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M’ Introduction to Radiation
‘{ Emission of Thermal Radiation
'{ Spatial distribution and Diffuse Emitter
'« Spectral distribution
'« Stefan-Boltzmann and Wien’s laws
i Interaction of Thermal Radiation with Matter
« Absorptivity, Reflectivity and Transmissivity
i( Irradiation and Radiosity
ﬂ( Black-body
ﬂ( Real surfaces: Emissivity, Diffuse & Gray Surfaces, Kirchoff's Laws
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Measures of Radiation

Emission Irradiation Radiosity
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Radiation spectral intensity can depend on the wavelength (A), the spatial direction
(8, @) and, in the case of emission, the temperature (T') of the surface.



Spectral . nipectral X, To:oal X
Intensity I , X ) =j J Lx(A, 8, ®)cosOsinfdPdo X =f X, (M)dA
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Emission I .(A,6,9,T) E, = spectral emissive power E = emissive power
Irradiation I, ;(2,0,P) G, = spectral irradiation G = irradiation
Radiosity Iy err(A, 6, D) J». = spectral radiosity ] = radiosity

Diffuse radiation and surfaces = spectral intensity independent of the angular direction

 Diffuse emitter : I o (A,6,®,T) = I (A, T)
« Diffuse irradiation : I, ; (A, 8, @) = I, ; (1)
- Diffuse emitter and diffuse reflector : I ¢+ (A, 0, ®) = I ¢4 (A)
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Ideal Object (Black-body)

Real Surfaces
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Real Surfaces: Kirchoff’'s Laws

It can be shown that the following relationship is always true:

Emission, E;
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" . . T : : _ G,l = G}«.abs + G?. ref ¥ G?. tr
In addition, if the irradiation is diffuse (I, ;(2, 06, ®) = I, ;(A)) Tl - | | ’
OR the surface is diffuse: Semitransparent —+ ., AbSOPtion
medium G, abs
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Finally, if the irradiation is a black-body emission (G (A) = Ej , (A, T)
and G = E,(T)) OR the surface is gray:

E=a

These are Kirchoff’s Laws and define the conditions under which we
can establish simple relationships for emissivity and absorptivity. .



This Lecture
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Radiation exchange between surfaces



This Lecture

O Radiation exchange between surfaces

H View factors

Learning Objectives:

| Calculate the view factor between two surfaces



The View Factor

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.
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Spectral Intensity of Radiosity

Emitted + Reflected
radiation

I e+ = spectral intensity of radiosity

rate at which energy leaves the surface at wavelength A and along the direction (9,0)
= per unit area of the emitting surface normal to this direction = dA,cos6

= per unit solid angle about this direction = dw

= per unit wavelength interval about A = dA

/ _ dqQ __ da
= fetr dA;cosOdwd\ dA;cosOdw

= dq) = he4rdAicosOdw
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The View Factor

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.
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The View Factor

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.
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The View Factor — Reciprocity of Energy Transfer

We consider two surfaces with arbitrary relative orientation (not parallel) and we define

the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

If both surface i and j emit and reflect diffusively:
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Reciprocity of radiative energy transfer
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The VUiew Factor — Concave and Gonvex Surfaces

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

Concave If a surface is concave it sees itself therefore we have:

F; #0

If a surface is planar or convex it does not sees itself therefore:

Cormex

Fi;=0

15



The View Factor - Enclosures

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

In an enclosure, the radiation leaving a surface i is entirely intercepted
by all of the other surfaces, therefore:

| N
\ 2 ZFU:l

J=1

A total of N view factors is needed:
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The View Factor - Example

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

Example. In an enclosure formed by two concentric spheres we have:

« Surface 1is convex: F1;1 = 0

« Surface 2 intercepts all energy leaving surface 1: F1, = 1
* Foranenclosure we have: Fyq1 + Fyp = 1

*  From the reciprocity relationship: A{F1, = A3F»4

Ay A
® o) ne(d)

For an enclosure, we can always write a set of equations to determine
all view factors. For other geometries, we must solve the integrals.
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The View Factor - Pre-calculated cases

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

TapLE 13.1  View Factors for Two-Dimensional Geometries [1]

Geometry Relation
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The VUiew Factor - Surface Decomposition

We consider two surfaces with arbitrary relative orientation (not parallel) and we define
the view factor F; as the fraction of the radiation leaving surface i that is intercepted by surface j.

If a surface j is decomposed in n sub-surfaces, the overall energy
intercepted will remain the same. Therefore:
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This Lecture

g

Learning Objectives:

d

Radiation exchange between surfaces

@ View factors

Calculate the view factor between two surfaces
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Next Lecture

O Radiation exchange between surfaces
O Net Radiation Exchange at a Surface
O Electrical Analogy
d  The two surface enclosure

O Electrical Analogy

Learning Objectives:

a Use the electrical analogy to calculate the radiation resistance of a surface

Q Calculate the radiation exchange from a surface and a 2-surface enclosure
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