Heat and Mass Transfer
ME-341

Instructor: Giulia Tagliabue

Spring Semester




g 1D steady-state conduction with heat sources

Learning Objectives:
O Solve 1D steady state heat conduction problems in different

geometries, with heat sources



Heat Diffusion Equation - 1D, steady-state, WITH heat sources
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The heat transfer rate is not constant!
It depends on the position along x.

AT

Q(x) iR_th

The electrical analogy fails!
We cannot use the thermal resistance concept in layers with heat sources.




Heat Diffusion Equation - 1D, steady-state, WITH heat sources
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At the centerline of the wall effectively the heat flux is zero, satisfying the symmetry of the problem.
This is equivalent to having a perfectly insulated boundary at x=0.

If T, = T, then the T profile must be symmetric and x 1,4, = 0
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Heat Diffusion Equation - 1D, steady-state, WITH heat sources
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This Lecture

O 2D Conduction & Shape Factor

o Exercises

Learning Objectives:
O Approach simple 2D conduction problems



2D Gonduction - Method of Separation of Variables
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sShape Factor for known 2D and 3D Heat Diffusion Problems

For numerous geometries an analytical solution has already been found and can be

easily retrieved using a Shape Factor, S
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sShape Factor for known 2D and 3D Heat Diffusion Problems

For numerous geometries an analytical solution has already been found and can be
easily retrieved using a Shape Factor, S

TABLE 4.1 Conduetion -a'll:l|u- factors and dimensionless conduction heat rates for selected
systems.

(a) Shape factors g = SK(T, — T,)]

System Schematic Restrictions Shape Factor
Case 1 C s
Isolhe}'l})a] slphere blurlecl in . Z 2= D2 D)
a semi-infinite medium __a_ T
A D — L4z
Case 2 L
Horizontal isothermal "——L L=D %#
cylinder of length L buried = cosh™ (22D)
in a semi-infinite medium l Y 1) L=D ool
; b 2>3D12 In (42D)
Case 3 T
seminfryte medium L>D 2wl
i In (42/D)
Tl
— Dl
Case 4
Conduction between t h _®"D1 =
onduction between two 9
cylinders of length L in Pa "(R—Tz L=D, D, : _911'1. _
infinite medium |__ w—-| L>w aw —IF—IE )

cosh =50,



This Lecture

Learning Objectives:

@ 2D Conduction & Shape Factor

o Exercises

Approach simple 2D conduction problems
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B. The wall of material A has Assumption 1: incompressible medium (solid)
uniform heat generation g = 1.5 X 10¢ Wim®, ka =75 W/m-K, and thickness L, = Assumption 2: medium at rest (no convection)
50 mm. The wall material B has no generation with ky = 150 W/m - K and thickness Assumption 3: isotropic material

Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface M{M: kindependentof T

of material B is cooled by a water stream with T, = 30°C and 2 = 1000 W/m? - K. Assumption 5: steady state

state conditions.

1| Sketch the temperature distribution that exists in the composite under steady-

2. Determine the temperature 7T}, of the insulated surface and the temperature T, of

the cooled surface.

T

-~

Insulation —=-

ga = 1.5 x 105 Wim*—+

ky = 75 W/im+K

I
i
'
o |
3 |
B [
.‘_

Tl TZ
7 |, u} T, = 30°C

: “T s h = 1000 W/m?-K
e 1

| |

® ' : Water
|
| ——f— & = 150 WimK
gg=0

Ly = 50 mm —'PT—:'I
g =

—=X 20 mm
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(a) Parabolic in material A.

(b) Zero slope at insulated boundary.

(¢) Linear in material B.

(d) Slope change = kg/k, = 2 at interface.

The temperature distribution in the water is characterized by
(e) Large gradients near the surface.

*

\ T2| | | ﬁATsolid
kl ATsotid/ fruia
_ T.

0 L
(Tl - TZ) _ Rth,cond = Bij
(TZ - 00) Rth,conv B
e _Ln o 1
cond, B kB cony h
0.02m < 1

0 Ly Ly+Lg
5

150 W/m K — 1000 W/m? - K
Reona.s/ Reony = Bi = 0.13
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B. The wall of material A has Assumption 1: incompressible medium (solid)
uniform heat generation g = 1.5 X 10¢ Wim®, ka =75 W/m-K, and thickness L, = Assumption 2: medium at rest (no convection)
50 mm. The wall material B has no generation with ky = 150 W/m - K and thickness Assumption 3: isotropic material

Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface M{M: kindependentof T

of material B is cooled by a water stream with T, = 30°C and 2 = 1000 W/m? - K. Assumption 5: steady state

1. Sketch the temperature distribution that exists in the composite under steady-

state conditions.

the cooled surface.

2.|Determine the temperature 7}, of the insulated surface and the temperature T, of

T
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B, The wall of material A has
uniform heat generation g = 1.5 X 10° W/m’, k, = 75 W/m - K, and thickness L, =
50 mm. The wall material B has no generation with k3 = 150 W/m - K and thickness
Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,, = 30°C and 2 = 1000 W/m* - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature 7T}, of the insulated surface and the temperature T, of
the cooled surface.

To 5
A l | u} T, =30°C
=i # " h=1000 W/m*K
Insulation —-: —-—%—-* I T T T
6 | |
gn= 1.5 x 10° Wim* —ft—— | :
ky = 75 W/imK ' .
E m : @ | : Water
|
3 | ——f—# = 150 wim-K
= L, =50 mm *l‘ﬁﬂ 98 =0
o=

X 20 mm

Assumption 1: incompressible medium (solid)
Assumption 2: medium at rest (no convection)
Assumption 3: isotropic material
Assumption 4: k independent of T
Assumption 5: steady state

(a) Parabolic in material A.

(b) Zero slope at insulated boundary.

(c) Linear in material B.

(d) Slope change = kg/k, = 2 at interface.

The temperature distribution in the water is characterized by
(e) Large gradients near the surface.
Rn _ LB RH . 1
cond, B k conv E
B
0.02 m < 1

150 W/m « K — 1000 W/m? - K
Rgond,B/Rgonv = Bi=0.13
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B. The wall of material A has
uniform heat generation g = 1.5 X 10® W/m?®, k, = 75 W/m + K, and thickness L, =
50 mm. The wall material B has no generation with kz = 150 W/m - K and thickness
Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,, = 30°C and 2 = 1000 W/m* - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature 7}, of the insulated surface and the temperature T, of
the cooled surface.

Ty T I,
1 Ly meae
i T h = 1000 W/m=-K
Insulation —~: q"—«%- T T T
gn = 1.5 x 105 Wim* —+{b——

k, =75 WimK
- m Water

[ ————=-a—

50 W/m-K

e X~
T @
I

1

Ly=50 mm —hr——» 0
g =

— 20 mm

Assumption 1: incompressible medium (solid)
Assumption 2: medium at rest (no convection)
Assumption 3: isotropic material
Assumption 4: k independent of T
Assumption 5: steady state

(a) Parabolic in material A.

(b) Zero slope at insulated boundary.

(c) Linear in material B.

(d) Slope change = kg/k, = 2 at interface.

The temperature distribution in the water is characterized by
(e) Large gradients near the surface.

D o
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B, The wall of material A has
uniform heat generation g = 1.5 X 10° W/m’, k, = 75 W/m - K, and thickness L, =
50 mm. The wall material B has no generation with k3 = 150 W/m - K and thickness
Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,, = 30°C and 2 = 1000 W/m* - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature 7T}, of the insulated surface and the temperature T, of
the cooled surface.

T T, T
)
: I I IJ Tm - 300C
=i ¥ | h=1000W/m*K
Insulation —~: q" o l T T T
gn = 1.5 x 10° W/m3—{l— 1
ky =75 WimK ) l (8) I
: Water
i olo]
1 I_ kg = 150 W/mK
le— L, = 50 mm —'|<—’{ 98 =0

=X 20 mm

Assumption 1: incompressible medium (solid)
Assumption 2: medium at rest (no convection)
Assumption 3: isotropic material

Assumption 4: k independent of T
Assumption 5: steady state

" . .
=h(T,—Ts) qLa=g¢q
QLA
,=T, + —
h
6 3
7, = 30°C + 1.5 X 10° W/m 1>< 0.05m _ 105°C
1000 W/m* - K
. I, T, 1.
g" —— ANA AN

RcunLL B R,

cony
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B, The wall of material A has
uniform heat generation g = 1.5 X 10° W/m’, k, = 75 W/m - K, and thickness L, =
50 mm. The wall material B has no generation with k3 = 150 W/m - K and thickness
Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,, = 30°C and 2 = 1000 W/m* - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature 7T}, of the insulated surface and the temperature T, of
the cooled surface.

To 7l'| ¥

j l h= 1800 W/m?2-K
i

-~

[__;-1

Insulation —~ q' > i
gp = 1.5 x 10° W/im* —} 1 I
ky = 75 W/m+K , I
. A ® ! | Water
‘"
1 I_ kg = 150 W/mK
le— L, = 50 mm —'|<—’{ 98 =0

X 20 mm

Assumption 1: incompressible medium (solid)

Assumption 2: medium at rest (no convection)
Assumption 3: isotropic material
Assumption 4: k independent of T
Assumption 5: steady state

T . T + (R rmnd. R + R:!nnu) qH

n LB " 1
R = — ==
cond, B kB Rcunv h
0.02 m 1
150W/m+K 1000 W/m?+K

R;ond,B = 7. SRzonv
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B, The wall of material A has
uniform heat generation g = 1.5 X 10° W/m’, k, = 75 W/m - K, and thickness L, =
50 mm. The wall material B has no generation with k3 = 150 W/m - K and thickness
Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,, = 30°C and 2 = 1000 W/m* - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature 7T}, of the insulated surface and the temperature T, of

the cooled surface.

Insulaticn —=-

gp = 1.5 x 108 Wim*—=

ky = 75 W/m-K

o

-~

[.___-;

+;.:;;:..

4

Ly=50 mm —»

—1

oo S N ——

T,
)
| res
| k=10
l
!
I k=1
== =0

LB: {
20 mm

Assumption 1: incompressible medium (solid)

Assumption 2: medium at rest (no convection)

Assumption 3: isotropic material
Assumption 4: k independent of T
Assumption 5: steady state

: T, T /i
q" —» AN AN
Rlz'UIILL B L%

. " "
Tl . TC’D + (Rcond,ﬂ -+ R:;onv) qd

T, = 30°C + 85°C = 115°C

T, = 25°C + 115°C = 140°C
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Heat Diffusion Equation - The Heated Slah Case (Example)

A plane wall is a composite of two materials, A and B. The wall of material A has
uniform heat generation g = 1.5 X 10® W/m?®, k, = 75 W/m + K, and thickness L, =
50 mm. The wall material B has no generation with kz = 150 W/m - K and thickness
Ly = 20 mm. The inner surface of material A is well insulated, while the outer surface
of material B is cooled by a water stream with T,, = 30°C and 2 = 1000 W/m* - K.

1. Sketch the temperature distribution that exists in the composite under steady-
state conditions.

2. Determine the temperature 7}, of the insulated surface and the temperature T, of
the cooled surface.

To - T,
S ] =
I 1 T.. = 30°C
h = 1000 W/m2-K

T

Insulation —=*

|
I
i
!
gn = 1.5 % 10° Wim* —l——
ky = 75 W/m-K |
|
|
I
\

Assumption 1: incompressible medium (solid)
Assumption 2: medium at rest (no convection)
Assumption 3: isotropic material

Assumption 4: k independent of T
Assumption 5: steady state

0 L Ly + Ly
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Heat Diffusion Equation — The Heated Cylinder (Example)

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W/m?) within the solid.

Insulation

1.
2.

Obtain the general solution for the temperature distribution in the tube.

In a practical application a limit would be placed on the maximum tempera-
ture that is permissible at the insulated surface (r = r,). Specifying this limit
as T ,, identify appropriate boundary conditions that could be used to deter-
mine the arbitrary constants appearing in the general solution. Determine these
constants and the corresponding form of the temperature distribution.

Determine the heat removal rate per unit length of tube.

If the coolant is available at a temperature T.,, obtain an expression for the con-
vection coefficient that would have to be maintained at the inner surface to
allow for operation at prescribed values of T, and g.
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Heat Diffusion Equation — The Heated Cylinder (Example)

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W/m’) within the solid.

Assumption 1: incompressible medium (solid)
Assumption 2: medium at rest (no convection)
Assumption 3: isotropic material

Assumption 4: k independent of T
Assumption 5: steady state

Assumption 6: uniform volumetric heat generation
Assumption 7: outer surface is adiabatic (no heat flux)

/ Coolant

T . h
1. Obtain the general solution for the temperature distribution in the tube.

; q
——(kr—)z—% T(r)=—Er2+Clln(r)+C2

dT

=0
dr |,

Boundary Conditions: T(r;) = T,
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Heat Diffusion Equation — The Heated Cylinder (Example)

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W/m?) within the solid.

2. In a practical application a limit would be placed on the maximum tempera-
ture that is permissible at the insulated surface (r = r,). Specifying this limit
as 1 ,, identify appropriate boundary conditions that could be used to deter-
mine the arbitrary constants appearing in the general solution. Determine these
constants and the corresponding form of the temperature distribution.

T(r) = —4q—k7‘2 + C;In(r) + C,

Boundary Conditions:  7(r;) = T, arl —g
Assumption 7: outer surface is adiabatic (no heat flux) f
$ Cl=-_q-r§ C2=Ts‘2+%r%—%r%h1?’2

D T =T+ (3 — ok riin2

Insulation
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Heat Diffusion Equation — The Heated Cylinder (Example)

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W/m?) within the solid.

3. Determine the heat removal rate per unit length of tube.
q I

2 _ 2y 4 _=
re) 2k ln

T:(r) T32+4k(

= —kA ar _ k(2 L)dT
e == (r)dr_ T

Q, dT
ai(r) = - = —k(2mr) —

: "
q q :
$ q;(rl) = —k2r, (_‘Z“E Fy +ﬁr_2)“ _’?TQ(T'% - r%)

dT

dr 2_0 é Qr(TZ) =0
Insulation = gm(r; — ri)L heat generated equal the heat removed OK
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Heat Diffusion Equation — The Heated Cylinder (Example)

Consider a long solid tube, insulated at the outer radius r, and cooled at the
inner radius r,, with uniform heat generation ¢ (W/m?) within the solid.

4. If the coolant is available at a temperature T.., obtain an expression for the con-
vection coefficient that would have to be maintained at the inner surface to
allow for operation at prescribed values of T, and q.

. N
4 qr :
‘I:(rl) = _kZ'.ﬂ'r] (_ﬂ I ﬂr_l? ): —ﬂ-q(rg — r%)

Qeony = h(2ﬂr1)(Ts,1 — Too) = |Qéond(r1)|

_qri—r})
® h= T =Ty

R
q k

é We will see later that h is related to the velocity of the fluid so this

""l ati would be our free parameter. However, pressure drops can become
nsuiation

too large and hence a cooler fluid might be needed
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Heat Diffusion and Boundary Conditions (W1L2-3)
a Heat Diffusion Equation without Heat sources (W1L3-4; W2L1)

Thermal Resistance & Overall Heat Transfer Coefficient
Bi number

d Thermal Circuits
@  Heat Diffusion WITH Heat Sources (W2L2-3)

Learning Objectives:

Solve 1D&2D steady state heat transfer problems with/without heat sources
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Next Lectures

Learning Objectives:

O Heat transfer from extended surfaces (Fins)
O Fins of uniform cross-section

H Fins Performance

O Understand the concept of fins
[ Calculate the heat transfer in fins of different shapes

O Calculate the performance of a fin-based system
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