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The View Factor — Reciprocity of Energy Transfer

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

If both surface i and j emit and reflect diffusively:
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Reciprocity of radiative energy transfer



The View Factor

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

Convex L
If a surface is planar or convex In an enclosure, the radiation leaving
it does not sees itself therefore: a surface i is entirely intercepted by

all of the other surfaces, therefore:
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A surface can be decomposed into sub-
surfaces and the view factors are:
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This Lecture

O Radiation exchange between surfaces
O Net Radiation Exchange at a Surface
O Electrical Analogy
d  The two surface enclosure

O Electrical Analogy

Learning Objectives:

a Use the electrical analogy to calculate the radiation resistance of a surface

Q Calculate the radiation exchange from a surface and a 2-surface enclosure



Net Radiation Exchange at a Surface
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Net Radiation Exchange at a Surface - Electrical Analogy

If we consider an isothermal, opaque, diffuse and gray surface:
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This Lecture

O Radiation exchange between surfaces
?  NetRadiation Exchange at a Surface
¥ Electrical Analogy
d  The two surface enclosure

O Electrical Analogy

Learning Objectives:

& Use the electrical analogy to calculate the radiation resistance of a surface

Q Calculate the radiation exchange from a surface and a 2-surface enclosure
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The Two Surface Enclosure
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2 ‘2 &2 The irradiation of surface 1 must be related to the radiosity of
surface 2 scaled by the view factor between the two surfaces:
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The Two Surface Enclosure - Electrical Analogy
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Consider an air heater consisting of a semicircular tube for which the plane surface
is maintained at 1000 K and the other surface is well insulated. The tube radius is

Assumptions:

1. Steady-state conditions.

20 mm, and both surfaces have an emissivity of 0.8. If atmospheric air flows 2. Diffuse, gray surfaces.
through the tube at 0.01 kg/s and 7,, = 400 K, what is the rate at which heat must 3. Negligible tube end effects and axial variations in gas temperature.
be supplied per unit length to maintain the plane surface at 1000 K? What is the 4. Fully developed flow.

temperature of the insulated surface?

= 1000 K, £ =0.8
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Energy balance on surface 1:

»  External energy input because of the heater

*  Removal of energy via radiation towards surface 2
*  Removal of energy via convection

Ql,ext _Ql,rad _Ql,conv =0

From the radiative energy balance for a 2-surface enclosure:

g —— T17,=1000K, £ =0.8 Qiraa = —Q2rad= Q12,rad
Energy balance on surface 2.

*  Input energy via radiation from heater surface
»  Removal of energy via convection

+(_Q2,rad) - Qz,conv =0 => _Qz,rad= Qz,conv

=)  Energy balance on surface 1. Q1 ext = Q2.conv +Q1.conv

m Qiext = hA; (T —Ty) + hA(Ty — T)
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Energy balance on surface 2:
»  Input energy via radiation from heater surface

»  Removal of energy via convection

/
/ QZ,rad + Qz,conv =0 =) _Qz,rad: Qz,conv
g1 ——7,=1000K, & =0.8
41,conv T2 com
Epn / h J2 \E:;z
— CANAN AN ANN— ——
q1,ext l1-¢g 1 1-g, 42, ext =
&4, AF, €24,

From the radiative energy balance for a 2-surface enclosure: (Tt - T)) AT T)
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Air |
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Forced internal convection:

Properties: Table A.4, air (1 atm, 400 K): £= 0.0338 W/m- K, p = 230 X
1077 kg/s - m, c, = 1014 J/kg - K, Pr = 0.69.

Al = 21-

a

A, = 71,

pu,D, _ mD, _ mD,
Ko Ap (mri2)u

RE'D =

the hydraulic diameter is

4A. 27,  0.047m

D, = P m+2 m7+2

=0.0244m

Hence
0.01 kg/s X 0.0244 m

 (/2) (0.02m)? X 230 X 10" kg/s -m

From the Dittus-Boelter equation,

Re;) = 16,900

Nup = 0.023Re}y® P
Nup=0.023(16,900)"°(0.69)%* = 47.8

b=k Ny, =00338Wim - K 47 g _ 66 5 Wim? - K
h

0.0244 m
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Air |
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67 X 10-% 2. w4 4_ 4
5.67 X 10" W/m? - K* [(1000)* — T3 K = 66.2T (T, — 400) W/m?

1-08 1-082 2
08 't o8 7
A trial-and-error solution yields
I,=696 K
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_"1: ': " ?:'2. 1‘.“2 = 0.8

r,=20 mm

|
|
|
!

qi —— 7, = 1000 K, & =0.8

Energy balance on surface 1: Q1 ext = Q2.conv +@1,conv

Qrext = hA; (T, — Ty) + hA (T — Ty)

on a unit length basis,
Gtext = hrr(T, = T,) + h2r(T, — T)
Q1 e = 66.2 X 0.02[7r (696 — 400) + 2(1000 — 400)] W/m
Glex = (1231 + 1589) W/m = 2820 W/m
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This Lecture

O Radiation exchange between surfaces

®  Net Radiation Exchange at a Surface
&  Electrical Analogy
@ The two surface enclosure

(9|

Electrical Analogy

Learning Objectives:

4

[

Use the electrical analogy to calculate the radiation resistance of a surface

Calculate the radiation exchange from a surface and a 2-surface enclosure
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Next Lecture

O Radiation exchange between surfaces

H A Multi-surface Enclosure

Learning Objectives:

Q Calculate the radiation exchange from a multi-surface enclosure
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