Heat and Mass Transfer
ME-341

Instructor: Giulia Tagliabue

Spring Semester




Q Internal Flows
‘{ Fluid-dynamic aspects (velocity profile and pressure)
{ Thermal aspects and fully developed region

Learning Objectives:
Understand the critical aspects of flows in pipes

Understand critical aspects of heat transfer in pipes



Internal Flows: Thermal Aspects

Temperature BC Heat Flux BC

UL

ro
et

Thermal Entrance Region  Xra:  Fully Developed Region
_Ts(x) = T(r,x)
Ts(x) — T (x)

_ 0 |Ts(x) = T(r,x)
~ ox [Ts(x) — Tm(x)]

: . . )
We thus define a dimensionless temperature: 6 Tm (x) mean temperature 7, = =, f | uTrdr

And the fully developed condition can be defined as: g_@
X

x=de’t xzxfd,t

B the temperature profiles are SIMILAR.



Internal Flows: Thermal Aspects

Temperature BC Heat Flux BC
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Internal Flows: Thermal Aspects

Temperature BC Heat Flux BC
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Thermal Entrance Region  Xra:  Fully Developed Region
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Internal Flows: Thermal Aspects

Temperature BC Heat Flux BC
—
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Thermal Entrance Region  Xra:  Fully Developed Region
00 oT dT, T, — T dT, T, — T dT,
— =0 — == __s =S s m
dx é 0x T, — T, dx t-l_TS—Tm dx

x:.X'fd‘t X=Xfd,t X=Xfdt X=Xfq,

X=de't

T dTs dTm

The fully developed condition establishes a precise relationship between T Dk

We will use this relationship to simplify the equations and determine the temperature profile T(r, x)
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Forced Gonvection

Convection refers to the heat transfer between a solid and a fluid in motion when they are at different temperatures.

FLUID DYNAMICS ] [ HEAT TRANSFER

Mass conservation — Continuity equation

Momentum conservation — Navier-Stokes equations Energy conservation — 1% Law of Thermodynamics

Flow condition (Laminar/turbulent) — Re Boundary Conditions (Heat flux/Temperature)
Pr

Heat transfer includes advection!

F Velocity profile: u(x,y) ! JL

« Shear stress 7,, Temperature profile: T (x,y)
* Friction coefficient Cr
» Friction factor No slip condition u(x, 0) = 0 Transport Laws (Newton/Fourier)
Qconv = Qcondwait h(Ts — Ty) = _kfa_T
ay =0



Internal Forced Gonvection

{ FLUID DYNAMICS ]

Find the velocity profile: 1 (r, x)

Velocity Profile
uy

HEAT TRANSFER
Find the temperature profile: T (r, x)

Temperature Profile

In the fully developed region du/dx = 0

u(r) |2 u(r)
upy, - 2|:1 B (i) i|

B r‘g dp
8u dx

Uy =

| |
> T I T
= = T,
Tm,l > e —— e Eee—————a——= Tm,o
= = 1
L ! |
r
> 1,= Lz J ulrdr
Uyrod o

IHIO

_Ts(x) —T(r,x)
C T(x) - Tin(x)

In the fully developed region 36 /dx = 0

oT _ dT; T, —T dT; N T, —T dT,
0x —— x=xfas Ts — T, dx x=x7as T, — T, dx —
oT

Qconv = Qeond,wal h(Ty — Ty,) = _kfﬁ

=0 9



This Lecture

Learning Objectives:

d Temperature and heat flow for internal flows

Q Convection coefficient for laminar flow in circular tubes

O Calculate the heat transfer coefficient for flow in pipes under different

geometrical and flow conditions
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Internal Flows: Thermal Aspects

We can write a global energy balance on the entire pipe:
Qcony = Tth (Tm,o - Tm,i)

If we determine T,,,(x) we can calculate the total amount of heat transferred via convection.
We need to write a local energy balance.
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Internal Flows: Energy Balance

dQ.onv Assumptions:
. Negligible viscous dissipation
I__l_.. Incompressible flow
I : Negligible heat transfer along x
— ] h— 7 | L+dl, [
I
L__J
}—-X o x|
0 L
[nlet, £ Qutlet, o

We can write a local energy balance:  mc, [(T, + dTo) — Tl = dQcony

Where: dQ.ony = qsPdx dT,  q.P For a constant pipe radius

P
\ =—=—"h(Ts — Typn) P = 1D
qs = h(Ts — Ty) dx Mep M

B To solve the differential equation we have to apply the BCs.
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Internal Flows: Energy Balance - Constant Heat Flux BC .

Fully developed reg@

g, = constant

qs de Assumptions:
Negligible viscous dissipation
I__l_ - Incompressible flow
I : Negligible heat transfer along x
——d h— 7, | T,#dT,
1 I
I . ..
= h convection coefficient
> o cea] | INSIDE the pipe
0 L
[nlet, £ Qutlet, o
" dT,, ds
For a constant heat flux g5 we have: — = (X)) = - mi
X mcp mcy

So T, (x) increases linearly. What about T (x) ?

B Entrance region:
(Ty — T,;,) increases because h decreases

B Fully developed region:
(Ty — T,;,) is constant because h is constant
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Internal Flows: Energy Balance - Gonstant Temperature BG 7.

qQde = h(Ty — T,,)Pdx Assumptions:
. Negligible viscous dissipation
'_-l_ = Incompressible flow
I : Negligible heat transfer along x
——d h— 7, | T,#dT,
1 I
1 . -
=== h convection coefficient
[ e | INSIDE the pipe
0 L
Inlet, { Qutlet, o
L dT,, P
) For a constant surface temperature T, we have: — = %h(TS —Tn) AT =(T;—Ty)
_ p
dAT P dAT P AT Px|1 (* |k
B —-——=—hAT ®» —=———hdx ® lnA—sz—,—— hdx
AT, dx mc, AT me, i mey x Jg
T, — T, PLh .
et | —o———— =exp| ——— B (T, — T,,) decreases exponentially
o Ts - Tm,i Cp

|
0 L 14




Internal Flows: Energy Balance - Gonstant Temperature BG 7.

TOO’ hout

Outer flow
T T,

—_— mn— I,

h(Ts — T,)Pdx = hyye(Too — Ts)Pdx

Often the surface temperature is
maintained constant with forced
external convection, hence using a
fluid with known T,

h convection coefficient

&J : L INSIDE the pipe
Innerflow/ / [})—’X -] ! h,.,: convection coefficient
i, * Inlet, i Outlet, o OUTSIDE the pipe
Constant surface temperature T Constant external fluid temperature T,
Is —Tmo exp( hA ) T —Thmo 1 UA
T _ 7 - —— =exXxp|——— | =exp| ———
Ts — T mcy i T, — Tini P mcey Reor P me,
@ In ro/ri 1
Ts - Tm,o = exp <_ ' 1 ) Rtot - Rconv,o + Rcond + Rconv,in = thout 2Lk + Ainh
Ts - Tm,i meRconv,in




Internal Flows: Total Heat Transfer

Tm,l
Constant Heat Flux: Constant Surface Temperature:
— ey (T — Ty i) = —tivc (AT, — AT,) = —rircy In 2 — 210 — 81
Qeonv = 1hp(Tmo = Tmi) = —1hey (AT, — AT}) = —1hcyln AT; In ((AT,)/(ATY))
’ AT PLh Ah AT, — AT;
= q.Pdx . O b Wl = e
Qconv = 4s Side 13: 137 e, e, m =10 ((AT,)/(ATY)

E; Qcony = EAATlm Qconv = UAATlm
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What about the convection coefficient ?
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Internal Forced Gonvection

Find the velocity profile: 1 (r, x)

{ FLUID DYNAMICS ]

Velocity Profile

In the fully developed region du/dx = 0

G A%
0o 1- (2] |

rt dp

u(r)

I

Uy =

8 dx

HEAT TRANSFER
Find the temperature profile: T (r, x)

Temperature Profile

m

_Ts(x) —T(r,x)
 Ts(x) — T (%)

In the fully developed region 36 /0x = 0

« Constant surface heat flux Qconv = qsPL

T, — T, hA oz
« Constant surface temperature ~ ———~ = exp <— —) Qconv = hAAT

oT
h(Ts = T) = —ky =

Qconv = Qcond,wall

r=0

We need the temperature profile!
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This Lecture

Learning Objectives:

Temperature and heat flow for internal flows
| Convection coefficient for laminar flow in circular tubes

O Calculate the heat transfer coefficient for flow in pipes under different

geometrical and flow conditions
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Convection Coefficient for Laminar Flow in Gircular Tubes

We already know the velocity profile, 2 (r, x), now we have to write the energy balance to find T (7, x)*

T Qr+dr
Lot ons:
@ adm_ - % P, ,.é\ssumﬁt/o?s..bI | o
ANNULAR : i egligible viscous dissipation
. T_. v . . Incompressible flow
control T Q, T Negligible heat transfer along x
volume e— dy—| r Fully developed flow (x>Xq4,)

l . Laminar flow (Re,<2300)

From the velocity profile calculations, we know that there is no radial component of the velocity: 1 (r, x) = u(r)

B There is no advection along the radial direction =) Heat is exchanged by DIFFUSION along r (Fourier law)

20



Convection Coefficient for Laminar Flow in Gircular Tubes

We already know the velocity profile, 2 (r, x), now we have to write the energy balance to find T (7, x)*

T Qr+dr
Lo -
ﬁ an_ T+£dt_ . ,.é\ssumﬁt/o?s.bI | o
ANNULAR : i egligible viscous dissipation
. T_. v . . Incompressible flow
control T Q, T Negligible heat transfer along x
volume e— dy—| r Fully developed flow (x>Xq4,)

l . Laminar flow (Re,<2300)
- -—X

1t Law of thermodynamics (Open system):

66 dm<u+pv+//l/2 % — dm u+pv-|7y /)0ut+Q /%

As in W5L1-1h, slide 34, we assume: A(u + pv) = Ah = ¢, AT Heat exchanged by DIFFUSION along r
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Convection Coefficient for Laminar Flow in Gircular Tubes

We already know the velocity profile, 2 (r, x), now we have to write the energy balance to find T (7, x)*

T Qr+dr .

H dm . ar T

ANNULAR f ! T
control — L., Fo, T

15t Law of thermodynamics (Open system):

. aT
0 =dmc, (T — <T +adx)> +Qr — Qriar

: aT ,
Where:  dm = p(urdr)u(r) Qr = —kf(2nrdx)a (Fourier Law)

Assumptions:

. Negligible viscous dissipation
Incompressible flow
Negligible heat transfer along x
Fully developed flow (x>x4,)
Laminar flow (Re,<2300)

20y
ar

Qriar = Qr +

dr
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Convection Coefficient for Laminar Flow in Gircular Tubes

We already know the velocity profile, 2 (r, x), now we have to write the energy balance to find T (7, x)*

T Qr+dr
Lot ons:
@ adm_ - % P, ,.é\ssumﬁt/o?s..bI | o
ANNULAR : i egligible viscous dissipation
. T_. v . . Incompressible flow
control T Q, T Negligible heat transfer along x
volume e— dy—| r Fully developed flow (x>Xq4,)

l . Laminar flow (Re,<2300)
- -—X

15t Law of thermodynamics (Open system):

aT 20, aT 0 aT
0 = p2rrdr)u(r)c, adx + Wdr = p(an)u(r)cpadx + E —kf(andx)E

oT 0 ([ oT
pru(r)cpa = kfg ra—r
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Convection Coefficient for Laminar Flow in Gircular Tubes

We already know the velocity profile, 2 (r, x), now we have to write the energy balance to find T (7, x)*

T Qr+dr
Lot ons:
@ adm_ - % P, ,.é\ssumﬁt/o?s..bI | o
ANNULAR : i egligible viscous dissipation
. T_. v . . Incompressible flow
control T Q, T Negligible heat transfer along x
volume e— dy—| r Fully developed flow (x>Xq4,)

l . Laminar flow (Re,<2300)

15t Law of thermodynamics (Open system):

6T_k_fli<6T> 5 T a0(6T>

ua_pcprar TW ”&z?ﬁ TE

A. Constant heat flux

We now have to apply the BCs at r = r,, and we have two possibilities: { B.  Constant surface temperature

24



Convection Coefficient for Laminar Flow in Gircular Tubes

A. Constant heat flux Let's make a few observation that help us relate T (r, x) with T,,,(x), which we calculated previously.
qs )
& 1. In every point the heat flux can be written as: g5 = h(Ts(x) — T, (x))
|
|
— In W6L1-1h, slide 23 we reasoned that L, f(x) = h+f(x)
S SN kg
- "
H 0(Ts(x) — T (x)) _ 9(qs/h) 0Ts(x) 0Ty (x)
| o = =0 B =
0x d0x dx 0x
y T _dTy T, —T dT, T, —T dTp, 0Ty(x) _ OT(r,x)
2. From the fully developed condition 96/dx = 0 : x| =Gx|  TToTodx| + T T dx | o = Ox
x—de't X—de't X—de't X—de't
‘b )
We have previously obtained: T, (x) = ‘?S X+ T (o a_T — % — aﬁ — asP = constant
mcep ox Ox Ox gy,

N oT a0 ( 6T> If we can treat g—i as a constant factor, this becomes just a differential
U—=——\r—
or

ox ror equation of a single variable function (), which we can easily integrate
25



Convection Coefficient for Laminar Flow in Gircular Tubes

A. Constant heat flux oT a0 ( aT)

., U—=—F7F\T—>5 2 "
q. dx radr\ or 10 ( 0T\ 2wy (dT, r 0Ty,  qsP
S Ll et e 1-(— where P 7

— i;(;)_z[l (,ﬂ ror\ orj @ \dx "o o Mo

i ol

H ”H'P

2uy, (dT,\ [r? r*
' I:'} T(r,x) = Tm<d_;cn> [Z — 161‘02] + C; In(r) + C,

r,

B Finite temperature atr = 0 ;=0
Boundary Condlitions:

dx 16

B 2u,rd (dT,\[3 1 /r\" 1/7\°
:> T(T,X)—Ts(x)— p <dx E‘FE a _Z o

Now we use the transport laws (Newton) to obtain the convection coefficient h

Uy, (AT, \ [37
At the surface T (rp, x) = Ts(x) Cy, = Ty(x) — .

26



Convection Coefficient for Laminar Flow in Gircular Tubes

A. Constant heat flux From Newton'slaw: g5 = h(Ts(x) — Tp,(x)) B Knowing T(r, x) we derive Ts(x) — Ty, (%)
qs
— f w252 -1
e A I,= usz, . ulrdr  where

l—! m %_2[1_(%’)2}

] 11 uy,r¢ (dT,,
E> Tm(X) = Ts(x) _Euer (dﬂ> ¢ Ts(x) - Tm(x) = _u To ( >

48 « dx 48 « dx
drT, <P 11 w1 [ qsP :
We also remember that: Em _ s B Ty(x) —Tnp(x) = —=UmTo (s where P = m2r, M = pu,nrg
dx  mcy, 48 a \mc,
. hD
48 k — —
®» h s = — L — constant » Nup= =4.36

T T =T 1127 kg

27



Convection Coefficient for Laminar Flow in Gircular Tubes

We already know the velocity profile, 2 (r, x), now we have to write the energy balance to find T (7, x)*

T Qr+dr
Lot ons:
@ adm_ - % P, ,.é\ssumﬁt/o?s..bI | o
ANNULAR : i egligible viscous dissipation
. T_. v . . Incompressible flow
control T Q, T Negligible heat transfer along x
volume e— dy—| r Fully developed flow (x>Xq4,)

l . Laminar flow (Re,<2300)

15t Law of thermodynamics (Open system):

6T_k_fli<6T> 5 T a0(6T>

ua_pcprar TW ”&z?ﬁ TE

A. Constant heat flux

We now have to apply the BCs at r = r,, and we have two possibilities: { B.  Constant surface temperature

28



Convection Coefficient for Laminar Flow in Gircular Tubes

B. ConstantT, Let's make a few observation that help us relate T (r, x) with T,,,(x), which we calculated previously.

From the fully developed condition 98 /dx = 0 :
¥ B oT dT, T,—T d N T, —T dT,,
I a5 = - -
| 0x —— x=x7as T, — T, /dx —— Ts — T, dx ——

So we can substitute and obtain:

ua_T_gi ra—T E> 10 oT _Zum dT,,
dx rar\ or r or rar T oa dx

An iterative solution results in:

(T 117,-1
To Ts_Tm

hD
NuD =k— = 3.66
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Internal Forced Gonvection

FLUID DYNAMICS
Find the velocity profile: 1 (r, x)
Velocity Profile
| AN
,—P
,—D
,—)

In the fully developed region du/dx = 0

u(r)

2o ()]

u

rt dp

Uy =

8w dx

u(r)

I

HEAT TRANSFER ]

[ Find the temperature profile: T (r, x)

Temperature Profile

|
[ I

— ! ;:/' i
= =G — 2
= . =T
T. —T(r, ,
0 = Q) =TT e fully developed region 36 /9x = 0

Constant surface heat flux

Constant surface temperature

Constant surface heat flux

Constant surface temperature

- Ts(x) — Ty ()

m(x) = q;P X+ Ty Q = q"PL
me ’ conv N
T, —T, hA 7
R exp| ——— Qconv = hAAT
Ts — T mey

Qconv = Qcond,wall
T(r,x)
Nup = hD/k; = 4.36

Nuj, = hD/k; = 3.66 %0



The problem of the physical properties of the houndary layer

P2 Nup=c
f Density p(Ty)
Viscosity v(T¥)
. (Tm,i + Tm,o)
BL temperature. Tf =T,, = 2 Thermal diffusivity Specific heat ¢, ¢ (Tr)

ar(Tr) Thermal conductivity k¢ (Tr)
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This Lecture

Learning Objectives:

Temperature and heat flow for internal flows

2

4 Convection coefficient for laminar flow in circular tubes

O Calculate the heat transfer coefficient for flow in pipes under different

geometrical and flow conditions
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Next Lecture

Learning Objectives:

| Correlations for internal forced convection
U Circular tubes (laminar and turbulent)
| Non-circular tubes

d The entrance region

O Calculate the heat transfer coefficient for flow in pipes under different

geometrical and flow conditions

33
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