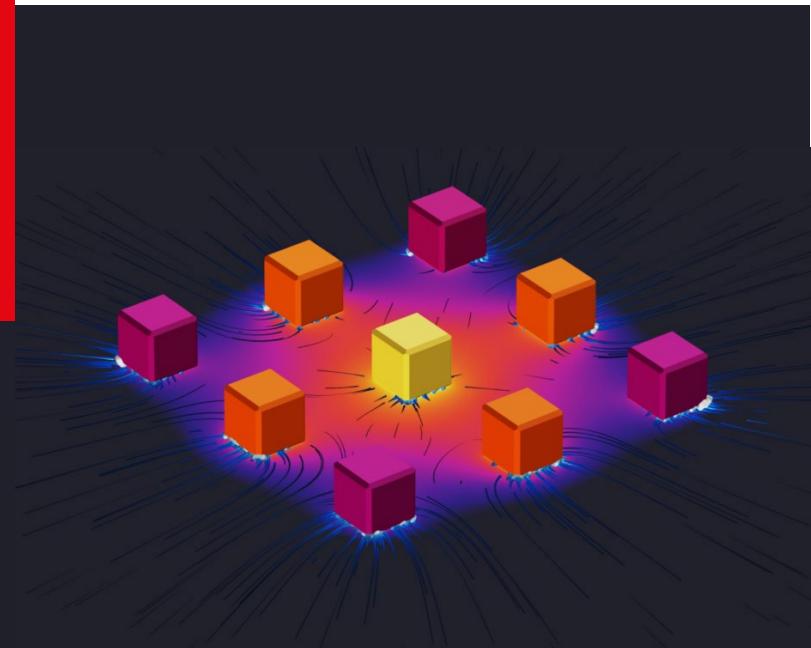


Heat and Mass Transfer

ME-341

Instructor: Giulia Tagliabue



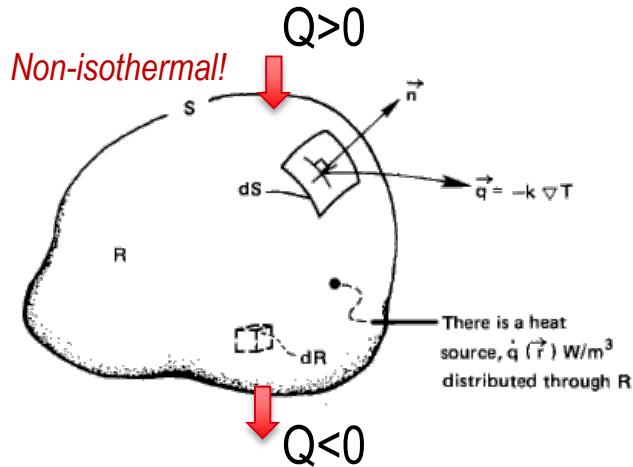
Until Now

- Heat Diffusion and Boundary Conditions (W1L2-3)
- Heat Diffusion Equation without Heat sources (W1L3-4; W2L1)
- Thermal Resistance & Overall Heat Transfer Coefficient
- Bi number
- Thermal Circuits
- Heat Diffusion WITH Heat Sources (W2L2-3)

Learning Objectives:

- Solve 1D&2D steady state heat transfer problems with/without heat sources

Heat Diffusion Equation – 3D



$$1^{\text{st}} \text{ law: } 0 = Q - W + \dot{E}_{gen} - mc \frac{dT}{dt}$$

$$\text{Fourier law: } 0 = \int_V \left(\nabla \cdot (k \nabla T) + \dot{q} - \rho c \frac{\partial T}{\partial t} \right) dR$$

$$\nabla^2 T + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Assumption 1: incompressible medium

Assumption 2: medium at rest (no convection)

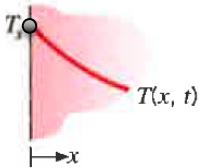
Assumption 3: isotropic material

Assumption 4: k is independent of T

$$\alpha = \frac{k}{\rho c} = \text{thermal diffusivity } \left[\frac{m^2}{s} \right]$$

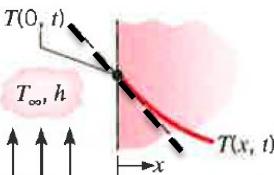
Heat Diffusion Equation – Boundary Conditions

B.C. of the 1st kind (*Dirichlet condition*):
constant surface temperature



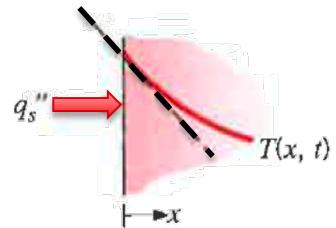
$$T(\vec{x})_{\vec{r}=\vec{r}_i} = T_w$$

B.C. of the 3rd kind (*Robin condition*):
convection surface condition

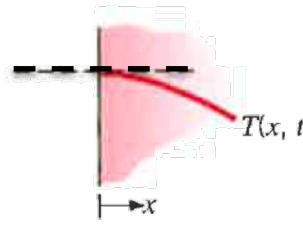


$$-k \left(\frac{\partial T}{\partial x} \right)_{x_i} = h(T(x_i, t) - T_\infty)$$

B.C. of the 2nd kind (*Neumann condition*):
known heat flux



$$-k \left(\frac{\partial T}{\partial x} \right)_{x=x_i} = q_w''$$

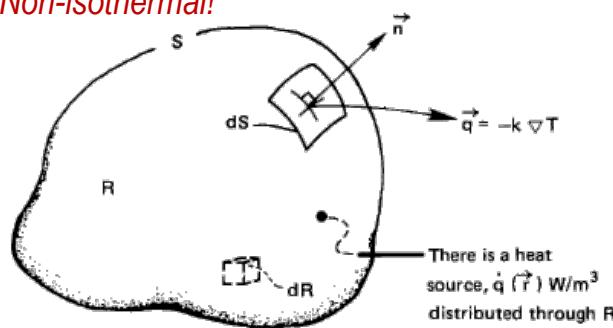


$$-k \left(\frac{\partial T}{\partial x} \right)_{x=x_i} = 0$$

(adiabatic/symmetry)

Heat Diffusion Equation – 3D

Non-isothermal!



Assumption 1: incompressible medium

Assumption 2: medium at rest (no convection)

Assumption 3: isotropic material

Assumption 4: k is independent of T

$$\nabla^2 T + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

To solve the equation we need:

- Initial condition: $T(t = 0) = T_i(x, y, z)$
- Boundary conditions

Assumption 5: steady-state ($\partial/\partial t = 0$)

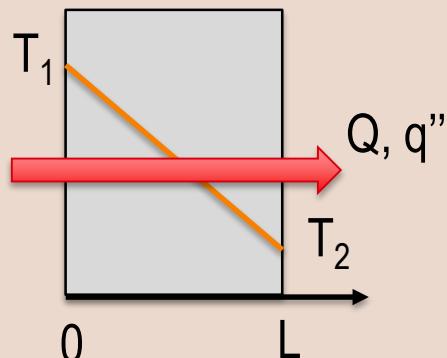
Assumption 6: no heat sources ($\dot{q} = 0$)

$$\nabla^2 T = 0$$

Heat Diffusion Equation – 1D, steady-state, no-heat sources, Dirichlet's BC

Planar Wall

$$T(x) = \frac{T_2 - T_1}{L} x + T_1$$

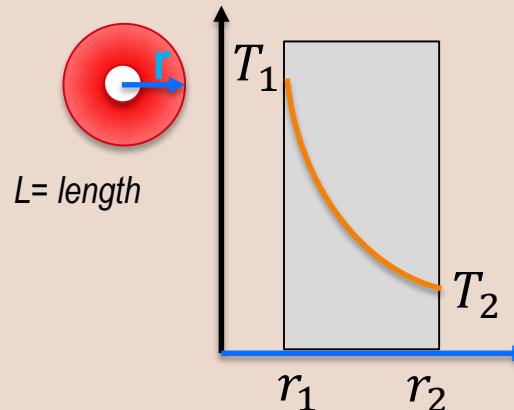


$$Q = -kA \frac{dT}{dx} = -\frac{kA}{L} (T_2 - T_1) = \text{const}$$

$$q'' = Q/A = \text{const}$$

Radial System

$$T(r) = \frac{T_1 - T_2}{\ln(r_1/r_2)} \ln\left(\frac{r}{r_2}\right) + T_2$$

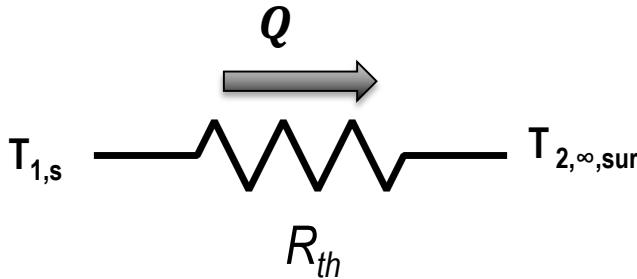


$$Q = -kA \frac{dT}{dr} = -\frac{k(2\pi r)}{\ln(r_1/r_2)} \frac{(T_2 - T_1)}{r} = \text{const}$$

$$q = Q/(2\pi r l) = q''(r) \neq \text{const}$$

Thermal Resistance and Overall Heat Transfer Coefficient

$$Q = \frac{(T_{1,s} - T_{2,\infty, \text{sur}})}{R_{th}}$$



It is valid ONLY if $\dot{q} = 0$
(no heat sources)

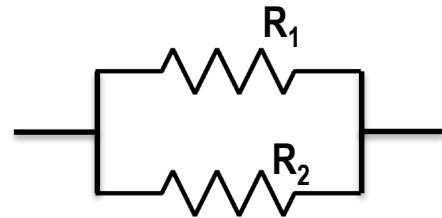
	Planar Wall	Radial System
Conduction:	$\frac{L}{kA}$	$\frac{\ln(r_2/r_1)}{2\pi Lk}$
Convection:	$\frac{1}{hA}$	$\frac{1}{h2\pi rL}$
Radiation:	$\frac{1}{h_{rad}A}$	$\frac{1}{h_{rad}2\pi rL}$

$$R''_{th} = R_{th}A \quad R'_{th,cyl} = R_{th,cyl}L$$

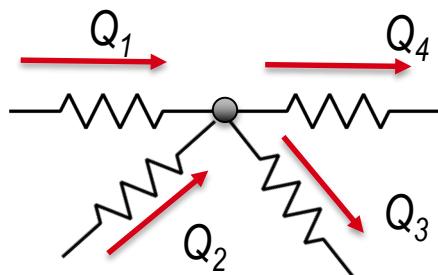
Overall heat transfer coefficient: $U = \frac{1}{R_{th}A}$

Thermal Circuits

$$R_{series} = R_1 + R_2 + \dots = \sum R_i$$



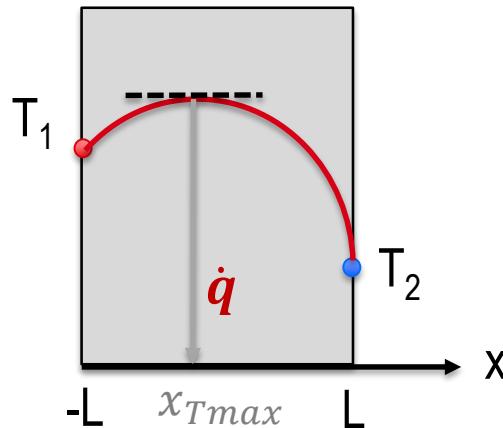
$$\frac{1}{R_{parallel}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots = \sum \frac{1}{R_i}$$



Kirchoff's 1st Law:

$$\sum Q_i = 0 \quad \begin{array}{l} Q_i > 0 \text{ enters} \\ Q_i < 0 \text{ exits} \end{array}$$

Heat Diffusion Equation – 1D, steady-state, WITH heat sources



$$T(x) = \frac{\dot{q}}{2k} L^2 \left(1 - \frac{x^2}{L^2} \right) + \frac{T_2 - T_1}{2} \frac{x}{L} + \frac{T_1 + T_2}{2}$$

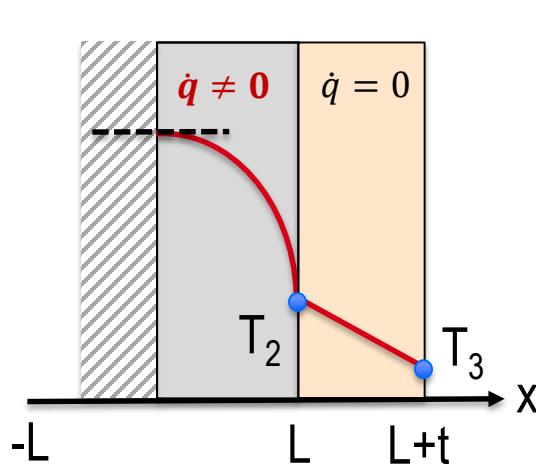
$$Q = -kA \frac{\partial T}{\partial x} = -kA \left(-\frac{\dot{q}}{k} x + \frac{T_2 - T_1}{2L} \right) = Q(x)$$

The heat transfer rate is not constant!
It depends on the position along x.

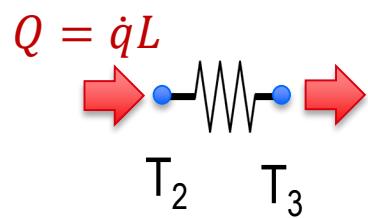
$$Q(x) \neq \frac{\Delta T}{R_{th}}$$

The electrical analogy fails!
We cannot use the thermal resistance concept in layers with heat sources.

Heat Diffusion Equation – 1D, steady-state, WITH heat sources



$$T(x) = \frac{\dot{q}}{2k} L^2 \left(1 - \frac{x^2}{L^2} \right) + \frac{T_2 - T_1}{2} \frac{x}{L} + \frac{T_1 + T_2}{2}$$



We can draw an equivalent electrical circuit only for the layers WITHOUT heat sources. Layers WITH heat sources inject into the equivalent circuit a certain Q

This Week

- Heat transfer from extended surfaces (Fins)
- Fins Performance
- Array of Fins

Learning Objectives:

- Understand the concept of fins
- Calculate the temperature profile in fins with constant cross-section
- Calculate the performance of a fin-based system

This Lecture

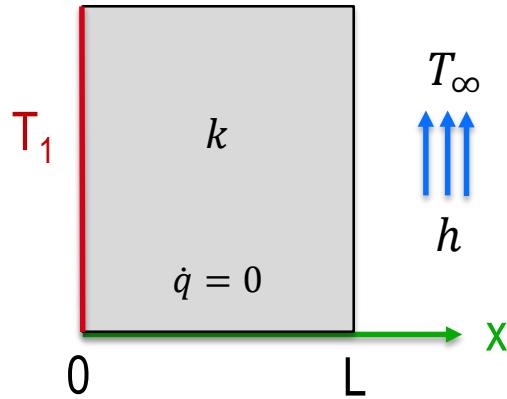
- Heat transfer from extended surfaces (Fins)

Learning Objectives:

- Understand the concept of fins

Heat Transfer from Extended Surfaces

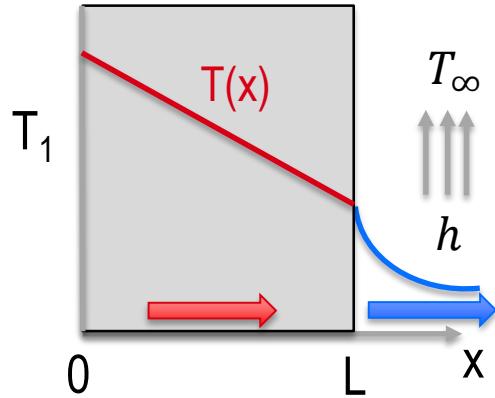
Case 1



- Identify the thermal resistances
- Indicate with an arrow the direction of the conductive heat transfer rate and the convective heat transfer rate
- Draw the electrical circuit equivalent to each problem
- Sketch $T(x)$ in the solid

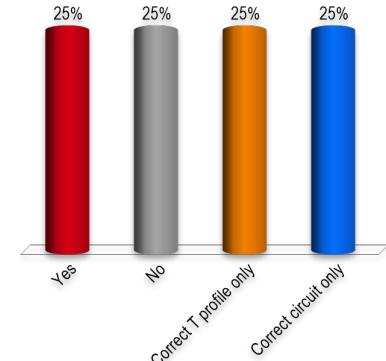
Heat Transfer from Extended Surfaces

Case 1



Did you draw this thermal circuit and T profile?

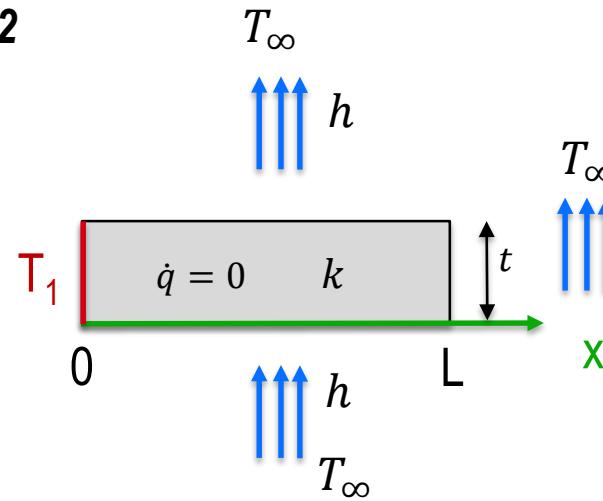
- A. Yes
- B. No
- C. Correct T profile only
- D. Correct circuit only



Heat Transfer from Extended Surfaces

- Identify the thermal resistances
- Indicate with an arrow the direction of the conductive heat transfer rate and the convective heat transfer rate
- Draw the electrical circuit equivalent to each problem
- Sketch $T(x)$ in the solid

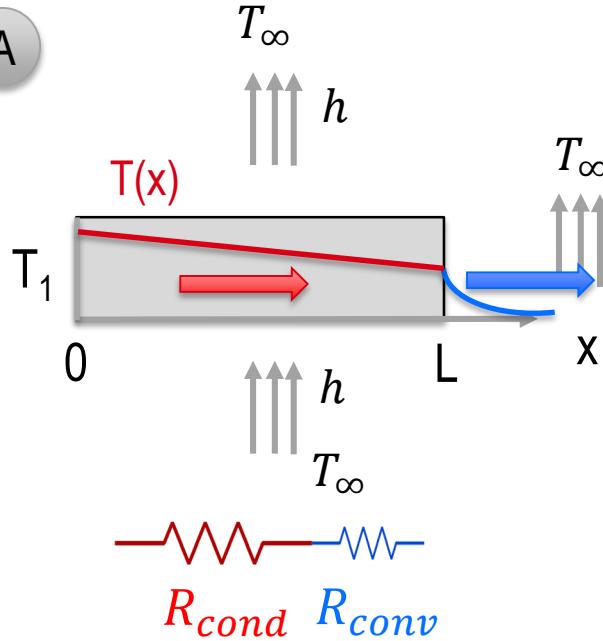
Case 2



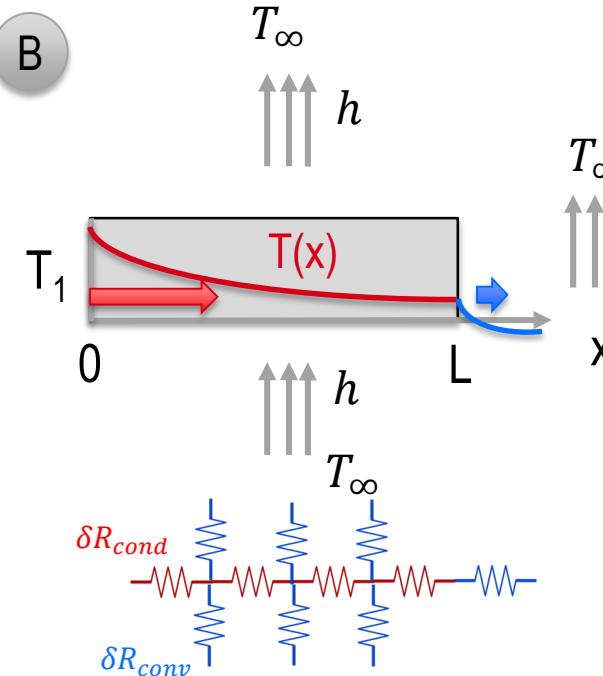
Hypothesis: the thickness t of the solid is so small or the thermal conductivity k so high that the temperature is uniform along the y -direction, i.e. $T = T(x)$

Heat Transfer from Extended Surfaces

A

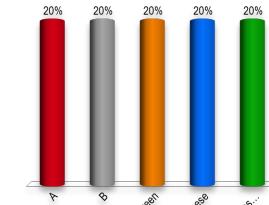


B



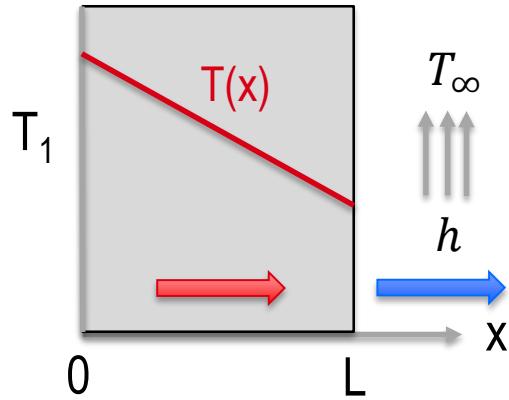
What electrical circuit and T profile did you draw?

- A. A
- B. B
- C. Something in between
- D. None of these
- E. I could not draw these quantities

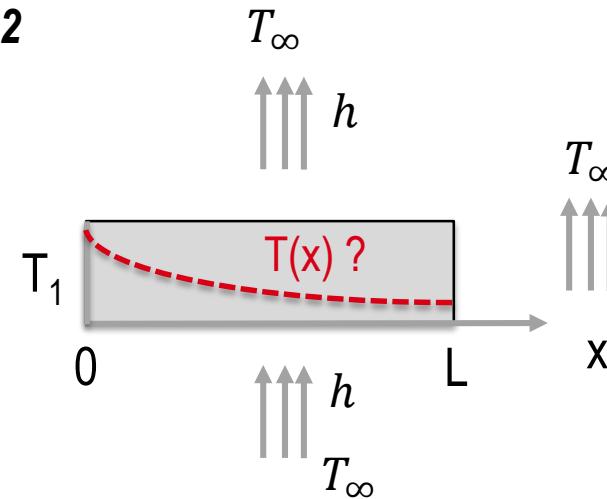
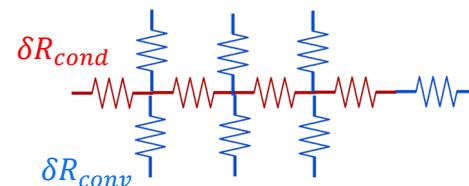


Heat Transfer from Extended Surfaces

Case 1

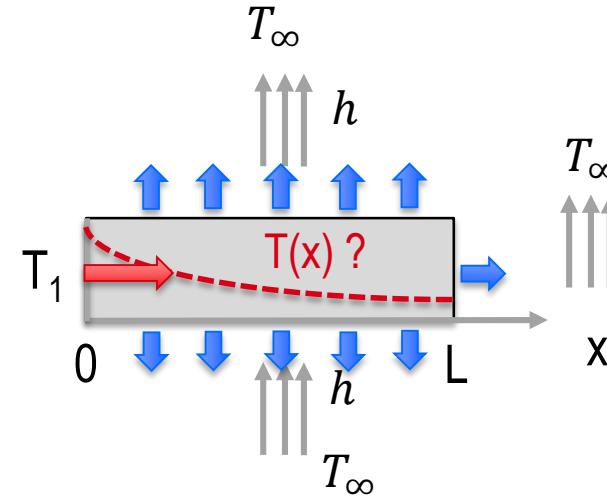


Case 2

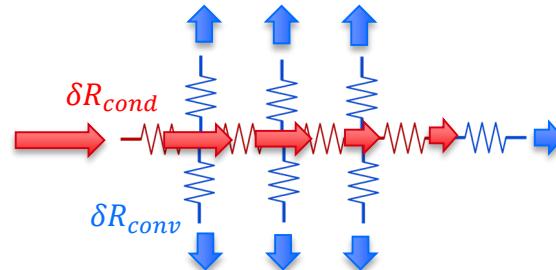


Heat Transfer from Extended Surfaces

Based on our hypothesis, the temperature of the solid is uniform along the y-direction hence at any position along x, the surface and the bulk have the same value, i.e. $T = T(x) = T_s(x)$



As we move along the solid, part of the heat is removed by convection. Hence the heat transfer rate by conduction along x decreases.

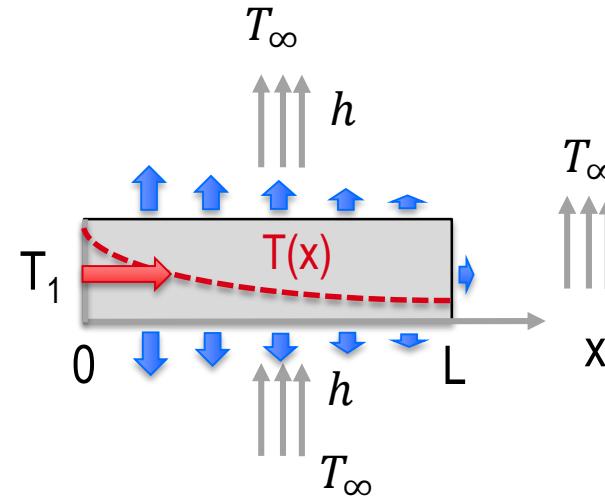
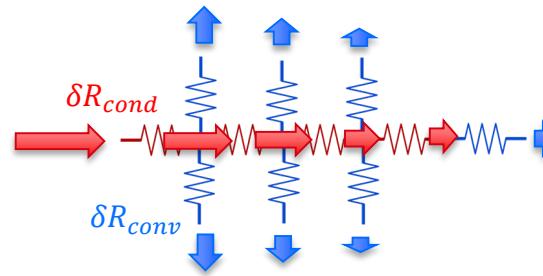


Heat Transfer from Extended Surfaces

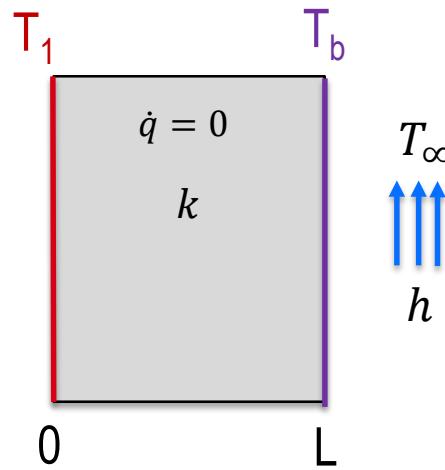
$$q'' = \bar{h} (T_s(x) - T_\infty) \propto T_s(x) - T_\infty$$

As the temperature of the solid decreases and gets more similar to the fluid temperature, T_∞ , the heat flux by convection decreases

As we move along the solid, part of the heat is removed by convection. Hence the heat transfer rate by conduction along x decreases.



Heat Transfer from Extended Surfaces



Verify that the total heat transfer rate Q_x is lower than the required one.

What can you do to solve the problem?

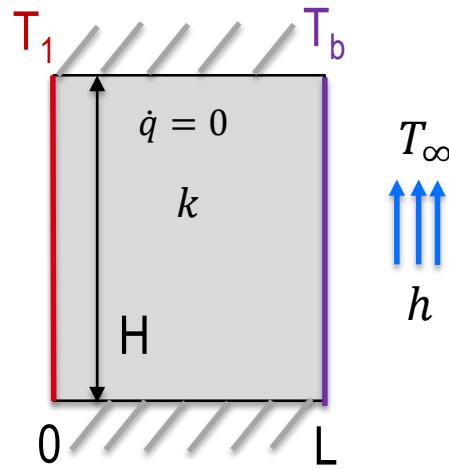
Note that the physical dimensions (H, W, L) and the material (k) cannot be changed because of structural reasons.

$$\begin{aligned}T_1 &= 600\text{C} & T_\infty &= 5\text{C} \\h &= 50\text{W/m}^2\text{K} & k &= 0.5\text{W/mK} \\H &= 2\text{m} & W &= 1\text{m} & L &= 0.5\text{m}\end{aligned}$$

$$Q_x = 1167\text{W} < Q_{\text{required}} = 1500\text{W}$$

bungee jumping
running
hiking
ice fishing
jogging
video games
weight lifting
swimming
kayaking
rock climbing

Heat Transfer from Extended Surfaces



$$Q_x = \frac{T_1 - T_\infty}{R_{cond} + R_{conv}}$$

In many technical problems, T_1 and R_{cond} are fixed by the operating conditions and the mechanical requirements of a structure. Then the heat transfer rate is primarily controlled by convection. If we need to increase Q_x then we can:

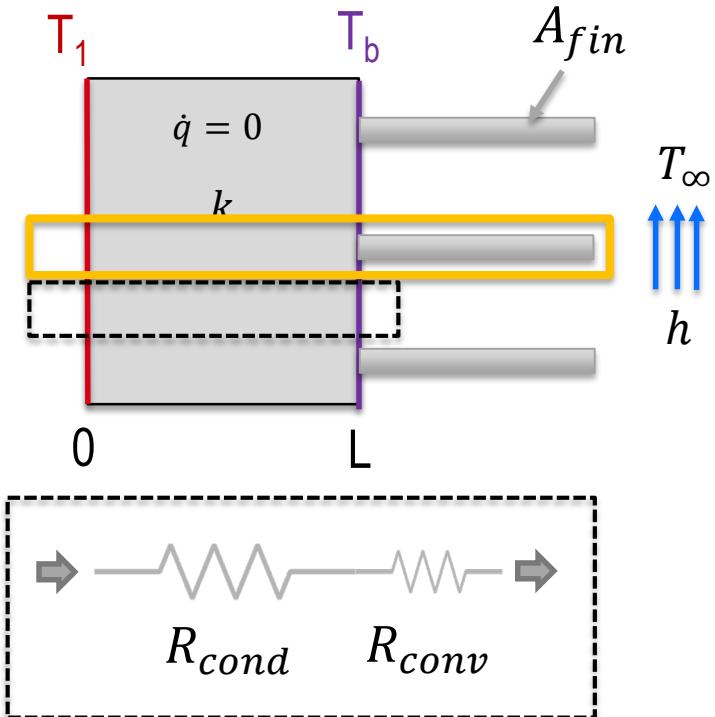
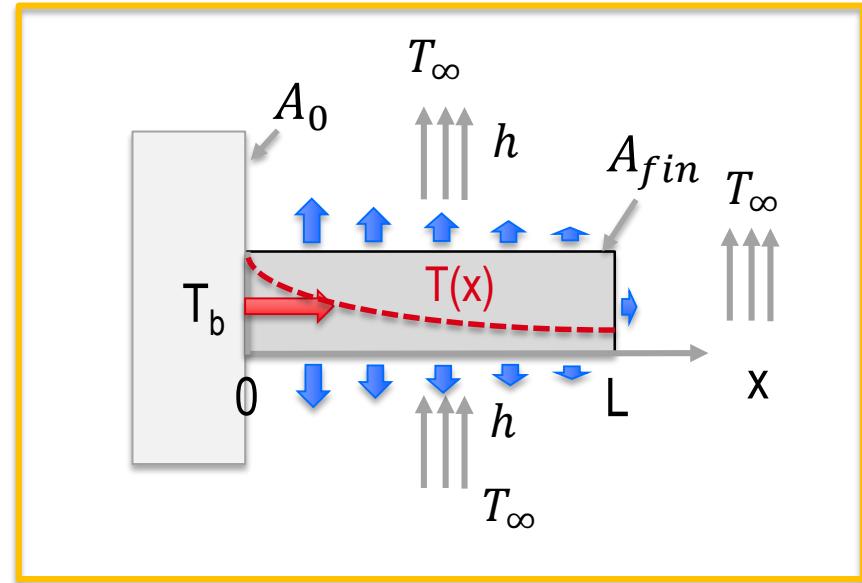
- (i) decrease T_∞ ;
- (ii) decrease $R_{conv} = 1/hA$ by increasing h or A .

Decreasing T_∞ and increasing h can have a high energy cost so we increase A by adding a fin.

$$R_{cond} = \frac{L}{kA}$$

$$R_{conv} = \frac{1}{hA}$$

Heat Transfer from Extended Surfaces



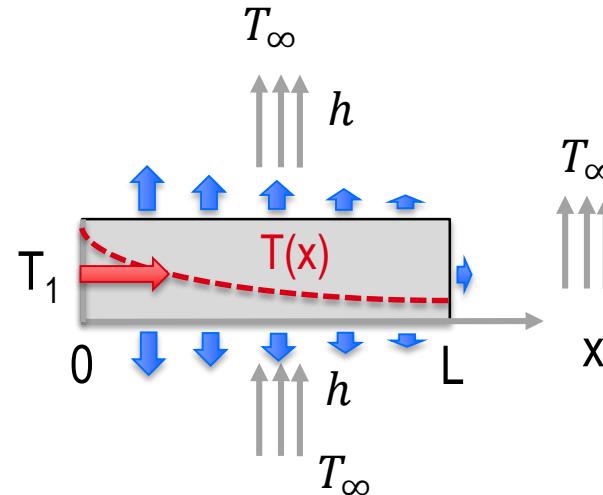
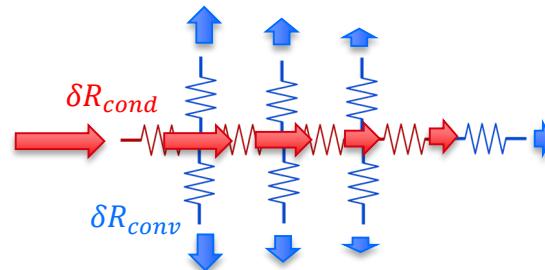
Heat Transfer from Extended Surfaces

$$q'' = \bar{h} (T_s(x) - T_\infty) \propto T_s(x) - T_\infty$$

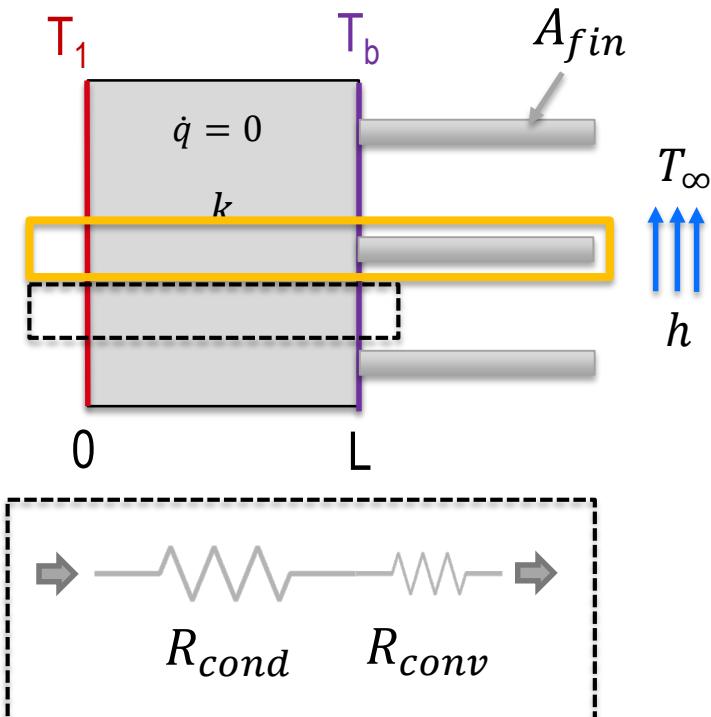
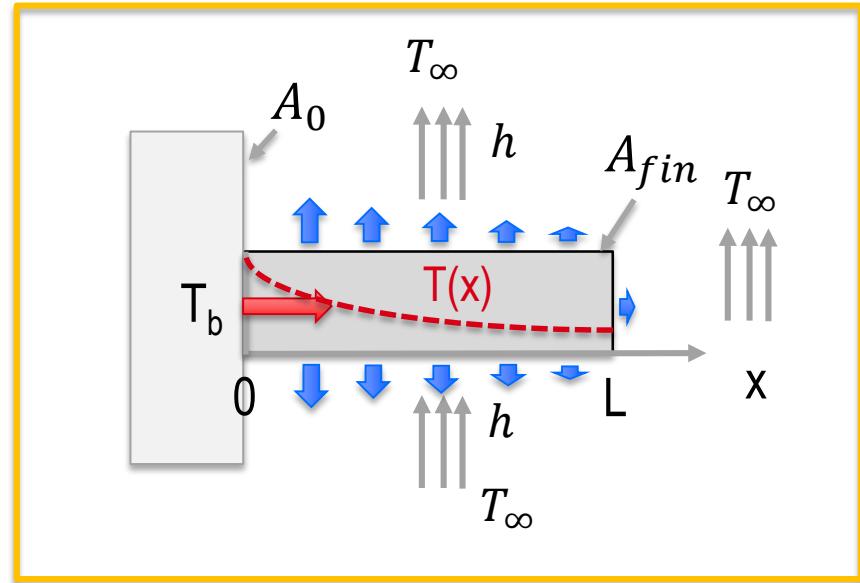
As the temperature of the solid decreases and gets more similar to the fluid temperature, the heat transfer rate by convection decreases

$$Q = \bar{h} A (T_s - T_\infty) \propto A$$

Increasing the surface area, the total heat transfer rate increases

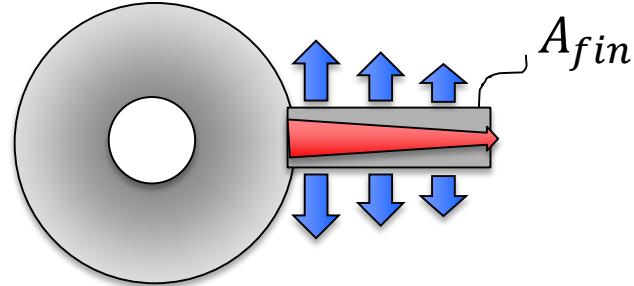
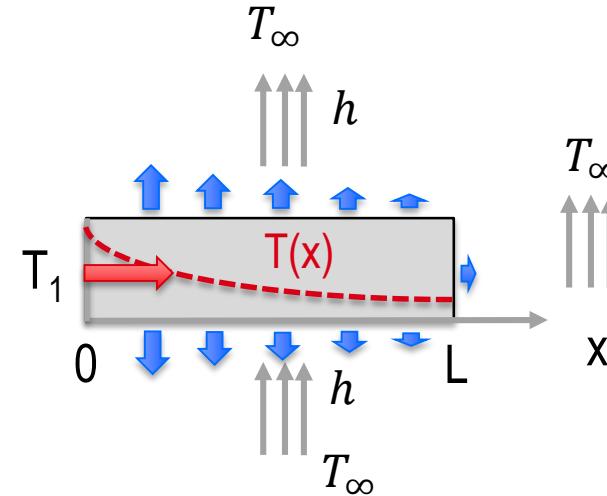
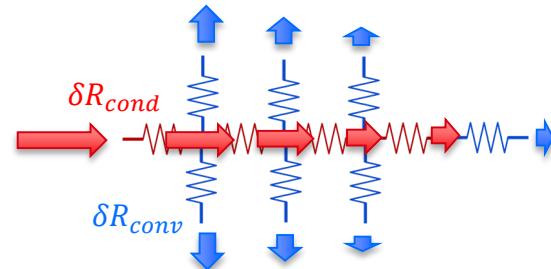


Heat Transfer from Extended Surfaces



The fin has a more complex behavior than the simple planar system because heat transfer by conduction and convection occur along different directions and are interdependent. Hence a simple equivalent electrical circuit cannot be immediately identified.

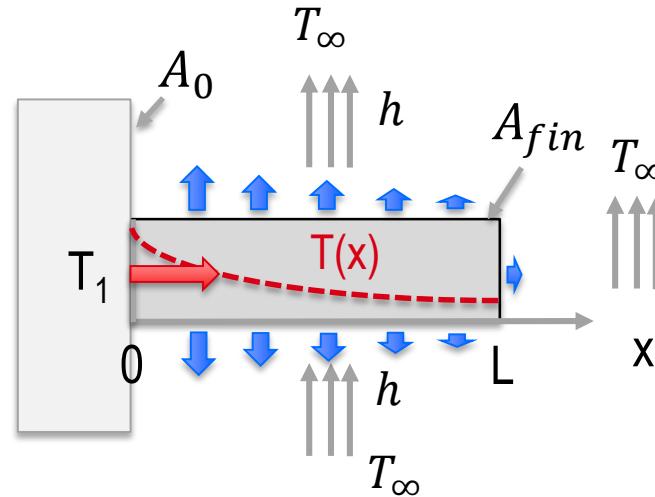
Heat Transfer from Extended Surfaces



Heat Transfer from Extended Surfaces

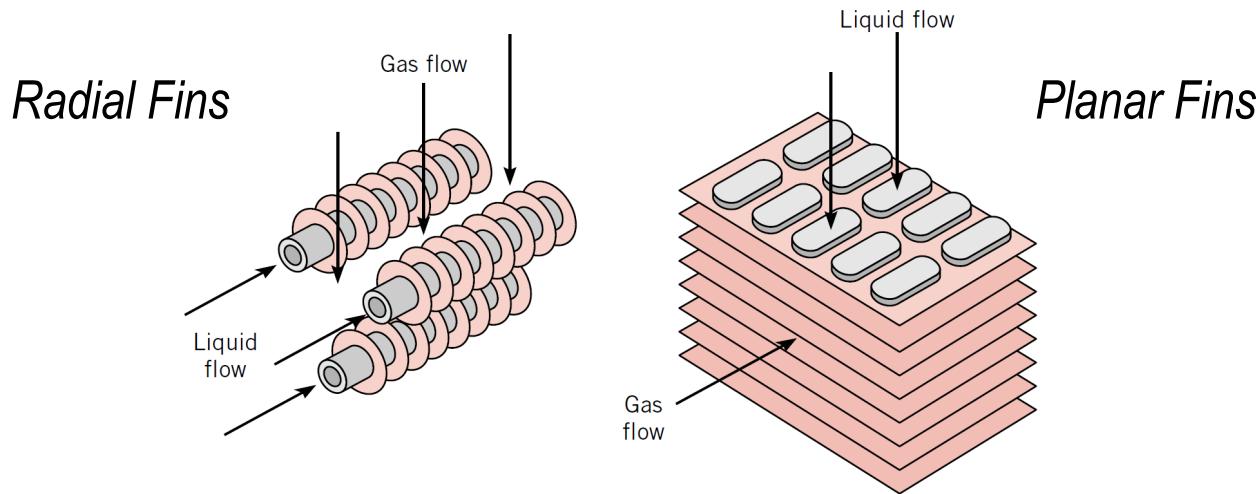
$$q'' = \bar{h} (T_s(x) - T_\infty) \propto T_s(x) - T_\infty$$

$$Q = \bar{h} A (T_s - T_\infty) \propto A = A_0 + A_{fin}$$



It is necessary to **optimize the fin** in order to maximize the advantage of adding extra surface area (A_{fin}) without wasting material (beyond a certain length L , the temperature difference will be so small that the heat transfer becomes negligible)

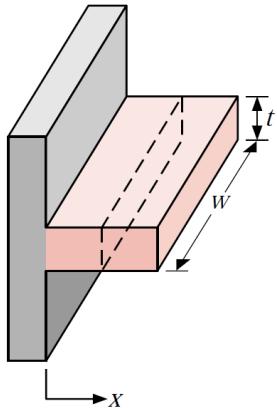
Heat Transfer from Extended Surfaces



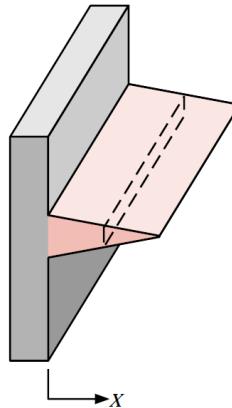
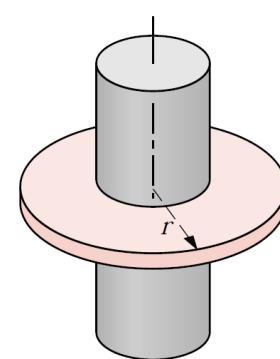
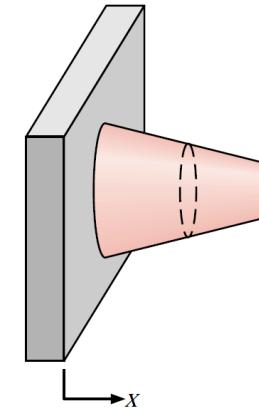
It is necessary to **optimize the fin** in order to maximize the advantage of adding extra surface area (A_{fin}) without wasting material (beyond a certain length L , the temperature difference will be so small that the heat transfer becomes negligible)

Heat Transfer from Extended Surfaces

Uniform Cross-Section



Non-uniform Cross-Section



What is the temperature profile along the fin, $T = T(x)$?

This Lecture

Heat transfer from extended surfaces (Fins)

Learning Objectives:

Understand the concept of fins

Next lecture

- Heat transfer from extended surfaces (Fins)
 - Boundary Conditions and Temperature Profiles

Learning Objectives:

- Calculate the temperature profile in fins with constant cross-section