

Heat and Mass Transfer

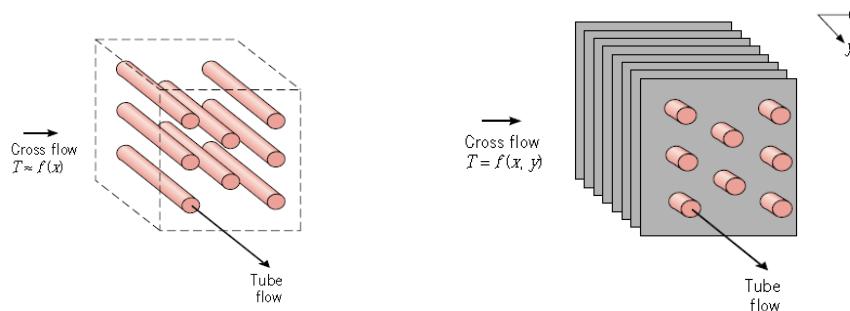
ME-341

Instructor: Giulia Tagliabue

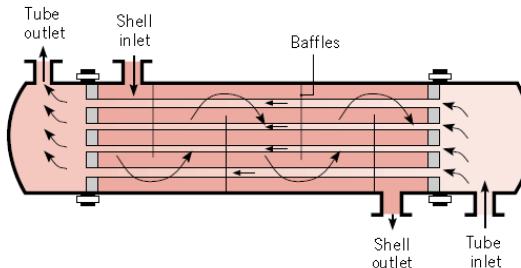
Previously

- Heat Exchangers Types
- Overall Heat Transfer Coefficient
- Parallel/Counter Flow Design
- Temperature Profile and Total Heat Transfer

Learning Objectives:


- Calculate the overall heat transfer coefficient
- Calculate the total heat transfer for parallel flow HE
- Calculate the total heat transfer for counter flow HE

Introduction to Heat Exchangers


A. Concentric Flow

B. Cross-Flow

C. Shell-and-Tube

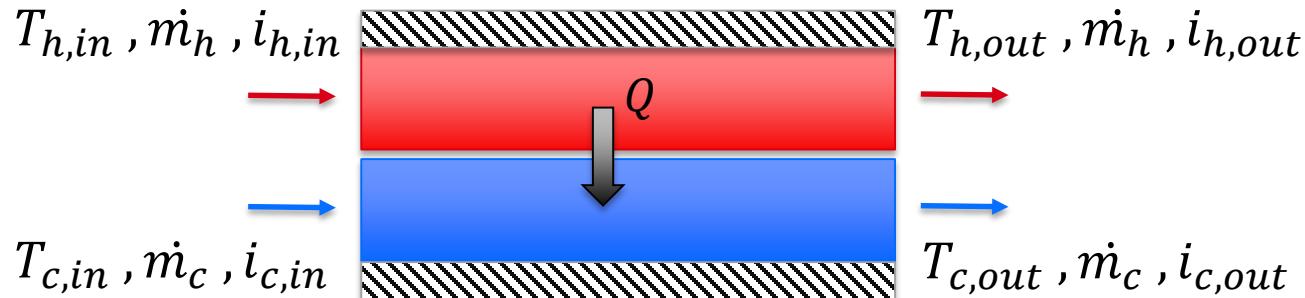
Overall Heat Transfer Coefficient

$$Q = \frac{\Delta T}{R_{tot}} = UA\Delta T \quad \rightarrow \quad U \equiv \frac{1}{R_{tot}A} \quad \rightarrow \quad \frac{1}{UA} \equiv R_{tot}$$

In the most general case we could have fins present also on the inner side:

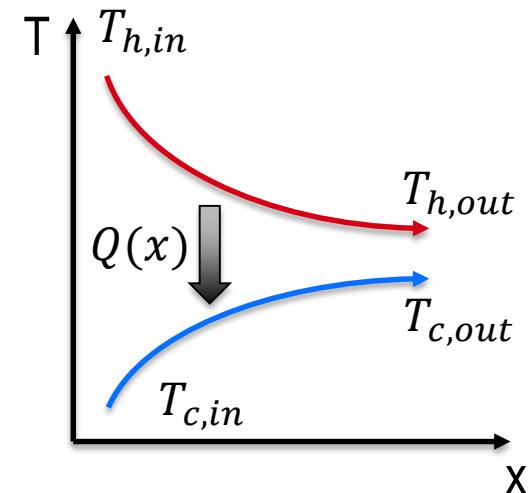
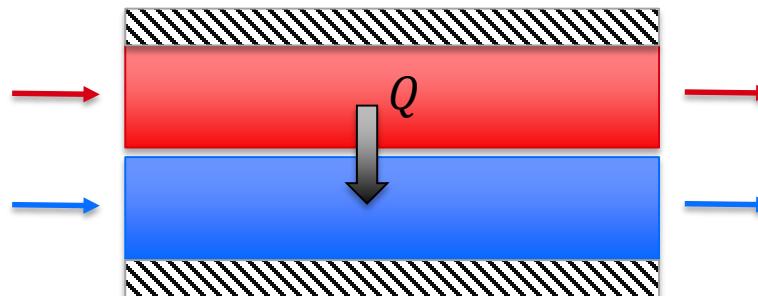
$$\frac{1}{UA} = \frac{1}{\eta_{o,out}h_{out}A_{out}} + \frac{R_{f,o}''}{\eta_{o,out}A_{out}} + R_{cond} + \frac{R_{f,i}''}{\eta_{o,in}A_{in}} + \frac{1}{\eta_{o,in}h_{in}A_{in}}$$

Includes all the layers of conduction!!


$$U_{in} \equiv \frac{1}{R_{tot}A_{in}} \neq U_{out} \equiv \frac{1}{R_{tot}A_{out}}$$

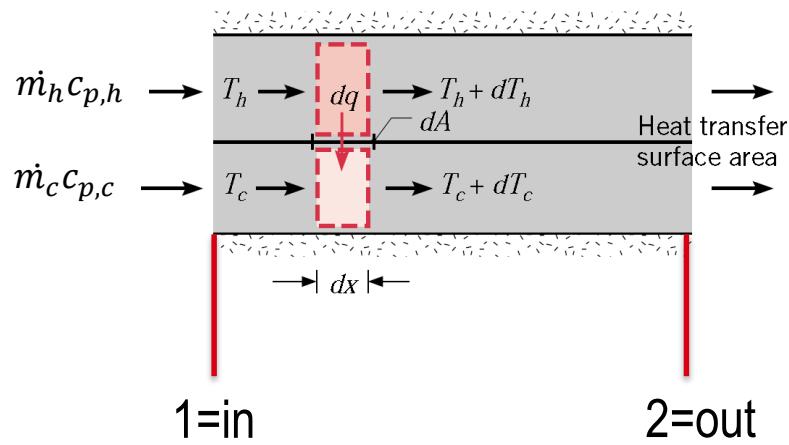
Parallel Flow Heat Exchanger

Energy balance



i = **enthalphy**

Not to confuse with
convection coefficient

Parallel Flow Heat Exchanger

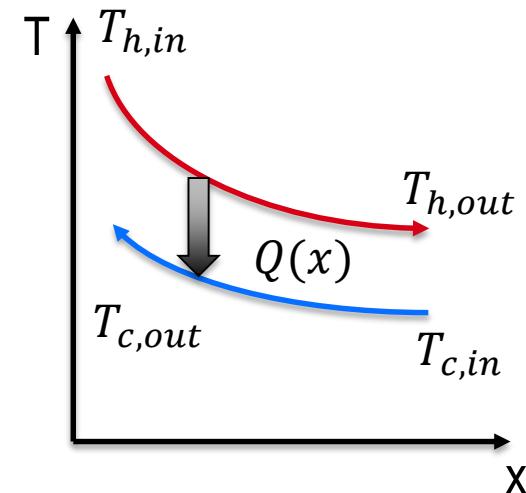
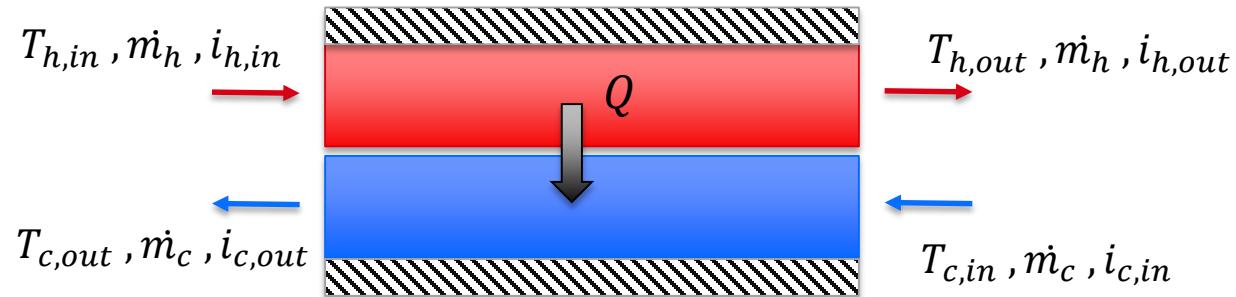

Temperature Profile

➡ What is an appropriate ΔT_m ?

Parallel Flow heat Exchanger

Temperature Profile and Total Heat Transfer

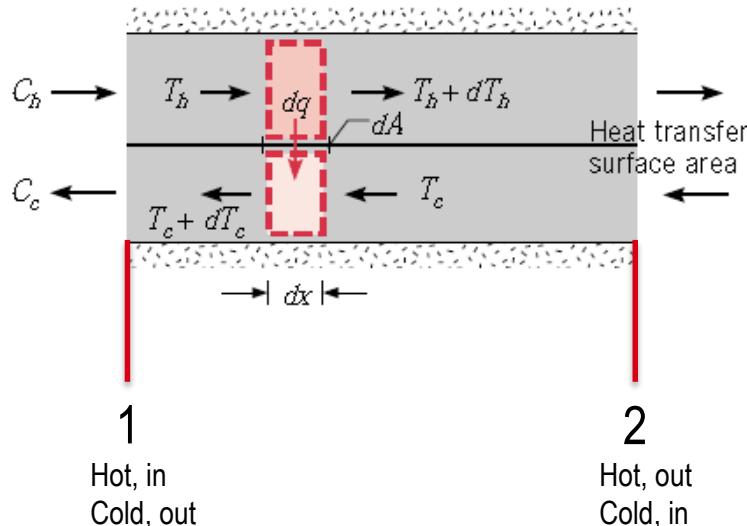
$$Q = UA \frac{\Delta T_2 - \Delta T_1}{\ln \left(\frac{\Delta T_2}{\Delta T_1} \right)} = UA \Delta T_m$$



$$\Delta T_m = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)}$$

$$\Delta T_1 = (T_{h,1} - T_{c,1}) = (T_{h,in} - T_{c,in})$$

$$\Delta T_2 = (T_{h,2} - T_{c,2}) = (T_{h,out} - T_{c,out})$$

Counter Flow Heat Exchanger

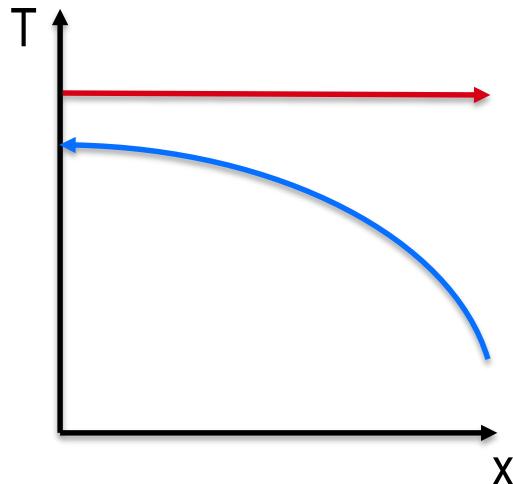

Temperature Profile

➡ What is an appropriate ΔT_m ?

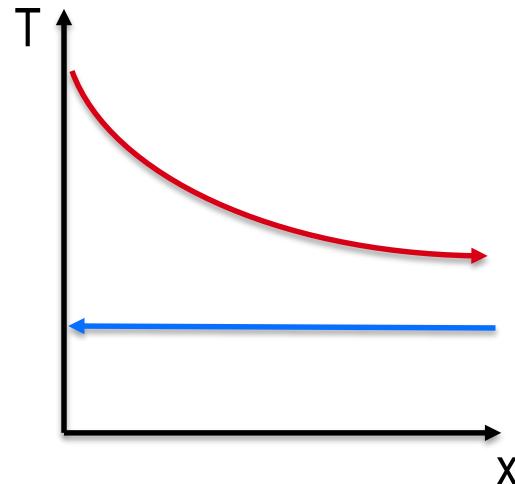
Counter Flow heat Exchanger

Temperature Profile and Total Heat Transfer

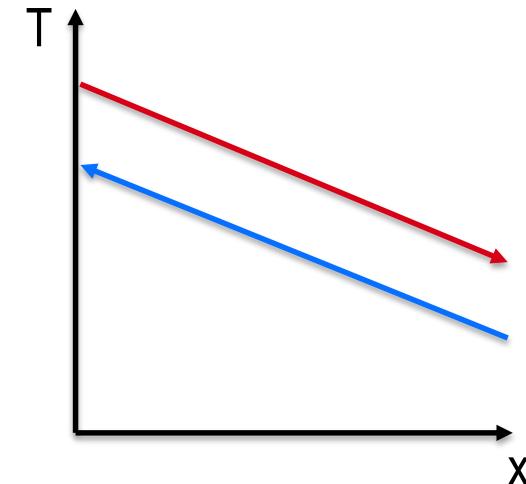
$$Q = UA \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)} = UA \Delta T_m$$


$$\Delta T_m = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}$$

$$\Delta T_1 = (T_{h,1} - T_{c,1}) = (T_{h,in} - T_{c,out})$$


$$\Delta T_2 = (T_{h,2} - T_{c,2}) = (T_{h,out} - T_{c,in})$$

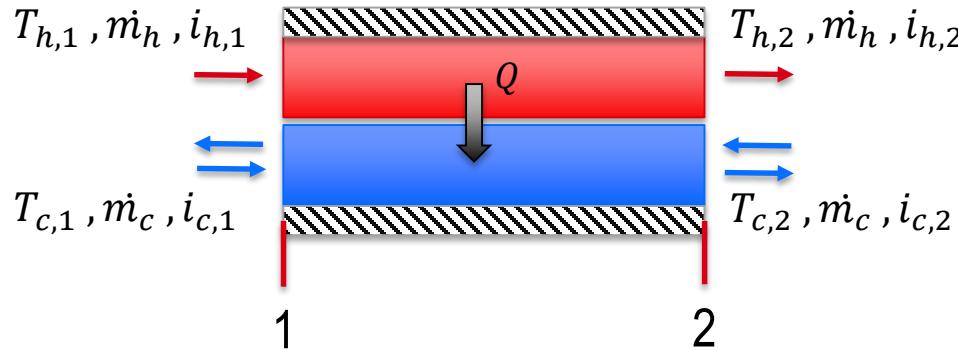
Special Operating Conditions


Representations Based on Counter Flow

- Condensing vapor on the hot-side
- $C_h \gg C_c$

- Evaporating liquid on the cold side
- $C_h \ll C_c$

- $C_h \sim C_c$


This Lecture

- Heat Exchanger Analysis/Design/Performance Calculation
 - Effectiveness-NTU method

Learning Objectives:

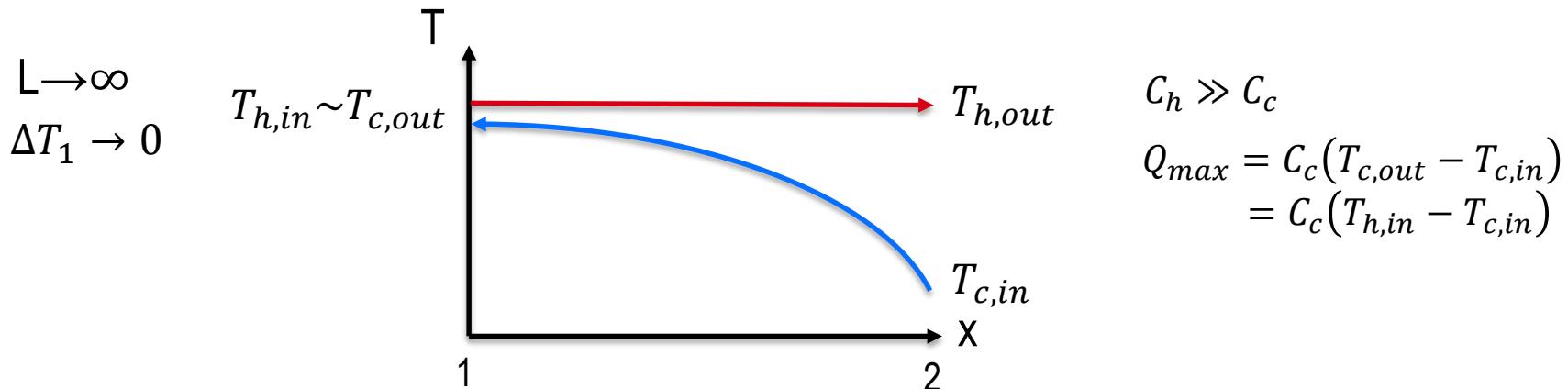
- Identify the design parameter for a heat exchanger
- Analyze the performance of a heat exchanger

Effectiveness-NTU Method

$$Q = -Q_h = -C_h(T_{h,out} - T_{h,in})$$

$$Q = Q_c = C_c(T_{c,out} - T_{c,in})$$

$$\Delta T_m = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)}$$


$$Q = UA \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)} = UA\Delta T_m$$

How do we design the heat exchanger if we do NOT know all the four temperatures ?
What about shell-tube heat exchangers where there are various flow configurations?

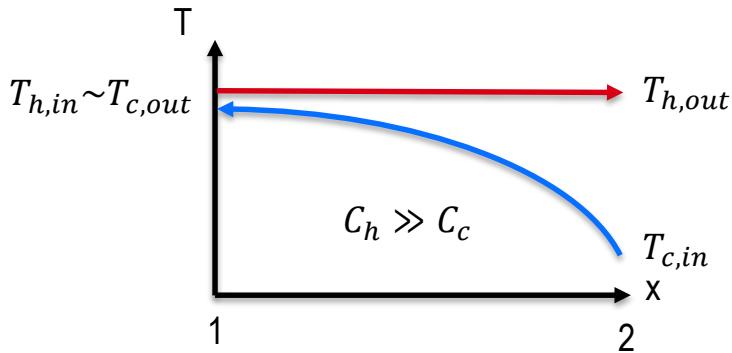
Effectiveness-NTU Method

We want to **determine the highest heat transfer** in the heat exchanger. We observe that:

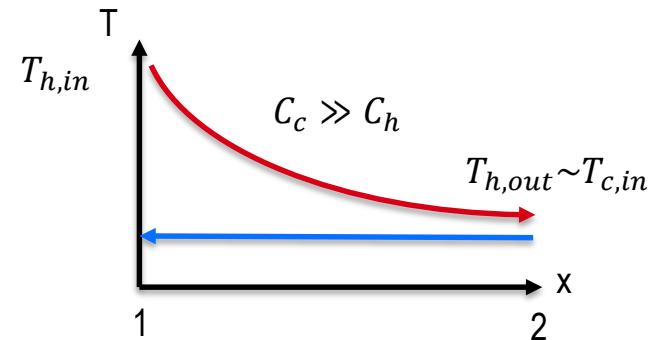
- The maximum Q will be: $Q_{max} = C_? \Delta T_{max} = C_? (T_{max} - T_{min})$

- The maximum ΔT occurs on the flow side with $C_{min} = \min(C_c, C_h)$

$$dq = -dq_h = -C_h dT_h$$
$$dq = dq_c = C_c dT_c$$



If $C_c \gg C_h$ then $|dT_c| \ll |dT_h|$ and viceversa.


Effectiveness-NTU Method

We want to **determine the highest heat transfer** in the heat exchanger. We observe that:

→ The maximum Q will be: $Q_{max} = C_{min}\Delta T_{max} = C_{min}(T_{max} - T_{min})$

$$\begin{aligned} Q_{max} &= C_c(T_{c,out} - T_{c,in}) \\ &= C_c(T_{h,in} - T_{c,in}) \end{aligned}$$

$$\begin{aligned} Q_{max} &= C_h(T_{h,in} - T_{h,out}) \\ &= C_h(T_{h,in} - T_{c,in}) \end{aligned}$$

Effectiveness-NTU Method

We want to determine the highest heat transfer for a given system.

The maximum Q will be: $Q_{max} = C_{min}\Delta T_{max} = C_{min}(T_{h,in} - T_{c,in})$

→ **Effectiveness** $\varepsilon \equiv \frac{Q}{Q_{max}}$
$$\left\{ \begin{array}{l} \varepsilon = \frac{C_h(T_{h,in} - T_{h,out})}{C_{min}(T_{h,in} - T_{c,in})} \\ \varepsilon = \frac{C_c(T_{c,out} - T_{c,in})}{C_{min}(T_{h,in} - T_{c,in})} \end{array} \right. \quad 0 < \varepsilon < 1$$

→ $Q = \varepsilon C_{min}(T_{h,in} - T_{c,in})$ If we know $\varepsilon, T_{h,in}, T_{c,in}$ we can determine Q

Effectiveness-NTU Method

We now observe that:

$$\varepsilon = \frac{Q}{Q_{max}} = \frac{UA\Delta T_{lm}}{C_{min}(T_{h,in} - T_{c,in})} = NTU \frac{\Delta T_{lm}}{(T_{h,in} - T_{c,in})}$$

Where we have defined the **number of heat transfer units NTU**, as: $NTU \equiv \frac{UA}{C_{min}}$

More generally, it can be shown that: $\varepsilon = (NTU, \frac{C_{min}}{C_{max}})$

Therefore the heat transfer in the heat exchanger can be determined once the physical properties ($C_{c,h}$), the heat exchanger design (UA) and the inlet temperatures of the working fluids are known.

Effectiveness-NTU Method

Parallel-flow Heat Exchanger

$$\text{If } C_{min} = C_h: \quad \varepsilon = \frac{(T_{h,in} - T_{h,out})}{(T_{h,in} - T_{c,in})}$$

And also we have: $\frac{C_{min}}{C_{max}} = \frac{\dot{m}_h c_{p,h}}{\dot{m}_c c_{p,c}} = \frac{T_{c,o} - T_{c,i}}{T_{h,i} - T_{h,o}}$

→ $T_{c,out} = \frac{C_{min}}{C_{max}} (T_{h,in} - T_{h,out}) + T_{c,in}$

Last week we derived:

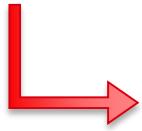
$$\ln\left(\frac{\Delta T_2}{\Delta T_1}\right) = -UA\left(\frac{1}{C_h} + \frac{1}{C_c}\right) \quad \rightarrow \quad \ln\left(\frac{T_{h,o} - T_{c,o}}{T_{h,i} - T_{c,i}}\right) = -\frac{UA}{C_{min}}\left(1 + \frac{C_{min}}{C_{max}}\right)$$

→ $\frac{T_{h,o} - T_{c,o}}{T_{h,i} - T_{c,i}} = \exp\left[-\text{NTU}\left(1 + \frac{C_{min}}{C_{max}}\right)\right]$

Effectiveness-NTU Method

Parallel-flow Heat Exchanger

If $C_{min} = C_h$:


$$\varepsilon = \frac{(T_{h,in} - T_{h,out})}{(T_{h,in} - T_{c,in})}$$

And also we have:

$$\frac{C_{min}}{C_{max}} = \frac{\dot{m}_h c_{p,h}}{\dot{m}_c c_{p,c}} = \frac{T_{c,o} - T_{c,i}}{T_{h,i} - T_{h,o}}$$

$$\rightarrow T_{c,out} = \frac{C_{min}}{C_{max}} (T_{h,in} - T_{h,out}) + T_{c,in}$$

$$\frac{T_{h,o} - T_{c,o}}{T_{h,i} - T_{c,i}} = \exp \left[-\text{NTU} \left(1 + \frac{C_{min}}{C_{max}} \right) \right]$$

$$\frac{T_{h,o} - T_{c,o}}{T_{h,i} - T_{c,i}} = \frac{T_{h,o} - T_{h,i} + T_{h,i} - T_{c,o}}{T_{h,i} - T_{c,i}} = \frac{(T_{h,o} - T_{h,i}) + (T_{h,i} - T_{c,i}) - (C_{min}/C_{max})(T_{h,i} - T_{h,o})}{T_{h,i} - T_{c,i}}$$

$-\varepsilon$

Effectiveness-NTU Method

Parallel-flow Heat Exchanger

$$\left. \begin{aligned} \frac{T_{h,o} - T_{c,o}}{T_{h,i} - T_{c,i}} &= \exp \left[-\text{NTU} \left(1 + \frac{C_{\min}}{C_{\max}} \right) \right] \\ \frac{T_{h,o} - T_{c,o}}{T_{h,i} - T_{c,i}} &= 1 - \varepsilon \left(1 + \frac{C_{\min}}{C_{\max}} \right) \end{aligned} \right\} \quad \boxed{\varepsilon = \frac{1 - \exp \{- \text{NTU}[1 + (C_{\min}/C_{\max})]\}}{1 + (C_{\min}/C_{\max})}}$$

This expression is general and it applies to any parallel heat exchanger irrespective of the fluid which has the minimum thermal capacity.

Similar expressions of $\varepsilon = \left(\text{NTU}, \frac{C_{\min}}{C_{\max}} \right)$ have been derived for other heat exchanger configurations and are summarized in the next table.

TABLE 11.3 Heat Exchanger Effectiveness Relations [5]

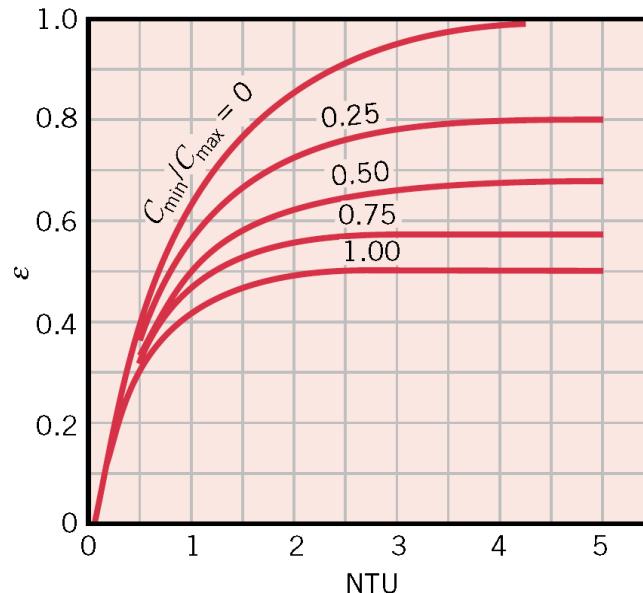

Flow Arrangement	Relation	$C_r \equiv C_{\min}/C_{\max}$
Concentric tube		
Parallel flow	$\varepsilon = \frac{1 - \exp [-\text{NTU}(1 + C_r)]}{1 + C_r}$	(11.28a)
Counterflow	$\varepsilon = \frac{1 - \exp [-\text{NTU}(1 - C_r)]}{1 - C_r \exp [-\text{NTU}(1 - C_r)]} \quad (C_r < 1)$	
	$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}} \quad (C_r = 1)$	(11.29a)
Shell-and-tube		
One shell pass (2, 4, . . . tube passes)	$\varepsilon_1 = 2 \left\{ 1 + C_r + (1 + C_r^2)^{1/2} \times \frac{1 + \exp [-(\text{NTU})_1(1 + C_r^2)^{1/2}]}{1 - \exp [-(\text{NTU})_1(1 + C_r^2)^{1/2}]} \right\}^{-1}$	(11.30a)
n Shell passes (2n, 4n, . . . tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$	(11.31a)
Cross-flow (single pass)		
Both fluids unmixed	$\varepsilon = 1 - \exp \left[\left(\frac{1}{C_r} \right) (\text{NTU})^{0.22} \{ \exp [-C_r(\text{NTU})^{0.78}] - 1 \} \right]$	(11.32)
C_{\max} (mixed), C_{\min} (unmixed)	$\varepsilon = \left(\frac{1}{C_r} \right) (1 - \exp \{ -C_r [1 - \exp (-\text{NTU})] \})$	(11.33a)
C_{\min} (mixed), C_{\max} (unmixed)	$\varepsilon = 1 - \exp (-C_r^{-1} \{ 1 - \exp [-C_r(\text{NTU})] \})$	(11.34a)
All exchangers ($C_r = 0$)	$\varepsilon = 1 - \exp (-\text{NTU})$	(11.35a)
		PHASE CHANGE! ($C_r = 0$)

TABLE 11.4 Heat Exchanger NTU Relations

Flow Arrangement	Relation	$C_r \equiv C_{\min}/C_{\max}$
Concentric tube		
Parallel flow	$\text{NTU} = -\frac{\ln [1 - \varepsilon(1 + C_p)]}{1 + C_r}$	(11.28b)
Counterflow	$\text{NTU} = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) \quad (C_r < 1)$	
	$\text{NTU} = \frac{\varepsilon}{1 - \varepsilon} \quad (C_r = 1)$	(11.29b)
Shell-and-tube		
One shell pass (2, 4, . . . tube passes)	$(\text{NTU})_1 = - (1 + C_r^2)^{-1/2} \ln \left(\frac{E - 1}{E + 1} \right)$	(11.30b)
	$E = \frac{2/\varepsilon_1 - (1 + C_p)}{(1 + C_r^2)^{1/2}}$	(11.30c)
n Shell passes ($2n, 4n, \dots$ tube passes)	Use Equations 11.30b and 11.30c with	
	$\varepsilon_1 = \frac{F - 1}{F - C_r} \quad F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1} \right)^{1/n} \quad \text{NTU} = n(\text{NTU})_1$	(11.31b, c, d)
Cross-flow (single pass)		
C_{\max} (mixed), C_{\min} (unmixed)	$\text{NTU} = - \ln \left[1 + \left(\frac{1}{C_r} \right) \ln(1 - \varepsilon C_p) \right]$	(11.33b)
C_{\min} (mixed), C_{\max} (unmixed)	$\text{NTU} = - \left(\frac{1}{C_r} \right) \ln [C_r \ln(1 - \varepsilon) + 1]$	(11.34b)
All exchangers ($C_r = 0$)	$\text{NTU} = - \ln(1 - \varepsilon)$	(11.35b)

Effectiveness-NTU Method

$$C_r \equiv C_{\min}/C_{\max}$$

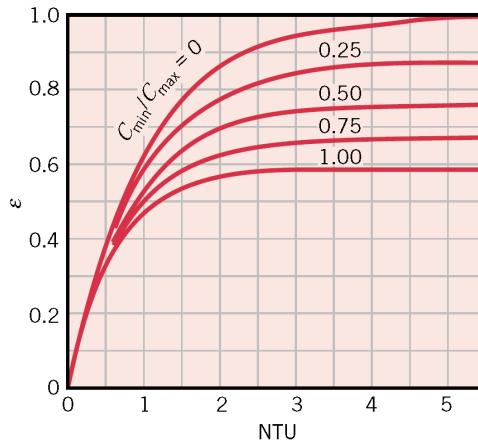
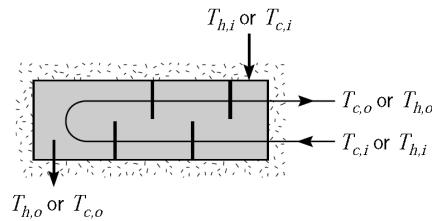



FIGURE 11.10 Effectiveness of a parallel-flow heat exchanger (Equation 11.28).

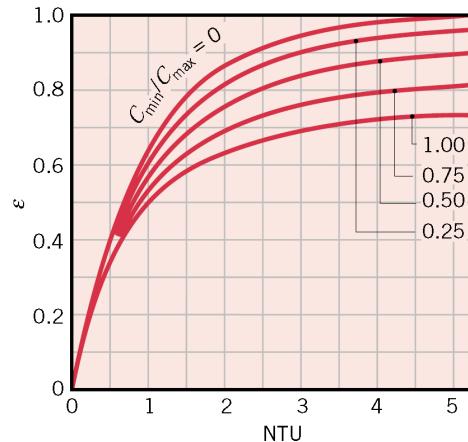
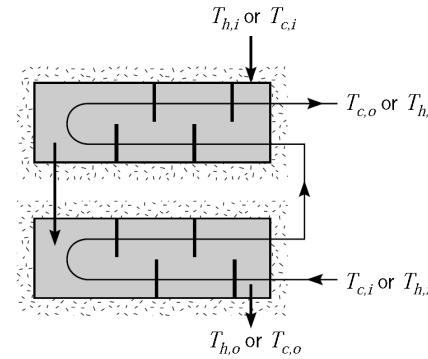



FIGURE 11.11 Effectiveness of a counterflow heat exchanger (Equation 11.29).

Effectiveness-NTU Method

FIGURE 11.12 Effectiveness of a shell-and-tube heat exchanger with one shell and any multiple of two tube passes (two, four, etc. tube passes) (Equation 11.30).

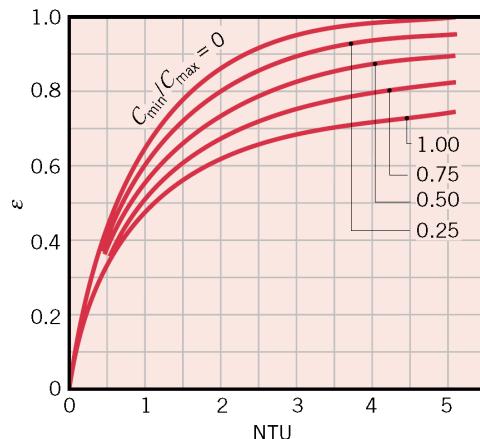
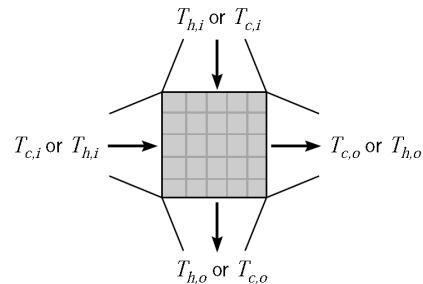
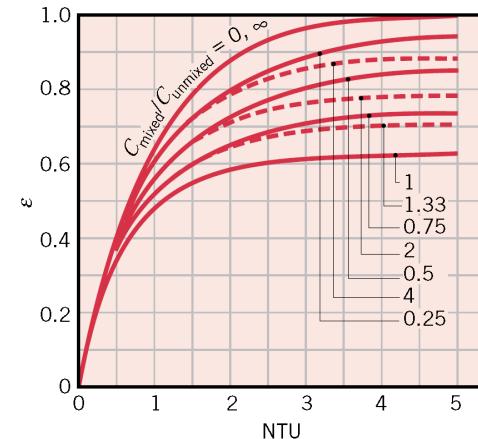
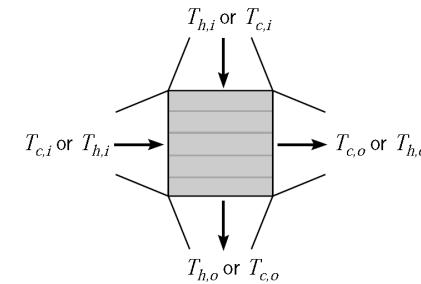



FIGURE 11.13 Effectiveness of a shell-and-tube heat exchanger with two shell passes and any multiple of four tube passes (four, eight, etc. tube passes) (Equation 11.31 with $n = 2$).



$$C_r \equiv C_{\min}/C_{\max}$$

Effectiveness-NTU Method

$$C_r \equiv C_{\min}/C_{\max}$$

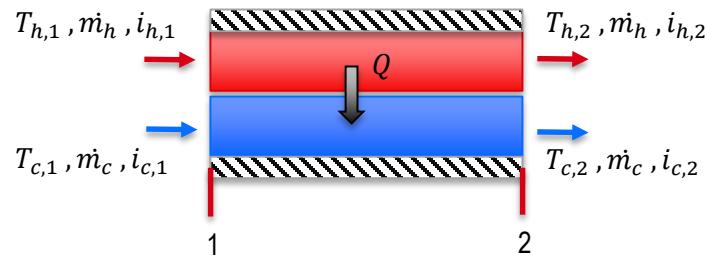
FIGURE 11.14 Effectiveness of a single-pass, cross-flow heat exchanger with both fluids unmixed (Equation 11.32).

FIGURE 11.15 Effectiveness of a single-pass, cross-flow heat exchanger with one fluid mixed and the other unmixed (Equations 11.33, 11.34).

This Lecture

- Heat Exchanger Analysis/Design/Performance Calculation
- Effectiveness-NTU method

Learning Objectives:


- Identify the design parameter for a heat exchanger
- Analyze the performance of a heat exchanger

Heat Exchanger Problems

Design problem:

All input and output temperatures are given, as well as flow rates.
We need to determine the appropriate heat exchanger area.

→ Calculate ϵ and C_r , then NTU then A

Performance analysis problem:

We have a heat exchanger of prescribed dimensions, we know the inlet conditions and we need to determine the outlet conditions and the overall heat transfer.

→ Calculate NTU and C_r and then determine ϵ

Next Lecture

- Design and performance Analysis of Heat Exchangers

Learning Objectives:

- Identify the design parameter for a heat exchanger
- Analyze the performance of a heat exchanger