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Previously
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 Heat Diffusion Equation without Heat sources

 Thermal Resistance & Overall Heat Transfer Coefficient

 Bi number

 Thermal Circuits 

Learning Objectives:

 Solve 1D steady state heat transfer problems without heat sources



Heat Diffusion Equation – 3D
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Non-isothermal! 𝛻𝛻2𝑇𝑇 +
𝑞̇𝑞
𝑘𝑘

=
1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Assumption 1: incompressible medium
Assumption 2: medium at rest (no convection) 
Assumption 3: isotropic material 
Assumption 4: k is independent of T

To solve the equation we need:

• Initial condition: T t = 0 = 𝑇𝑇𝑖𝑖 𝑥𝑥, 𝑦𝑦, 𝑧𝑧
• Boundary conditions

Assumption 5: steady-state ( ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎)

Assumption 6: no heat sources (𝒒̇𝒒 = 𝟎𝟎)

𝜵𝜵𝟐𝟐𝑻𝑻 = 𝟎𝟎



Heat Diffusion Equation – 1D, steady-state, no-heat sources, Dirichlet’s BC
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𝑇𝑇(𝑥𝑥) =
𝑇𝑇2 − 𝑇𝑇1

𝐿𝐿
𝑥𝑥 + 𝑇𝑇1

Planar Wall

𝑇𝑇 𝑟𝑟 =
𝑇𝑇1 − 𝑇𝑇2

ln( ⁄𝑟𝑟1 𝑟𝑟2)
ln

𝑟𝑟
𝑟𝑟2

+ 𝑇𝑇2

𝑟𝑟1 𝑟𝑟2

r 𝑇𝑇1

𝑇𝑇2

Radial System

T1

T2

0 L

Q, q’’

𝑄𝑄 = −𝑘𝑘𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −

𝑘𝑘𝑘𝑘
𝐿𝐿 𝑇𝑇2 − 𝑇𝑇1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞𝑞𝑞 = ⁄𝑄𝑄 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑄𝑄 = −𝑘𝑘𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −

𝑘𝑘 2𝜋𝜋𝑟𝑟𝑙𝑙
ln ⁄𝑟𝑟1 𝑟𝑟2

𝑇𝑇2 − 𝑇𝑇1
𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑞𝑞=Q/(2πrl)=q"(𝑟𝑟) ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

L= length



Thermal Resistance
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𝑄𝑄 =
𝑇𝑇1,𝑠𝑠 − 𝑇𝑇2,∞𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑡𝑡𝑡

T1,s
T 2,∞,sur

Rth

𝑸𝑸

Conduction:

Radiation:
1

ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴

Convection:
1
ℎ𝐴𝐴

𝐿𝐿
𝑘𝑘𝑘𝑘

Planar Wall Radial System

𝑙𝑙𝑙𝑙( ⁄𝑟𝑟2 𝑟𝑟1)
2𝜋𝜋𝐿𝐿𝑘𝑘

1
ℎ2𝜋𝜋𝜋𝜋𝜋𝜋

1
ℎ𝑟𝑟𝑟𝑟𝑟𝑟2𝜋𝜋𝜋𝜋𝜋𝜋

𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐
′ = 𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿

𝑅𝑅𝑡𝑡𝑡" = 𝑅𝑅𝑡𝑡𝑡𝐴𝐴𝑞𝑞𝑞 =
𝑄𝑄
𝐴𝐴 =

𝑇𝑇1,𝑠𝑠 − 𝑇𝑇2,∞𝑠𝑠𝑠𝑠𝑠𝑠

𝐴𝐴𝐴𝐴𝑡𝑡𝑡
=

𝑇𝑇1,𝑠𝑠 − 𝑇𝑇2,∞𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅"𝑡𝑡𝑡

𝑞𝑞′ =
𝑄𝑄
𝐿𝐿 =

𝑇𝑇1,𝑠𝑠 − 𝑇𝑇2,∞𝑠𝑠𝑠𝑠𝑠𝑠

𝑙𝑙𝑙𝑙𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐
=

𝑇𝑇1,𝑠𝑠 − 𝑇𝑇2,∞𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅′𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐



Thermal Circuits
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R1 R2 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅1 + 𝑅𝑅2+. . = �𝑅𝑅𝑖𝑖

R1

R2

1
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
1
𝑅𝑅1

+
1
𝑅𝑅2

+. . = �
1
𝑅𝑅𝑖𝑖

Q1

Q2
Q3

Q4 Kirchoff’s 1st Law:

�𝑄𝑄𝑖𝑖 = 0 𝑄𝑄𝑖𝑖 > 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑖𝑖 < 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒



Overall Heat Transfer Coefficient
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LA LB

kA kB

h

T4

T1
T2

T3

kA kB>

𝑄𝑄𝑥𝑥

𝑸𝑸𝒙𝒙 =
𝑇𝑇1 − 𝑇𝑇4
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑼𝑼𝑼𝑼 𝑻𝑻𝟏𝟏 − 𝑻𝑻𝟒𝟒

𝑈𝑈 =
1

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴
=

1
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
"

U = Overall heat transfer coefficient

𝑹𝑹𝒕𝒕𝒕𝒕𝒕𝒕

𝑘𝑘𝐴𝐴 = 100 �𝑊𝑊 𝑚𝑚𝑚𝑚
𝑘𝑘𝐵𝐵 = 0.1 �𝑊𝑊 𝑚𝑚𝑚𝑚

𝑇𝑇1 = 900𝐶𝐶 = 1173𝐾𝐾
𝑇𝑇4 = 10𝐶𝐶 = 283𝐾𝐾

𝐿𝐿𝐴𝐴 = 10 𝑐𝑐𝑐𝑐 = 0.1𝑚𝑚
𝐿𝐿𝐵𝐵 = 50 cm = 0.5m

ℎ = 50 �𝑊𝑊 𝑚𝑚2𝐾𝐾

A = 4𝑚𝑚2



Biot Number
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T∞

𝑄𝑄 =
𝑇𝑇1 − 𝑇𝑇2
𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
(𝑇𝑇2−𝑇𝑇∞)
𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇1 − 𝑇𝑇2
(𝑇𝑇2 − 𝑇𝑇∞) =

𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑡𝑡𝑡,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

≡ 𝐵𝐵𝐵𝐵

𝑩𝑩𝑩𝑩 ≡
𝒉𝒉𝒉𝒉
𝒌𝒌

Note: L can be generalized to be a characteristic 
dimension of a body (e.g. diameter of a sphere)

T1

T2

0 L

𝑄𝑄

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓



This Lecture
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 1D steady-state conduction with heat sources

Learning Objectives:
 Solve 1D steady state heat conduction problems in different 

geometries, with heat sources



Heat Diffusion Equation – From 3D to 1D, stead state, WITH heat sources 
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Non-isothermal! 𝛻𝛻2𝑇𝑇 +
𝑞̇𝑞
𝑘𝑘

=
1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Assumption 1: incompressible medium
Assumption 2: medium at rest (no convection) 
Assumption 3: isotropic material 
Assumption 4: k is independent of T

Assumption 5: steady-state ( ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎)

𝜵𝜵𝟐𝟐𝑻𝑻 +
𝒒̇𝒒
𝒌𝒌

= 𝟎𝟎

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 +

𝑞̇𝑞
𝑘𝑘 = 0

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝑞̇𝑞
𝑘𝑘 = 0

1D, Cartesian coordinates:

1D, Cylindrical coordinates:



Heat Diffusion Equation – 1D, steady-state, WITH heat sources
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𝑇𝑇 𝑥𝑥 = −
𝑞̇𝑞

2𝑘𝑘
𝑥𝑥2 + 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2

𝑇𝑇(𝑥𝑥 = −𝐿𝐿) = 𝑇𝑇1 𝑇𝑇(𝑥𝑥 = 𝐿𝐿) = 𝑇𝑇2

Temperature boundary condition (BC)

𝐶𝐶1 =
𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿

𝐶𝐶2 =
𝑞̇𝑞

2𝑘𝑘 𝐿𝐿
2 +

𝑇𝑇1 + 𝑇𝑇2
2

𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘 𝐿𝐿
2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿 +

𝑇𝑇1 + 𝑇𝑇2
2

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 +

𝑞̇𝑞
𝑘𝑘

= 0

PARABOLIC T(x) Profile

T1

T2

-L L
x

𝒒̇𝒒



Heat Diffusion Equation – 1D, steady-state, WITH heat sources
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𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 →
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑘𝑘
𝑞̇𝑞
𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 0 𝑖𝑖𝑖𝑖 𝑇𝑇2 − 𝑇𝑇1 > 0

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 < 0 𝑖𝑖𝑖𝑖 𝑇𝑇2 − 𝑇𝑇1 < 0

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0 𝑖𝑖𝑖𝑖 𝑇𝑇2 − 𝑇𝑇1 = 0

𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑞̇𝑞
𝑘𝑘
𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿

> 0 𝑥𝑥 < 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑞̇𝑞
𝑘𝑘
𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿

< 0 𝑥𝑥 > 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

T1

T2

-L L
x

𝒒̇𝒒

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇



Heat Diffusion Equation – 1D, steady-state, WITH heat sources
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

T1

T2

-L L
x

𝒒̇𝒒

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑄𝑄 = −𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑘𝑘𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿 = 𝑄𝑄(𝑥𝑥)



What is the expression for the thermal 
resistance in this layer?

A. Rth=2L/kA
B. Rth=L/kA
C. Rth = 𝑙𝑙𝑛𝑛(2L)/2𝜋𝜋𝑘𝑘
D. None of the above

14

𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

T1

T2

-L L
x

𝒒̇𝒒

𝑄𝑄 = −𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑘𝑘𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿 = 𝑄𝑄(𝑥𝑥)

Heat Diffusion Equation – 1D, steady-state, WITH heat sources



Heat Diffusion Equation – 1D, steady-state, WITH heat sources
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

T1

T2

-L L
x

𝒒̇𝒒

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑄𝑄 = −𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑘𝑘𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿 = 𝑄𝑄(𝑥𝑥)

The heat transfer rate is not constant! 
It depends on the position along x. 

𝑄𝑄(𝑥𝑥) ≠
∆𝑇𝑇
𝑅𝑅𝑡𝑡𝑡

The electrical analogy fails! 
We cannot use the thermal resistance concept in layers with heat sources.



Heat Diffusion Equation – 1D, steady-state, WITH heat sources
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

T1

T2

-L L
x

𝒒̇𝒒

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
The heat transfer rate follows the temperature gradient, which has opposite
signs on the right and left of 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The heat generated on the right of 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
will flow towards the right surface. The heat generated on the left side will flow
towards the left side.

𝑄𝑄(𝑥𝑥) = −𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑘𝑘𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿

𝑄𝑄 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0

𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐿𝐿
𝑞̇𝑞𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑞̇𝑞𝐴𝐴 𝐿𝐿 − 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �

−𝐿𝐿

𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑞̇𝑞𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑞̇𝑞𝐴𝐴 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐿𝐿
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

𝑄𝑄 𝑥𝑥 < 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 < 0

𝑄𝑄 𝑥𝑥 > 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 0 𝑄𝑄 𝐿𝐿 = 𝑘𝑘𝑘𝑘
𝑞̇𝑞
𝑘𝑘 𝐿𝐿 +

𝑇𝑇1 − 𝑇𝑇2
2𝐿𝐿 > 0

𝑄𝑄 −𝐿𝐿 = −𝑘𝑘𝑘𝑘
𝑞̇𝑞
𝑘𝑘 𝐿𝐿 +

𝑇𝑇2 − 𝑇𝑇1
2𝐿𝐿 < 0

At 𝑥𝑥 = 𝐿𝐿 the heat transfer rate 𝑄𝑄2 is positive and hence in the same direction as our x-axis.

At 𝑥𝑥 = −𝐿𝐿 the heat transfer rate 𝑄𝑄1 is negative. Therefore it flow in the opposite direction compared to our x-axis.

T1

T2

-L L
x

𝒒̇𝒒

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑄𝑄2𝑄𝑄1
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T1

T2

-L L
x

𝒒̇𝒒

𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

1st Law of Thermodynamics:
Control volume

0 = 𝑄𝑄1∗ + 𝑄𝑄2∗ + 𝑞̇𝑞2𝐿𝐿𝐿𝐿

0 = 𝑄𝑄 −𝑊𝑊 + ̇𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑄𝑄2∗𝑄𝑄1∗

When writing the 1st law of thermodynamics the signs refer to the direction 

of the flow with respect to our control volume. Hence both 𝑄𝑄1∗ and𝑄𝑄2∗must 

be negative values because the heat is leaving the wall.

𝑄𝑄1∗ < 0

𝑸𝑸𝟐𝟐 < 𝟎𝟎

𝑄𝑄1∗ = 𝑄𝑄1 𝑄𝑄2∗ = 𝑄𝑄2

Be careful to the signs, use physical intuition to check!
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

T1 T2

-L L
x

𝒒̇𝒒 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑞̇𝑞
2𝑘𝑘

𝐿𝐿2 + 𝑇𝑇2

If 𝑇𝑇1 = 𝑇𝑇2 then the T profile must be symmetric and 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0

𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞
2𝑘𝑘 𝐿𝐿

2 1 −
𝑥𝑥2

𝐿𝐿2 + 𝑇𝑇2

𝑞𝑞𝑥𝑥=−𝐿𝐿" = −𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑥𝑥=−𝐿𝐿
= −𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥

𝑥𝑥=−𝐿𝐿
= −𝑞̇𝑞𝐿𝐿

𝑞𝑞𝑥𝑥=𝐿𝐿" = −𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑥𝑥=𝐿𝐿
= −𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥

𝑥𝑥=𝐿𝐿
= +𝑞̇𝑞𝐿𝐿

𝑞𝑞"𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑞𝑞"1 + 𝑞𝑞"2 = 2𝑞̇𝑞𝐿𝐿 𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑞̇𝑞2𝐿𝐿
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

-L L

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑞̇𝑞
2𝑘𝑘

𝐿𝐿2 + 𝑇𝑇2

If 𝑇𝑇1 = 𝑇𝑇2 then the T profile must be symmetric and 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0

𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞
2𝑘𝑘 𝐿𝐿

2 1 −
𝑥𝑥2

𝐿𝐿2 + 𝑇𝑇2
T2

x
𝒒̇𝒒

𝑞𝑞𝑥𝑥=0" = −𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑥𝑥=0
= −𝑘𝑘 −

𝑞̇𝑞
𝑘𝑘 𝑥𝑥

𝑥𝑥=0
= 0

At the centerline of the wall effectively the heat flux is zero, satisfying the symmetry of the problem.
This is equivalent to having a perfectly insulated boundary at x=0.  



Can we draw an equivalent electrical
circuit for this problem?

A. Yes, we just draw a thermal 
resistance for each layer

B. No, because we cannot define the 
thermal resistances everywhere

C. I don’t know
21
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

-L L
x

𝒒̇𝒒 ≠ 𝟎𝟎

T2

𝑞̇𝑞 = 0

L+t

T3
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𝑇𝑇 𝑥𝑥 =
𝑞̇𝑞

2𝑘𝑘
𝐿𝐿2 1 −

𝒙𝒙𝟐𝟐

𝐿𝐿2 +
𝑇𝑇2 − 𝑇𝑇1

2
𝑥𝑥
𝐿𝐿

+
𝑇𝑇1 + 𝑇𝑇2

2

𝑄𝑄 = 𝑞̇𝑞𝐿𝐿

-L L
x

𝒒̇𝒒 ≠ 𝟎𝟎

T2

𝑞̇𝑞 = 0

L+t

T3

T2 T3

We can draw an equivalent electrical circuit only 
for the layers WITHOUT heat sources. 

Layers WITH heat sources inject into the 
equivalent circuit a certain Q
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Non-isothermal! 𝛻𝛻2𝑇𝑇 +
𝑞̇𝑞
𝑘𝑘

=
1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Assumption 1: incompressible medium
Assumption 2: medium at rest (no convection) 
Assumption 3: isotropic material 
Assumption 4: k is independent of T

Assumption 5: steady-state ( ⁄𝝏𝝏 𝝏𝝏𝝏𝝏 = 𝟎𝟎)

𝜵𝜵𝟐𝟐𝑻𝑻 +
𝒒̇𝒒
𝒌𝒌

= 𝟎𝟎

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 +

𝑞̇𝑞
𝑘𝑘 = 0

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝑞̇𝑞
𝑘𝑘 = 0

1D, Cartesian coordinates:

1D, Cylindrical coordinates:
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1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟

𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝑞̇𝑞
𝑘𝑘

𝑇𝑇 𝑟𝑟 = −
𝑞̇𝑞
4𝑘𝑘

𝑟𝑟2 + 𝐶𝐶1 ln 𝑟𝑟 + 𝐶𝐶2

Boundary Conditions:

𝑇𝑇 𝑟𝑟0 = 𝑇𝑇𝑠𝑠

�
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 𝒓𝒓=𝟎𝟎

= 𝟎𝟎For a solid cylinder, i.e. a wire, at the center 
we have to satisfy a symmetry condition. 

At the surface we impose a temperature BC 
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1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟

𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝑞̇𝑞
𝑘𝑘

𝑇𝑇 𝑟𝑟 = −
𝑞̇𝑞
4𝑘𝑘

𝑟𝑟2 + 𝐶𝐶1 ln 𝑟𝑟 + 𝐶𝐶2

Boundary Conditions:

𝑇𝑇 𝑟𝑟 =
𝑞̇𝑞𝑟𝑟02

4𝑘𝑘
1 −

𝒓𝒓𝟐𝟐

𝑟𝑟02
+ 𝑇𝑇𝑠𝑠

𝑇𝑇 𝑟𝑟0 = 𝑇𝑇𝑠𝑠 �
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 𝒓𝒓=𝟎𝟎

= 𝟎𝟎

𝑄𝑄 𝑟𝑟 = −𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟�

𝐶𝐶1 = 0

𝐶𝐶2 =
𝑞̇𝑞𝑟𝑟02

4𝑘𝑘 + 𝑇𝑇𝑠𝑠
𝑄𝑄 𝑟𝑟0 = −𝑘𝑘 2𝜋𝜋𝑟𝑟0𝐿𝐿 −

𝑞̇𝑞𝑟𝑟0
2𝑘𝑘

= 𝑞̇𝑞𝜋𝜋𝑟𝑟02𝐿𝐿 = 𝑞̇𝑞𝑉𝑉
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 1D steady-state conduction with heat sources

Learning Objectives:
 Solve 1D steady state heat conduction problems in different 

geometries, with heat sources
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 2D Conduction & Shape Factor

Learning Objectives:
 Approach simple 2D conduction problems
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