
Heat and Mass Transfer 
ME-341

Instructor: Giulia Tagliabue

Spring Semester



Until Now
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 Heat Diffusion and Boundary Conditions (W1L2-3)

 Steady State Heat Diffusion Equation 

 Without Heat sources (W1L3-4; W2L1)

 Thermal Resistance & Overall Heat Transfer Coefficient

 Bi number

 Thermal Circuits 

 WITH Heat Sources (W2L2-3)

 Fins and Fin Arrays (W3L1-3)



This Week
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 Transient Heat Diffusion

 Bi number and Spatial Effects

 Lumped Capacitance Model

 Generalized solution for planar/radial/spherical geometries

 Infinite solid

 Periodic Heating

Learning Objectives:
 Solve transient heat conduction under convective cooling



This Lecture
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 Transient Heat Diffusion

 Bi number and Spatial Effects

 Lumped Capacitance Model

Learning Objectives:
 Solve transient heat conduction under convective cooling



Biot Number

5

T∞

𝑄𝑄 =
𝑇𝑇1 − 𝑇𝑇2
𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
(𝑇𝑇2−𝑇𝑇∞)
𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇1 − 𝑇𝑇2
(𝑇𝑇2 − 𝑇𝑇∞) =

𝑹𝑹𝒕𝒕𝒕𝒕,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝑹𝑹𝒕𝒕𝒕𝒕,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

≡ 𝑩𝑩𝑩𝑩

𝑩𝑩𝑩𝑩 ≡
𝒉𝒉𝒉𝒉
𝒌𝒌

Note: L can be generalized to be a characteristic 
dimension of a body (e.g. diameter of a sphere)

T1

T2

0 L

𝑄𝑄

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐿𝐿 =
𝑉𝑉
𝐴𝐴𝑠𝑠

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑



Biot Number and Spatial Effects
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T∞

T1
T2

0 L

𝑄𝑄

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑩𝑩𝑩𝑩 ≡
𝒉𝒉𝒉𝒉
𝒌𝒌 ~𝟏𝟏

T∞

T1
T2

0 L

𝑄𝑄

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≫ ∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑩𝑩𝑩𝑩 ≡
𝒉𝒉𝒉𝒉
𝒌𝒌 ≫ 𝟏𝟏

T∞

T1
T2

0 L

𝑄𝑄

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≪ ∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑩𝑩𝑩𝑩 ≡
𝒉𝒉𝒉𝒉
𝒌𝒌 ≪ 𝟏𝟏

Solid has a spatially constant T Solid has a spatially dependent T



This Lecture
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 Transient Heat Diffusion

 Bi number and Spatial Effects

 Lumped Capacitance Model

Learning Objectives:
 Solve transient heat conduction under convective cooling



Introduction to Transient Heat Conduction
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Assumption 1: k is high ensuring a uniform temperature 𝑻𝑻(𝒕𝒕) in the solid (Bi <0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
ℎ,𝑇𝑇∞𝑇𝑇(𝑡𝑡)

Write the 1st law of thermodynamics for a control volume equal to the solid 

𝑻𝑻∞ < 𝑻𝑻𝒊𝒊 → 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄



𝜌𝜌𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −ℎ𝐴𝐴𝑠𝑠(𝑇𝑇 𝑡𝑡 − 𝑇𝑇∞)

Transient Heat Transfer 

9

Assumption 1: k is high ensuring a uniform temperature 𝑇𝑇(𝑡𝑡) in the solid (Bi<0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times

𝑻𝑻∞ < 𝑻𝑻𝒊𝒊 → 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
0 = −𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑊𝑊 + ̇𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1st law: 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ𝐴𝐴𝑠𝑠(𝑇𝑇 𝑡𝑡 − 𝑇𝑇∞)
θ(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) − 𝑇𝑇∞

𝑑𝑑θ
θ = −

ℎ𝐴𝐴𝑠𝑠
𝜌𝜌𝜌𝜌𝜌𝜌

𝜽𝜽
𝜽𝜽𝒊𝒊

= 𝒆𝒆−
𝒉𝒉𝑨𝑨𝒔𝒔
𝝆𝝆𝝆𝝆𝝆𝝆𝒕𝒕 𝑇𝑇 𝑡𝑡 = 𝑇𝑇𝑖𝑖 − 𝑇𝑇∞ 𝑒𝑒−

ℎ𝐴𝐴𝑠𝑠
𝜌𝜌𝜌𝜌𝜌𝜌𝑡𝑡 + 𝑇𝑇∞



Electrical Analogy
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𝑻𝑻∞ < 𝑻𝑻𝒊𝒊 → 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝜽𝜽
𝜽𝜽𝒊𝒊

= 𝒆𝒆−
𝒉𝒉𝑨𝑨𝒔𝒔
𝝆𝝆𝝆𝝆𝝆𝝆𝒕𝒕 = 𝒆𝒆−

𝟏𝟏
𝑹𝑹𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑪𝑪𝒕𝒕𝒕𝒕

𝒕𝒕

𝐼𝐼 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑉𝑉𝑅𝑅 𝑡𝑡 = 𝑅𝑅𝑅𝑅(𝑡𝑡)𝑉𝑉𝐶𝐶 𝑡𝑡

𝑉𝑉𝐶𝐶 𝑡𝑡 + 𝑉𝑉𝑅𝑅 𝑡𝑡 = 0

𝑽𝑽
𝑽𝑽𝒊𝒊

= 𝒆𝒆−
𝟏𝟏
𝑹𝑹𝑹𝑹𝒕𝒕

Cooling is equivalent to the discharge of a capacitor over a resistor

Lumped Capacitance Model 

𝑪𝑪𝒕𝒕𝒕𝒕 = 𝝆𝝆𝝆𝝆𝝆𝝆 𝑹𝑹𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝟏𝟏
𝒉𝒉𝑨𝑨𝒔𝒔



Lumped Capacitance Model
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Assumption 1: k is high ensuring a uniform temperature 𝑇𝑇(𝑡𝑡) in the solid (Bi<0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times

𝜃𝜃
𝜃𝜃𝑖𝑖

= 𝑒𝑒−
ℎ𝐴𝐴𝑠𝑠
𝜌𝜌𝜌𝜌𝜌𝜌𝑡𝑡 = 𝑒𝑒−

1
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝑡𝑡𝑡

𝑡𝑡 = 𝒆𝒆−
𝒕𝒕
𝝉𝝉𝒕𝒕𝒕𝒕

Total heat removed [J]:

𝑄𝑄 𝐽𝐽 = �
0

𝑡𝑡
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 = ℎ𝐴𝐴𝑠𝑠 �

0

𝑡𝑡
𝜃𝜃𝑑𝑑𝑑𝑑

𝑄𝑄 𝐽𝐽 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜃𝜃𝑖𝑖 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏𝑡𝑡𝑡



Lumped Capacitance Model
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𝜃𝜃
𝜃𝜃𝑖𝑖

= 𝑒𝑒−
𝒉𝒉𝑨𝑨𝒔𝒔
𝝆𝝆𝝆𝝆𝝆𝝆𝒕𝒕 = 𝑒𝑒−

1
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝑡𝑡𝑡

𝑡𝑡 = 𝑒𝑒−
𝑡𝑡
𝜏𝜏𝑡𝑡𝑡

ℎ𝐴𝐴𝑠𝑠
𝜌𝜌𝜌𝜌𝜌𝜌 𝑡𝑡 =

ℎ𝑡𝑡
𝜌𝜌𝜌𝜌
𝐴𝐴𝑠𝑠
𝑉𝑉 =

ℎ𝑡𝑡
𝜌𝜌𝜌𝜌
𝟏𝟏
𝑳𝑳

𝐿𝐿 =
𝑉𝑉
𝐴𝐴𝑠𝑠

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵𝐵𝐵 ≡
ℎ𝐿𝐿
𝑘𝑘

ℎ𝑡𝑡
𝜌𝜌𝜌𝜌

1
𝐿𝐿 =

ℎ𝐿𝐿
𝑘𝑘

𝑘𝑘𝑘𝑘
𝜌𝜌𝜌𝜌𝐿𝐿2 = 𝐵𝐵𝐵𝐵 �

𝛼𝛼𝑡𝑡
𝐿𝐿2 = 𝐵𝐵𝐵𝐵 � 𝐹𝐹𝐹𝐹 𝑭𝑭𝑭𝑭 =

𝜶𝜶𝜶𝜶
𝑳𝑳𝟐𝟐 = 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏

𝜃𝜃
𝜃𝜃𝑖𝑖

= 𝑒𝑒−𝐵𝐵𝐵𝐵�𝐹𝐹𝐹𝐹

Dimensionless
Time

Assumption 1: k is high ensuring a uniform temperature 𝑇𝑇(𝑡𝑡) in the solid (Bi<0.1)
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times



Lumped Capacitance Model
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Rule #1: Calculate the Bi Number

In this case we cannot calculate
Bi because we do not know the
sphere diameter -> we first
determine the sphere diameter
under the assumption of Lumped
Capacitance Model and then we
verify whether the assumption is
true !!!



Lumped Capacitance Model
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𝐵𝐵𝐵𝐵 =
ℎ( �𝐷𝐷 6)
𝑘𝑘

Lumped Capacitance Model valid if:

Valid assumption!!

Bi < 0.1



Lumped Capacitance Model
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𝜽𝜽
𝜽𝜽𝒊𝒊

= 𝒆𝒆−
𝒉𝒉𝑨𝑨𝒔𝒔
𝝆𝝆𝝆𝝆𝝆𝝆𝒕𝒕
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Lumped Capacitance Model

Bi < 0.1

Solid is at a ~constant T

TIME



This Lecture
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 Transient Heat Diffusion

 Bi number and Spatial Effects

 Lumped Capacitance Model

Learning Objectives:
 Solve transient heat conduction under convective cooling



Next Lecture
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 Transient Heat Diffusion

 Generalized solution for planar/radial/spherical geometries

 Infinite solid

 Periodic Heating

Learning Objectives:
 Solve transient heat conduction under convective cooling
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Transient Heat Conduction

Bi < 0.1

TIME

Note: during the transient the temperature is NOT linear within the wall even if there are no heat sources

ℎ ↑,𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ↓



Supplementary Slides

20



𝜌𝜌𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = +ℎ𝐴𝐴𝑠𝑠(𝑇𝑇∞ − 𝑇𝑇 𝑡𝑡 )

Transient Heat Transfer 

21

Assumption 1: the solid is sufficiently small and k sufficiently high to ensure a uniform temperature 𝑇𝑇(𝑡𝑡) in the solid
Assumption 2: the volume of liquid is so large that the liquid temperature remains constant at all times

𝑻𝑻∞ > 𝑻𝑻𝒊𝒊 → 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉
0 = +𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑊𝑊 + ̇𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1st law: 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ℎ𝐴𝐴𝑠𝑠(𝑇𝑇∞ − 𝑇𝑇 𝑡𝑡 )
θ(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) − 𝑇𝑇∞

𝑑𝑑θ
θ = −

ℎ𝐴𝐴𝑠𝑠
𝜌𝜌𝜌𝜌𝜌𝜌

𝜽𝜽
𝜽𝜽𝒊𝒊

= 𝒆𝒆−
𝒉𝒉𝑨𝑨𝒔𝒔
𝝆𝝆𝝆𝝆𝝆𝝆𝒕𝒕 𝑇𝑇 𝑡𝑡 = − 𝑇𝑇∞ − 𝑇𝑇𝑖𝑖 𝑒𝑒

−ℎ𝐴𝐴𝑠𝑠𝜌𝜌𝜌𝜌𝜌𝜌𝑡𝑡 + 𝑇𝑇∞



Transient Heat Transfer 
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Lumped Capacitance Model – Critical dimension Lc

𝐵𝐵𝐵𝐵 =
ℎ( �𝐿𝐿 6)
𝑘𝑘

D

T

r0

We defined the critical dimension Lc as the ratio of 
volume (heat capacity) and surface area (convection). 
However, with Bi we want to estimate how uniform the 
T profile is, so it is also reasonable to use as critical 
length the length over which the temperature profile 
might change (so for a sphere it would be r0).

In this course we will stick with the first definition and 
always use the volume/surface ratio. 



Transient Heat Transfer 
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Lumped Capacitance Model (Example) Assumption: 𝑘𝑘 → ∞ ≡ 𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 0



Transient Heat Transfer 
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Lumped Capacitance Model

The derivation becomes much more involved

Assumption: 𝑘𝑘 → ∞ ≡ 𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 0



Transient Heat Transfer 
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Lumped Capacitance Model (Bi < 0.1)

Surface heating

Volumetric heating

Convection and Radiation

Can you find the transient solution if only radiative heat 
transfer is present, without heat sources?

Assumption: 𝑘𝑘 → ∞ ≡ 𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 0



Transient Heat Transfer 

26

Lumped Capacitance Model (Bi < 0.1)
Assumption: 𝑘𝑘 → ∞ ≡ 𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 0
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