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Transport Laws

2

Newton’s LawFourier’s Law

𝒒𝒒𝒒 = −𝒌𝒌
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

𝒒𝒒𝒒 = �𝒉𝒉 (𝑻𝑻𝒔𝒔 − 𝑻𝑻∞)

Conduction Convection

Until now it was only a 
boundary condition and 
𝒉𝒉 was given, now we 
want to calculate it.



Introduction to Convection
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Convection refers to the heat transfer between a solid and a fluid in motion 

when they are at different temperatures.

During convection heat is transferred through 

both diffusion (random molecular motion) and advection (macroscopic mass transport)



RECAP of Fluid Dynamics: velocity boundary layer
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𝒖𝒖 𝜹𝜹 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝒖𝒖∞

Velocity Boundary 
Layer

𝒖𝒖 𝟎𝟎 = 𝟎𝟎

No-slip condition
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𝒖𝒖 𝜹𝜹 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝒖𝒖∞

Viscous Flow
𝜏𝜏 ≠ 0

Shear stress 𝝉𝝉 = friction force per unit area

Inviscid Flow
𝜏𝜏 = 0

𝝉𝝉

Newtonian fluids:         𝜏𝜏 �𝑦𝑦 = μ �𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 𝑦𝑦= �𝑦𝑦

⁄𝑁𝑁 𝑚𝑚2 where μ 𝑁𝑁𝑁𝑁
𝑚𝑚2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝜌𝜌[𝑘𝑘𝑘𝑘

𝑚𝑚3] � ν[𝑚𝑚
2

𝑠𝑠
]

At the wall (𝑦𝑦 = 0):    τ 0 = 𝜏𝜏𝑤𝑤 = 𝐶𝐶𝑓𝑓
𝜌𝜌𝑢𝑢∞2

2
where   𝐶𝐶𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

RECAP of Fluid Dynamics: viscous and inviscid flow, shear stress and friction coefficient



RECAP of Fluid Dynamics: Velocity Boundary layer equations
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𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑣𝑣

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −

1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥 + ν

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

𝑢𝑢∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑥𝑥∗ + 𝑣𝑣∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑦𝑦∗ = −
𝜕𝜕𝑝𝑝∗

𝜕𝜕𝑥𝑥∗ +
1
𝑹𝑹𝑹𝑹𝑳𝑳

𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑦𝑦∗2

Navier-Stokes equations and dimensionless variables:

𝑥𝑥∗ =
𝑥𝑥
𝐿𝐿 𝑦𝑦∗ =

𝑦𝑦
𝐿𝐿

𝑢𝑢∗ =
𝑢𝑢
𝑢𝑢∞

𝑣𝑣∗ =
𝑣𝑣
𝑢𝑢∞

𝑝𝑝∗ =
𝑝𝑝

𝜌𝜌𝑢𝑢∞2

𝑅𝑅𝑅𝑅 =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

𝜌𝜌𝑢𝑢∞𝐿𝐿
𝜇𝜇 =

𝑢𝑢∞𝐿𝐿
ν

𝐿𝐿 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [𝑚𝑚] Determines the 
flow condition

(laminar/turbulent) 

Dimensionless Navier-Stokes equations and Re number:

ν =
𝜇𝜇
𝜌𝜌 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[ �𝑚𝑚2

𝑠𝑠]



This Lecture
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 The thermal boundary layer equations 

 Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:
 Understand the thermal boundary layer concept and equations

 Understand and calculate the dimensionless numbers (Re, Nu, Pr)



Newton’s law and the convection coefficient
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𝑞𝑞𝑞 = ℎ (𝑇𝑇𝑠𝑠 − 𝑇𝑇∞) [𝑊𝑊/𝑚𝑚2]

𝑻𝑻𝒔𝒔

𝑻𝑻∞
𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

𝒒𝒒𝒒

Newton’s law: the heat transfer is proportional to the temperature difference between the wall and the unperturbed fluid

where     ℎ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑄𝑄 = ℎ𝐴𝐴 𝑇𝑇𝑠𝑠 − 𝑇𝑇∞ [𝑊𝑊]or

Where does h come from? 



𝑻𝑻𝒔𝒔

𝑻𝑻∞

Newton’s law and the convection coefficient
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𝑻𝑻𝒔𝒔 > 𝑻𝑻∞
𝒒𝒒𝒒

At the wall the velocity is zero (no advection, 
only diffusion) thus we can use Fourier’s law: 

𝑞𝑞" 0 = −𝒌𝒌𝒇𝒇 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦 𝑦𝑦=0

ℎ =
𝑞𝑞" 0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞) =
−𝑘𝑘𝑓𝑓 �𝜕𝜕𝑇𝑇

𝜕𝜕𝑦𝑦 𝑦𝑦=0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)

𝒌𝒌𝒇𝒇 = thermal
conductivity
of the 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

fluid

solid



𝑻𝑻𝒔𝒔

𝑻𝑻∞

The thermal boundary layer and Nu number
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ℎ =
−𝑘𝑘𝑓𝑓 �𝝏𝝏𝑻𝑻

𝝏𝝏𝒚𝒚 𝑦𝑦=0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)

𝑻𝑻𝒔𝒔 − 𝑻𝑻 δ𝒕𝒕
𝑻𝑻𝒔𝒔 − 𝑻𝑻∞

= 𝟎𝟎.𝟗𝟗𝟗𝟗

Thermal 
Boundary Layer

𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

ℎ𝑳𝑳𝒄𝒄
𝑘𝑘𝑓𝑓

=
𝜕𝜕 𝑇𝑇𝑠𝑠 − 𝑇𝑇
𝑇𝑇𝑠𝑠 − 𝑇𝑇∞
𝜕𝜕 𝑦𝑦
𝑳𝑳𝒄𝒄 �𝑦𝑦 𝑳𝑳𝒄𝒄=0

= 𝑁𝑁𝑁𝑁𝑳𝑳
Nusselt
number 

𝑳𝑳𝒄𝒄 is a characteristic dimension of the problem (i.e. length of the plate)



𝑻𝑻𝒔𝒔

𝑻𝑻∞

The problem of convection

11

ℎ =
−𝑘𝑘𝑓𝑓 �𝝏𝝏𝑻𝑻

𝝏𝝏𝒚𝒚 𝑦𝑦=0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)

To determine h we need to know the temperature gradient at the wall. This in turn depends on the flow conditions. 

To obtain T(x,y), we must solve the coupled momentum (Navier-Stokes) and energy (heat diffusion) equations. 

Analytical solutions, however, exist only for simple cases. 

For all other cases we rely on empirical correlations or numerical simulations. 

𝑻𝑻𝒔𝒔 > 𝑻𝑻∞



𝑻𝑻𝒔𝒔

𝑻𝑻∞

The problem of convection

12

ℎ =
−𝑘𝑘𝑓𝑓 �𝝏𝝏𝑻𝑻

𝝏𝝏𝒚𝒚 𝑦𝑦=0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)

The temperature gradient at the wall changes as the temperature boundary layer develops. Therefore
the convection coefficient varies spatially.

𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

𝑄𝑄 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇∞ �
𝐴𝐴𝑠𝑠

ℎ𝑑𝑑𝐴𝐴𝑠𝑠 = �ℎ𝐴𝐴𝑠𝑠 𝑇𝑇𝑠𝑠 − 𝑇𝑇∞

Local convection coefficient Average convection coefficient

�ℎ =
1
𝐴𝐴𝑠𝑠

�
𝐴𝐴𝑠𝑠

ℎ𝑑𝑑𝐴𝐴𝑠𝑠



𝑻𝑻𝒔𝒔

𝑻𝑻∞

The thermal boundary layer equations

13

ℎ =
−𝑘𝑘𝑓𝑓 �𝝏𝝏𝑻𝑻

𝝏𝝏𝒚𝒚 𝑦𝑦=0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)

If we determine T(x,y), we know �𝝏𝝏𝑻𝑻
𝝏𝝏𝒚𝒚 𝑦𝑦=0

and  we can obtain the convection coefficient

𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

Conservation of mass

Conservation of momentum

Conservation of energy

Velocity boundary layer

Thermal boundary layer



This Lecture

14

 The thermal boundary layer equations 

 Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:
 Understand the thermal boundary layer concept and equations

 Understand and calculate the dimensionless numbers (Re, Nu, Pr)



𝑻𝑻𝒔𝒔

𝑻𝑻∞

15

𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

The thermal boundary layer equations: energy equations for open systems

𝑈̇𝑈 = 𝑄𝑄 − 𝑊̇𝑊 + 𝐸̇𝐸𝑔𝑔𝑔𝑔𝑔𝑔

Closed system (W1L2): Open system:

𝑚̇𝑚

𝑈̇𝑈 = 𝑚̇𝑚 𝑢𝑢 + 𝑝𝑝𝑝𝑝 +
1
2𝑉𝑉

2 + 𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 − 𝑚̇𝑚 𝑢𝑢 + 𝑝𝑝𝑝𝑝 +
1
2𝑉𝑉

2 + 𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑄̇𝑄 − 𝑊̇𝑊 + 𝐸̇𝐸𝑔𝑔𝑔𝑔𝑔𝑔

𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; 𝑣𝑣 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 1/𝜌𝜌where

Control volume



The thermal boundary layer equations: energy equations for open systems
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Non-isothermal S!

�
𝑽𝑽

𝝏𝝏𝝆𝝆𝒖𝒖
𝝏𝝏𝝏𝝏 𝒅𝒅𝒅𝒅 = −�

𝑺𝑺
(𝝆𝝆𝒉𝒉𝒖𝒖) � (𝒏𝒏𝒅𝒅𝒅𝒅)−�

𝑺𝑺
(−𝒌𝒌 𝜵𝜵𝜵𝜵) � (𝒏𝒏𝒅𝒅𝒅𝒅) + �

𝑽𝑽
𝒒̇𝒒𝒅𝒅𝒅𝒅

Assumption 1: isotropic material
Assumption 2: potential and kinetic energy 
changes are negligible

𝑈̇𝑈 = 𝑚̇𝑚 𝑢𝑢 + 𝑝𝑝𝑝𝑝 +
1
2
𝑉𝑉2 + 𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 − 𝑚̇𝑚 𝑢𝑢 + 𝑝𝑝𝑝𝑝 +

1
2
𝑉𝑉2 + 𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑄̇𝑄 − 𝑊̇𝑊 + 𝐸̇𝐸𝑔𝑔𝑔𝑔𝑔𝑔

The control volume does not move

𝑈̇𝑈 = 𝑚̇𝑚 ℎ 𝑖𝑖𝑖𝑖 − 𝑚̇𝑚 ℎ 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑄̇𝑄 + 𝐸̇𝐸𝑔𝑔𝑔𝑔𝑔𝑔

𝑈̇𝑈 = −(𝜌𝜌𝑢𝑢 � 𝑛𝑛) ℎ + 𝑄̇𝑄 + 𝐸̇𝐸𝑔𝑔𝑔𝑔𝑔𝑔 𝑢𝑢 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣;ℎ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

No machine

For the terms 𝑈̇𝑈, 𝑄̇𝑄, 𝐸̇𝐸𝑔𝑔𝑔𝑔𝑔𝑔 we have the same expressions as in the closed system case
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Non-isothermal S! �
𝑉𝑉

𝜕𝜕𝜌𝜌𝑢𝑢
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 = −�
𝑆𝑆

(𝜌𝜌ℎ𝑢𝑢) � (𝑛𝑛𝑑𝑑𝑑𝑑) −�
𝑆𝑆

(−𝑘𝑘 𝛻𝛻𝛻𝛻) � (𝑛𝑛𝑑𝑑𝑑𝑑) + �
𝑉𝑉
𝑞̇𝑞𝑑𝑑𝑑𝑑

Assumption 3: we neglect the effect of pressure changes dp on enthalpy, internal energy and density

Assumption 4: density changes result only from temperature changes so they are small and the 
fluid behaves as if incompressible

Assumption 5: all material parameters are temperature independent (k, μ)
Assumption 1: isotropic material
Assumption 2: potential and kinetic energy 
changes are negligible Assumption 6: viscous stresses do not dissipate enough energy to warm the fluid

The thermal boundary layer equations: energy equations for open systems
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Non-isothermal S! �
𝑉𝑉

𝜕𝜕𝜌𝜌𝑢𝑢
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 = −�
𝑆𝑆

(𝜌𝜌ℎ𝑢𝑢) � (𝑛𝑛𝑑𝑑𝑑𝑑) −�
𝑆𝑆

(−𝑘𝑘 𝛻𝛻𝛻𝛻) � (𝑛𝑛𝑑𝑑𝑑𝑑) + �
𝑉𝑉
𝑞̇𝑞𝑑𝑑𝑑𝑑

Assumption 1-6 (see slide 36)

(Gauss’ law)

Because of assumption 3: 

The thermal boundary layer equations: energy equations for open systems

continuity



𝑻𝑻𝒔𝒔

𝑻𝑻∞
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𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

The thermal boundary layer equations: energy equations for open systems

Closed system (W1L2): Open system:

𝑚̇𝑚
Control volume

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑘𝑘𝛻𝛻2𝑇𝑇 + 𝑞̇𝑞 𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝒖𝒖 � 𝜵𝜵𝜵𝜵 = 𝑘𝑘𝛻𝛻2𝑇𝑇 + 𝑞̇𝑞

Enthalpy 
advection

Heat 
diffusion

Energy 
storage

Energy 
generation



𝑻𝑻𝒔𝒔

𝑻𝑻∞
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𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

The thermal boundary layer equations: energy equations for open systems

Closed system (W1L2): Open system:

𝑚̇𝑚
Control volume

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑘𝑘𝛻𝛻2𝑇𝑇 + 𝑞̇𝑞 𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝒖𝒖 � 𝜵𝜵𝜵𝜵 = 𝑘𝑘𝛻𝛻2𝑇𝑇 + 𝑞̇𝑞

Enthalpy 
advection

Heat 
diffusion

Energy 
storage

Energy 
generation

Steady-state No heat sources in the fluid

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≪
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦



The thermal boundary layer equations

21

ℎ =
−𝑘𝑘𝑓𝑓 �𝝏𝝏𝑻𝑻

𝝏𝝏𝒚𝒚 𝑦𝑦=0

(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)𝑻𝑻𝒔𝒔

𝑻𝑻∞
𝑻𝑻𝒔𝒔 > 𝑻𝑻∞

 Conservation of mass

 Conservation of momentum

 Conservation of energy

𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑣𝑣

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −

1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥 + ν

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

𝑢𝑢
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥 + 𝑣𝑣

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕 = 𝛼𝛼

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

Velocity boundary layer

Thermal boundary layer

The geometry and flow characteristics 
are critical for convective heat transfer
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𝑢𝑢∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑥𝑥∗ + 𝑣𝑣∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑦𝑦∗ = −
𝜕𝜕𝑝𝑝∗

𝜕𝜕𝑥𝑥∗ +
1
𝑹𝑹𝑹𝑹𝑳𝑳

𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑦𝑦∗2

𝑥𝑥∗ =
𝑥𝑥
𝐿𝐿

𝑦𝑦∗ =
𝑦𝑦
𝐿𝐿

𝑢𝑢∗ =
𝑢𝑢
𝑢𝑢∞

𝑣𝑣∗ =
𝑣𝑣
𝑢𝑢∞

𝑝𝑝∗ =
𝑝𝑝

𝜌𝜌𝑢𝑢∞2

𝑅𝑅𝑅𝑅 =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

=
𝜌𝜌𝑢𝑢∞𝐿𝐿
𝜇𝜇

=
𝑢𝑢∞𝐿𝐿
ν

𝐿𝐿 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [𝑚𝑚]

Dimensionless Navier-Stokes equations:

The thermal boundary layer equations: Prandtl number (Pr)

Dimensionless energy conservation equation:

𝑢𝑢∗
𝜕𝜕𝑇𝑇∗

𝜕𝜕𝑥𝑥∗ + 𝑣𝑣∗
𝜕𝜕𝑇𝑇∗

𝜕𝜕𝑦𝑦∗ =
1

𝑹𝑹𝑹𝑹𝑳𝑳𝑷𝑷𝑷𝑷
𝜕𝜕2𝑇𝑇∗

𝜕𝜕𝑦𝑦∗2

𝑇𝑇∗ =
𝑇𝑇 − 𝑇𝑇𝑠𝑠
𝑇𝑇∞ − 𝑇𝑇𝑠𝑠

𝑃𝑃𝑃𝑃 =
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
=

ν
𝛼𝛼𝑓𝑓
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 The thermal boundary layer equations 

 Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:
 Understand the thermal boundary layer concept and equations

 Understand and calculate the dimensionless numbers (Re, Nu, Pr)
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𝑻𝑻𝒔𝒔

𝑻𝑻∞

Velocity boundary layer 𝜹𝜹 𝒙𝒙

Comparison of velocity and thermal boundary layers, Pr number

Thermal boundary layer 𝜹𝜹𝒕𝒕 𝒙𝒙

𝑢𝑢∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑥𝑥∗ + 𝑣𝑣∗
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑦𝑦∗ = −
𝜕𝜕𝑝𝑝∗

𝜕𝜕𝑥𝑥∗ +
1
𝑹𝑹𝑹𝑹𝑳𝑳

𝜕𝜕2𝑢𝑢∗

𝜕𝜕𝑦𝑦∗2

Dimensionless Navier-Stokes equations and Re number: Dimensionless energy conservation equation and Pr number:

𝑢𝑢∗
𝜕𝜕𝑇𝑇∗

𝜕𝜕𝑥𝑥∗ + 𝑣𝑣∗
𝜕𝜕𝑇𝑇∗

𝜕𝜕𝑦𝑦∗ =
1

𝑹𝑹𝑹𝑹𝑳𝑳𝑷𝑷𝑷𝑷
𝜕𝜕2𝑇𝑇∗

𝜕𝜕𝑦𝑦∗2

Prandtl number: 𝑃𝑃𝑃𝑃 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
ν
𝛼𝛼𝑓𝑓

=
𝜇𝜇𝑐𝑐𝑝𝑝,𝑓𝑓

𝑘𝑘𝑓𝑓
=
𝛿𝛿
𝛿𝛿𝑡𝑡

BEWARE! These are the
FLUID properties, not
the solid ones

𝜹𝜹 𝒙𝒙 ≠ 𝜹𝜹𝒕𝒕(𝒙𝒙)
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𝑻𝑻𝒔𝒔

𝑻𝑻∞

Velocity boundary layer 𝜹𝜹 𝒙𝒙

The thermal boundary layer equations: Prandtl number (Pr)

Thermal boundary layer 𝜹𝜹𝒕𝒕 𝒙𝒙

For 𝑃𝑃𝑃𝑃 ≪ 1
the thermal BL 𝜹𝜹𝒕𝒕(𝒙𝒙) is thinner or thicker than the velocity BL 𝜹𝜹 𝒙𝒙 ? 

heat diffuses very 
quickly relative to 

momentum

a small temperature 
gradient is sufficient to 

sustain a large heat flux

The thermal boundary layer 
is much LARGER than the 

velocity one
𝑃𝑃𝑃𝑃 ≪ 1 𝛿𝛿 𝑥𝑥 ≪ 𝛿𝛿𝑡𝑡(𝑥𝑥)

𝜹𝜹 𝒙𝒙 ≠ 𝜹𝜹𝒕𝒕(𝒙𝒙)
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𝑃𝑃𝑃𝑃 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
ν𝑓𝑓
𝛼𝛼𝑓𝑓

=
𝜇𝜇𝑐𝑐𝑝𝑝,𝑓𝑓

𝑘𝑘𝑓𝑓
=
𝛿𝛿
𝛿𝛿𝑡𝑡

𝑁𝑁𝑁𝑁𝑳𝑳 =
𝒉𝒉𝑳𝑳𝒄𝒄
𝑘𝑘𝑓𝑓

=
𝜕𝜕 𝑇𝑇𝑠𝑠 − 𝑇𝑇
𝑇𝑇𝑠𝑠 − 𝑇𝑇∞
𝜕𝜕 𝑦𝑦

𝑳𝑳𝒄𝒄 �𝑦𝑦 𝑳𝑳𝒄𝒄=0

If we can calculate Nu then we can obtain the convection coefficient

𝑅𝑅𝑒𝑒𝐿𝐿 =
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

=
𝜌𝜌𝑢𝑢∞𝐿𝐿
𝜇𝜇

=
𝑢𝑢∞𝐿𝐿
ν
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 The thermal boundary layer equations 

 Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:
 Understand the thermal boundary layer concept and equations

 Understand and calculate the dimensionless numbers (Re, Nu, Pr)
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 Forced convection coefficient for laminar flow over a flat horizontal plate (local and average)

 Correlations for the forced convection coefficient of:

a. Flat plate in parallel flow under different flow and heating conditions

b. External flow on a cylinder

c. External flow on a bank of tubes

 General methodology for calculating the convection coefficient

Learning Objectives:
 Calculate the convection coefficient for various geometries in forced convection
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