Heat and Mass Transfer
ME-341

Instructor: Giulia Tagliabue

Spring Semester




@ Heat transfer from extended surfaces (Fins)

Learning Objectives:
Understand the concept of fins



Heat Transfer from Extended Surfaces
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In many technical problems, T; and R4 are fixed by the
operating conditions and the mechanical requirements of a
structure. Then the heat transfer rate is primarily controlled by
convection. If we need to increase Q,. then we can;

()  decrease T;

(i) decrease R ony = /4 by increasing h or A.
Decreasing T, and increasing h can have a high energy cost
S0 we increase A by adding a fin.



Heat Transfer from Extended Surfaces
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The fin has a more complex behavior than the simple planar
system because heat transfer by conduction and convection
occur along different directions and are interdependent. Hence
a simple equivalent electrical circuit cannot be immediately
identified.



Heat Transfer from Extended Surfaces
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It is necessary to optimize the fin in order to maximize the advantage of adding extra surface
area (Ar;,) without wasting material (beyond a certain length L, the temperature difference will be
so small that the heat transfer becomes negligible)



Heat Transfer from Extended Surfaces
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What is the temperature profile along the fin, T = T (x)?



This Lecture

O Heat transfer from extended surfaces (Fins)

O  Boundary Conditions and Temperature Profiles

Learning Objectives:
O Calculate the temperature profile in fins with constant cross-section



Heat Transfer from Generalized Fin

15t Law of Thermodynamics (Energy Balance):

Qx = Qx+ax T AQcony

Transport Laws:

dQcony = hdAs(T(x) — Te)

Assumption 4: no heat sources

dA; = P(x)dx dT
Qx = _kAca
Assumption 1: isotropic material
Assumption 2: k independent of T [Ac a AS }
Assumption 3: steady state Qprax = Oy + Qx dx = —kA d_T _ ki( d_T> dx



Heat Transfer from Generalized Fin

15t Law of Thermodynamics (Energy Balance):

0= Qxtax — Qx + dQconv

4 (4%, hdA(T() T.) =0
de\ €y ) T s T ) =

d2T (1 dAC> dT < h dA,

—+ | — —— T—Ty) =
A dx Jdx Ak dx>( ) =0

_|_
2
dA; = P(x)dx dx

Assumption 1: isotropic material . .
Assumption 2: k independent of T Assumption 5: constant cross-section
Assumption 3: steady state

Assumption 4: no heat sources

A, = constant dAs = Pdx



Heat Transfer from Generalized Fin

15t Law of Thermodynamics (Energy Balance):

/ o T (=1 =0
| Yy /Q“’"” dx  \A.k ) =
e
-y A T
/E\L\J d*T hP (T—T.) =0
T Ajjizgzm dx? Ack ”
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0 T —Ty _ 2 _ hP
Non-dimensional variables: ~ © =5-=7——— §=X/L m"= / kA,
b b oo

Assumption 1: isotropic material

Assumption 2: k independent of T

Assumption 3: steady state d?0 d%20
Assumption 4: no heat sources _ mZ 0 = -
Assumption 5: constant cross-section dx? d {: 2

— (mL)?0 =0
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Heat Transfer from Generalized Fin

— —|(mL)40 =0

L

kAC (1/hPL) RCOTLU

If (mL)?>> 1 the fin has added a large thermal resistance;
If (mL)?<< 1 the fin has added little surface area;

Assumption 1: isotropic material . . 0
Assumption 2: k independent of T A good fin will have a value of (mL)? of the order of 10° to

Assumption 3: steady state
Assumption 4: no heat sources
Assumption 5: constant cross-section

balance internal and external resistance
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Heat Transfer from Generalized Fin

Fluid, 7

Qeon The fin was added to enable better heat transfer.

7, P ol So we want to know how much heat is being

0, = Q — -mrﬂ] — i E_, 0.,  removed by the fin. We observe that convection on
Y e | the fin can remove only as much heat as it initially

> enters the fin by conduction.
x=0 x=L

Therefore the total heat removed by the fin is equal to:

do kA d®

inn = Qb,cond = —kA— =—— Ty —Tw) =¢
dx =0 L d¢ £-0

Knowing the temperature profile we can calculate the total heat removed by a single fin.

12



Heat Transfer from Fin of Uniform Cross-Section

2
. 13 55 = (mL)?0=0 ®» 0=Ce™+Cre ™S
Qeonv dé
T, ”
Qp = Qf e _kA"%Y(L—L EE_" Crip .
| - Boundary conditions:
x=0 x=L
=0 &1 | = Qs = 1
Finbase T=T, ®» Vg =
" 1. Adiabati 49
6 T-T . Adiabatic —= =
—_ — d d
© Hb Tb — Ty di) §=1
2. Convection _‘ = hA.(T(L) — Ts)
= L o . . C o0
§=x/ Fintip - ds ey
3. Temperature  @;_; = O,
m2 = hP/kAC
4. Infinite fin 0, -0

13



Heat Transfer from Fin of Uniform Cross-Section — Adiabatic Tip

2
Fluid, 7., ——(mL)?0 =0 » 0= ClemLE + Cze_mLE
QCOT!U dfz
T, Pl
Q=0 = MG =T ;&\ Qeip =0 »

| . Boundary conditions:
@ AR T oo | e, * Finbase T=T, ® ®E=O =1
g : mL=1 {a very stumpy fin) E | | d@ 0
§ <« Fintip Qip =0 B a| =
5 oL ; £=1
é - mL=5 mi=2 =
& — fa I!:ng over mL=1 -

u'— deslg'red’:ﬂnl l

0 0.2 0.4 0.6 0.8 1.0 .

Dimensionless axial position, E=x/L @ — 9 — COSh(mL(l f))

0, coshmlL
If mL>3 at the tip very small temperature difference

14



Heat Transfer from Fin of Uniform Cross-Section — Adiabatic Tip

Dirmensionless heat flow into the fin, -

Q

hPka (T,—T)

-
a

| I

[ Heat flow cannot be

noticeably improved
by lengthening the
fin beyond L=3/m

1

0.5 ——
cosh mL

The temperature
excess at the tip
i¥ less than 1.4%,
beyond L=5%'m —

]
3

mL

If mL>3 at the tip very small temperature difference

And there is negligible residual heat flow in the fin.

1.0

Dimension less 1emperatune at tip, EE -1

6  cosh(mL(1—¢))

g, coshmlL
B AT - T)

Q = k4 dx x =0
0 kA T T.) doe
= — — p — low)—F

L dg|,_,

QL B sinhmlL

AT, —To) - ™MoshmL

Q = tanh milL

VKARP(Ty — T
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Heat Transfer from Fin of Uniform Cross-Section — Convection

2
Fluid, T, — —(mL)?6=0 ®» 0=Ce™s+ Cre ™t
Qcoms dg?
7, ”~
0, = Qf = a2l — i i—.— ALTU) - T.)
[ ", Boundary conditions:
* Finbase T=T, ® Og =1
1.
.. dO dT
- * Fintip d_f = hA.(T(L) —T,) = —kAca
&=1 x=
00
4 f 0 = cosh m(L — x) + (W/mk) sinh m(L — x)

» cosh mL + (#/mk) sinh mL
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Heat Transfer from Fin of Uniform Cross-Section — Convection

Fluid, 7.

0 = cosh m(L — x) + (W/mk) sinh m(L — x)

Qeonv cosh mL + (W/mk) sinh mL
T, Pl
0, = Qf — a4l —— i i—.— MAITL) - T.) dT de
[ Qp =Qp=—kAc—|  —kAc—~
| 9 x=0 x=0

sinh mL + (W/mk) cosh mL
cosh mL + (#/mk) sinh mL

Sanity Check 1. Qr= | h[T(x) — T.]dA,= | h6(x)dA,

Ay A

- if L o ML _ Uk _ Reond al o
Sanity Check 2:if— <« 1ie.— = 5 7 Reoms <« 1then— s 0

equivalent to an adiabatic tip.
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Heat Transfer from Fin of Uniform Cross-Section - Recap

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Tip Condition Temperature Fin Heat
Case x=1I) Distribution 6/, Transfer Rate Qf
A ggg:fiifion heat cosh m(L — x) + (W/mk) sinh m(L — x) sinh mL + (W/mk) cosh mL
(L) = —kd9/dx,_, cosh mL + (W mk) sinh mL cosh mL + (W mk) sinh mL
(3.70) (3.72)
B Adiabatic cosh m(L —
g/ ‘MH = Cosh(mL ! Mtanh mL
(3.75) (3.76)
C Prescribed temperature:
0(L) =06, (6,/6,) sinh mx + sinh m(L — x) (cosh mL — 6,/6,)
sinh mL sinh mL
(3.77) (3.78)
D Infinite fin (L — ):
0=T7T-T, nt = hP/KA,
0,=00=T7,—1T. M=\ hPkAS,
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Heat Transfer from Fin of Uniform Cross-Section (Example])

A very long rod 5 mm in diameter has one end maintained at 100°C. The surface of

the rod is exposed to ambient air at 25°C with a convection heat transfer coefficient
of 100 W/m* - K.

 We first consider a rod made of copper. What is its thermal conductivity?
» What tip boundary condition do we use when describing the rod as a “fin™?

- Assumptions:
Air I

/ 1. Steady-state conditions.
—\ ’// T =25°C . One-dimensional conduction along the rod.

'frh i h = 100 W/m2K

-k, L—c0, D =5 mm

Constant properties.

Negligible radiation exchange with surroundings.

Uniform heat transfer coefficient.

SoEw

Infinitely long rod.
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Heat Transfer from Fin of Uniform Cross-Section (Exampie)

A very long rod p mm in diameter has one end maintained at 100°C. The surface of .. —mLE
. ®d to ambient air at 25°C with a convection heat transfer coefficient ]ilﬂ-lﬂt B=ce
of 100 W/m*- K. mL—large

 We first consider a rod made of copper. What is its thermal conductivity?
» What tip boundary condition do we use when describing the rod as a “fin™?

- Assumptions:
Air I

/ 1. Steady-state conditions.

‘\ / T = 92K . One-dimensional conduction along the rod.
7, = 100°C L=25¢C ,

/ o h =100 W/m=K

-k, L—c0, D =5 mm

Constant properties.

Negligible radiation exchange with surroundings.

Uniform heat transfer coefficient.

SoEw

Infinitely long rod.

Properties: Table A.1, copperl‘[TZ (T, + T )2 = 62.5°C = 335 K]I k = 393
W/m - K. Table A.1, 2024 aluminum (335 K): k = 180 W/m - K. Table A.1, stain-
less steel, AISI 316 (335 K): £k = 14 W/m ' K. 20




Heat Transfer from Fin of Uniform Cross-Section (Exampie)

A very long rod 5 mm in diameter has one end maintained at 100°C. The surface of
the rod is exposed to ambient air at 25°C with a convection heat transfer coefficient

limit ® = ¢ "™LE

of 100 W/m? - K. mi—large

1. Determine the temperature distributions along rods constructed from pure cop-

per, 2024 aluminum alloy, and type AISI 316 stainless steel. What are the cor-

responding heat losses from the rods?

Air Assumptions:
~\ / 1. Steady-state conditions.
/ © = 25°C 2. One-dimensional conduction along the rod.
T, = 100°C T=25%C  , .
b h = 100 W/m*=K 3. Constant properties.
- 4 ¢ 4. Negligible radiation exchange with surroundings.
k. I—sc0. D=5 mm 5. Uniform heat transfer coefficient.

/ 6. Infinitely long rod.

Properties: Table A.1, copper [T = (T, + T,.)/2 = 62.5°C = 335K]: k = 393
W/m - K. Table A.1, 2024 aluminum (335 K): k = 180 W/m - K. Table A.1, stain-
less steel, AISI 316 (335 K): k = 14 W/m+ K. 21



Heat Transfer from Fin of Uniform Cross-Section (Exampie)

A very long rod 5 mm in diameter has one end maintained at 100°C. The surface of .. —mLE
the rod is exposed to ambient air at 25°C with a convection heat transfer coefficient limit ® =¢
of 100 W/m?- K. ml—large

1. Determine the temperature distributions along rods constructed from pure cop- B
per, 2024 aluminum alloy, and type AISI 316 stainless steel. What are the cor- 6 T = Tm -+ (Tb — Tm)g e

responding heat losses from the rods?

m = (hPIkA,)? = (4hfkD)"2

100

-316 S8

Air
A\ -
T, = 100°C /7;;=25C

/ =100 W/m?K
= g &

-k, L—c0, D =5 mm
S

Q =+ (kARP) (T - Tos)

T(°C)

0 50 100 150 200 250 300
x (mm)
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This Lecture

O Heat transfer from extended surfaces (Fins)

d Boundary Conditions and Temperature Profiles

Learning Objectives:
Calculate the temperature profile in fins with constant cross-section

23



Next lecture

Learning Objectives:

O Fins Performance
O Array of Fins

O Calculate the performance of a fin-based system

24



Supplementary Slides
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Heat Transfer from Fin of Uniform Cross-Section (Example])

A 2 cm diameter aluminum rod with k = 205 W/m-K, 8 cm in length,
protrudes from a 150°C wall. Air at 26°C flows by it, and i = 120
W/m?K. Determine whether or not tip conduction is important in this
problem. To do this, make the very crude assumption that kb = k.
Then compare the tip temperatures as calculated with and without
considering heat transfer from the tip.

_ [mPLZ [ 120(0.08)?
™ML =\T3a = 2050001/ - 868
AL 120(0.08)
kK = 205

SOLUTION.

Biy; = = 0.0468

Therefore, eqn. (4.48) becomes

cosh0 + (0.0468/0.8656) sinh0

cosh(0.8656) + (0.0468/0.8656) sinh(0.8656)

1
~ 1.3986 +0.0529 0-6886

BE=1)=0y =

so the exact tip temperature is

Tip = T +0.6886(T5 — Tw)
= 26 + 0.6886(150 — 26) = 111.43°C

_ coshmlL(l - §) + (Bigy/ml)sinhmI(l - ¥)
B coshml + (Bl /mL)sinhml

0]

® - coshmL(l —€)

coshmlL on the other hand, gives
Oip = L 0.7150
T 13986

so the approximate tip temperature is
Thip = 26 4+ 0.715(150 — 26) = 114.66°C

Thus the insulated-tip approximationis adequate for the computation
in this case. |
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Heat Transfer from Generalized Fin - h>>

Let’s consider a fin with non-uniform
cross-section for which b>>thickness:

A(x) = 28(%/; )b

a [A(x)

ix | x4 1e=0

AT — Tm)] RP
dx

d [25 (5) , d(Td;Tm)] ) EEB(T_ =0

4?0 do  RL
g2 T dE - ko
L_",_J

a kind
of (snL)?

@=20

This second-order linear differential equation is difficult to solve because
ithas a variable coefficient. Its solution is expressible in Bessel functions:

10(2«!th;k5)
T (thZ/ka)

) (4.62)
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Heat Transfer from Generalized Fin - h>>

Let’s consider a fin with non-uniform
cross-section for which b>>thickness:

A(x) = b26(*/))

The fin efficiency, n'%

100 T T T T T 7 T
/"
-~
60— D —
40— o - —
B — Fig.4.12
20— : -
5] A R R R A S N R B B
0 0.5 1.0 15 2.0 25 3.0

mLy/ L/P =+ hL3/kA

Comparison of four straight fins: constant thickness,
triangular, parabolic, and hyperbolic. {m is based on
A shown in black.}

28



Heat Transfer from Generalized Fin - h>>

100 T T T 1 T 7 T 71

/"
2 80— P —
: —
:: —
e : 5
s B0 —
2
£ | _
c
= 40— —
£
|-

e e
— — Fig.4.12
20— : -

Qr Qf i |

Ny = = ol
4 Q fmax hAf (TO — oo) 0 0.5 1.0 1.5 20 25 3.0
(T T ) 1 mLy/ L/P =+ hL3/kA
Rf — 0 o/ Comparison of four straight fins: constant thickness,

— hA triangular, parabolic, and hyperbolic. {m is based on
Qf fnf A shown in black.}



In. = Iy + 2
L. =L+1§2
Ay =Lt

Although the ﬁnlthickness 1s uniform (7 is independent of 7, the cross—sectignal area,
A, = 2mrt, varies with r. Replacing x by r in Equation 3.61 and expressing the sur-
face area as A, = 27 (r’ — r}), the general form of the fin equation reduces to

@*T 14T _ 2
drt Ldr kt

or, with i = 20 ktand 6= T— T,

(T—T.)=0

0L 2 M e =0

The foregoing expression is a modified Bessel equation of order zero, and its
general solution is of the form

0(r) = Cihy(mr) + K (mr)

where [, and K, are modified, zero-order Bessel functions of the first and second

30
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