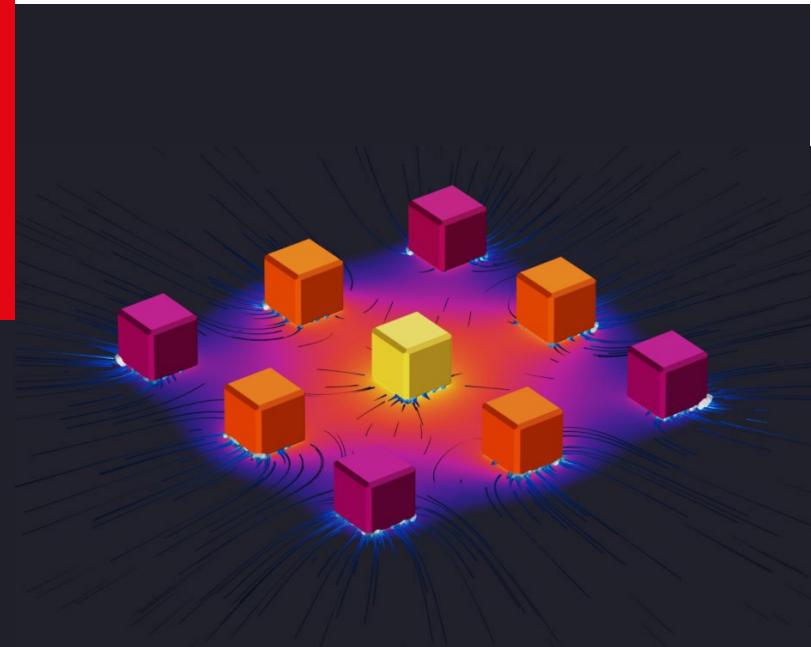


Heat and Mass Transfer

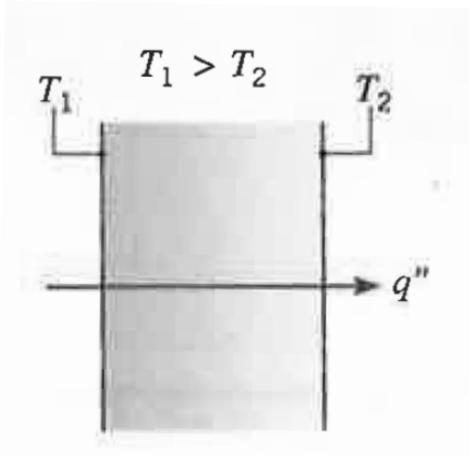
ME-341

Instructor: Giulia Tagliabue

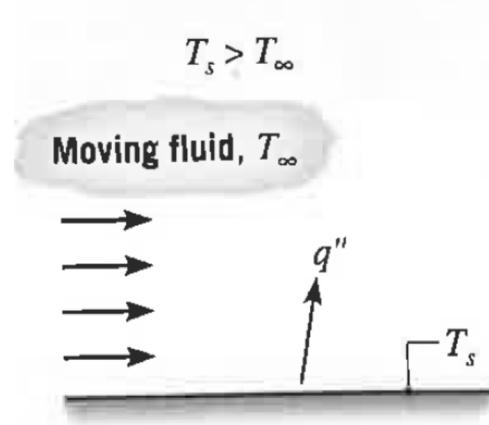


Heat Transfer Mechanisms

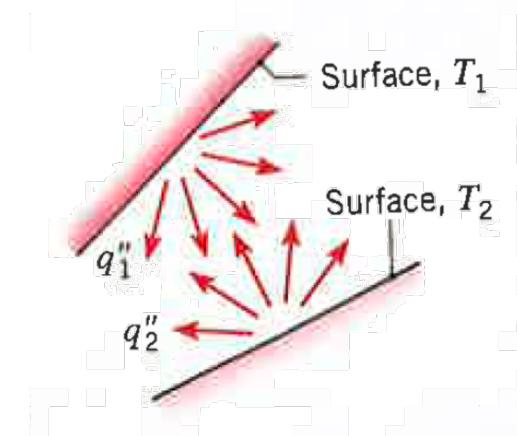
Conduction



Convection



Radiation



Involves mass transport

Involve physical contact

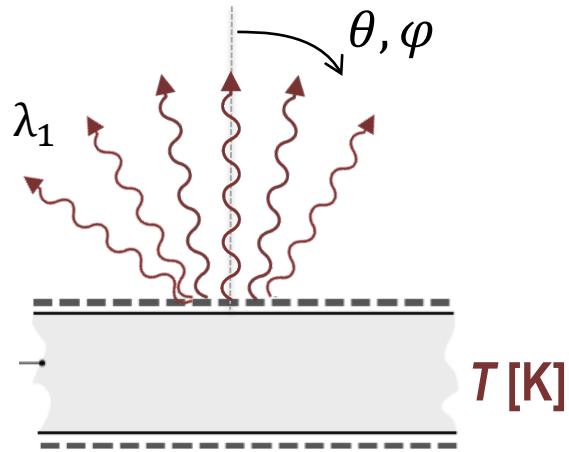
Previously

- Emission of Thermal Radiation
 - Spatial distribution and Diffuse Emitter
 - Spectral distribution
 - Stefan-Boltzmann and Wien's laws

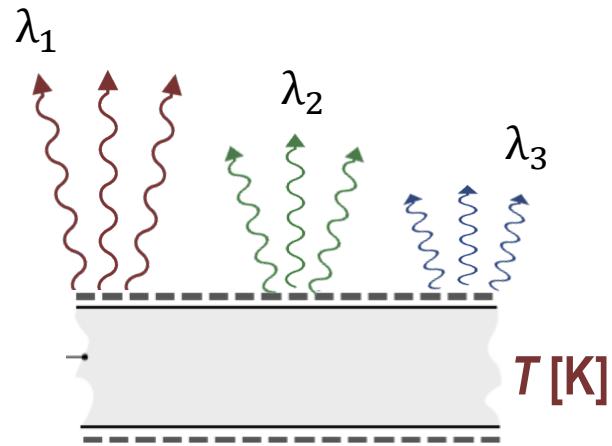
Learning Objective:

- Understand emission of thermal radiation
- Quantify the emission of thermal radiation

Emission of Thermal Radiation

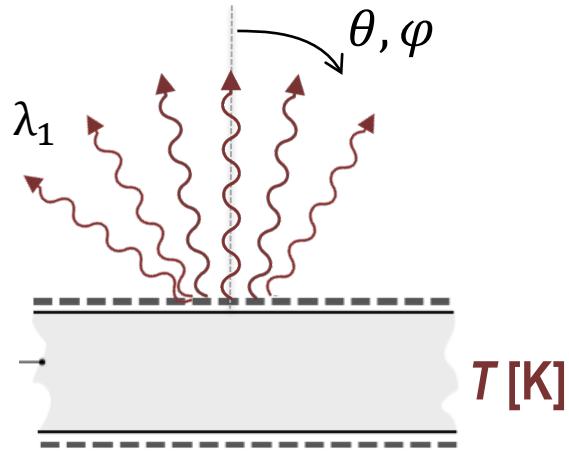
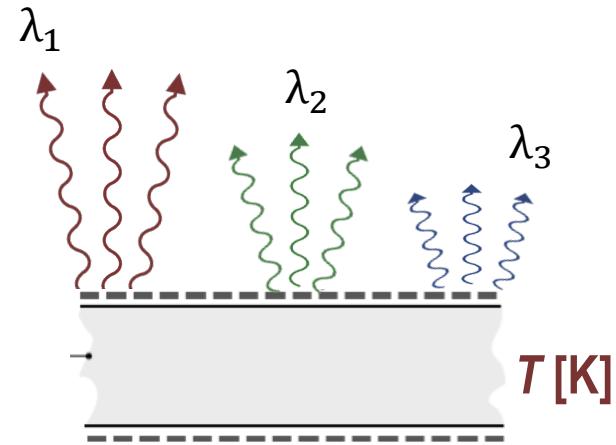


Spatial distribution



Spectral distribution

Emission of Thermal Radiation

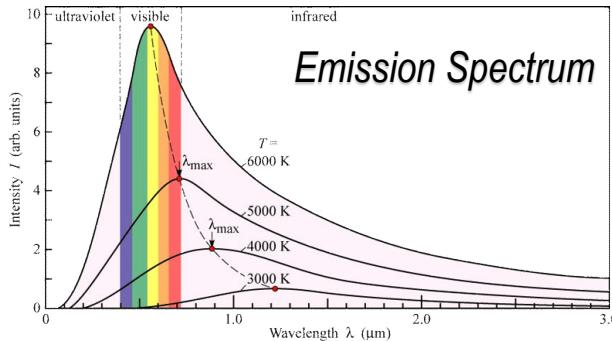


$$E(T) = \int_0^{\infty} \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e}(\lambda, \theta, \Phi, T) \cos\theta \sin\theta d\Phi d\theta d\lambda$$

$$E(T) = \pi \int_0^{\infty} I_{\lambda,e}(\lambda, T) d\lambda \quad (\text{diffuse emitter})$$

Spectral distribution

Emission of Thermal Radiation: Spectral Distribution



Spectral intensity of a **black-body*** $\left[\frac{W}{m^2 sr \mu m} \right]$:

$$I_{\lambda,b}(\lambda, T) = \frac{2hc_0^2}{\lambda^5 [\exp(hc_0/\lambda kT) - 1]}$$

$$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

$$k = 1.381 \times 10^{-23} \text{ J/K}$$

$$c_o = 2.998 \times 10^8 \text{ m/s}$$

Temperatures MUST BE in Kelvin: T[K]

Stefan-Boltzmann Law (total emissive power)

$$E_b(T) = \pi \int_0^{\infty} I_{\lambda,b}(\lambda, T) d\lambda = \sigma T^4$$

Total intensity of thermal emission

$$I_b = \frac{E_b}{\pi}$$

$$T = \text{absolute temperature [K]}$$
$$\sigma = 5.670367 \times 10^{-8} \text{ W/m}^2\text{K}^4$$

Wien's Law (peak emission)

$$(\lambda T)_{e_{\lambda=\max}} = 2898 \mu\text{m} \cdot \text{K}$$

*a black-body is a **diffuse emitter** that absorbs all energy that impinges on it. We discuss this in detail later

Emission of Thermal Radiation: Spectral Distribution

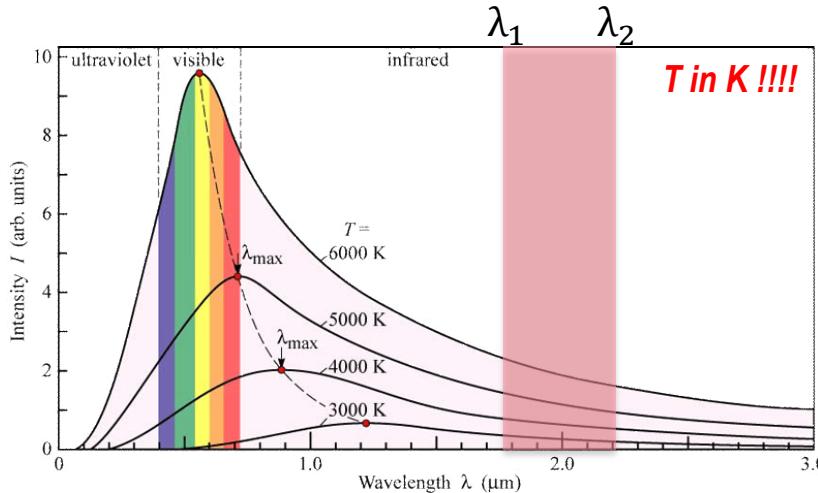


TABLE 12.1 Blackbody Radiation Functions

λT ($\mu\text{m} \cdot \text{K}$)	$F_{(0 \rightarrow \lambda)}$	$I_{\lambda, b}(\lambda, T) / \sigma T^5$ ($\mu\text{m} \cdot \text{K} \cdot \text{sr})^{-1}$	$\frac{I_{\lambda, b}(\lambda, T)}{I_{\lambda, b}(\lambda_{\max}, T)}$
200	0.000000	0.375034×10^{-27}	0.000000
400	0.000000	0.490335×10^{-13}	0.000000
600	0.000000	0.104046×10^{-8}	0.000014
800	0.000016	0.991126×10^{-7}	0.001372
1,000	0.000321	0.118505×10^{-5}	0.016406
1,200	0.002134	0.523927×10^{-5}	0.072534
1,400	0.007790	0.134411×10^{-4}	0.186082
1,600	0.019718	0.249130	0.344904
1,800	0.039341	0.375568	0.519949

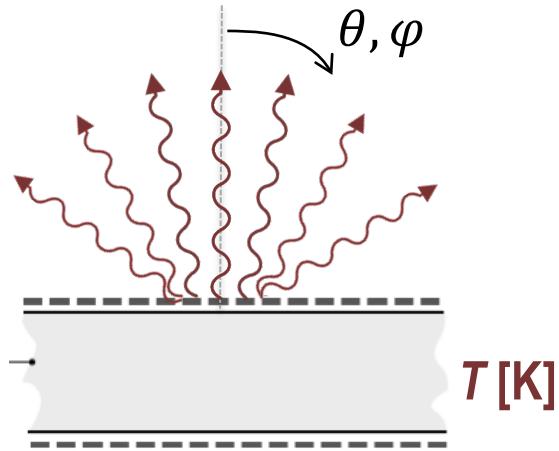
Often we want to know what is the emissive power within a limited wavelength range $[\lambda_1, \lambda_2]$. Therefore we define:

$$F_{(0 \rightarrow \lambda)} \equiv \frac{\int_0^\lambda E_{\lambda, b} d\lambda}{\int_0^\infty E_{\lambda, b} d\lambda} = \frac{\int_0^\lambda E_{\lambda, b} d\lambda}{\sigma T^4} = \int_0^{\lambda T} \frac{E_{\lambda, b}}{\sigma T^5} d(\lambda T) = f(\lambda T)$$

The values of F are tabulated. Hence within a given wavelength range we have:

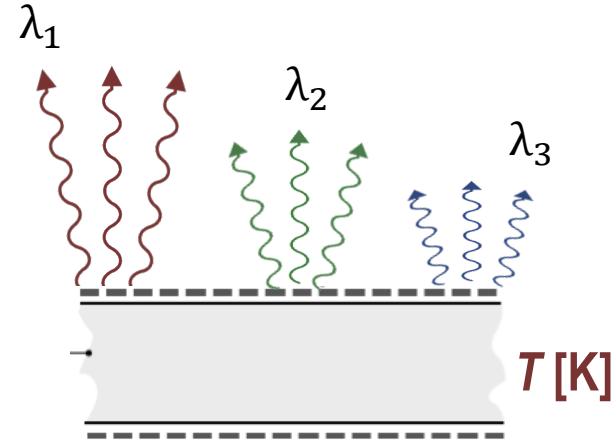
$$F_{(\lambda_1 \rightarrow \lambda_2)} = \frac{\int_0^{\lambda_2} E_{\lambda, b} d\lambda - \int_0^{\lambda_1} E_{\lambda, b} d\lambda}{\sigma T^4} = F_{(0 \rightarrow \lambda_2)} - F_{(0 \rightarrow \lambda_1)}$$

Emission of Thermal Radiation (Black-body)



$$I_{\lambda,e}(\lambda, \theta, \Phi, T) = I_{\lambda,b}(\lambda, T)$$

$$E_b(T) = \sigma T^4$$

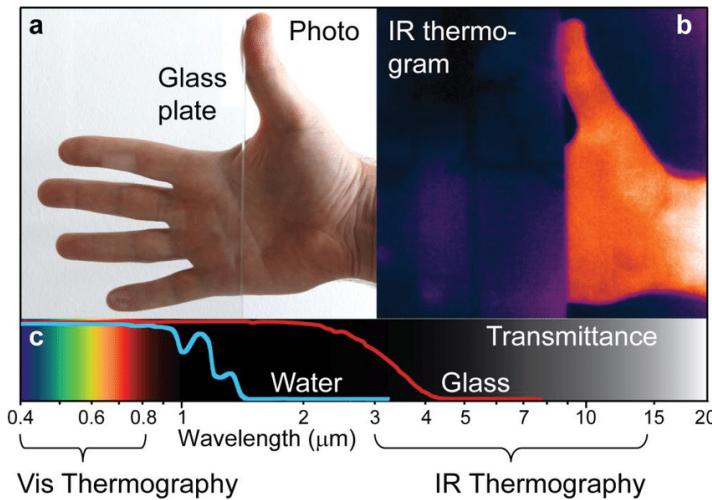
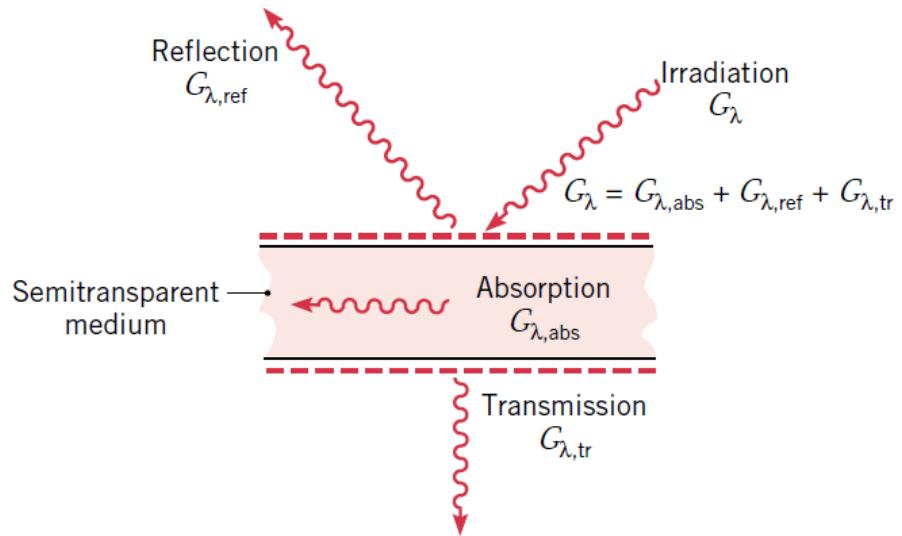


$$I_{\lambda,b}(\lambda, T) = \frac{2hc_0^2}{\lambda^5 [\exp(hc_0/\lambda kT) - 1]}$$

This Lecture

- Interaction of Thermal Radiation with Matter
 - Absorptivity, Reflectivity and Transmissivity
 - Irradiation and Radiosity
- Black-body
- Real surfaces: Emissivity, Diffuse & Gray Surfaces, Kirchoff's Laws

Interaction of Thermal Radiation with Matter



How does thermal radiation interacts with matter?

Absorptivity, Reflectivity, Transmissivity

$$G_{\lambda,ref} = \rho_{\lambda} G_{\lambda}$$

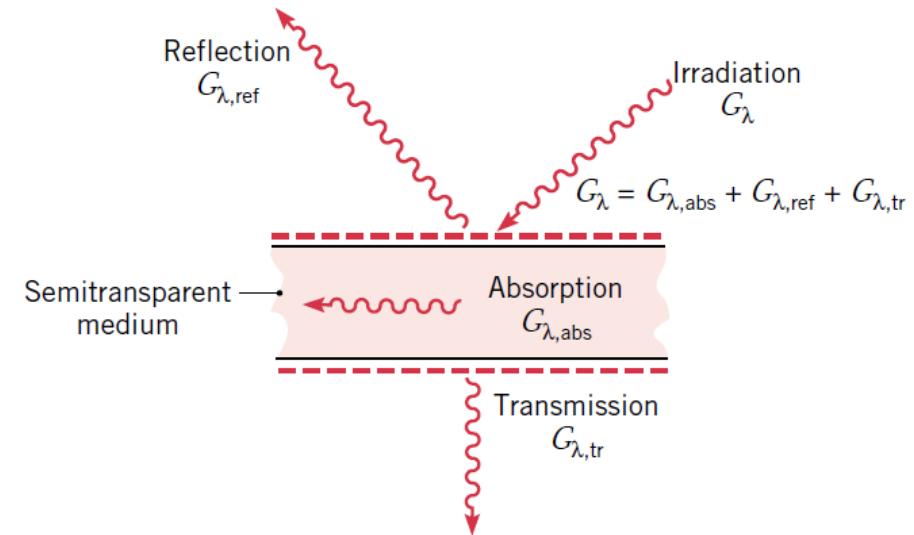
ρ_{λ} = reflectivity

$$G_{\lambda,tr} = \tau_{\lambda} G_{\lambda}$$

τ_{λ} = transmissivity

$$G_{\lambda,abs} = \alpha_{\lambda} G_{\lambda}$$

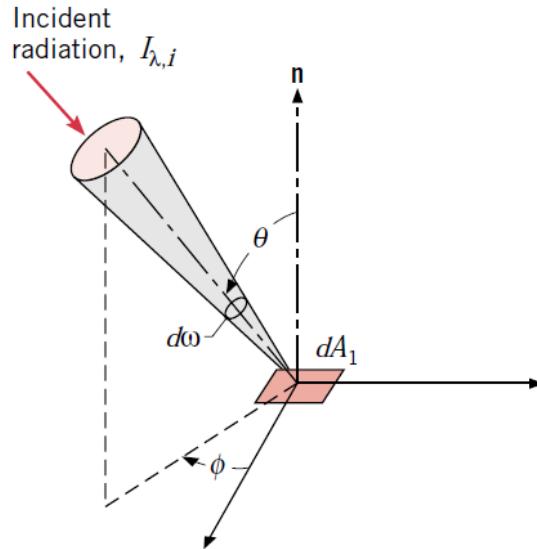
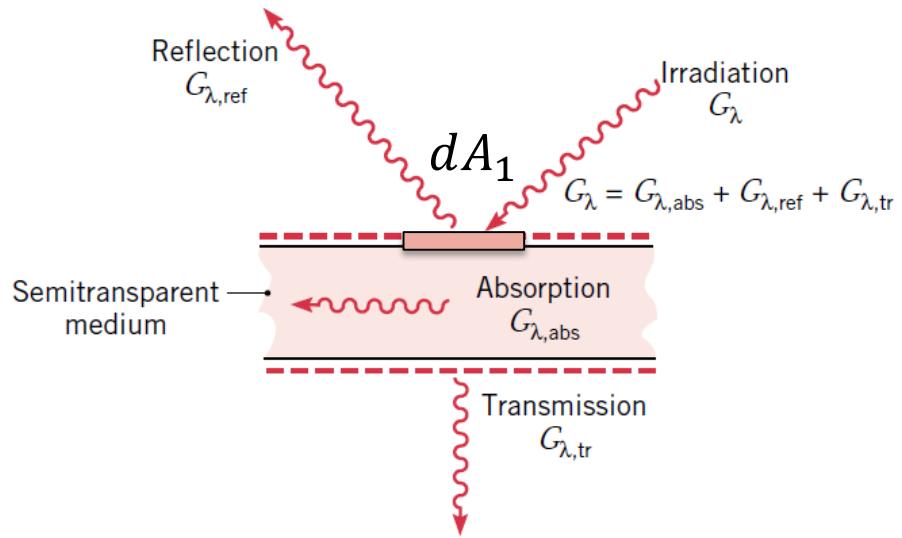
α_{λ} = absorptivity



$$G_{\lambda} = G_{\lambda,abs} + G_{\lambda,ref} + G_{\lambda,tr}$$

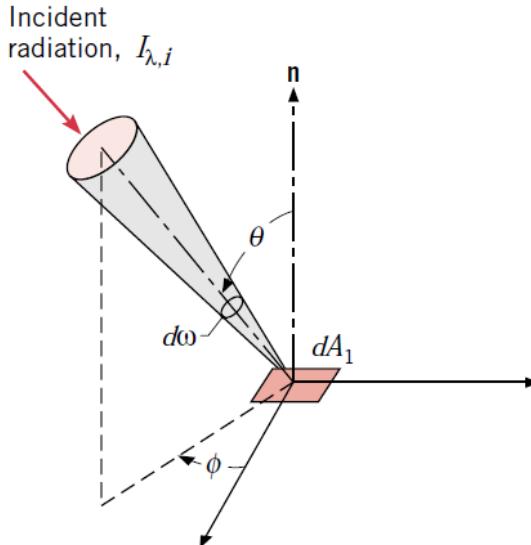
$$1 = \alpha_{\lambda} + \rho_{\lambda} + \tau_{\lambda}$$

Irradiation G



Similarly to emission, irradiation can also have spatial and spectral distributions.

Irradiation G



Spatial distribution of the incident radiation $\rightarrow I_{\lambda,i}(\lambda, \theta, \Phi)$

- *Spectral irradiation:*

$$G_{\lambda}(\lambda) = \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda, \theta, \Phi) \cos\theta \sin\theta d\Phi d\theta$$

- *Total irradiation:*

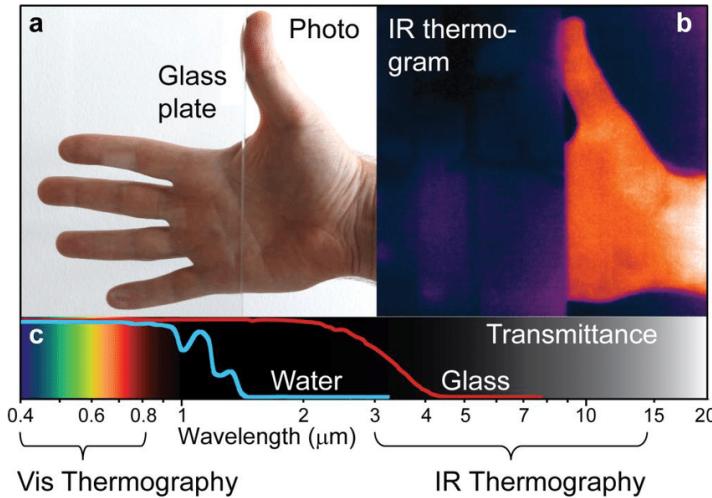
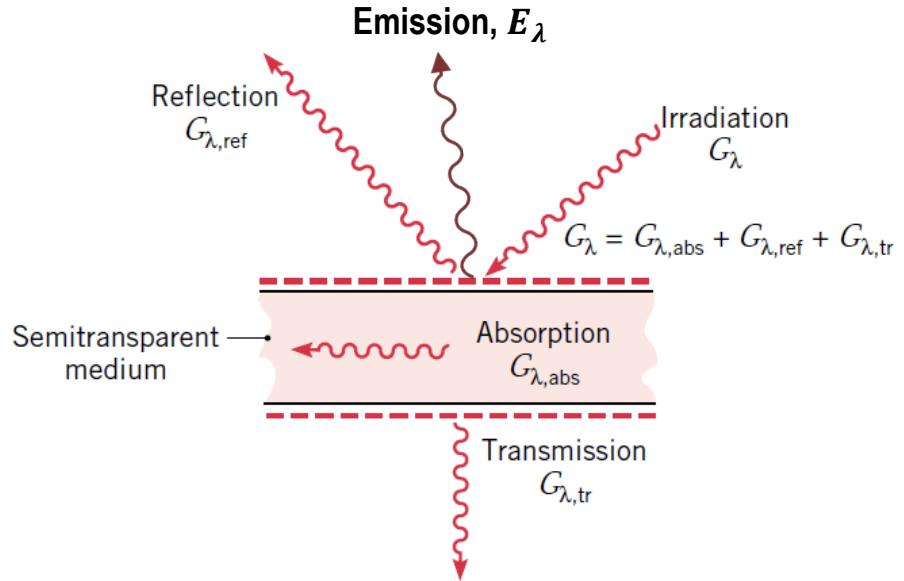
$$G = \int_0^{\infty} G_{\lambda}(\lambda) d\lambda = \int_0^{\infty} \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda, \theta, \Phi) \cos\theta \sin\theta d\Phi d\theta d\lambda$$

Diffuse irradiation: $I_{\lambda,i}(\lambda, \theta, \Phi) = I_{\lambda,i}(\lambda)$

➡ $G = \pi \int_0^{\infty} I_{\lambda,i}(\lambda) d\lambda = \pi I_i$

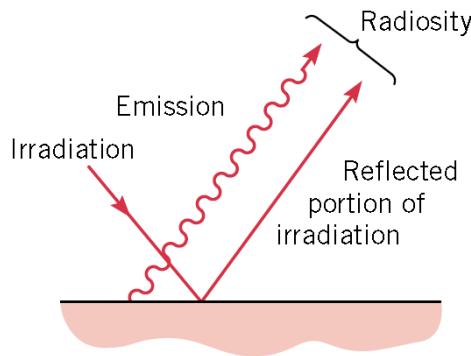
$$I_i = \int_0^{\infty} I_{\lambda,i}(\lambda) d\lambda = \text{total intensity of irradiation}$$

Radiosity J



When we look at a surface we detect BOTH the emitted and reflected radiation !

Radiosity J



Radiosity (J) accounts for ALL the energy leaving the surface along all spatial directions. It thus **combines emission and reflection of irradiation**.

- *Spectral radiosity:*

$$J_{\lambda}(\lambda) = \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda, \theta, \Phi) \cos\theta \sin\theta d\Phi d\theta$$

- *Total radiosity:*

$$J = \int_0^{\infty} J_{\lambda}(\lambda) d\lambda = \int_0^{\infty} \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,e+r}(\lambda, \theta, \Phi) \cos\theta \sin\theta d\Phi d\theta d\lambda$$

Diffuse emitter AND diffuse reflector: $I_{\lambda,e+r}(\lambda, \theta, \Phi) = I_{\lambda,e+r}(\lambda)$

$$J = \pi \int_0^{\infty} I_{\lambda,e+r}(\lambda) d\lambda = \pi I_{e+r}$$

$I_{e+r} = \int_0^{\infty} I_{\lambda,e+r}(\lambda) d\lambda = \text{total intensity of radiosity}$

Measures of Radiation

	Intensity $I_{\lambda,x}$	Spectral X_{λ} $X_{\lambda}(\lambda) = \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,x}(\lambda, \theta, \Phi) \cos\theta \sin\theta d\Phi d\theta$	Total X $X = \int_0^{\infty} X_{\lambda}(\lambda) d\lambda$
Emission	$I_{\lambda,e}(\lambda, \theta, \Phi)$	$E_{\lambda} = \text{spectral emissive power}$	$E = \text{emissive power}$
Irradiation	$I_{\lambda,i}(\lambda, \theta, \Phi)$	$G_{\lambda} = \text{spectral irradiation}$	$G = \text{irradiation}$
Radiosity	$I_{\lambda,e+r}(\lambda, \theta, \Phi)$	$J_{\lambda} = \text{spectral radiosity}$	$J = \text{radiosity}$

Diffuse radiation and surfaces = spectral intensity independent of the angular direction

- Diffuse emitter : $I_{\lambda,e}(\lambda, \theta, \Phi) = I_{\lambda,e}(\lambda)$
- Diffuse irradiation : $I_{\lambda,i}(\lambda, \theta, \Phi) = I_{\lambda,i}(\lambda)$
- Diffuse emitter and diffuse reflector : $I_{\lambda,e+r}(\lambda, \theta, \Phi) = I_{\lambda,e+r}(\lambda)$

→ $I_x = \int_0^{\infty} I_{\lambda,x}(\lambda) d\lambda = \text{total intensity}$

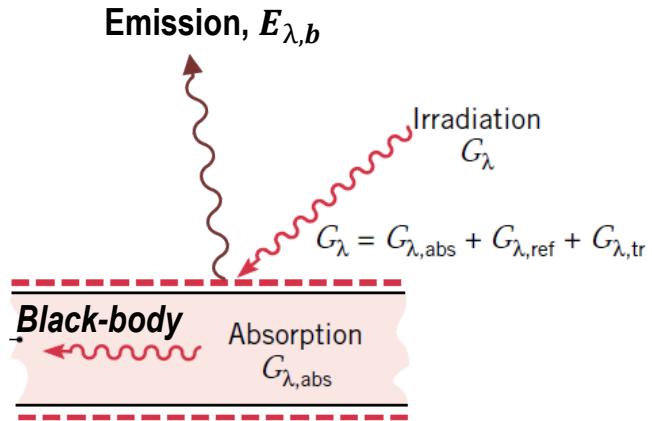
This Lecture

- Interaction of Thermal Radiation with Matter
- Absorptivity, Reflectivity and Transmissivity
- Irradiation and Radiosity
- Black-body
- Real surfaces: Emissivity, Diffuse & Gray Surfaces, Kirchoff's Laws

Black-body

A **black-body** is an object that, for all wavelengths, absorbs all the radiation that is impinging on it:

$$\alpha_\lambda = 1 \quad \rho_\lambda = \tau_\lambda = 0$$

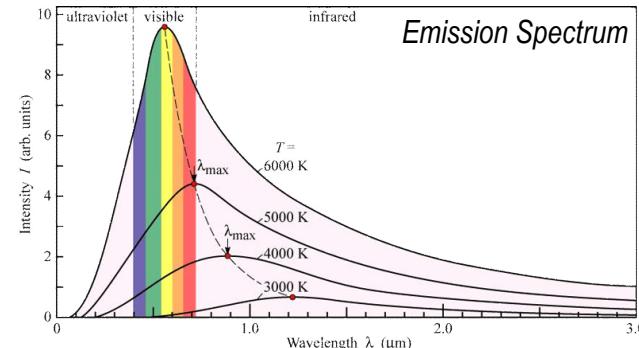


$$G_\lambda = G_{\lambda,abs} = E_{\lambda,b}$$

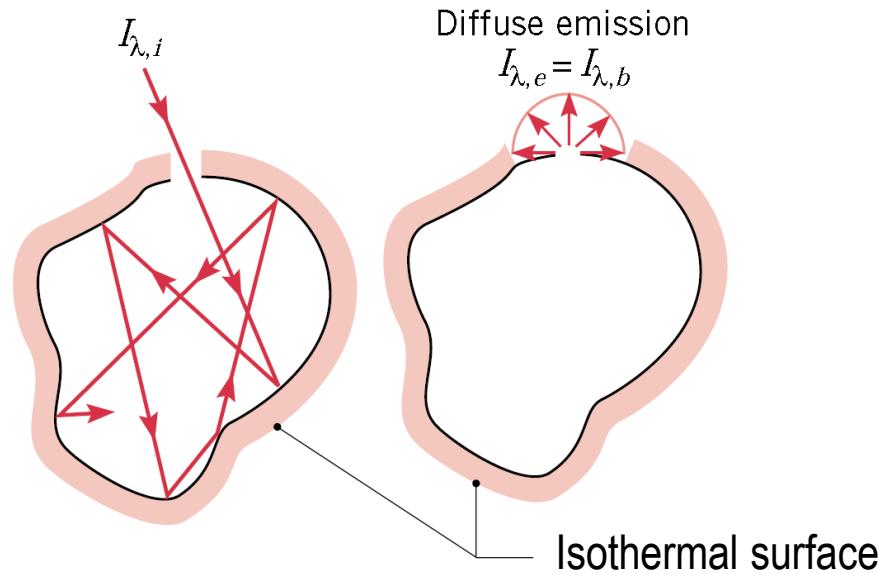
A black-body is by definition a **diffuse emitter**:

$$I_{\lambda,b}(\lambda, \theta, \Phi) = I_{\lambda,b}(\lambda) = \frac{2hc_0^2}{\lambda^5 [\exp(hc_0/\lambda kT) - 1]}$$

$$E_b(T) = \pi \int_0^\infty I_{\lambda,b}(\lambda, T) d\lambda = \sigma T^4$$



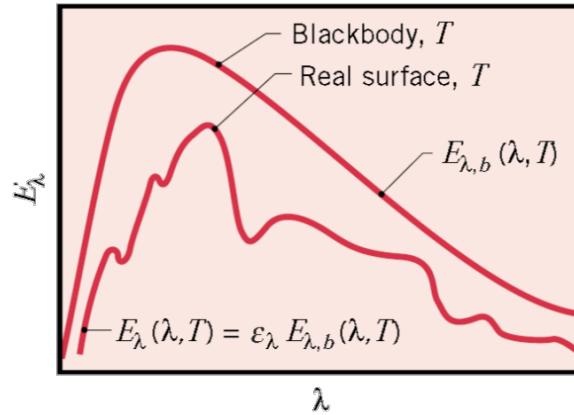
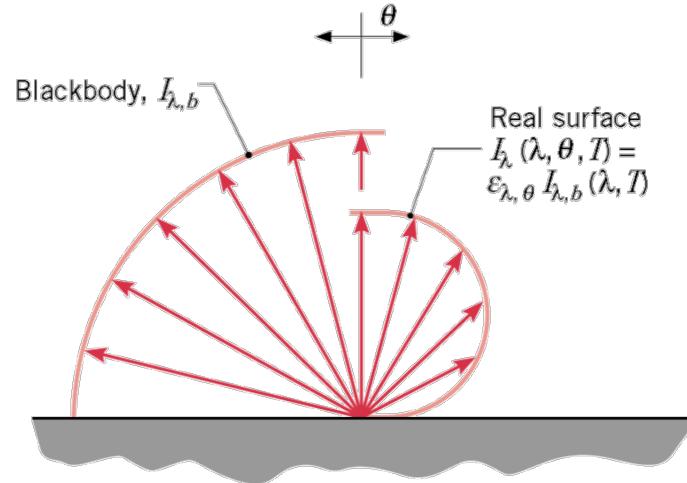
Black-body



This Lecture

- Interaction of Thermal Radiation with Matter
- Absorptivity, Reflectivity and Transmissivity
- Irradiation and Radiosity
- Black-body
- Real surfaces: Emissivity, Diffuse & Gray Surfaces, Kirchoff's Laws

Real Surfaces: Emissivity

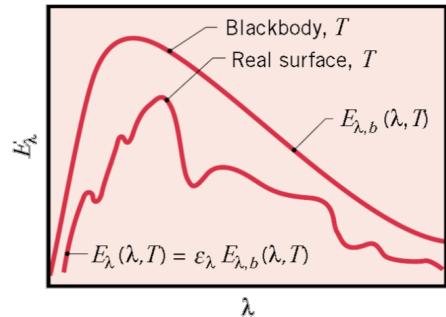
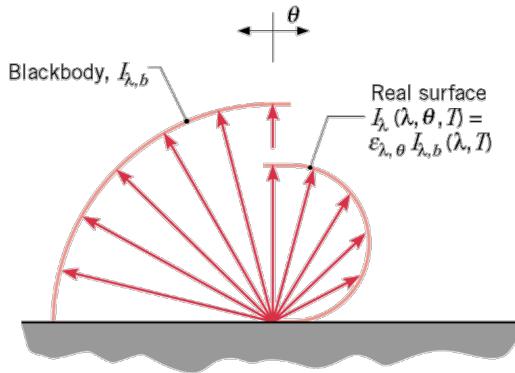


We describe the emission of a real surface with respect to the ideal blackbody introducing a “correction” factor called the **surface emissivity ε** , such that:

$$E_\lambda(\lambda, T) = \varepsilon_\lambda E_{\lambda,b}(\lambda, T)$$

$$I_\lambda(\lambda, \theta, \Phi, T) = \varepsilon_{\lambda, \theta} I_{\lambda,b}(\lambda, T)$$

Real Surfaces: Emissivity



$$\varepsilon_{\lambda,\theta} = \frac{I_\lambda(\lambda, \theta, \Phi, T)}{I_{\lambda,b}(\lambda, T)}$$

$$\rightarrow E(T) = \varepsilon E_b(T) = \varepsilon \sigma T^4 \quad 0 < \varepsilon < 1$$

Real Surfaces: Diffuse & Gray Surfaces

Black-body: $\alpha_\lambda = 1, \rho_\lambda = \tau_\lambda = 0$

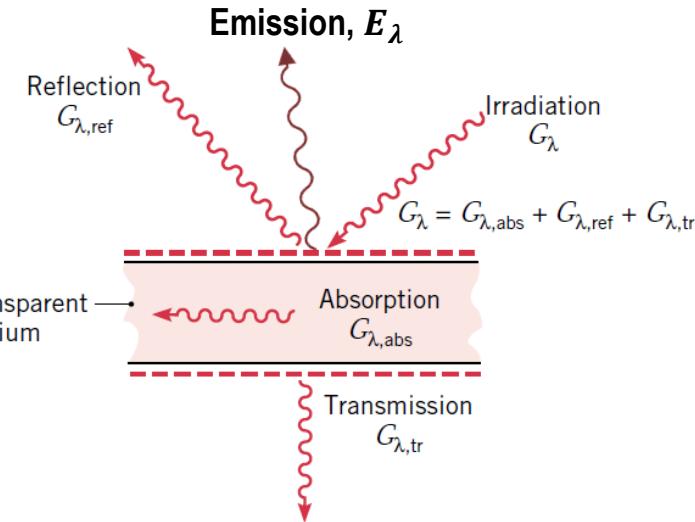
Real surface: $\alpha_\lambda < 1, \rho_\lambda > 0, \tau_\lambda > 0$

$$1 = \alpha_\lambda + \rho_\lambda + \tau_\lambda$$

For a real surface, we can then calculate:

$$\alpha \equiv \frac{G_{abs}}{G} = \frac{\int_0^\infty \alpha_\lambda G_\lambda d\lambda}{\int_0^\infty G_\lambda d\lambda}$$

$$\rho \equiv \frac{G_{ref}}{G} = \frac{\int_0^\infty \rho_\lambda G_\lambda d\lambda}{\int_0^\infty G_\lambda d\lambda}$$



$$\tau \equiv \frac{G_{tr}}{G} = \frac{\int_0^\infty \tau_\lambda G_\lambda d\lambda}{\int_0^\infty G_\lambda d\lambda}$$

Note: We typically assume that $G_\lambda \propto E_{\lambda,b}(\lambda, T_{surr})$ so that G_λ can be replaced by $E_{\lambda,b}$ in the above expressions.

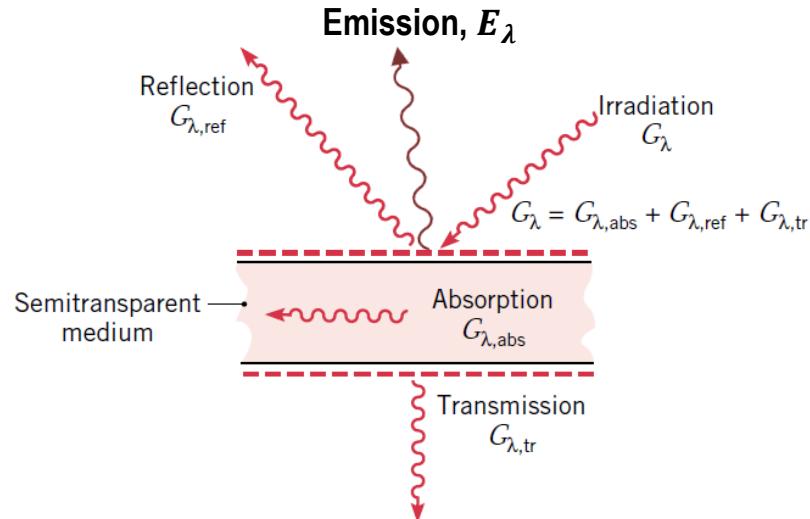
Real Surfaces: Diffuse & Gray Surfaces

Black-body: $\alpha_\lambda = 1, \rho_\lambda = \tau_\lambda = 0$

Real surface: $\alpha_\lambda < 1, \rho_\lambda > 0, \tau_\lambda > 0$

$$1 = \alpha_\lambda + \rho_\lambda + \tau_\lambda$$

→ $G_{\lambda,abs} = \alpha_\lambda G_\lambda = E_\lambda = \varepsilon_\lambda E_{\lambda,b}$



Both absorption and emission occur at the surface of a body.

Is there any relationship between spectral absorptivity, α_λ , and spectral emissivity, ε_λ ?

Real Surfaces: Diffuse and Gray Surfaces

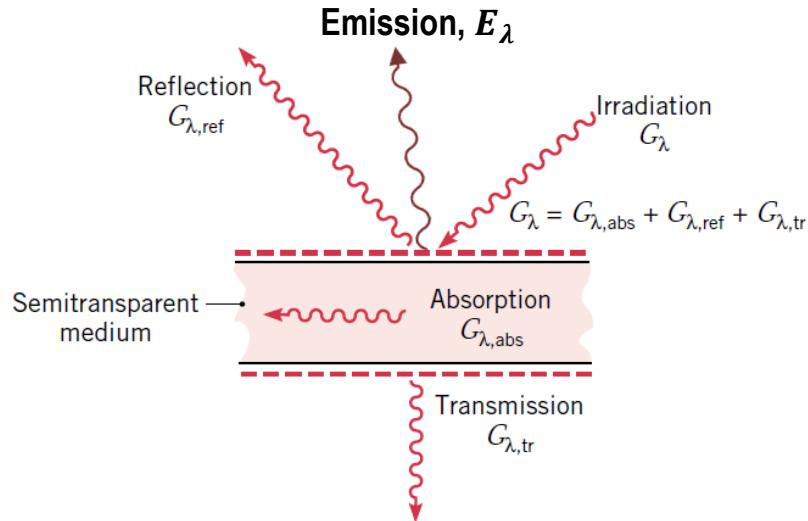
We define the following special cases for real surfaces:

- **Diffuse surface:** $\alpha_{\lambda,\theta}$ and $\varepsilon_{\lambda,\theta}$ are independent of θ, φ

$$\rightarrow \varepsilon_{\lambda,\theta} = \varepsilon_{\lambda} \quad \alpha_{\lambda,\theta} = \alpha_{\lambda}$$

- **Gray surface:** α_{λ} and ε_{λ} are independent of λ

$$\rightarrow \varepsilon_{\lambda} = \varepsilon \quad \alpha_{\lambda} = \alpha$$



Real Surfaces: Kirchoff's Laws

It can be shown that the following relationship is always true:

$$\varepsilon_{\lambda,\theta} = \alpha_{\lambda,\theta}$$

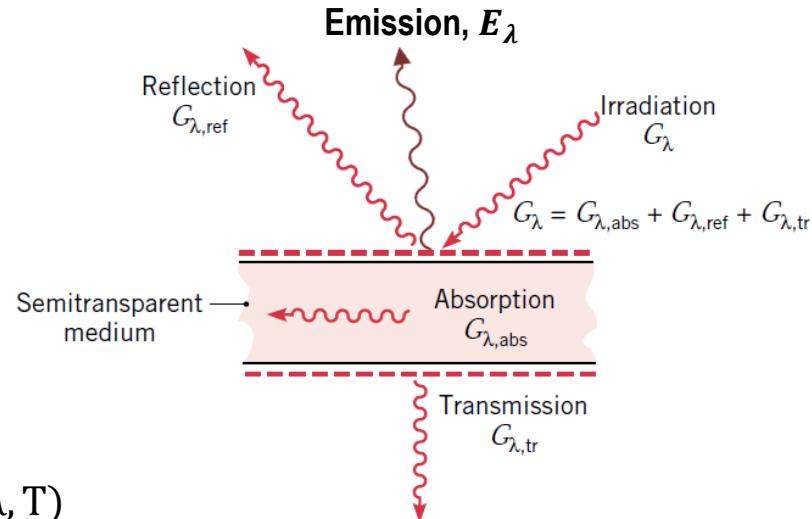
In addition, if the irradiation is diffuse ($I_{\lambda,i}(\lambda, \theta, \Phi) = I_{\lambda,i}(\lambda)$)

OR the surface is diffuse:

$$\varepsilon_{\lambda} = \alpha_{\lambda}$$

Finally, if the irradiation is a black-body emission ($G_{\lambda}(\lambda) = E_{\lambda,b}(\lambda, T)$ and $G = E_b(T)$) OR the surface is gray:

$$\varepsilon = \alpha$$



These are Kirchoff's Laws and define the conditions under which we can establish simple relationships for emissivity and absorptivity.

This Lecture

- Interaction of Thermal Radiation with Matter
- Absorptivity, Reflectivity and Transmissivity
- Irradiation and Radiosity
- Black-body
- Real surfaces: Emissivity, Diffuse & Gray Surfaces, Kirchoff's Laws

Next Lecture

- Examples