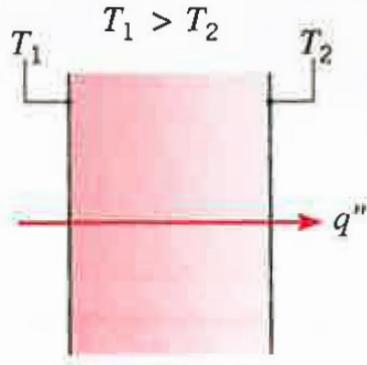
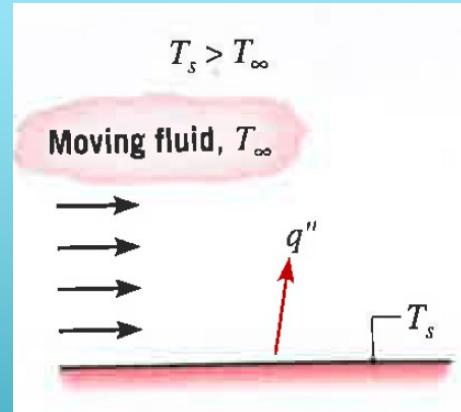


Heat and Mass Transfer


ME-341

Instructor: Giulia Tagliabue

Transport Laws


Conduction

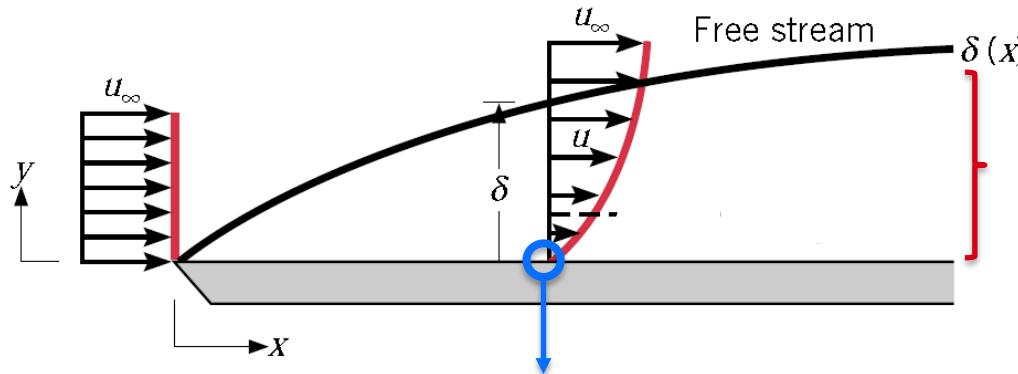
Fourier's Law

$$q'' = -k \frac{dT}{dx}$$

Convection

Newton's Law

$$q'' = \bar{h} (T_s - T_\infty)$$

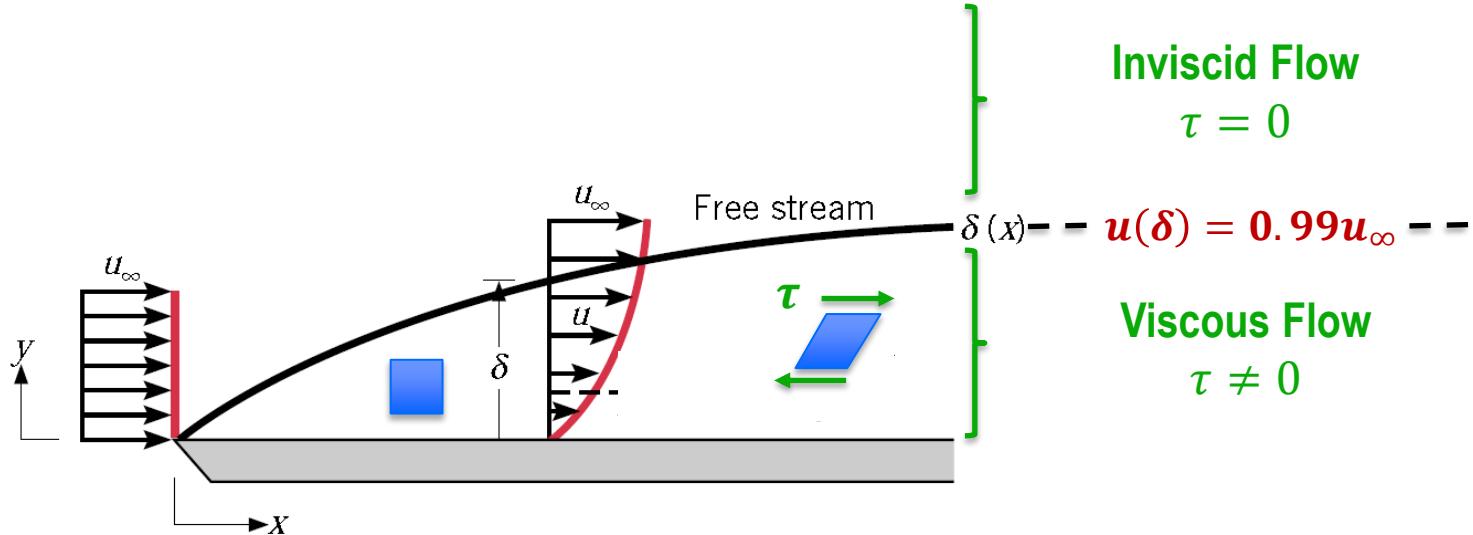

Until now it was only a boundary condition and h was given, now we want to calculate it.

Introduction to Convection

Convection refers to the heat transfer between a **solid** and a **fluid in motion** when they are at **different temperatures**.

During convection heat is transferred through both **diffusion** (random molecular motion) and **advection** (macroscopic mass transport)

RECAP of Fluid Dynamics: velocity boundary layer

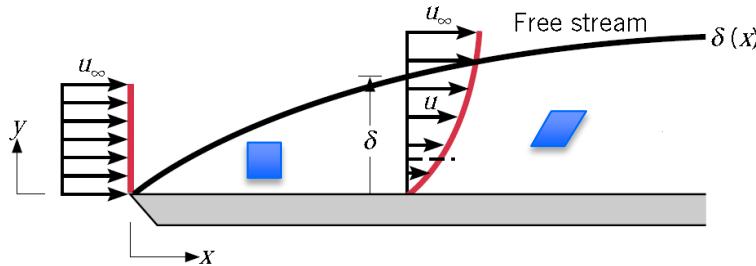

$$u(0) = 0$$

No-slip condition

$$u(\delta) = 0.99u_\infty$$

Velocity Boundary
Layer

RECAP of Fluid Dynamics: viscous and inviscid flow, shear stress and friction coefficient



Shear stress τ = friction force per unit area

Newtonian fluids: $\tau(\bar{y}) = \mu \frac{\partial u}{\partial y} \Big|_{y=\bar{y}} \left[\frac{N}{m^2} \right]$ where $\mu \left[\frac{Ns}{m^2} \right] = \text{dynamic viscosity} = \rho \left[\frac{kg}{m^3} \right] \cdot \nu \left[\frac{m^2}{s} \right]$

At the wall ($y = 0$): $\tau(0) = \tau_w = C_f \frac{\rho u_\infty^2}{2}$ where $C_f = \text{friction coefficient}$

RECAP of Fluid Dynamics: Velocity Boundary layer equations

Navier-Stokes equations and dimensionless variables:

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2}$$

L = characteristic length [m]

$$x^* = \frac{x}{L} \quad y^* = \frac{y}{L}$$

$$u^* = \frac{u}{u_\infty} \quad v^* = \frac{v}{u_\infty} \quad p^* = \frac{p}{\rho u_\infty^2}$$

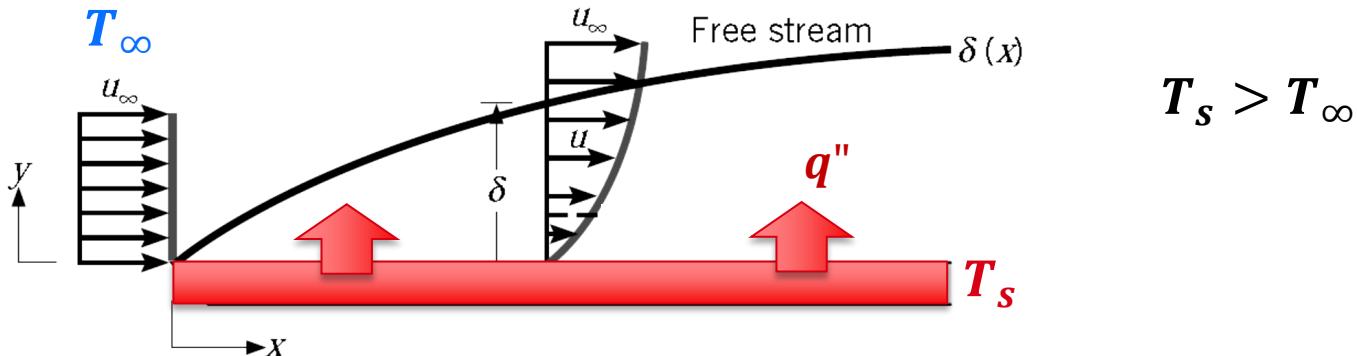
Dimensionless Navier-Stokes equations and Re number:

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = - \frac{\partial p^*}{\partial x^*} + \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$

Determines the flow condition (laminar/turbulent)

$$Re = \frac{\text{inertia forces}}{\text{viscous forces}} = \frac{\rho u_\infty L}{\mu} = \frac{u_\infty L}{\nu}$$

$$\nu = \frac{\mu}{\rho} = \text{kinematic viscosity} [m^2/s]$$

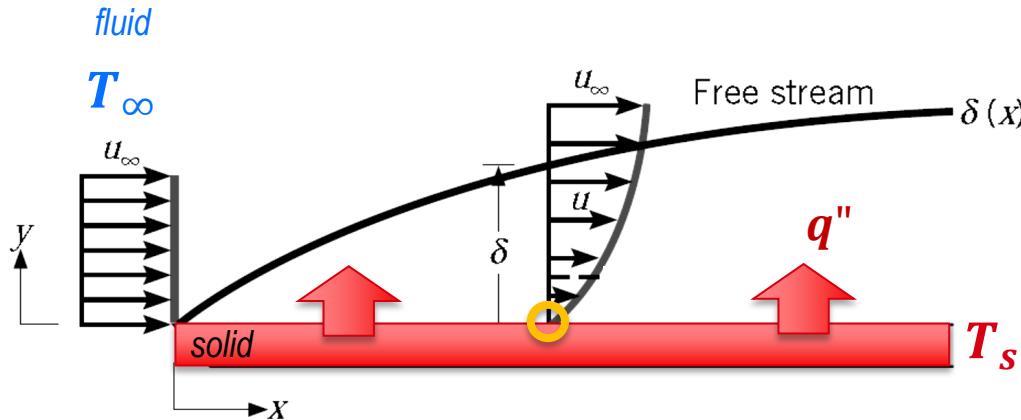

This Lecture

- The thermal boundary layer equations
- Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:

- Understand the thermal boundary layer concept and equations
- Understand and calculate the dimensionless numbers (Re, Nu, Pr)

Newton's law and the convection coefficient


Newton's law: the heat transfer is proportional to the temperature difference between the wall and the unperturbed fluid

$$q'' = h (T_s - T_\infty) \text{ [W/m}^2\text{]} \quad \text{or} \quad Q = hA (T_s - T_\infty) \text{ [W]}$$

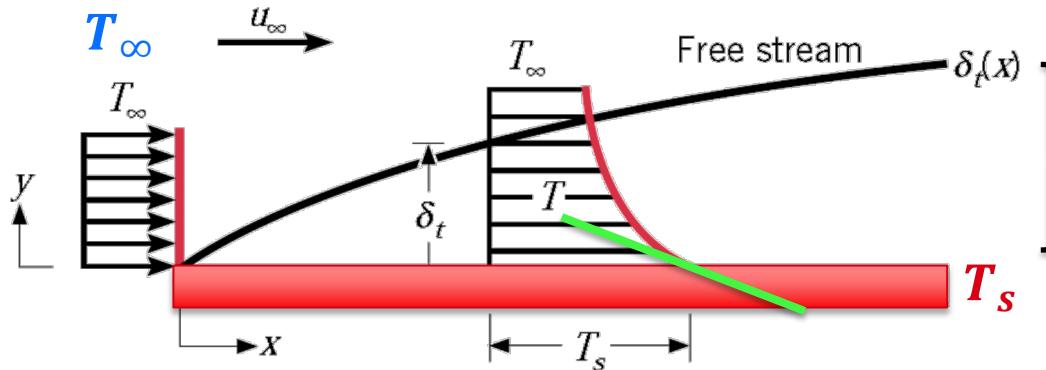
where $h = \text{convection coefficient}$

Where does h come from?

Newton's law and the convection coefficient

$$T_s > T_\infty$$

At the wall the **velocity is zero** (no advection, only diffusion) thus we can use **Fourier's law**:


$$q''(0) = -k_f \frac{\partial T}{\partial y} \Big|_{y=0}$$

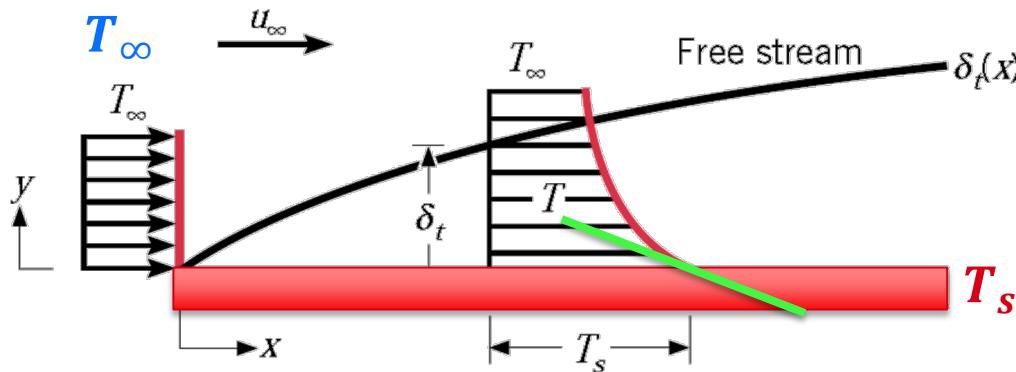
k_f = thermal conductivity of the **fluid**

$$\Rightarrow h = \frac{q''(0)}{(T_s - T_\infty)} = \frac{-k_f \frac{\partial T}{\partial y} \Big|_{y=0}}{(T_s - T_\infty)}$$

The thermal boundary layer and Nu number

$$T_s > T_\infty$$

$$\frac{T_s - T(\delta_t)}{T_s - T_\infty} = 0.99$$


Thermal
Boundary Layer

$$h = \frac{-k_f \frac{\partial T}{\partial y} \Big|_{y=0}}{(T_s - T_\infty)} \quad \Rightarrow \quad \frac{h L_c}{k_f} = \frac{\partial \left(\frac{T_s - T}{T_s - T_\infty} \right)}{\partial \left(\frac{y}{L_c} \right)} \Big|_{y/L_c=0} = Nu_L$$

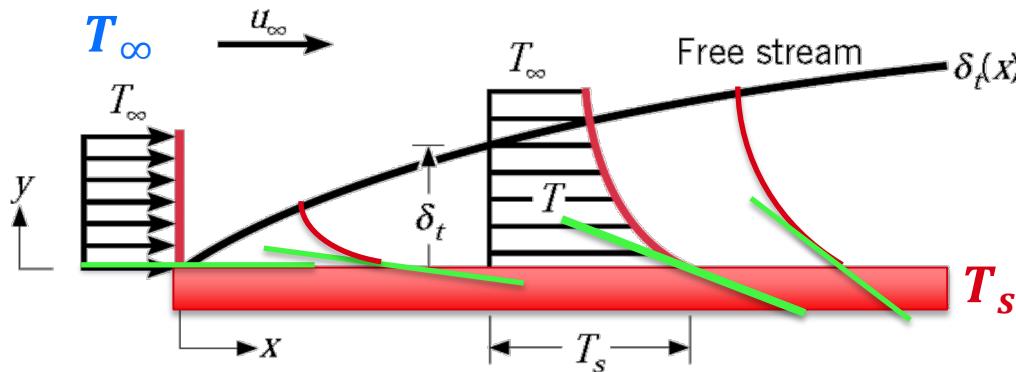
Nusselt
number

L_c is a characteristic dimension of the problem (i.e. length of the plate)

The problem of convection

$$T_s > T_\infty$$

$$h = \frac{-k_f \frac{\partial T}{\partial y} \bigg|_{y=0}}{(T_s - T_\infty)}$$


To determine h we need to know the temperature gradient at the wall. This in turn depends on the flow conditions.

To obtain $T(x,y)$, we must solve the coupled momentum (Navier-Stokes) and energy (heat diffusion) equations.

Analytical solutions, however, exist only for simple cases.

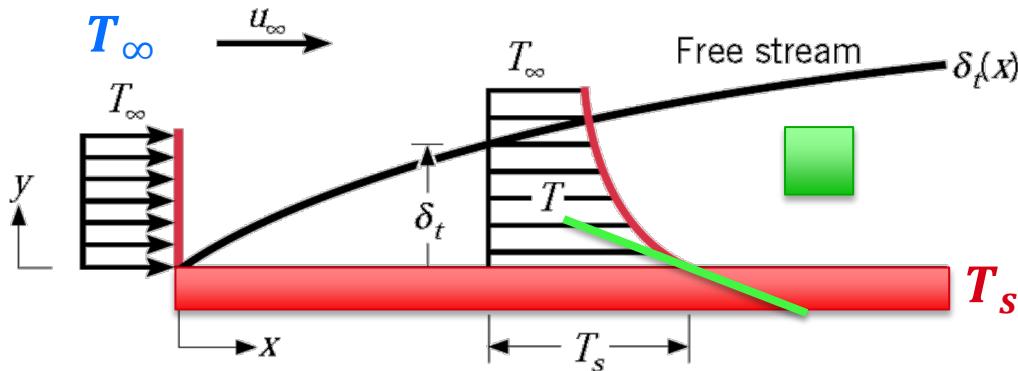
For all other cases we rely on **empirical correlations** or numerical simulations.

The problem of convection

$$T_s > T_\infty$$

$$h = \frac{-k_f \frac{\partial T}{\partial y}|_{y=0}}{(T_s - T_\infty)}$$

The temperature gradient at the wall changes as the temperature boundary layer develops. Therefore **the convection coefficient varies spatially**.


Local convection coefficient

$$Q = (T_s - T_\infty) \int_{A_s} h dA_s = \bar{h} A_s (T_s - T_\infty)$$

Average convection coefficient

$$\bar{h} = \frac{1}{A_s} \int_{A_s} h dA_s$$

The thermal boundary layer equations

$$T_s > T_\infty$$

$$h = \frac{-k_f \frac{\partial T}{\partial y} \Big|_{y=0}}{(T_s - T_\infty)}$$

If we determine $T(x,y)$, we know $\frac{\partial T}{\partial y} \Big|_{y=0}$ and we can obtain the convection coefficient

→ Conservation of mass Conservation of momentum Conservation of energy **Thermal boundary layer**

Velocity boundary layer

This Lecture

- The thermal boundary layer equations
- Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:

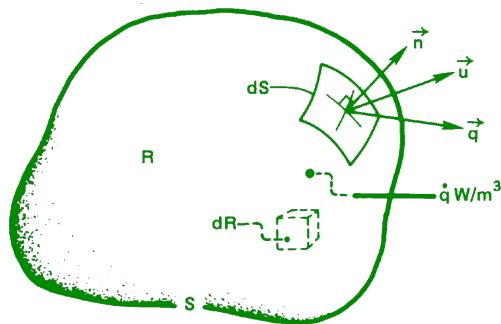
- Understand the thermal boundary layer concept and equations
- Understand and calculate the dimensionless numbers (Re, Nu, Pr)

The thermal boundary layer equations: energy equations for open systems

$$T_s > T_\infty$$

Closed system (W1L2):

$$\dot{U} = Q - \dot{W} + \dot{E}_{gen}$$


Open system:

$$\dot{U} = \dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{in} - \dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{out} + \dot{Q} - \dot{W} + \dot{E}_{gen}$$

where $u = \text{specific internal energy}$; $v = \text{specific volume} = 1/\rho$

The thermal boundary layer equations: energy equations for open systems

Non-isothermal S!

$$\dot{U} = \dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{in} - \dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{out} + \dot{Q} - \dot{W} + \dot{E}_{gen}$$

The control volume does not move

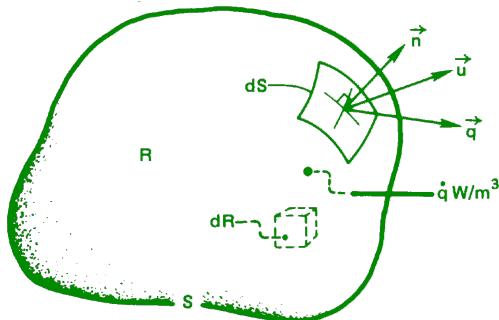
No machine

$$\dot{U} = \dot{m} (h)_{in} - \dot{m} (h)_{out} + \dot{Q} + \dot{E}_{gen}$$

$$\dot{U} = -(\rho \vec{u} \cdot \vec{n})(h) + \dot{Q} + \dot{E}_{gen}$$

\vec{u} = velocity; h = specific enthalpy

For the terms \dot{U} , \dot{Q} , \dot{E}_{gen} we have the same expressions as in the closed system case


$$\int_V \frac{\partial \rho \vec{u}}{\partial t} dR = - \int_S (\rho h \vec{u}) \cdot (\vec{n} dS) - \int_S (-\mathbf{k} \nabla T) \cdot (\vec{n} dS) + \int_V \dot{q} dR$$

Assumption 1: isotropic material

Assumption 2: potential and kinetic energy changes are negligible

The thermal boundary layer equations: energy equations for open systems

Non-isothermal S!

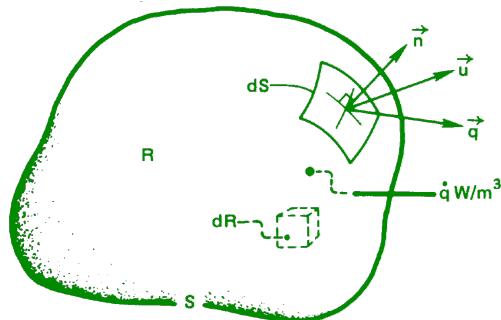
Assumption 1: isotropic material

Assumption 2: potential and kinetic energy changes are negligible

$$\int_V \frac{\partial \rho u}{\partial t} dR = - \int_S (\rho h \vec{u}) \cdot (\vec{n} dS) - \int_S (-k \nabla T) \cdot (\vec{n} dS) + \int_V \dot{q} dR$$

Assumption 3: we neglect the effect of pressure changes dp on enthalpy, internal energy and density

$$h = \hat{u} + p/\rho, \text{ and that } dh = c_p dT + (\partial h/\partial \rho)_T dp$$


Assumption 4: density changes result only from temperature changes so they are small and the fluid behaves as if incompressible $\nabla \cdot \vec{u} = 0$

Assumption 5: all material parameters are temperature independent (k, μ)

Assumption 6: viscous stresses do not dissipate enough energy to warm the fluid

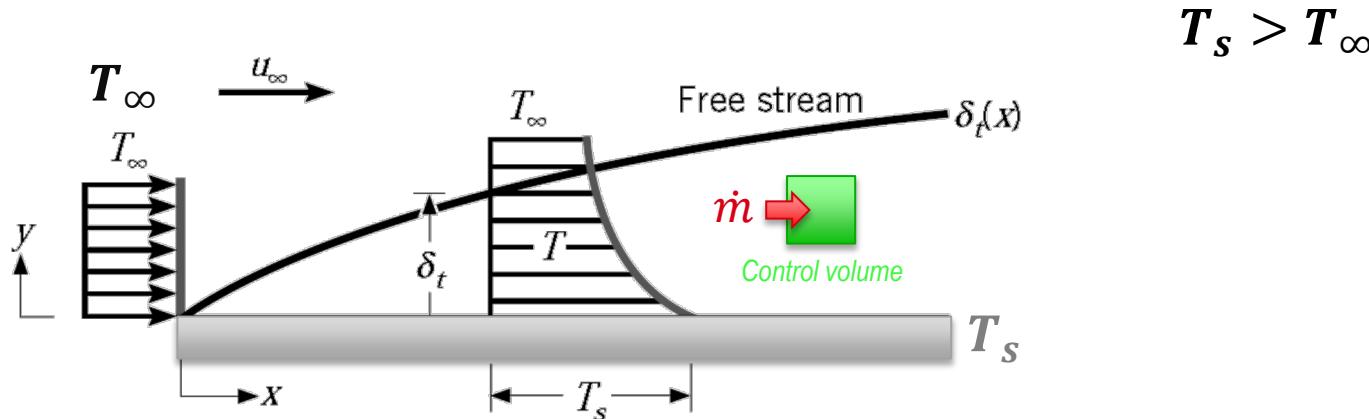
The thermal boundary layer equations: energy equations for open systems

Non-isothermal $S!$

$$\int_V \frac{\partial \rho u}{\partial t} dR = - \int_S (\rho h \vec{u}) \cdot (\vec{n} dS) - \int_S (-k \nabla T) \cdot (\vec{n} dS) + \int_V \dot{q} dR$$

$$\int_R \left(\rho \frac{\partial \hat{u}}{\partial t} + \rho \nabla \cdot (\vec{u} \hat{h}) - \nabla \cdot k \nabla T - \dot{q} \right) dR = 0 \quad (\text{Gauss' law})$$

$$\rho \left(\frac{\partial \hat{u}}{\partial t} + \underbrace{\nabla \cdot (\vec{u} \hat{h})}_{= \vec{u} \cdot \nabla \hat{h} + \hat{h} \nabla \cdot \vec{u}} \right) - k \nabla^2 T - \dot{q} = 0$$


continuity

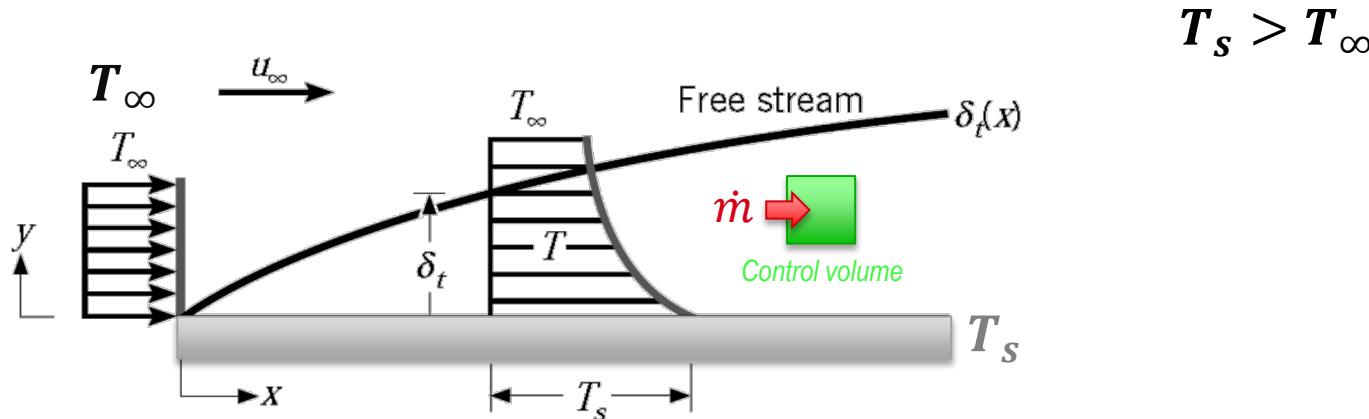
Assumption 1-6 (see slide 36)

Because of assumption 3: $d\hat{u} = d\hat{h} - d\left(\frac{p}{\rho}\right) \approx d\hat{h}$ $d\hat{h} \approx c_p dT$,

$$\rho c_p \left(\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T \right) = k \nabla^2 T + \dot{q}$$

The thermal boundary layer equations: energy equations for open systems

Closed system (W1L2):


$$\rho c \frac{\partial T}{\partial t} = k \nabla^2 T + \dot{q}$$

Open system:

$$\rho c_p \left(\frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T \right) = k \nabla^2 T + \dot{q}$$

Energy storage Enthalpy advection Heat diffusion Energy generation

The thermal boundary layer equations: energy equations for open systems

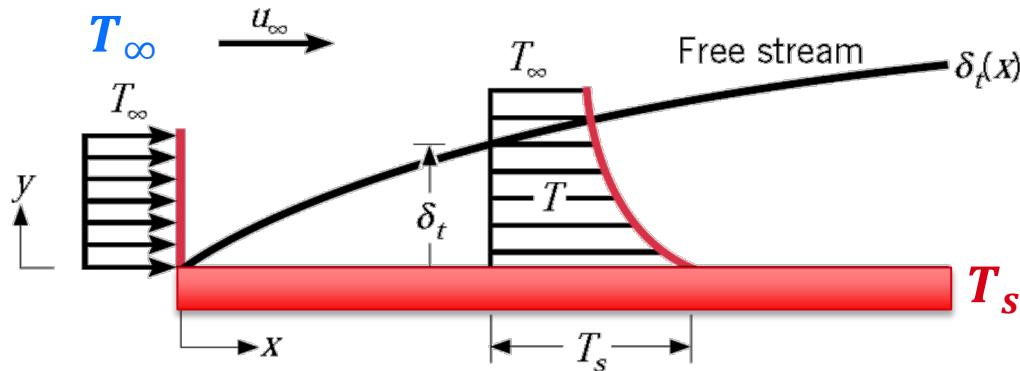
Closed system (W1L2):

$$\rho c \frac{\partial T}{\partial t} = k \nabla^2 T + \dot{q}$$

Open system:

$$\text{Steady-state} \quad \rho c_p \left(\cancel{\frac{\partial T}{\partial t}} + \vec{u} \cdot \nabla T \right) = k \nabla^2 T + \dot{q}$$

Annotations: $\frac{\partial T}{\partial x} \ll \frac{\partial T}{\partial y}$ (red bracket) and "No heat sources in the fluid" (red bracket).


Energy storage

Enthalpy advection

Heat diffusion

Energy generation

The thermal boundary layer equations

$$T_s > T_\infty$$

$$h = \frac{-k_f \frac{\partial T}{\partial y} \Big|_{y=0}}{(T_s - T_\infty)}$$

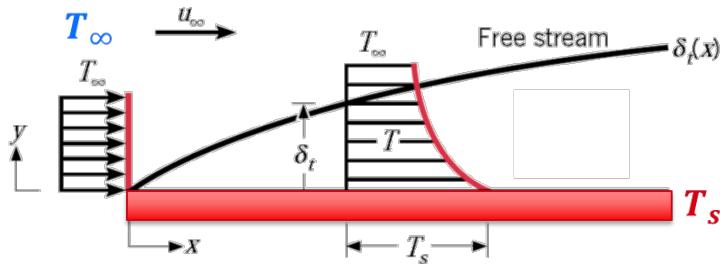
□ Conservation of mass

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

□ Conservation of momentum

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 u}{\partial y^2}$$

□ Conservation of energy


$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}$$

Velocity boundary layer

↓ The geometry and flow characteristics are critical for convective heat transfer

Thermal boundary layer

The thermal boundary layer equations: Prandtl number (Pr)

L = characteristic length [m]

$$x^* = \frac{x}{L} \quad y^* = \frac{y}{L} \quad u^* = \frac{u}{u_\infty} \quad v^* = \frac{v}{u_\infty} \quad p^* = \frac{p}{\rho u_\infty^2}$$

$$T^* = \frac{T - T_s}{T_\infty - T_s}$$

Dimensionless Navier-Stokes equations:

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = - \frac{\partial p^*}{\partial x^*} + \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$

$$Re = \frac{\text{inertia forces}}{\text{viscous forces}} = \frac{\rho u_\infty L}{\mu} = \frac{u_\infty L}{v}$$

Dimensionless energy conservation equation:

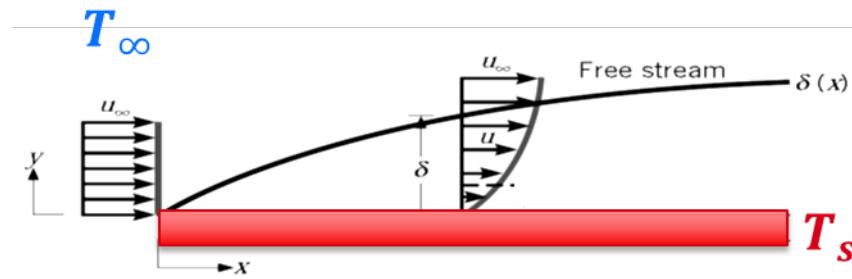
$$u^* \frac{\partial T^*}{\partial x^*} + v^* \frac{\partial T^*}{\partial y^*} = \frac{1}{Re_L Pr} \frac{\partial^2 T^*}{\partial y^{*2}}$$

$$Pr = \frac{\text{kinematic (momentum) diffusivity}}{\text{heat diffusivity}} = \frac{v}{\alpha_f}$$

This Lecture

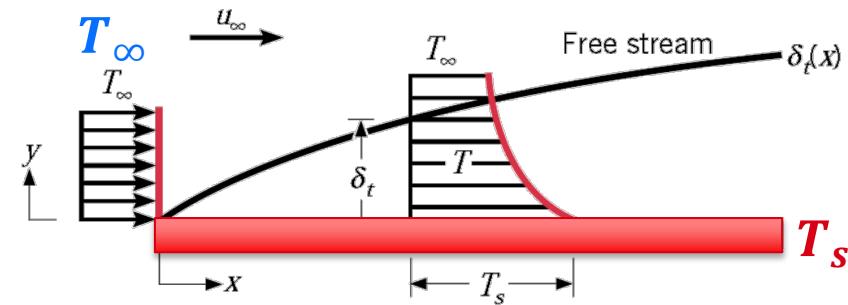
- The thermal boundary layer equations
- Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:


- Understand the thermal boundary layer concept and equations
- Understand and calculate the dimensionless numbers (Re, Nu, Pr)

Comparison of velocity and thermal boundary layers, Pr number

Velocity boundary layer $\delta(x)$


$$\delta(x) \neq \delta_t(x)$$

Thermal boundary layer $\delta_t(x)$

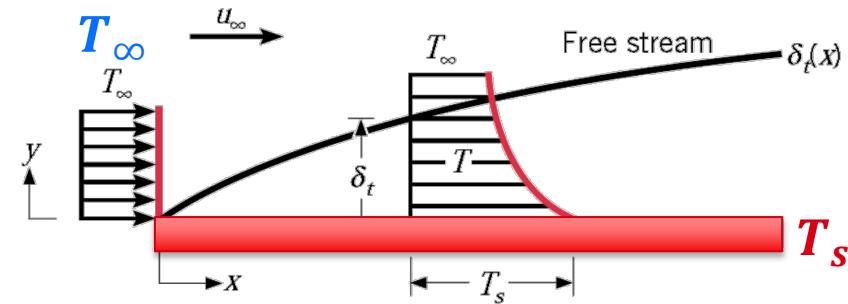
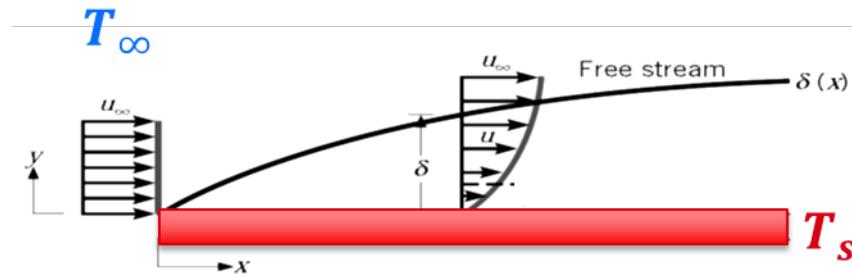
Dimensionless Navier-Stokes equations and Re number:

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = - \frac{\partial p^*}{\partial x^*} + \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$

Dimensionless energy conservation equation and Pr number:

$$u^* \frac{\partial T^*}{\partial x^*} + v^* \frac{\partial T^*}{\partial y^*} = \frac{1}{Re_L Pr} \frac{\partial^2 T^*}{\partial y^{*2}}$$

Prandtl number: $Pr = \frac{\text{momentum diffusivity}}{\text{heat diffusivity}} = \frac{\nu}{\alpha_f} = \frac{\mu c_{p,f}}{k_f} = \frac{\delta}{\delta_t}$



BEWARE! These are the **FLUID** properties, not the solid ones

The thermal boundary layer equations: Prandtl number (Pr)

Velocity boundary layer $\delta(x)$

$$\delta(x) \neq \delta_t(x)$$

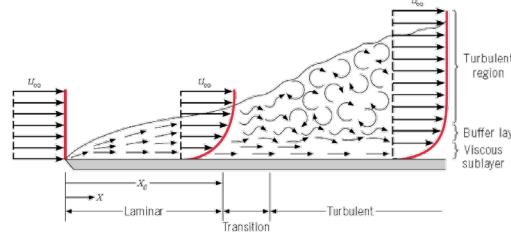
Thermal boundary layer $\delta_t(x)$

For $Pr \ll 1$

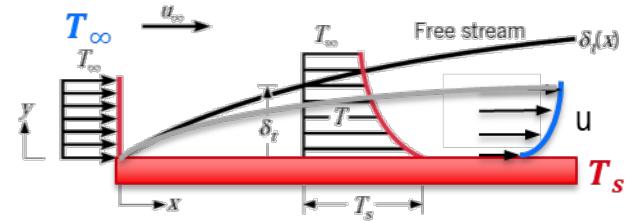
the thermal BL $\delta_t(x)$ is thinner or thicker than the velocity BL $\delta(x)$?

$Pr \ll 1$

heat diffuses very quickly relative to momentum


a small temperature gradient is sufficient to sustain a large heat flux

The thermal boundary layer is much LARGER than the velocity one


$\delta(x) \ll \delta_t(x)$

Dimensionless numbers

$$Re_L = \frac{\text{inertia forces}}{\text{viscous forces}} = \frac{\rho u_\infty L}{\mu} = \frac{u_\infty L}{\nu}$$

$$Pr = \frac{\text{momentum diffusivity}}{\text{heat diffusivity}} = \frac{v_f}{\alpha_f} = \frac{\mu c_{p,f}}{k_f} = \frac{\delta}{\delta_t}$$

$$Nu_{\textcolor{red}{L}} = \frac{hL_c}{k_f} = \frac{\partial \left(\frac{T_s - T}{T_s - T_\infty} \right)}{\partial \left(\frac{y}{L_c} \right)} \Bigg|_{y/L_c=0}$$

If we can calculate Nu then we can obtain the convection coefficient

This Lecture

- The thermal boundary layer equations
- Comparison of velocity and thermal boundary layer, Pr number

Learning Objectives:

- Understand the thermal boundary layer concept and equations
- Understand and calculate the dimensionless numbers (Re, Nu, Pr)

Next Lecture

- ❑ Forced convection coefficient for laminar flow over a flat horizontal plate (local and average)
- ❑ Correlations for the forced convection coefficient of:
 - a. Flat plate in parallel flow under different flow and heating conditions
 - b. External flow on a cylinder
 - c. External flow on a bank of tubes
- ❑ General methodology for calculating the convection coefficient

Learning Objectives:

- ❑ Calculate the convection coefficient for various geometries in forced convection