Heat and Mass Transfer
ME-341

Instructor: Giulia Tagliabue

Spring Semester




Heat Diffusion and Boundary Conditions (W1L2-3)

Thermal Resistance & Overall Heat Transfer Coefficient

Bi number

Thermal Circuits
WITH Heat Sources (W2L2-3)
Fins and Fin Arrays (W3L1-3)




This Week

Transient Heat Diffusion
O Binumber and Spatial Effects
Lumped Capacitance Model
Generalized solution for planar/radial/spherical geometries

Infinite solid

U OO0 DO

Periodic Heating

Learning Objectives:
1 Solve transient heat conduction under convective cooling



This Lecture

O Transient Heat Diffusion
O Binumber and Spatial Effects
O Lumped Capacitance Model

Learning Objectives:
 Solve transient heat conduction under convective cooling
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This Lecture

| Transient Heat Diffusion

Bi number and Spatial Effects

O Lumped Capacitance Model

Learning Objectives:
O Solve transient heat conduction under convective cooling



Introduction to Transient Heat Conduction
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Assumption 1: k is high ensuring a uniform temperature T (t) in the solid (Bi <0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times

Write the 15t law of thermodynamics for a control volume equal to the solid



Transient Heat Transfer

Assumption 1: k is high ensuring a uniform temperature T (t) in the solid (Bi<0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times
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Cooling is equivalent to the discharge of a capacitor over a resistor

- Lumped Capacitance Model
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Lumped Capacitance Model

Assumption 1: k is high ensuring a uniform temperature T (t) in the solid (Bi<0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times
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Lumped Capacitance Model

Assumption 1: k is high ensuring a uniform temperature T (t) in the solid (Bi<0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times
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Lumped Capacitance Model

A thermocouple junction, which may be approximated as a sphere, is to be used for
temperature measurement in a gas stream. The convection coefficient between the
junction surface and the gas is 4 = 400 W/m? - K, and the junction thermophysical
properties are k = 20 W/m- K, ¢ = 400 J/kg- K, and p = 8500 kg/m®. Determine [ Rule #1: Calculate the Bi Number }
the junction diameter needed for the thermocouple to have a time constant of 1 s. If '

the junction is at 25°C and is placed in a gas stream that is at 200°C, how long will

it take for the junction to reach 199°C?

In this case we cannot calculate

Leads .

Bi because we do not know the
. sphere diameter -> we first
T _ 200 W/m2K Thermocouple | & = 20 W/m-K determine the sphere diameter
junction — c= 400 Jkg'K_ under the assumption of Lumped

— T,=25°C ) p=8500 kg/m .
— Capacitance Model and then we
Gas stream «D» ;/erify'/”whether the assumption is

rue !!!
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Lumped Capacitance Model

— 2
A thermocouple junction, which may be approximated as a sphere, is to be used for —oy, B b v & =0
temperature measurement in a gas stream. The convection coefficient between the U i hA, Love) V =xD’l6
junction surface and the gas is 4 = 400 W/m? - K, and the junction thermophysical

properties are k= 20 W/m - K, ¢ = 400 J/kg- K, and p = 8500 kg/m>. Determine

the junction diameter needed for the thermocouple to have a time constant of 1 s. If 1 p‘l’TD3
the junction is at 25°C and is placed in a gas stream that is at 200°C, how long will il har D> 6
it take for the junction to reach 199°C?
6ht _
D=—2" =706X10""m
Leads pc
D
- h(P/) .
T. = 200°C Bi = — =235X%10
h =400 W/m2K Thermocouple | k = 20 W/m*K k
junction c =400 J!kg-KS
— T,=25C = 8500 k i id if
i P g/m [ Lumped Capacitance Model valid if: ]
Gas stream e D—»|

Bi<0.1

i} Valid assumption!!



Lumped Capacitance Model

A thermocouple junction, which may be approximated as a sphere, is to be used for
temperature measurement in a gas stream. The convection coefficient between the
junction surface and the gas is 4 = 400 W/m? - K, and the junction thermophysical
properties are k= 20 W/m - K, ¢ = 400 J/kg- K, and p = 8500 kg/m>. Determine
the junction diameter needed for the thermocouple to have a time constant of 1 s. If
the junction is at 25°C and is placed in a gas stream that is at 200°C, how long will
it take for the junction to reach 199°C?

Leads
T..=200°C
h =400 W/m?K Thermocouple | k = 20 W/m+K
junction c =400 J/kgK
— T,=25°C ] p=28500 kg/m®
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r=35.2s
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T
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Lumped Capacitance Model
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Solid is at a ~constant T

JAIL
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This Lecture

| Transient Heat Diffusion

Bi number and Spatial Effects
Lumped Capacitance Model

Learning Objectives:
O Solve transient heat conduction under convective cooling

17



Next Lecture

Transient Heat Diffusion
O Generalized solution for planar/radial/spherical geometries
Q  Infinite solid
O Periodic Heating

Learning Objectives:
 Solve transient heat conduction under convective cooling
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Transient Heat Gonduction
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Note: during the transient the temperature is NOT linear within the wall even if there are no heat sources

JAIL
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Supplementary Slides
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Transient Heat Transfer

Assumption 1: the solid is sufficiently small and k sufficiently high to ensure a uniform temperature T'(t) in the solid
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times

T, >T; -» heating t dT

1 law: 0 = +CQconv W + Fen — mca

dT
> pVe—r = +hAs(Te — T(t))
do hA
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Transient Heat Transfer

Lumped Capacitance Model - Critical dimension L

We defined the critical dimension L, as the ratio of
volume (heat capacity) and surface area (convection).
However, with Bi we want to estimate how uniform the
T profile is, so it is also reasonable to use as critical
length the length over which the temperature profile
T might change (so for a sphere it would be r0).

/7 : In this course we will stick with the first definition and
always use the volume/surface ratio.
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Transient Heat Transfer

Lumped Capacitance Model (Example)  Assumption: k — © = Ryp, cona

The flow rates of hot and cold water are regulated into a mixing cham-

ber. We measure the temperature of the water as it leaves, using a Hot

thermometer with a time constant, T. On a particular day, the sys- watar
temn started with cold water at T = T; in the mixing chamber. Then

hot water is added in such a way that the outflow temperature rises Cold
linearly, as shown in FAg. 5.4, with Tegaaw = T: + PE. How will the water

thermometer report the temperature variation?

T-T=Cre T 4 b{t - T)

T-T;=0att = 0. C1=bT
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mperature
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T, T
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Transient Heat Transfer

Lumped Capacitance Model Assumption: k = o = Ry cona = 0
Ty
R WY
& ’-’:”""’?'-'-'-*"' slab 1 : —(_QﬂV}l@ =N, A{T] — T5)
: - T; dr
1 h ATy  —
_ slab 2. —{pcVys—— =hA{T: —T..) —H A(T] — T2)
g (PeV), dt
3
_‘ﬂ; (pev),
- ; T E> The derivation becomes much more involved
| k
Ly === Ly —=
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Transient Heat Transfer

Lumped Capacitance Model (Bi< 0.1)  Assumption: k — 00 = Ry cong = 0

Surroundings Can you find the transient solution if only radiative heat
T transfer is present, without heat sources?
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| ' ' qu
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Surface heating Convection and Radiation
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Transient Heat Transfer

Lumped Capacitance Model (Bi < 0.1)
Assumption: k = © = R¢p cong = 0

Surroundings
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g A+ E,— [HT—T.) + ec(T* — TEUI)]AS(CA —pVCE {5.15)

Equation 5.15 is a nonlinear, first-order, nonhomogeneous, ordinary differential
equation that cannot he integrated to ohtain an exact solution.! However, exact solu-
tions may be obtained for simplified versicns of the equation. For example, if there is
no imposed heat flux or generaticn and convection is either nonexistent (a vacuum) or
negligible relative to radiation, Equation 5.15 reduces to

chd—T = —eA (T — TY) (5.16)

Separating variables and integrating from the initial condition to any time ¢ it fol-
lows that

el 0 T
& f f T (5.17)
ple Jo L T;.lr -7
Evaluating both integrals and rearranging, the time required to reach the tempera-
ture Thecomes

_ o Ve In ?—;m—’_T‘_]n‘Tm—’_R
deA, o TS, F T — T,

42 [tan_l (Ti) ~ tan™! (T—im (5.18)

This expression cannot he nsed to evaluate Texplicitly in terms of 7, T, and T, nor
does it readily reduce to the limiting result for 7., = 0 (radiation to deep space).
However, returning to Equation 5.17, its solution for 7, = 0 yields

_ ple f1 1
_33/19,0(? F;) (5.19)
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