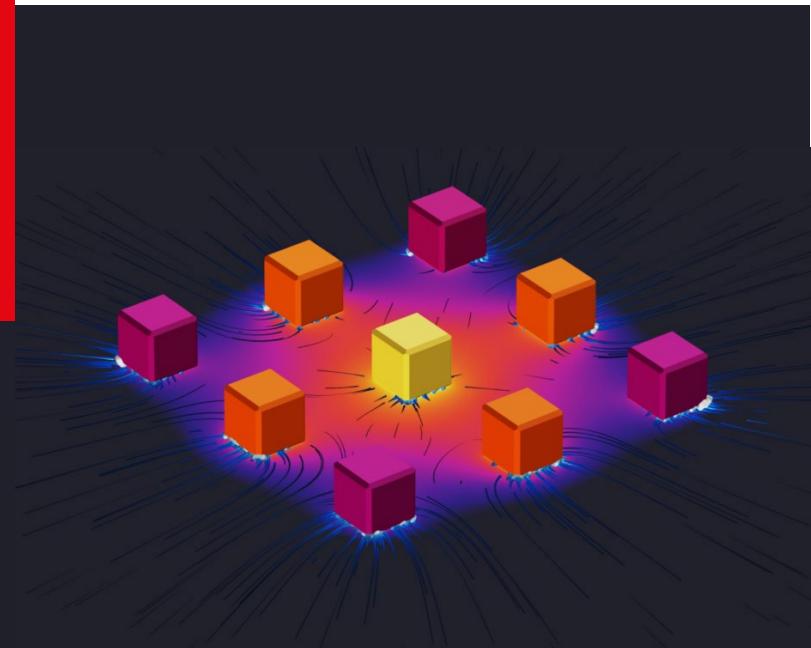


Heat and Mass Transfer

ME-341

Instructor: Giulia Tagliabue



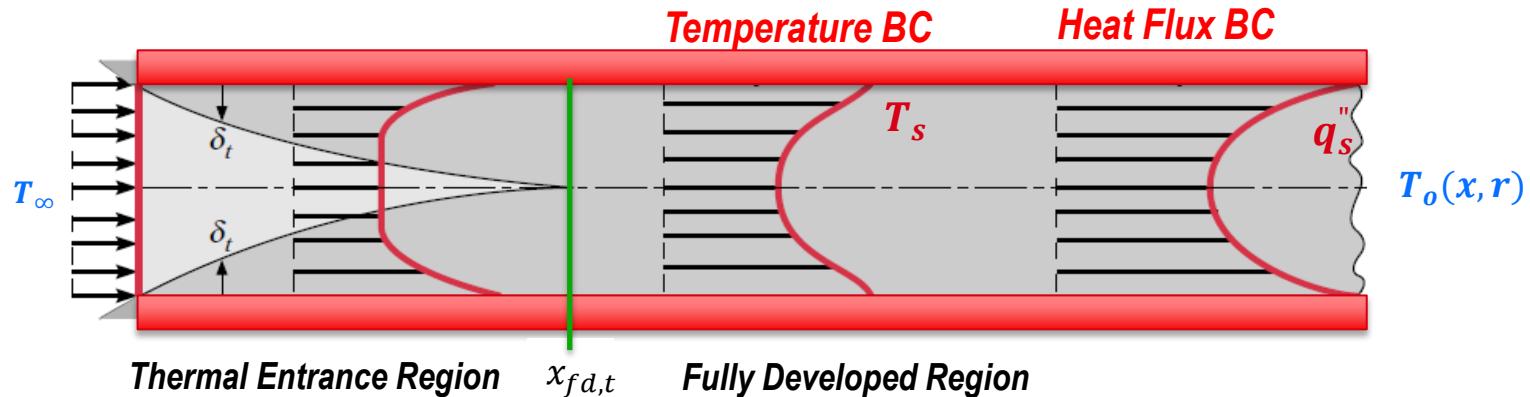
Previously

- Internal Flows
 - Fluid-dynamic aspects (velocity profile and pressure)
 - Thermal aspects and fully developed region

Learning Objectives:

- Understand the critical aspects of flows in pipes
- Understand critical aspects of heat transfer in pipes

Internal Flows: Thermal Aspects



We thus define a dimensionless temperature:

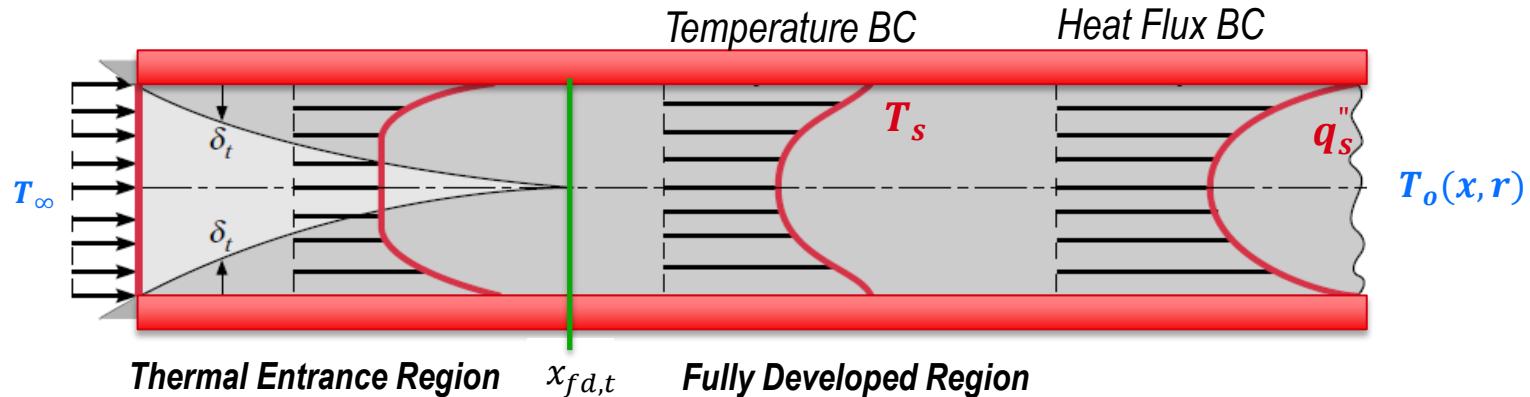
$$\theta = \frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)} \quad T_m(x) \text{ mean temperature} \quad T_m = \frac{2}{u_m r_o^2} \int_0^{r_o} u T r dr$$

And the fully developed condition can be defined as:

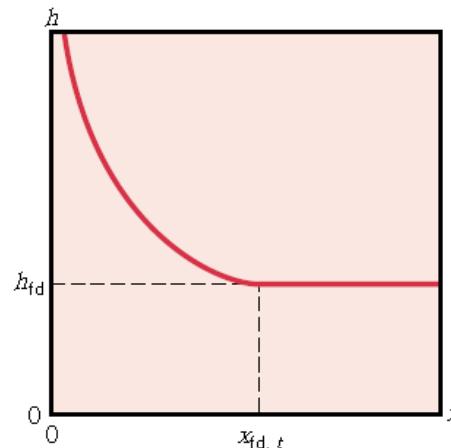
$$\left. \frac{\partial \theta}{\partial x} \right|_{x=x_{fd,t}} = \left. \frac{\partial}{\partial x} \left[\frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)} \right] \right|_{x=x_{fd,t}} = 0$$

the temperature profiles are **SIMILAR**.

Internal Flows: Thermal Aspects

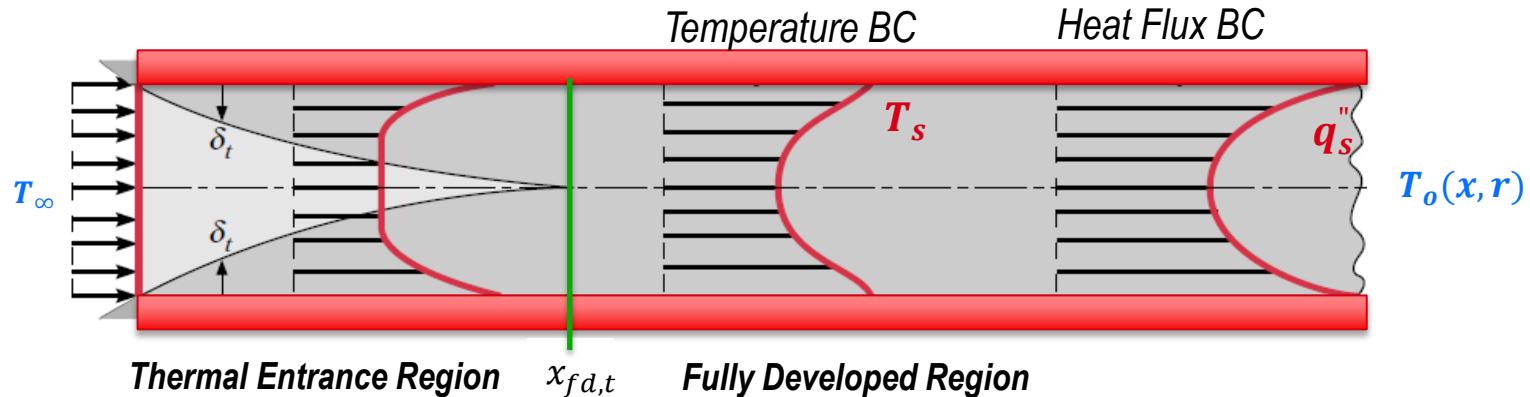


In the entrance region
h DECREASES



In the fully developed
region h is CONSTANT

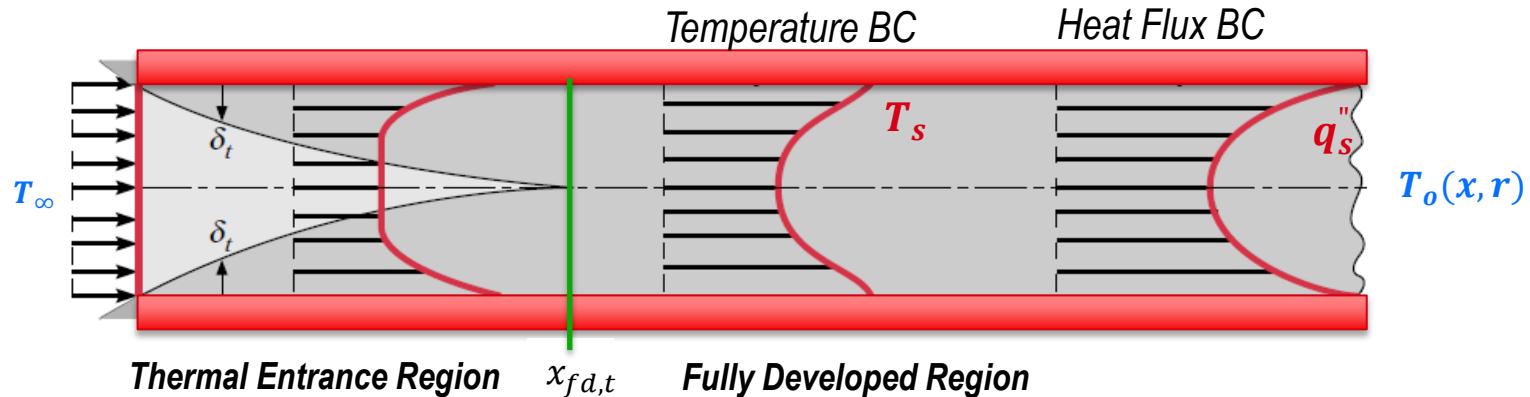
Internal Flows: Thermal Aspects



$$\left. \frac{\partial \theta}{\partial x} \right|_{x=x_{fd,t}} = \frac{(T_s - T_m) \frac{\partial}{\partial x} (T_s - T) - (T_s - T) \frac{\partial}{\partial x} (T_s - T_m)}{(T_s - T_m)^2} \equiv 0$$

$$\frac{\frac{\partial T_s}{\partial x} - \frac{\partial T}{\partial x}}{(T_s - T_m)} - \frac{(T_s - T)}{(T_s - T_m)^2} \left(\frac{\partial T_s}{\partial x} - \frac{\partial T_m}{\partial x} \right) = 0$$

Internal Flows: Thermal Aspects



$$\left. \frac{\partial \theta}{\partial x} \right|_{x=x_{fd,t}} \equiv 0 \quad \rightarrow \quad \left. \frac{\partial T}{\partial x} \right|_{x=x_{fd,t}} = \left. \frac{dT_s}{dx} \right|_{x=x_{fd,t}} - \left. \frac{T_s - T}{T_s - T_m} \frac{dT_s}{dx} \right|_{x=x_{fd,t}} + \left. \frac{T_s - T}{T_s - T_m} \frac{dT_m}{dx} \right|_{x=x_{fd,t}}$$

The fully developed condition establishes a precise relationship between $\frac{\partial T}{\partial x}$, $\frac{dT_s}{dx}$, $\frac{dT_m}{dx}$

We will use this relationship to simplify the equations and determine the temperature profile $T(r, x)$

Forced Convection

Convection refers to the heat transfer between a **solid** and a **fluid in motion** when they are at **different temperatures**.

FLUID DYNAMICS

Mass conservation → Continuity equation

Momentum conservation → Navier-Stokes equations

Flow condition (Laminar/turbulent) → Re

Velocity profile: $\vec{u}(x, y)$

- Shear stress τ_w
- Friction coefficient C_f
- Friction factor f

Heat transfer includes advection!

Temperature profile: $T(x, y)$

No slip condition $u(x, 0) = 0$

$$Q_{conv} = Q_{cond,wall}$$

HEAT TRANSFER

Energy conservation → 1st Law of Thermodynamics

Boundary Conditions (Heat flux/Temperature)
 Pr

Transport Laws (Newton/Fourier)

$$h(T_s - T_\infty) = -k_f \frac{\partial T}{\partial y} \Big|_{y=0}$$

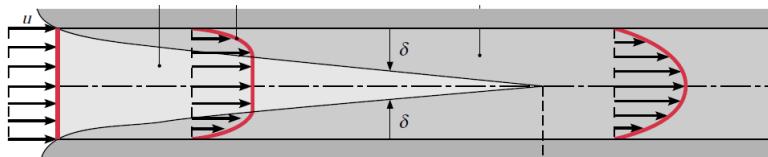
Nu

Internal Forced Convection

FLUID DYNAMICS

Find the *velocity profile*: $\vec{u}(r, x)$

Velocity Profile



In the fully developed region $\partial u / \partial x = 0$

$$\frac{u(r)}{u_m} = 2 \left[1 - \left(\frac{r}{R_o} \right)^2 \right]$$

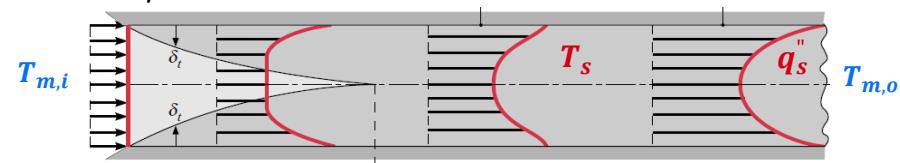
$$u_m = - \frac{R_o^2}{8\mu} \frac{dp}{dx}$$

$$\vec{u}(r)$$

HEAT TRANSFER

Find the *temperature profile*: $T(r, x)$

Temperature Profile



$$T_m = \frac{2}{u_m R_o^2} \int_0^{R_o} u T r dr$$

$$\theta = \frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)}$$

In the fully developed region $\partial \theta / \partial x = 0$

$$\left. \frac{\partial T}{\partial x} \right|_{x=x_{fd,t}} = \left. \frac{dT_s}{dx} \right|_{x=x_{fd,t}} - \left. \frac{T_s - T}{T_s - T_m} \frac{dT_s}{dx} \right|_{x=x_{fd,t}} + \left. \frac{T_s - T}{T_s - T_m} \frac{dT_m}{dx} \right|_{x=x_{fd,t}}$$

$$Q_{conv} = Q_{cond,wall} \quad h(T_s - T_m) = -k_f \left. \frac{\partial T}{\partial r} \right|_{r=0}$$

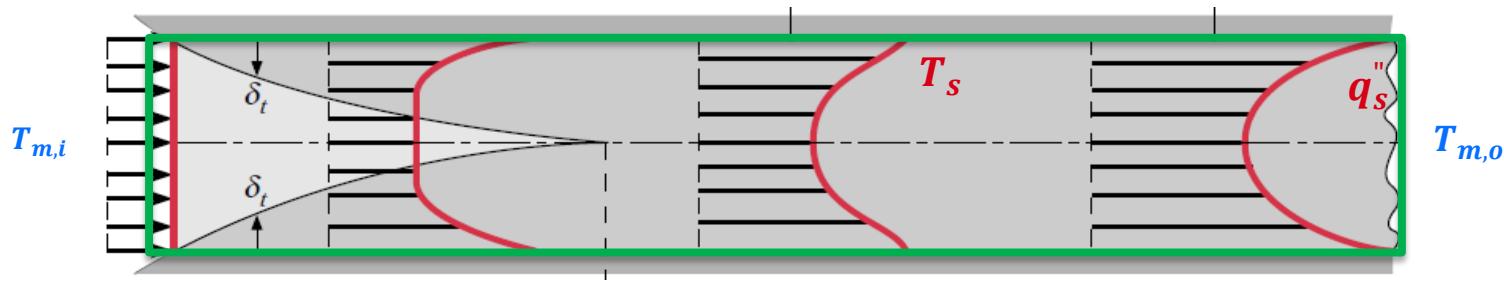
This Lecture

- ❑ Temperature and heat flow for internal flows
- ❑ Convection coefficient for laminar flow in circular tubes

Learning Objectives:

- ❑ Calculate the heat transfer coefficient for flow in pipes under different geometrical and flow conditions

Internal Flows: Thermal Aspects

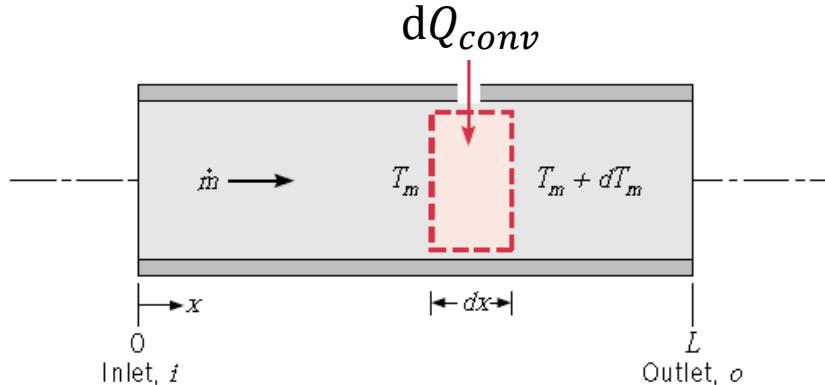


We can write a global energy balance on the entire pipe:

$$Q_{conv} = \dot{m}c_p(T_{m,o} - T_{m,i})$$

If we determine $T_m(x)$ we can calculate the total amount of heat transferred via convection.
We need to write a local energy balance.

Internal Flows: Energy Balance



Assumptions:

- Negligible viscous dissipation
- Incompressible flow
- Negligible heat transfer along x

We can write a local energy balance: $\dot{m}c_p[(T_m + dT_m) - T_m] = dQ_{conv}$

Where:

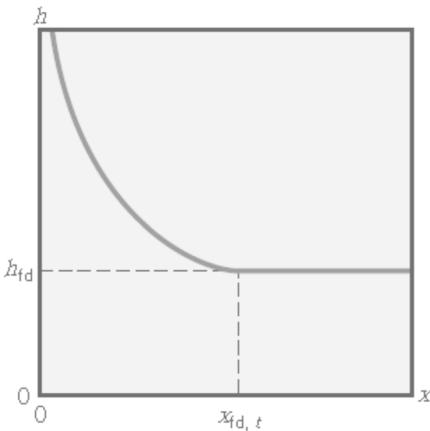
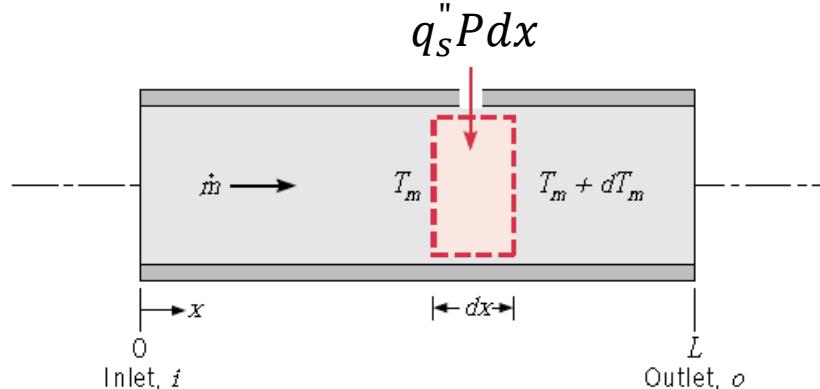
$$\left. \begin{aligned} dQ_{conv} &= q_s'' P dx \\ q_s'' &= h(T_s - T_m) \end{aligned} \right\} \quad \frac{dT_m}{dx} = \frac{q_s'' P}{\dot{m}c_p} = \frac{P}{\dot{m}c_p} h(T_s - T_m)$$

For a constant pipe radius

$$P = \pi D$$

To solve the differential equation we have to apply the BCs.

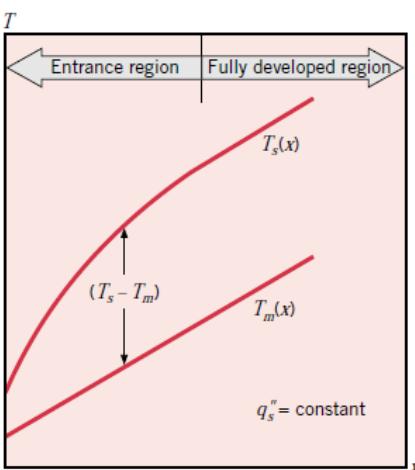
Internal Flows: Energy Balance – Constant Heat Flux BC q_s''



Assumptions:

- Negligible viscous dissipation
- Incompressible flow
- Negligible heat transfer along x

h convection coefficient
INSIDE the pipe



For a constant heat flux q_s'' we have: $\frac{dT_m}{dx} = \frac{q_s'' P}{\dot{m} c_p} \rightarrow T_m(x) = \frac{q_s'' P}{\dot{m} c_p} x + T_{m,i}$

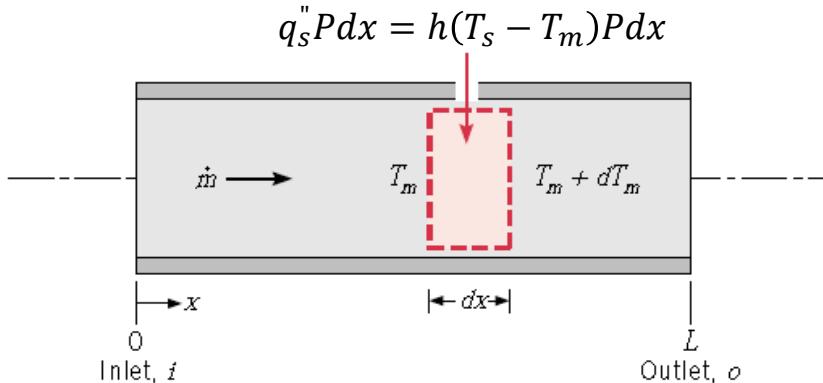
So $T_m(x)$ increases linearly. What about $T_s(x)$?

$$(T_s - T_m) = \frac{q_s''}{h}$$

➡ *Entrance region:*
 $(T_s - T_m)$ increases because h decreases

➡ *Fully developed region:*
 $(T_s - T_m)$ is constant because h is constant

Internal Flows: Energy Balance – Constant Temperature BC T_s



Assumptions:

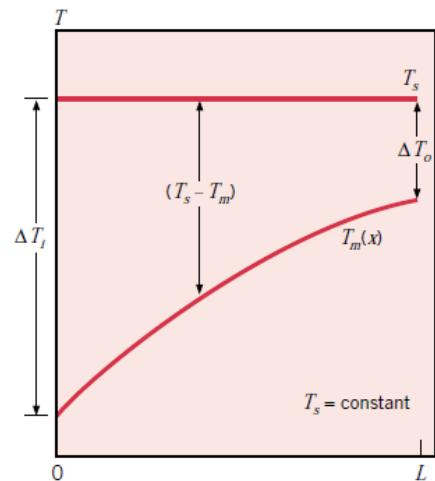
- Negligible viscous dissipation
- Incompressible flow
- Negligible heat transfer along x

h convection coefficient
INSIDE the pipe

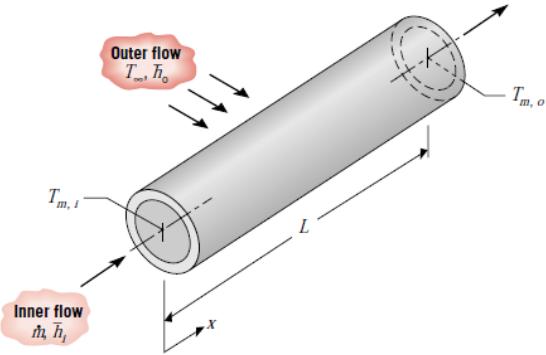
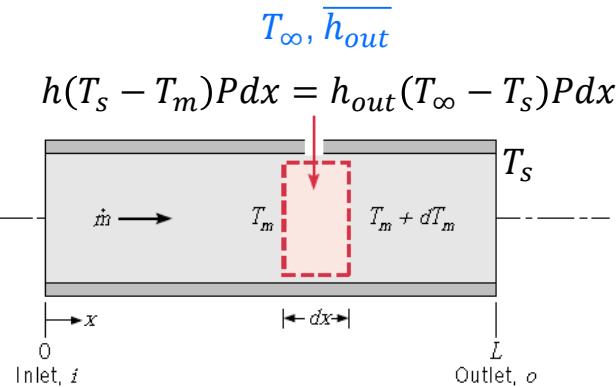
For a constant surface temperature T_s we have: $\frac{dT_m}{dx} = \frac{P}{\dot{m}c_p} h(T_s - T_m)$ $\Delta T = (T_s - T_m)$

$$\rightarrow -\frac{d\Delta T}{dx} = \frac{P}{\dot{m}c_p} h \Delta T \rightarrow \frac{d\Delta T}{\Delta T} = -\frac{P}{\dot{m}c_p} h dx \rightarrow \ln \frac{\Delta T_x}{\Delta T_i} = -\frac{Px}{\dot{m}c_p} \boxed{\frac{1}{x} \int_0^x h dx}$$

$$\rightarrow \frac{T_s - T_{m,o}}{T_s - T_{m,i}} = \exp \left(-\frac{PL\bar{h}}{\dot{m}c_p} \right) \rightarrow (T_s - T_m) \text{ decreases exponentially}$$



Internal Flows: Energy Balance – Constant Temperature BC T_s



Often the surface temperature is maintained constant with forced external convection, hence using a fluid with known T_{∞}

Constant surface temperature T_s

$$\frac{T_s - T_{m,o}}{T_s - T_{m,i}} = \exp\left(-\frac{\bar{h}A}{\dot{m}c_p}\right)$$

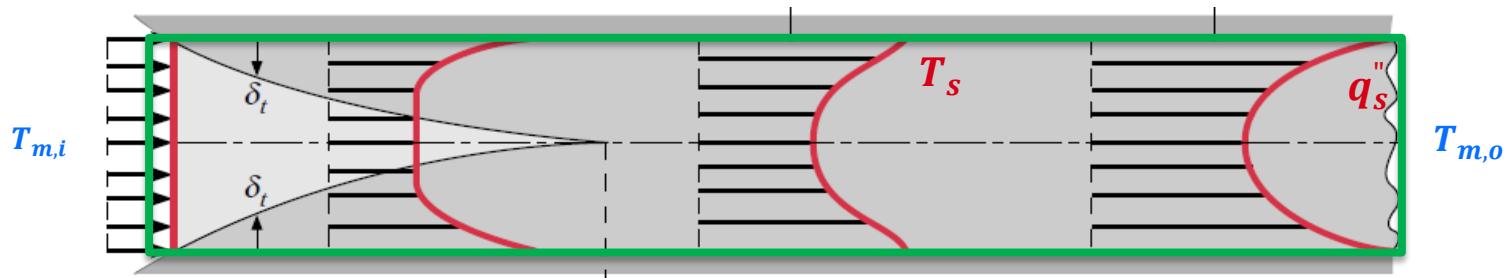
$$\frac{T_s - T_{m,o}}{T_s - T_{m,i}} = \exp\left(-\frac{1}{\dot{m}c_p R_{conv,in}}\right)$$

Constant external fluid temperature T_{∞}

$$\frac{T_{\infty} - T_{m,o}}{T_{\infty} - T_{m,i}} = \exp\left(-\frac{1}{\dot{m}c_p R_{tot}}\right) = \exp\left(-\frac{\bar{U}A}{\dot{m}c_p}\right)$$

$$R_{tot} = R_{conv,o} + R_{cond} + R_{conv,in} = \frac{1}{A_o h_{out}} + \frac{\ln r_o/r_i}{2\pi L k} + \frac{1}{A_{in} h}$$

Internal Flows: Total Heat Transfer



Constant Heat Flux:

$$Q_{conv} = q_s'' P dx$$

Constant Surface Temperature:

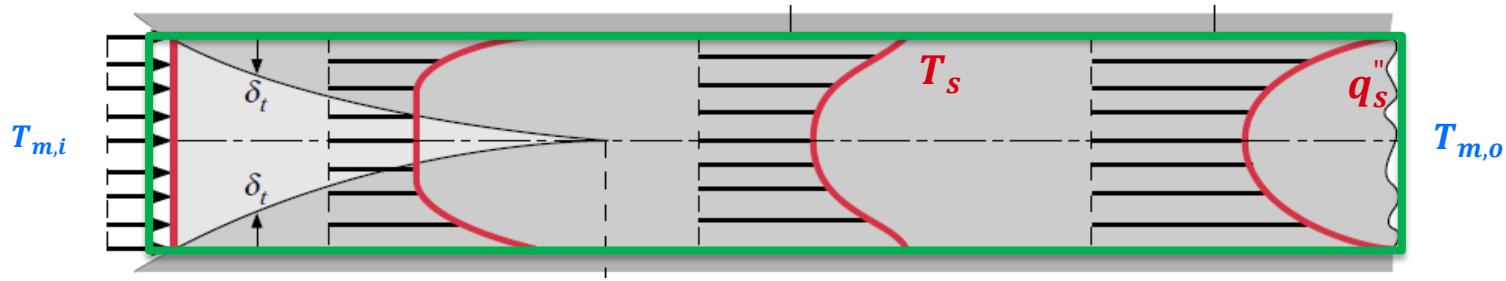
$$Q_{conv} = \dot{m}c_p (T_{m,o} - T_{m,i}) = -\dot{m}c_p (\Delta T_o - \Delta T_i) = -\dot{m}c_p \ln \frac{\Delta T_o}{\Delta T_i} \frac{\Delta T_o - \Delta T_i}{\ln ((\Delta T_o)/(\Delta T_i))}$$

Slide 13: $\ln \frac{\Delta T_o}{\Delta T_i} = -\frac{PL\bar{h}}{\dot{m}c_p} = -\frac{A\bar{h}}{\dot{m}c_p}$ $\Delta T_{lm} \equiv \frac{\Delta T_o - \Delta T_i}{\ln ((\Delta T_o)/(\Delta T_i))}$

$$Q_{conv} = \bar{h}A\Delta T_{lm}$$

$$Q_{conv} = \bar{U}A\Delta T_{lm}$$

Internal Flows: Convection Coefficient



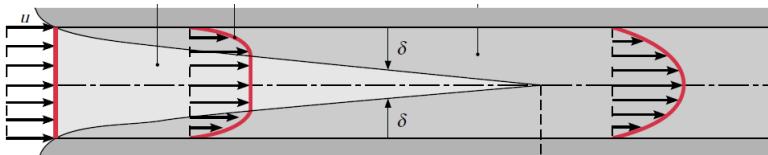
What about the convection coefficient ?

Internal Forced Convection

FLUID DYNAMICS

Find the *velocity profile*: $\vec{u}(r, x)$

Velocity Profile



In the fully developed region $\partial u / \partial x = 0$

$$\frac{u(r)}{u_m} = 2 \left[1 - \left(\frac{r}{R_o} \right)^2 \right]$$

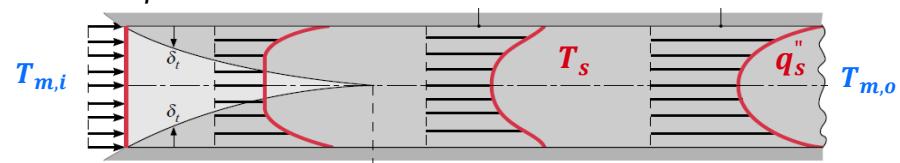
$$u_m = - \frac{R_o^2}{8\mu} \frac{dp}{dx}$$

$\vec{u}(r)$

HEAT TRANSFER

Find the *temperature profile*: $T(r, x)$

Temperature Profile



$$\theta = \frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)}$$

In the fully developed region $\partial \theta / \partial x = 0$

- Constant surface heat flux $T_m(x) = \frac{q_s'' P}{\dot{m} c_p} x + T_{m,i}$ $Q_{conv} = q_s'' P L$
- Constant surface temperature $\frac{T_s - T_{m,o}}{T_s - T_{m,i}} = \exp \left(- \frac{\bar{h} A}{\dot{m} c_p} \right)$ $Q_{conv} = \bar{h} A \Delta T_{lm}$

\downarrow

$$Q_{conv} = Q_{cond,wall} \quad \textcolor{red}{h}(T_s - T_m) = -k_f \left. \frac{\partial T}{\partial r} \right|_{r=0}$$

We need the temperature profile!

This Lecture

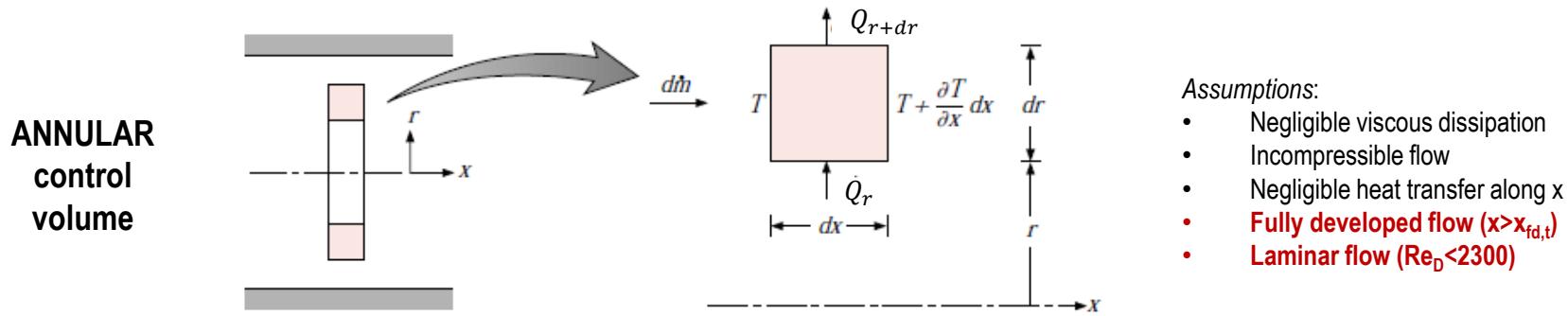
- Temperature and heat flow for internal flows
- Convection coefficient for laminar flow in circular tubes

Learning Objectives:

- Calculate the heat transfer coefficient for flow in pipes under different geometrical and flow conditions

Convection Coefficient for Laminar Flow in Circular Tubes

We already know the velocity profile, $\vec{u}(r, x)$, now we have to write the energy balance to find $T(r, x)^*$

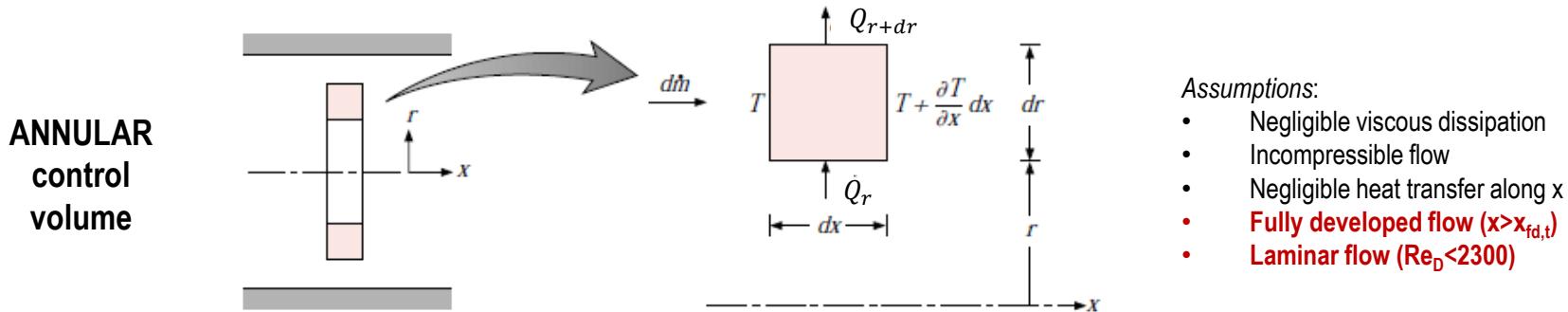


From the velocity profile calculations, we know that there is no radial component of the velocity: $\vec{u}(r, x) = u(r)$

→ There is no advection along the radial direction → Heat is exchanged by DIFFUSION along r (Fourier law)

Convection Coefficient for Laminar Flow in Circular Tubes

We already know the velocity profile, $\vec{u}(r, x)$, now we have to write the energy balance to find $T(r, x)^*$



1st Law of thermodynamics (Open system):

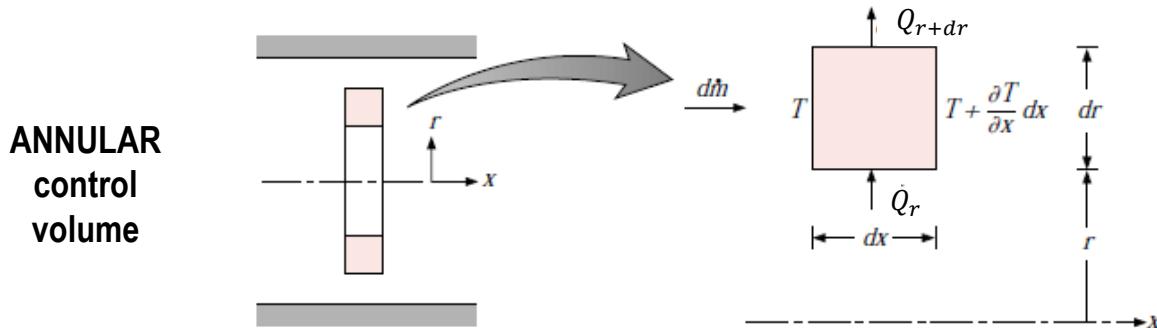
$$\frac{\partial U}{\partial t} = d\dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{in} - d\dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{out} + Q - \dot{W} + \dot{E}_{gen}$$

As in W5L1-1h, slide 34, we assume: $\Delta(u + pv) = \Delta h \approx c_p \Delta T$

Heat exchanged by DIFFUSION along r

Convection Coefficient for Laminar Flow in Circular Tubes

We already know the velocity profile, $\vec{u}(r, x)$, now we have to write the energy balance to find $T(r, x)^*$



Assumptions:

- Negligible viscous dissipation
- Incompressible flow
- Negligible heat transfer along x
- Fully developed flow ($x > x_{fd,t}$)
- Laminar flow ($Re_D < 2300$)

1st Law of thermodynamics (Open system):

$$0 = d\dot{m} c_p \left(T - \left(T + \frac{\partial T}{\partial x} dx \right) \right) + Q_r - Q_{r+dr}$$

Where:

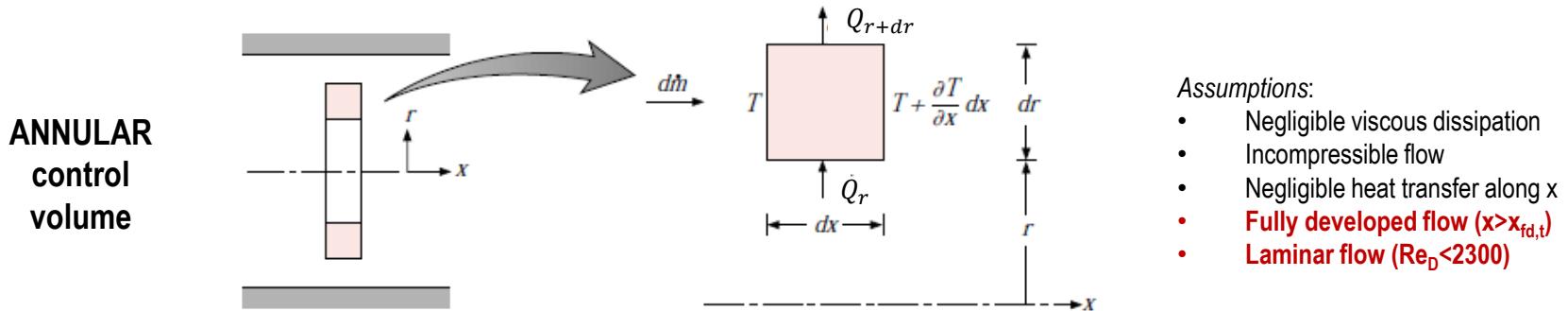
$$d\dot{m} = \rho(2\pi r dr)u(r)$$

$$Q_r = -k_f(2\pi r dx) \frac{\partial T}{\partial r} \quad (\text{Fourier Law})$$

$$Q_{r+dr} = Q_r + \frac{\partial Q_r}{\partial r} dr$$

Convection Coefficient for Laminar Flow in Circular Tubes

We already know the velocity profile, $\vec{u}(r, x)$, now we have to write the energy balance to find $T(r, x)^*$



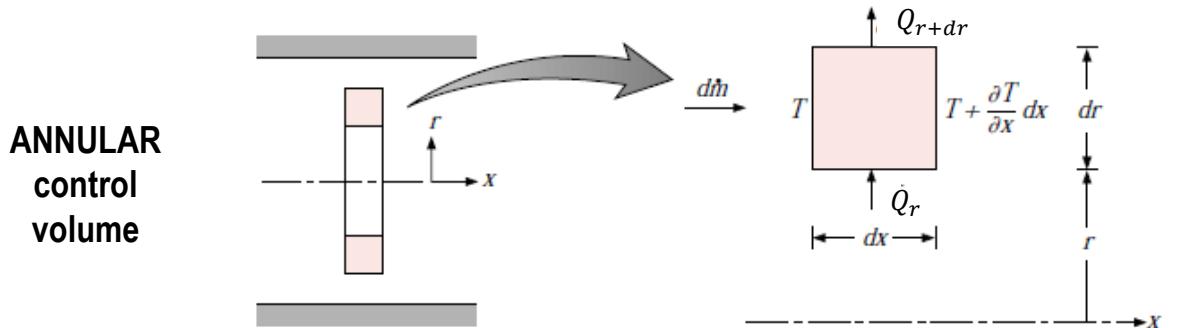
1st Law of thermodynamics (Open system):

$$0 = \rho(2\pi r dr)u(r)c_p \left(\frac{\partial T}{\partial x} dx \right) + \frac{\partial Q_r}{\partial r} dr = \rho(2\pi r)u(r)c_p \frac{\partial T}{\partial x} dx + \frac{\partial}{\partial r} \left(-k_f(2\pi r dx) \frac{\partial T}{\partial r} \right)$$

$$\rho u(r) c_p \frac{\partial T}{\partial x} = k_f \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

Convection Coefficient for Laminar Flow in Circular Tubes

We already know the velocity profile, $\vec{u}(r, x)$, now we have to write the energy balance to find $T(r, x)^*$



Assumptions:

- Negligible viscous dissipation
- Incompressible flow
- Negligible heat transfer along x
- **Fully developed flow ($x > x_{fd,t}$)**
- **Laminar flow ($Re_D < 2300$)**

1st Law of thermodynamics (Open system):

$$u \frac{\partial T}{\partial x} = \frac{k_f}{\rho c_p} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \quad \rightarrow \quad u \frac{\partial T}{\partial x} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

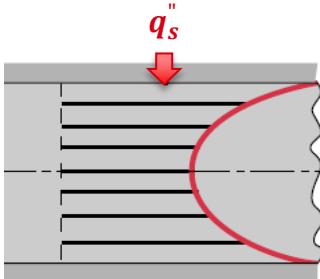
We now have to apply the BCs at $r = r_0$ and we have two possibilities:

- A. Constant heat flux
- B. Constant surface temperature

Convection Coefficient for Laminar Flow in Circular Tubes

A. Constant heat flux

Let's make a few observations that help us relate $T(r, x)$ with $T_m(x)$, which we calculated previously.



1. In every point the heat flux can be written as: $q_s'' = h(T_s(x) - T_m(x))$

In W6L1-1h, slide 23 we reasoned that $\frac{h}{k_f} \neq f(x) \rightarrow h \neq f(x)$

$$\rightarrow \frac{\partial(T_s(x) - T_m(x))}{\partial x} = \frac{\partial(q_s''/h)}{\partial x} = 0 \rightarrow \frac{\partial T_s(x)}{\partial x} = \frac{\partial T_m(x)}{\partial x}$$

2. From the fully developed condition $\partial\theta/\partial x = 0$:

$$\frac{\partial T}{\partial x} \Big|_{x=x_{fd,t}} = \frac{dT_s}{dx} \Big|_{x=x_{fd,t}} - \frac{T_s - T}{T_s - T_m} \frac{dT_s}{dx} \Big|_{x=x_{fd,t}} + \frac{T_s - T}{T_s - T_m} \frac{dT_m}{dx} \Big|_{x=x_{fd,t}} \rightarrow \frac{\partial T_s(x)}{\partial x} = \frac{\partial T(r, x)}{\partial x}$$

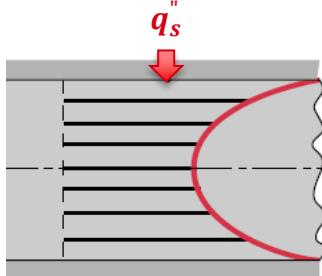
We have previously obtained: $T_m(x) = \frac{q_s''P}{\dot{m}c_p}x + T_{m,i}$ $\rightarrow \frac{\partial T}{\partial x} = \frac{\partial T_s}{\partial x} = \frac{\partial T_m}{\partial x} = \frac{q_s''P}{\dot{m}c_p} = \text{constant}$

$$\rightarrow u \frac{\partial T}{\partial x} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

If we can treat $\frac{\partial T}{\partial x}$ as a constant factor, this becomes just a differential equation of a single variable function (r), which we can easily integrate

Convection Coefficient for Laminar Flow in Circular Tubes

A. Constant heat flux



$$\left. \begin{aligned} u \frac{\partial T}{\partial x} &= \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \\ \frac{u(r)}{u_m} &= 2 \left[1 - \left(\frac{r}{r_o} \right)^2 \right] \end{aligned} \right\} \quad \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = \frac{2u_m}{\alpha} \left(\frac{dT_m}{dx} \right) \left[1 - \left(\frac{r}{r_o} \right)^2 \right] \quad \text{where} \quad \frac{\partial T_m}{\partial x} = \frac{q''_s P}{\dot{m} c_p}$$

$$\rightarrow T(r, x) = \frac{2u_m}{\alpha} \left(\frac{dT_m}{dx} \right) \left[\frac{r^2}{4} - \frac{r^4}{16r_0^2} \right] + C_1 \ln(r) + C_2$$

Boundary Conditions:

- Finite temperature at $r = 0$ $C_1 = 0$
- At the surface $T(r_0, x) = T_s(x)$ $C_2 = T_s(x) - \frac{2u_m}{\alpha} \left(\frac{dT_m}{dx} \right) \left[\frac{3r_0^2}{16} \right]$

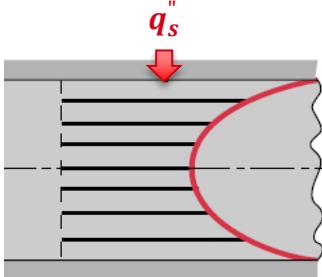
$$\rightarrow T(r, x) = T_s(x) - \frac{2u_m r_0^2}{\alpha} \left(\frac{dT_m}{dx} \right) \left[\frac{3}{16} + \frac{1}{16} \left(\frac{r}{r_0} \right)^4 - \frac{1}{4} \left(\frac{r}{r_0} \right)^2 \right]$$

Now we use the transport laws (Newton) to obtain the convection coefficient h

Convection Coefficient for Laminar Flow in Circular Tubes

A. Constant heat flux

From Newton's law: $q_s'' = h(T_s(x) - T_m(x))$ Knowing $T(r, x)$ we derive $T_s(x) - T_m(x)$



$$T_m = \frac{2}{u_m r_o^2} \int_0^{r_o} u T r dr \quad \text{where}$$

$$\left\{ \begin{array}{l} T(r, x) = T_s(x) - \frac{2u_m r_0^2}{\alpha} \left(\frac{dT_m}{dx} \right) \left[\frac{3}{16} + \frac{1}{16} \left(\frac{r}{r_0} \right)^4 - \frac{1}{4} \left(\frac{r}{r_0} \right)^2 \right] \\ \frac{u(r)}{u_m} = 2 \left[1 - \left(\frac{r}{r_o} \right)^2 \right] \end{array} \right.$$

$$\Rightarrow T_m(x) = T_s(x) - \frac{11}{48} \frac{u_m r_0^2}{\alpha} \left(\frac{dT_m}{dx} \right) \quad \Rightarrow \quad T_s(x) - T_m(x) = \frac{11}{48} \frac{u_m r_0^2}{\alpha} \left(\frac{dT_m}{dx} \right)$$

We also remember that:

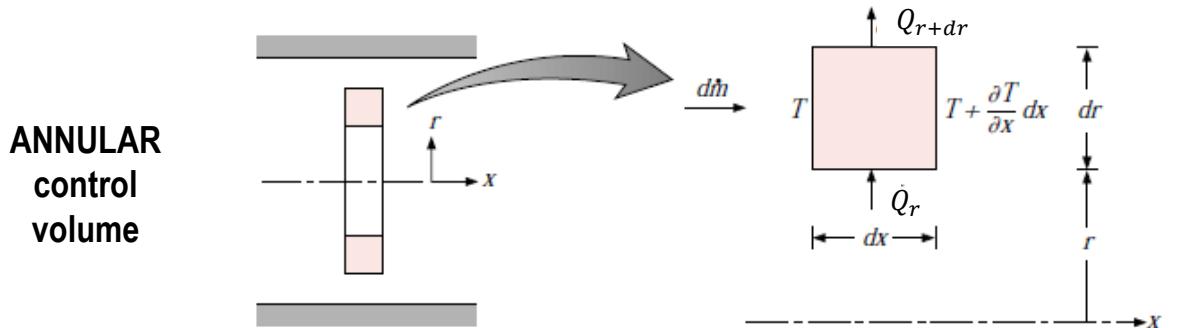
$$\frac{dT_m}{dx} = \frac{q_s'' P}{\dot{m} c_p} \quad \Rightarrow \quad T_s(x) - T_m(x) = \frac{11}{48} \frac{u_m r_0^2}{\alpha} \left(\frac{q_s'' P}{\dot{m} c_p} \right) \quad \text{where} \quad P = \pi 2 r_0 \quad \dot{m} = \rho u_m \pi r_0^2$$

$$\Rightarrow h = \frac{q_s''}{T_s(x) - T_m(x)} = \frac{48}{11} \frac{k_f}{2r_0} = \text{constant}$$

$$\Rightarrow Nu_D = \frac{hD}{k_f} = 4.36$$

Convection Coefficient for Laminar Flow in Circular Tubes

We already know the velocity profile, $\vec{u}(r, x)$, now we have to write the energy balance to find $T(r, x)^*$



Assumptions:

- Negligible viscous dissipation
- Incompressible flow
- Negligible heat transfer along x
- **Fully developed flow ($x > x_{fd,t}$)**
- **Laminar flow ($Re_D < 2300$)**

1st Law of thermodynamics (Open system):

$$u \frac{\partial T}{\partial x} = \frac{k_f}{\rho c_p} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \quad \rightarrow \quad u \frac{\partial T}{\partial x} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

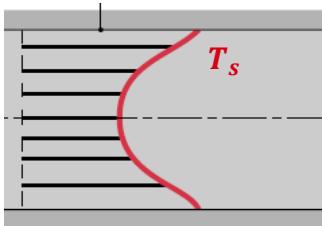
We now have to apply the BCs at $r = r_0$ and we have two possibilities:

- A. Constant heat flux
- B. Constant surface temperature

Convection Coefficient for Laminar Flow in Circular Tubes

B. Constant T_s

Let's make a few observations that help us relate $T(r, x)$ with $T_m(x)$, which we calculated previously.



From the fully developed condition $\partial\theta/\partial x = 0$:

$$\left. \frac{\partial T}{\partial x} \right|_{x=x_{fd,t}} = \left. \frac{dT_s}{dx} \right|_{x=x_{fd,t}} - \left. \frac{T_s - T}{T_s - T_m} \frac{dT_s}{dx} \right|_{x=x_{fd,t}} + \left. \frac{T_s - T}{T_s - T_m} \frac{dT_m}{dx} \right|_{x=x_{fd,t}}$$

So we can substitute and obtain:

$$u \frac{\partial T}{\partial x} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \quad \rightarrow \quad \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = \frac{2u_m}{\alpha} \left(\frac{dT_m}{dx} \right) \left[1 - \left(\frac{r}{r_0} \right)^2 \right] \frac{T_s - T}{T_s - T_m}$$

An iterative solution results in:

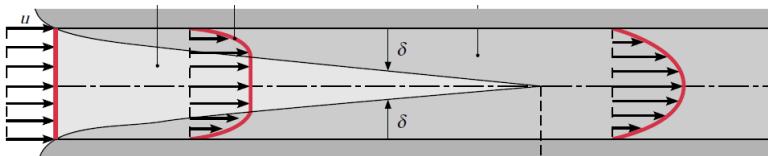
$$Nu_D = \frac{hD}{k_f} = 3.66$$

Internal Forced Convection

FLUID DYNAMICS

Find the velocity profile: $\vec{u}(r, x)$

Velocity Profile



In the fully developed region $\partial u / \partial x = 0$

$$\frac{u(r)}{u_m} = 2 \left[1 - \left(\frac{r}{R_o} \right)^2 \right]$$

$$u_m = - \frac{R_o^2}{8\mu} \frac{dp}{dx}$$

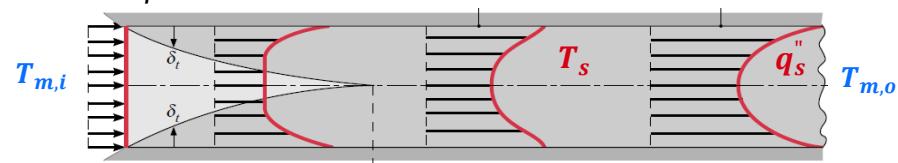
$$\vec{u}(r)$$

- Constant surface heat flux
- Constant surface temperature

HEAT TRANSFER

Find the temperature profile: $T(r, x)$

Temperature Profile



$$\theta = \frac{T_s(x) - T(r, x)}{T_s(x) - T_m(x)}$$

In the fully developed region $\partial \theta / \partial x = 0$

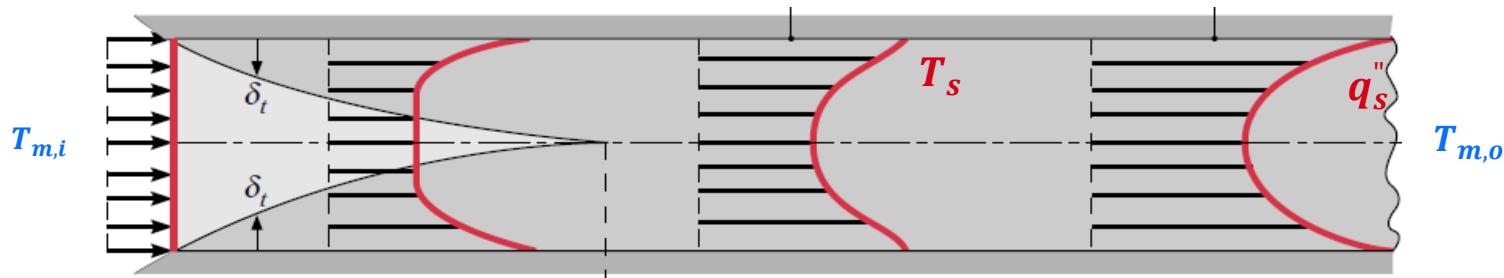
$$T_m(x) = \frac{q_s'' P}{\dot{m} c_p} x + T_{m,i} \quad Q_{conv} = q_s'' P L$$

$$\frac{T_s - T_{m,o}}{T_s - T_{m,i}} = \exp \left(- \frac{\bar{h} A}{\dot{m} c_p} \right) \quad Q_{conv} = \bar{h} A \Delta T_{lm}$$

$$\downarrow \quad Q_{conv} = Q_{cond,wall}$$

- Constant surface heat flux $Nu_D = hD/k_f = 4.36$
- Constant surface temperature $Nu_D = hD/k_f = 3.66$

The problem of the physical properties of the boundary layer



$$\frac{hD}{k_f} = Nu_D = C$$

BL temperature: $T_f = T_m = \frac{(T_{m,i} + T_{m,o})}{2}$

Fluid physical properties

Density $\rho(T_f)$

Viscosity $\nu(T_f)$

Thermal diffusivity
 $\alpha_f(T_f)$

Specific heat $c_{p,f}(T_f)$
Thermal conductivity $k_f(T_f)$

This Lecture

Temperature and heat flow for internal flows

Convection coefficient for laminar flow in circular tubes

Learning Objectives:

- Calculate the heat transfer coefficient for flow in pipes under different geometrical and flow conditions

Next Lecture

- ❑ Correlations for internal forced convection
 - ❑ Circular tubes (laminar and turbulent)
 - ❑ Non-circular tubes
- ❑ The entrance region

Learning Objectives:

- ❑ Calculate the heat transfer coefficient for flow in pipes under different geometrical and flow conditions