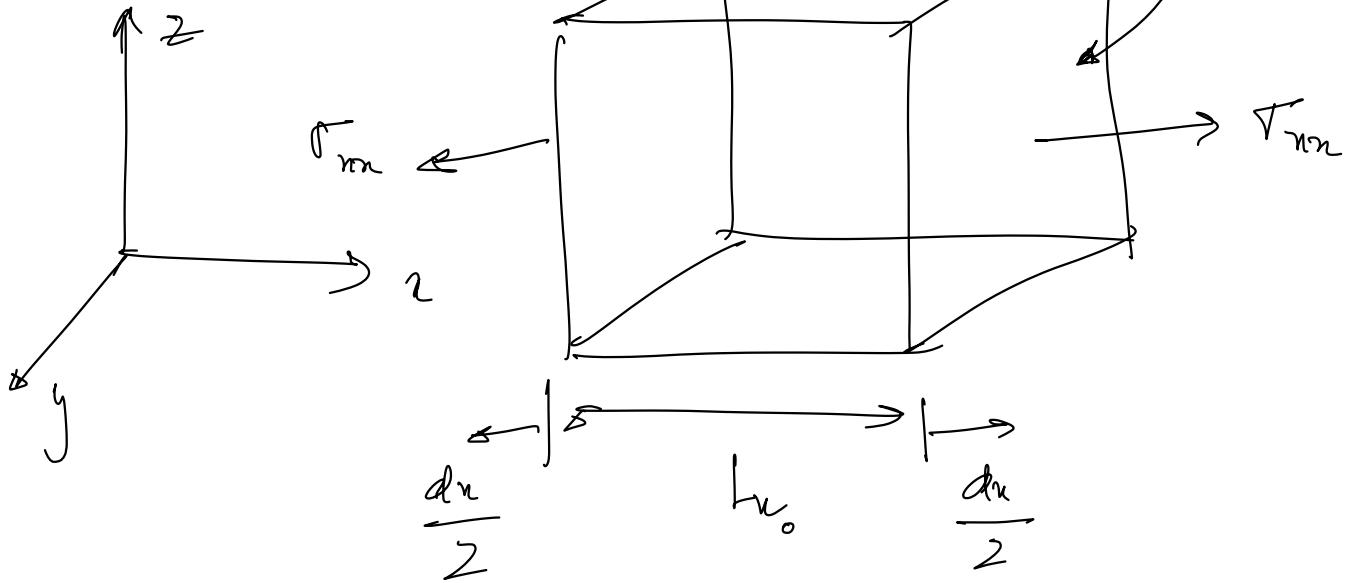
NOTE: ① quasi-static irreversible compression

$f > p \cdot A \rightarrow$ perform more work than the reversible case

② quasi-static irreversible expansion

$f < p \cdot A \rightarrow$ get less work out of the system

Strain Work



$$\delta W = \int F_{xx} A_0 \frac{dx}{2} = F_{xx} A_0 L_{x_0} \frac{dx}{L_{x_0}} = V_0 F_{xx} \frac{d\epsilon_{xx}}{V_0}$$

$$= V_0 F_{xx} d\epsilon_{xx}$$

In general :
$$\boxed{\delta W = \sum_i \sum_j V_0 F_{ij} d\epsilon_{ij}}$$

Special case :

hydrostatic pressure

$$\left. \begin{aligned} F_{xx} &= F_{yy} = F_{zz} = -p \\ F_{xy} &= F_{yz} = F_{zx} = 0 \end{aligned} \right]$$

$$\boxed{\delta W = -pdV}$$

$V = V_0 (1 + \epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz})$
Assuming infinitesimal strains

$$\delta W = -V_0 p d(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz})$$

$$\left. \begin{aligned} dV &= V_0 d(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz}) \end{aligned} \right]$$