

Heat and Mass Transfer

ME-341

Instructor: Giulia Tagliabue

Practical Information about the course

Lectures on:

- Tuesday 9:15 – 10:00
- Wednesday 9:10 – 9:55
- Wednesday 10:10 – 10:55

Exercise Sessions on Tuesday 8:15 – 9:00

Forum for questions on Moodle

Instructors:

- Prof. Giulia Tagliabue
- TAs :
 - Milad Sabzehparvar (milad.sabzehparvar@epfl.ch)
 - Matteo Bevione (matteo.bevione@epfl.ch)
 - Ibrahim Elhagali (ibrahim.elhagali@epfl.ch)
 - Ziyan Pan (ziyan.pan@epfl.ch)
 - Yan Meng (yan.meng@epfl.ch)
 - Gloria Davidova (gloria.davidova@epfl.ch)
 - German Garcia Martinez (german.garciamartinez@epfl.ch)

In-person Lectures (please attend)
PAST recordings on SwitchTube (see Moodle)
Live streaming available but not optimized

TAs available in person for questions

Practical Information about the course

Textbook:

Incropera et al. – Fundamentals of Heat and Mass Transfer – 6th Ed.

- Slides will be posted on Moodle before the class.
- Exercises are assigned weekly, solutions are available before the weekend, TAs can respond to questions on the NEXT Tuesday.

Exercises are not graded but they reflect the difficulty level of the exam. Practice them!

Grade will be determined by the final written examination (exercises are not graded)

Weekly Course Plan

	Week Topic	H1 (Tue 8-9)	H2 (Tue 9-10)		H3 (Wed 9-10)	H4 (Wed 10-11)
Week 1	Intro + Steady State Heat Conduction	W1L1 - Intro	W1L2 - Heat diffusion equation		W1L3 - Boundary Conditions; 1D planar & cylindrical solutions	W1L4 - Concept of Thermal Resistance; Bi Number, Intro to Thermal Circuits
Week 2	Steady State Heat Conduction wth/without Sources	exercises - HW 1	W2L1 - Thermal Circuits and Overall Heat Transfer Coefficient		W2L2 - 1D steady-state Heat Conduction With Heat Sources;	W2L3 - Problems on 1D Steady State with Heat sources; 2D Conduction
Week 3	Fins	exercises - HW 2	W3L1 - Fins : Introduction to Extended surfaces concept		W3L2 - Fins : Boundary Conditions, Fin temperature Profiles, Heat transfer from a Fin; solved exercises	W3L3 - Fins: Fin Performance and Fin Arrays
Week 4	Transient Heat Conduction	exercises - HW 3	W4L1 - Transient Heat: Lumped capacitance Model		W4L2 - Transient Heat: Generalized Solution for Planar/ Radial/ Spherical Geometries	W4L3 - Transient Heat: Infinite Solid; Periodic Heating
Week 5	Intro to Convection +Forced External Flow	exercises - HW 4	W5L1 - Intro Convection; Recap of Fluid Dynamics; Thermal boundary layer concept, Nu and the problem of convection		W5L2 - thermal boundary Layer Eqns; dimensionless numbers; problem of physical properties	W5L3 - External forced convection: flat horizontal plate (local and aergae values); Other Correlations; General Methodology for Convection (Example)
Week 6	Forced Internal Convection	exercises - HW 5	W6L1 - Forced Internal Convection: fluidynamics and thermodynamics aspects		W6L2 - Temperature and Heat flow in internal convection; Laminar Flow In Circular Tubes;	W6L3 - Correlations for Internal forced convection; circular VS non-circular pipes; a note on the entrance; RECAP and Questions
Week 7	Natural Convection	exercises - HW 6	W7L1 - Intro Free convection; Governing Equations; Gr and Ra numbers		W7L2 - Free Convection over a Vertical Plate and other correlations	Dr. Narmada Gopal - COMSOL LECTURE 1 (natural convection)

	Week Topic	H1 (Tue 8-9)	H2 (Tue 9-10)	H3 (Wed 9-10)	H4 (Wed 10-11)
Week 8	Boiling	exercises - HW 7	W8L1 - Intro to Boiling and Condensation; Boiling Modes and Curve for Saturated Pool Boiling	W8L2 - Correlations for Nucleate and Film Pool Boiling; Exercises	W8L3 - Forced Boiling (external and Internal)
Week 9	Condensation	exercises - HW 8	W9L1 - Introduction to Condensation; Equation of Condensation on a Vertical Plate	W9L2 - Correlations for Condensation and RECAP of Boiling and Condensation	W9L3 - Introduction to Heat Exchangers; The problem of the overall Heat Transfer Coefficient; recap of critical concepts
Easter break					
Week 10	Heat Exchanger 1	exercises - HW 9	W10L1 - Fouling; Calculation of the Overall Heat Transfer Coefficient	W10L2 - Parallel & Counter Flow Heat Exchanger; Temperature Profile and Heat Transfer	W10L3 - Special Operating Conditions; Exercises
Week 11	Heat Exchanger 2	exercises - HW 10	W11L1 - Effectiveness-NTU Method	W11L2 - Exercises on Heat Exchanger Design	W11L3 - Introduction to Radiation
Week 12	Radiation	exercises - HW 11	W12L1 - Emission of Thermal Radiation	W12L2 - Interaction of Thermal Radiation with Matter; Black Body; Real Surfaces (Kirchoff's laws etc.)	Dr. Narmada Gopal - COMSOL LECTURE 2
Week 13	Radiation	exercises - HW 12	W12L3 - Exercises on Radiation	W13L2 - Video Recording Radiation Exchange between Surfaces - view Factors	W13L3 - Video Recording Net radiation exchange at a surface and in a 2-surface enclosure - Electrical Analogy
Week 14	RECAP	exercises - HW 13	W14L1 - Q&A on prior Week; Radiation Exchange on a Multi-surface Enclosure	W14L2 - RECAP Radiation; General Q&A about the course	W14L3 - RECAP Exercises

Introduction to Heat Transfer

- Where and how is energy transferred from inside to outside?
- What drives the energy transfer and in what direction does energy flows ?
- What can you do to reduce the costs of heating/cooling ?

Where and how is energy transferred from inside to outside?

What drives the energy transfer and
in what direction does energy flow ?

What can you do to reduce the costs of heating/cooling ?

bungee jumping
running

hiking

ice fishing
jogging

video games

swimming

kayaking

weight lifting

rock climbing

Introduction to Heat Transfer

Q1. What is heat transfer?

Q2. Why/When does heat transfer happen?

Q3. How does heat transfer happen?

Introduction to Heat Transfer

Q1. What is heat transfer?

A1. Heat transfer is thermal energy in transit.

Q2. Why/When does heat transfer happen?

A2. Heat transfer happens when there is a temperature difference

Q3. How does heat transfer happen?

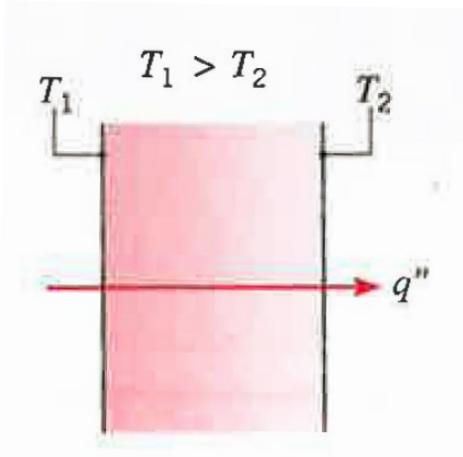
A3. Heat transfer happens in three different ways: through solids, across solid/fluid interfaces and via radiation

Heat Transfer Mechanisms

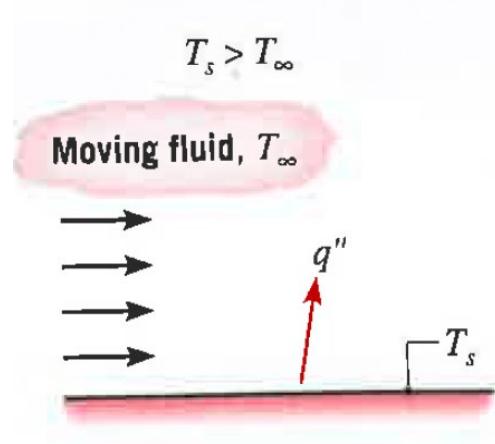
Conduction

Heat flows within
solids
(or stationary
fluids)

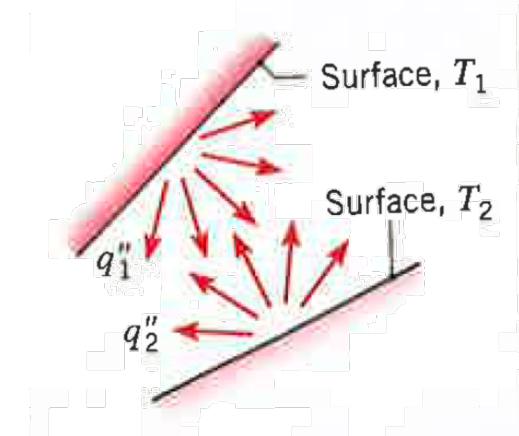
Convection


Heat flows
between a
moving fluid and
a solid

Radiation


Heat flows
without a medium
(electromagnetic
wave)

Heat Transfer Mechanisms


Conduction

Convection

Radiation

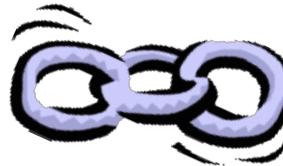
Involves mass transport

Involve physical contact

Introduction to Heat Transfer

- Heat Transfer Mechanisms
- From Thermodynamics to Heat Transfer
- Overview of Transport Laws

Learning Objectives:



- From real-world to model:
 - identify the system and its boundaries
 - Identify heat transfer mechanisms involved
- Solve basic heat transfer problems

From Thermodynamics to Heat Transfer

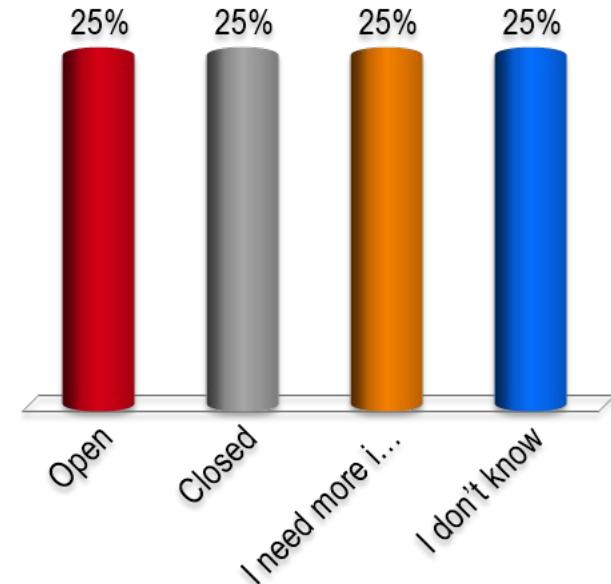
Thermodynamics

Heat Transfer

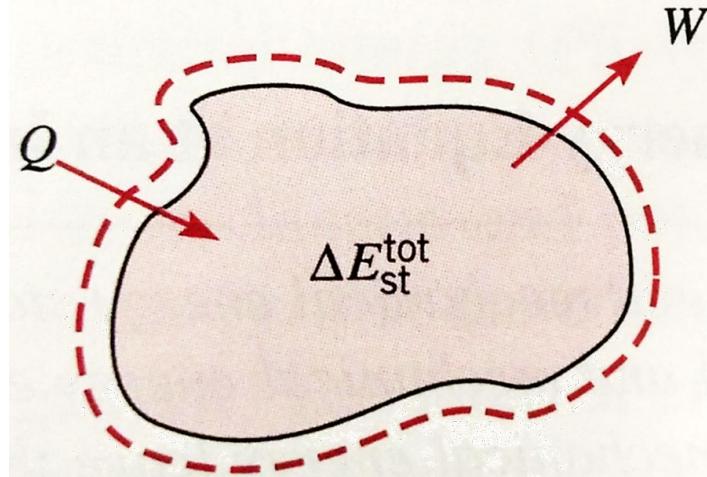
- Energy conversion processes
- System progresses through *equilibrium* states
- Work and heat

- Rate of thermal energy transfer

From Thermodynamics to Heat Transfer

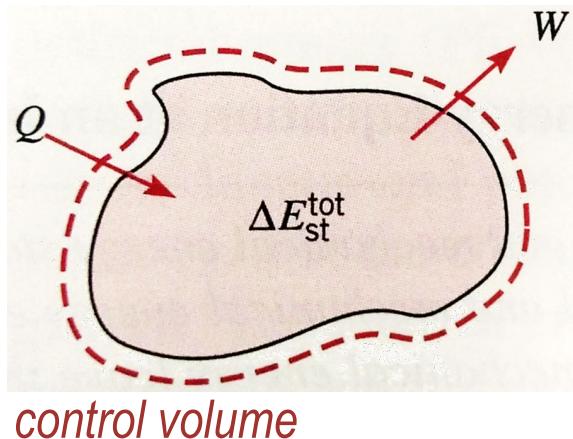


- Are these houses open or closed systems?


Are these houses open or closed systems?

- A. Open
- B. Closed
- C. I need more information
- D. I don't know

1st Law of Thermodynamics (Conservation of Total Energy) - 1


- Assumption: **Closed** System (NO mass flow across the boundary)

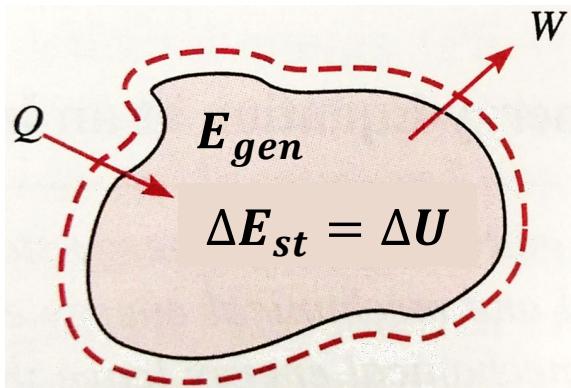
control volume

1st Law of Thermodynamics (Conservation of Total Energy) - 1

- Assumption: Closed System

$$\Delta U = Q - W$$

thermal + chemical + electrical + nuclear


mechanical + internal energy ~ 0

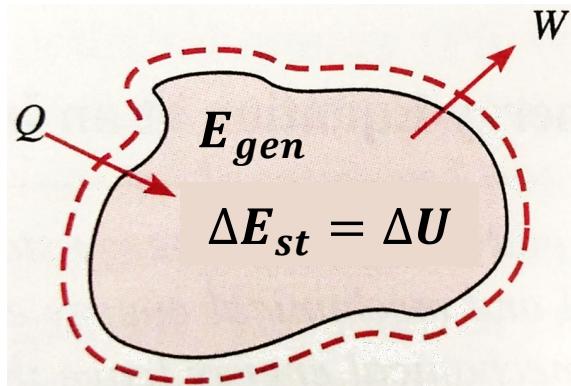
Q>0 enters the system
Q<0 exits the system

W>0 done BY the system
W<0 done ONTO the system

1st Law of Thermodynamics (Conservation of Total Energy) - 1

- Assumption: **Closed** System

control volume

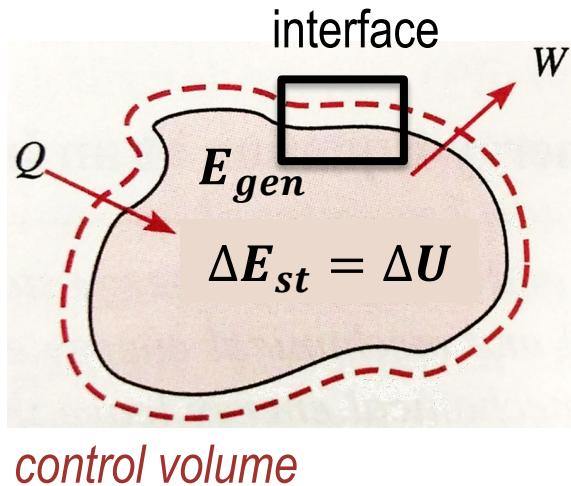

$$\Delta U = \underbrace{Q}_{\text{thermal internal energy}} - \underbrace{W}_{\text{Heat Sources & Sinks (chemical, electrical, ..)}} + \underbrace{E_{gen}}_{\substack{Eg>0 \text{ heat released} \\ Eg<0 \text{ heat absorbed}}} \quad [\text{Joule}]$$

W>0 done BY the system
W<0 done ONTO the system

Q>0 enters the system
Q<0 exits the system

1st Law of Thermodynamics (Conservation of Total Energy) - 1

- Assumption: **Closed** System

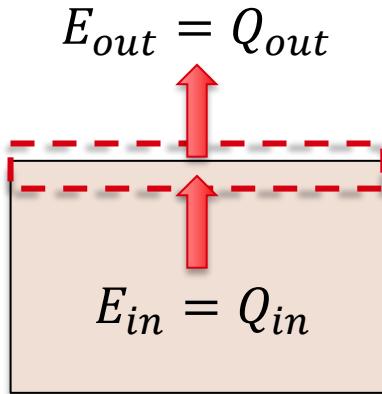

control volume

$$\frac{dE_{st}}{dt} = \dot{U} = Q - W + \dot{E}_{gen}$$

$$[\text{J/s}] = [\text{W}]$$

1st Law of Thermodynamics (Conservation of Total Energy) - 1

- Assumption: **Closed** System
- Control volume encompasses only the interface

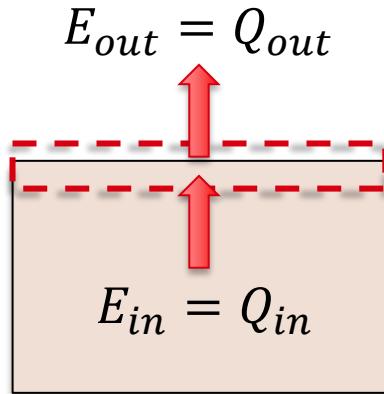


$$\frac{dE_{st}}{dt} = \dot{U} = Q - W + \dot{E}_{gen}$$

- Interface has no mass
 - No thermal capacity
 - No work
 - No sources

1st Law of Thermodynamics (Conservation of Total Energy) - 1

- Assumption: **Closed** System
- Control volume encompasses only the interface

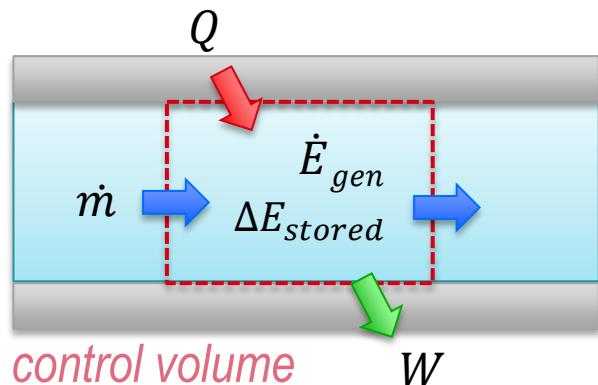

$$\frac{dE_{st}}{dt} = \dot{U} = Q - W + \dot{E}_{gen}$$

- Interface has no mass
 - No thermal capacity
 - No work
 - No sources

control volume

1st Law of Thermodynamics (Conservation of Total Energy) - 1

- Assumption: **Closed** System
- Control volume encompasses only the interface


$$0 = E_{in} - E_{out} = \sum Q \quad [\text{J/s}] = [\text{W}]$$

- Interface has no mass
 - No thermal capacity
 - No work
 - No sources

control volume

1st Law of Thermodynamics (Conservation of Total Energy) - 2

- Assumption: **Open** System \rightarrow advection of energy must be included

$$\frac{dE_{stored}}{dt} = \dot{E}_{stored} = \dot{E}_{in} - \dot{E}_{out} + \dot{E}_{gen}$$

$$\dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{in} - \dot{m} \left(u + pv + \frac{1}{2}V^2 + gz \right)_{out} + Q - W$$

\downarrow [kg/s] \downarrow [J/kg] $\underbrace{\qquad\qquad\qquad}_{\text{Enthalpy } h}$ \downarrow [W]

Important relationships

IDEAL GAS

- Change in enthalpy
$$h_{in} - h_{out} = c_p(T_{in} - T_{out})$$
- Change in internal energy
$$u_{in} - u_{out} = c_v(T_{in} - T_{out})$$

$$\rightarrow \frac{dE_{st}}{dt} = \dot{U} = mc_{(v)} \frac{dT}{dt} = Q - W + \dot{E}_{gen}$$

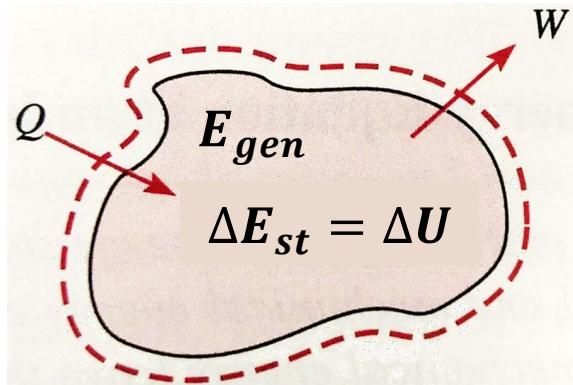
INCOMPRESSIBLE FLUID (i.e. liquid)

$$c_p = c_v$$

2nd Law of Thermodynamics

The Clausius Statement of the Second Law: 'It is impossible to construct a cyclically operating device that produces no effect other than the transfer of heat from a lower temperature body to a higher temperature body.'

Inequality of Clausius:


Whenever a system undergoes a cycle, the integral around the cycle of dQ/T is less than zero for an irreversible cycle and equal to zero for a reversible cycle or :

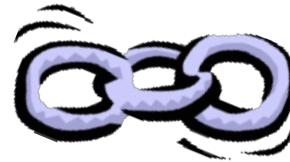
$$\int \frac{dQ}{T} \leq 0 \quad \rightarrow \quad dS = \frac{dQ}{T} \quad S = \text{entropy}$$

From Thermodynamics to Heat Transfer

$$\dot{U} = Q - W + \dot{E}_{gen}$$

$$Q_{rev} = TdS \neq Q$$

control volume


Real processes are irreversible!

We need **TRANSPORT LAWS**
to determine the heat flux

From Thermodynamics to Heat Transfer

Thermodynamics

Heat Transfer

Although thermodynamics may be used to determine the amount of heat needed for a system to pass from one equilibrium state to another it does not acknowledge that heat transfer is inherently a non-equilibrium process. In fact, for heat transfer to occur there **MUST** be a TEMPERATURE GRADIENT. (Incropera, Ch. 1.3)

Nomenclature and Units

- Q = heat transfer rate [W]
- q'' = **heat flux** [W/m²]
- \dot{q} = volumetric heat source [$\frac{W}{m^3}$]
- q' = **heat flux unit length** [W/m]

Introduction to Heat Transfer

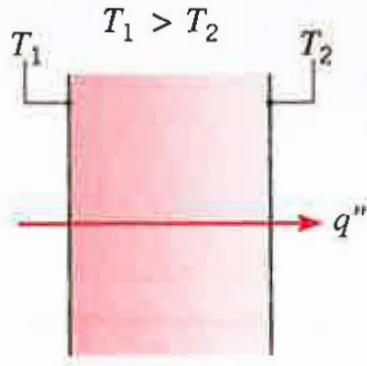
Heat Transfer Mechanisms

From Thermodynamics to Heat Transfer

Overview of Transport Laws

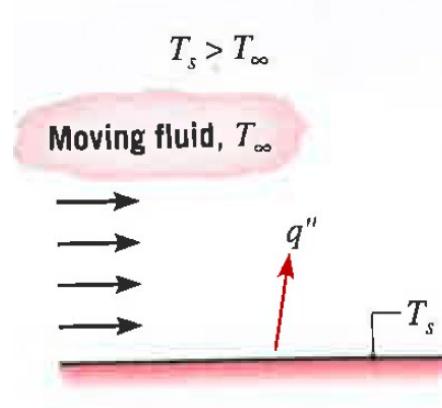
Learning Objectives:

From real-world to model:


- identify the system and its boundaries
- Identify heat transfer mechanisms involved

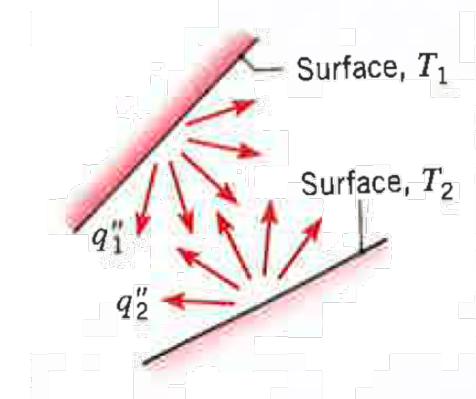
Solve basic heat transfer problems

Transport Laws


Conduction

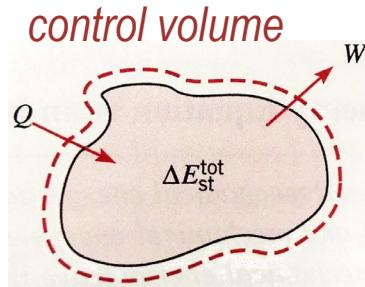
Fourier's Law

$$q'' = -k \frac{dT}{dx}$$


Convection

Newton's Law

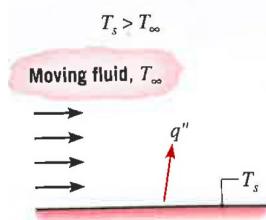
$$q'' = \bar{h} (T_s - T_\infty)$$


Radiation

Stefan-Boltzmann Law

$$Q_{rad} = \varepsilon \sigma A_s (T^4 - T_{sur}^4)$$

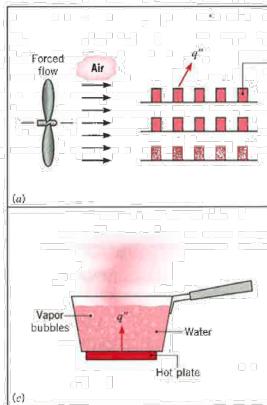
Part I – Fourier's Law and Heat Conduction

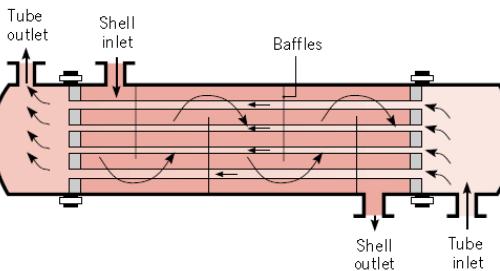
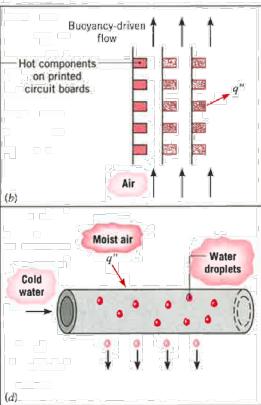


$$\frac{dE_{st}}{dt} = \dot{U} = Q - W + \dot{E}_{gen}$$

$$q'' = -k \frac{dT}{dx}$$

- Heat Diffusion Equation (HDE) 3D
- HDE Steady-state 1D Solutions with/without Heat Sources
- Thermal Resistances and Equivalent Electrical Circuits
- Fins and Arrays of Fins
- Transient HDE
 - Lumped Capacitance Model $T(t)$
 - 1D Spatial Effects $T(X,t)$
 - Semi-Infinite Solid
 - Periodic BC

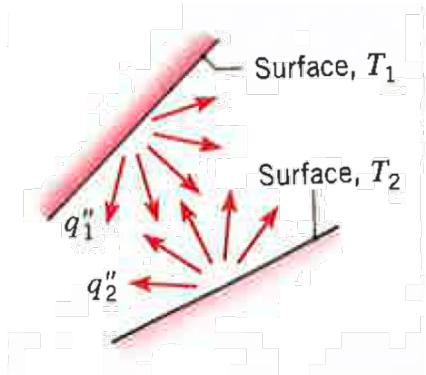

Part II: Newton's Law and Heat Convection



$$q'' = \bar{h} (T_s - T_\infty)$$

h = convective heat transfer coefficient,
[W/m²K]

Forced Convection

Free Convection



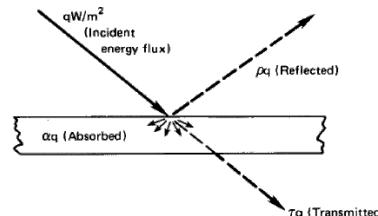
Boiling

Condensation

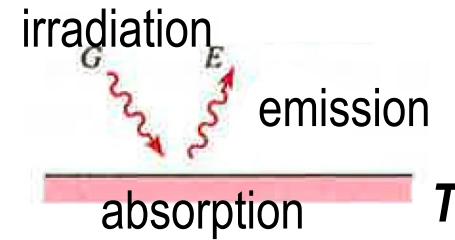
Heat Exchanger Design and Performance Analysis

Part III: Stefan-Boltzmann's Law and Radiation

$$Q_{rad} = \varepsilon \sigma A_s (T^4 - T_{sur}^4)$$


ε = emittance

$$0 < \varepsilon < 1$$


Electromagnetic Radiation
Transmission/Reflection/Absorption

$$1 = \alpha_\lambda + \rho_\lambda + \tau_\lambda$$

λ = wavelength [m]

Thermal Absorption/Emission

Transport Laws

- Point to different heat transfer mechanisms in this system and where they occur.
- What temperatures are going to be important?
- What environmental and structural properties are going to play a key role in heat transfer ?

Point to different heat transfer mechanisms in this system and where they occur.

bungee jumping
running

hiking

ice fishing
jogging

video games

weight lifting

swimming

kayaking

rock climbing

What temperatures are going to be important?

bungee jumping
running

hiking

ice fishing
jogging

video games

swimming

kayaking

weight lifting

rock climbing

What environmental and structural properties are going to play a key role in heat transfer ?

bungee jumping

running

hiking

ice fishing

jogging

video games

weight lifting

swimming

kayaking

rock climbing

Introduction to Heat Transfer

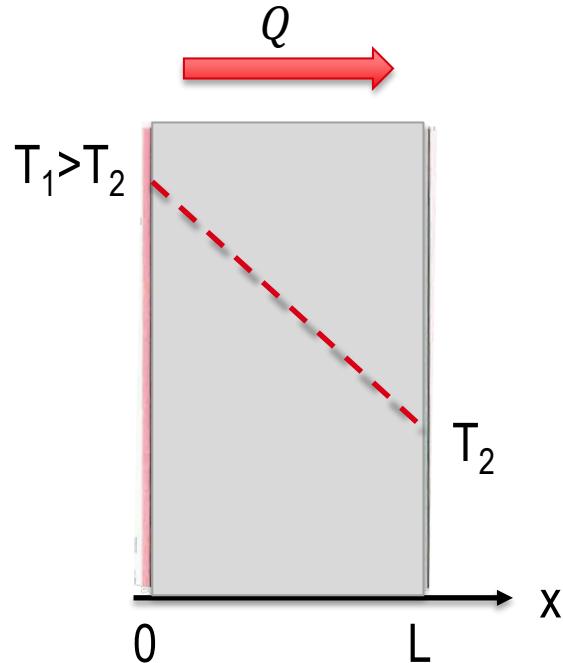
Heat Transfer Mechanisms

From Thermodynamics to Heat Transfer

Overview of Transport Laws

Learning Objectives:

From real-world to model:

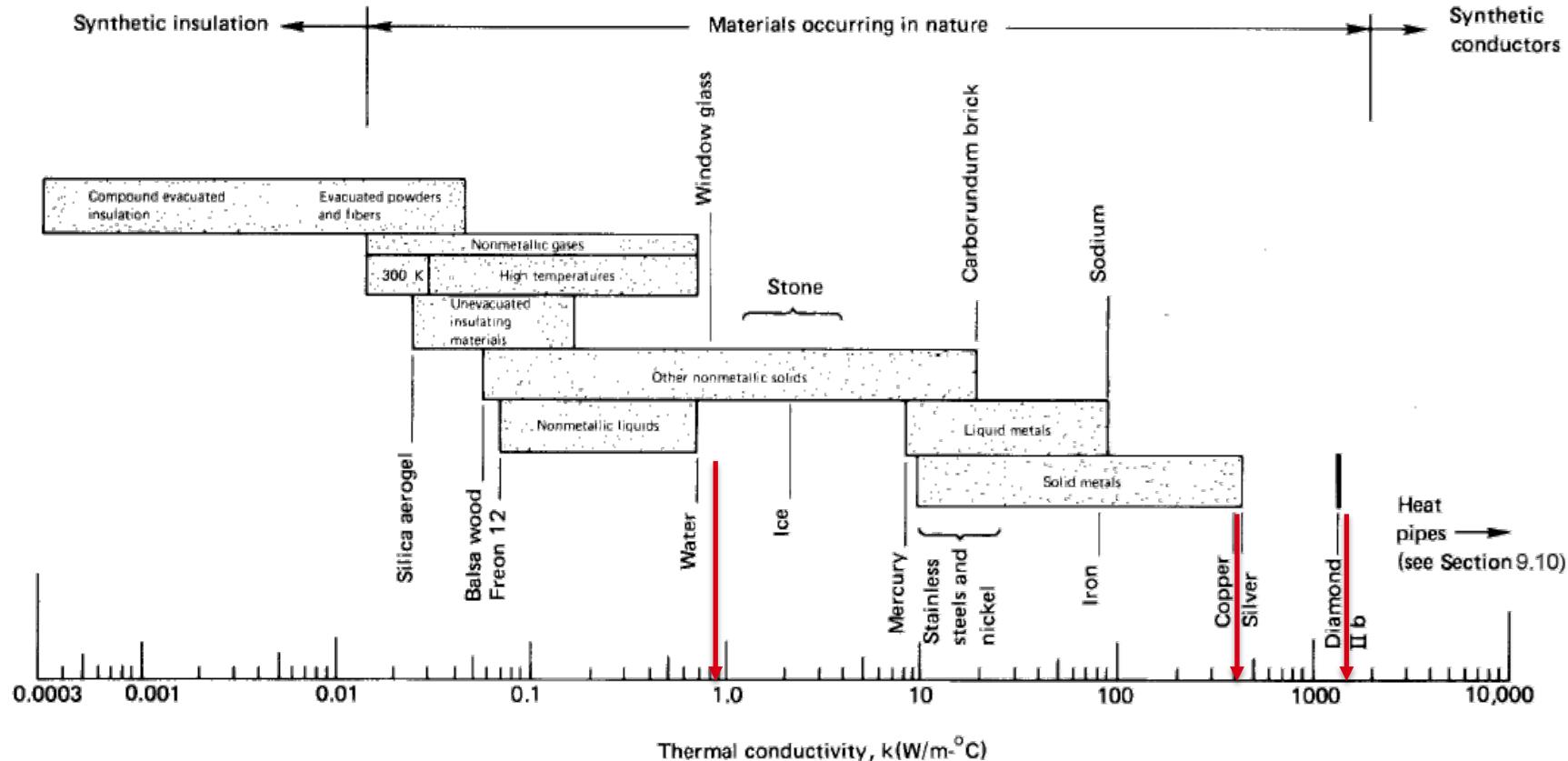

- identify the system and its boundaries
- Identify heat transfer mechanisms involved

Solve basic heat transfer problems

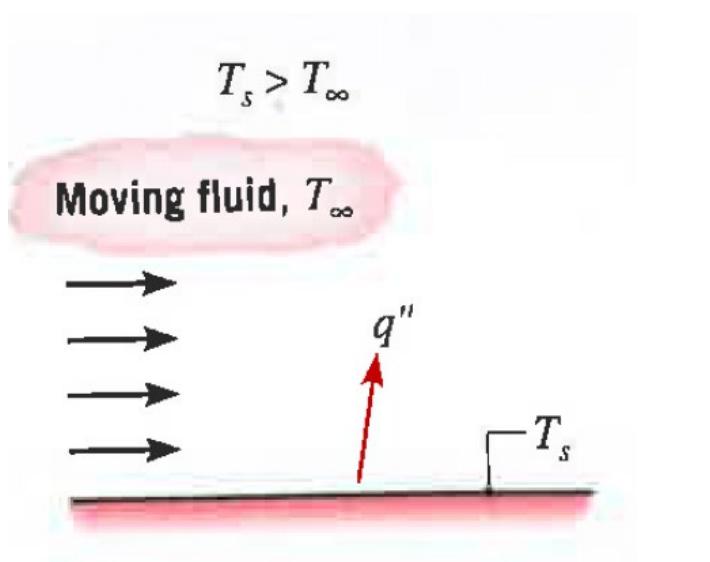
Supplementary Slides

Transport Laws 1: Fourier's Law of Heat Conduction

$$Q = -kA \frac{T_2 - T_1}{L} \quad \Rightarrow \quad \frac{Q}{A} = q'' = -k \frac{\Delta T}{L}$$

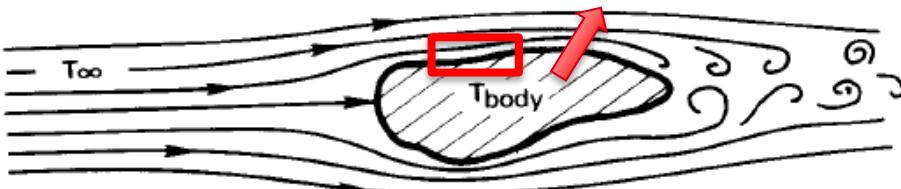

In the limit of an infinitesimal thickness dx :

$$q'' = -k \frac{dT}{dx} \quad [\text{W/m}^2]$$


k = thermal conductivity, [W/mK]

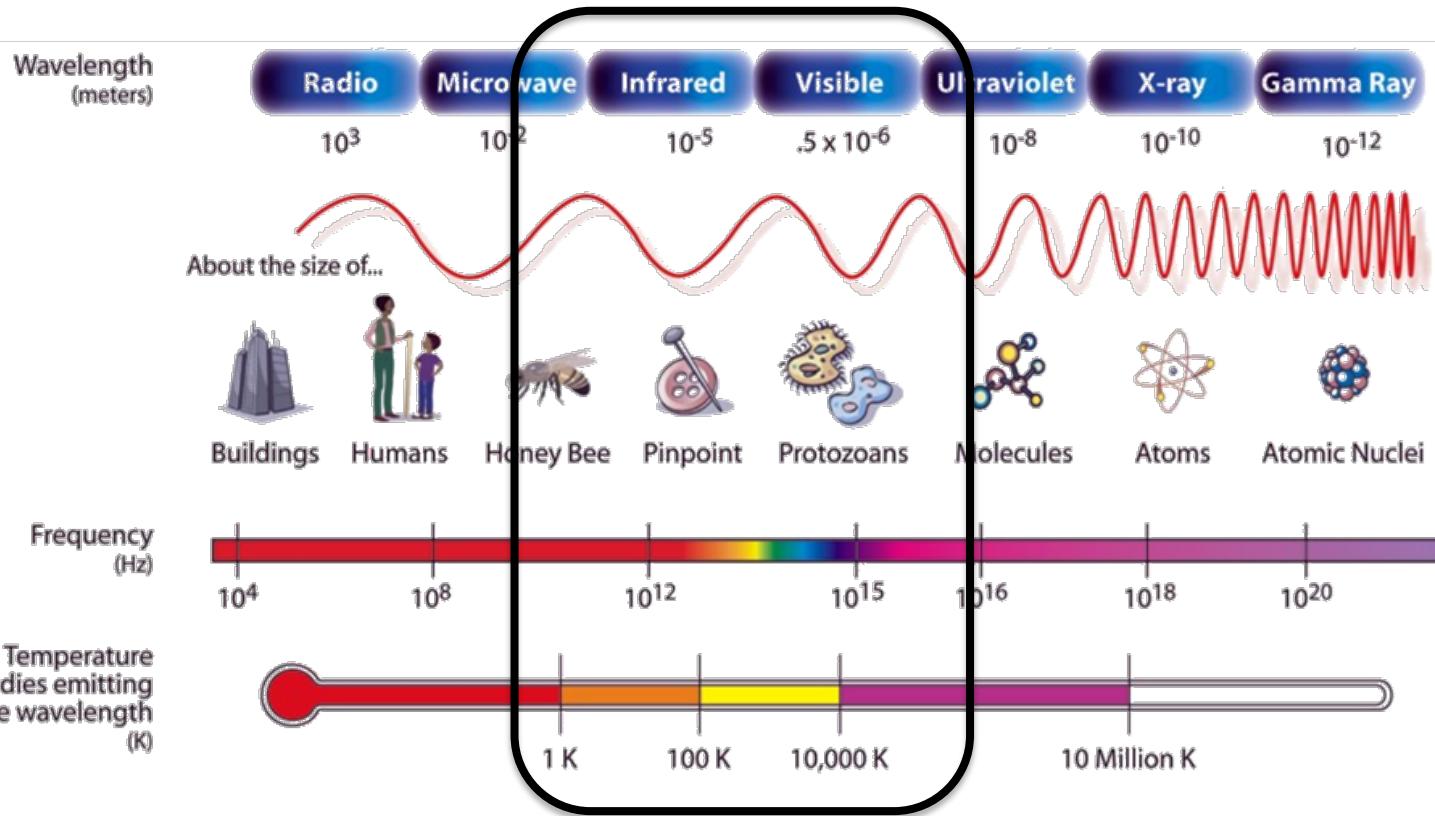
LINEAR TEMPERATURE PROFILE

Transport Laws 1: Fourier's Law of Heat Conduction



Transport Laws 2: Newton's Law of Heat Convection

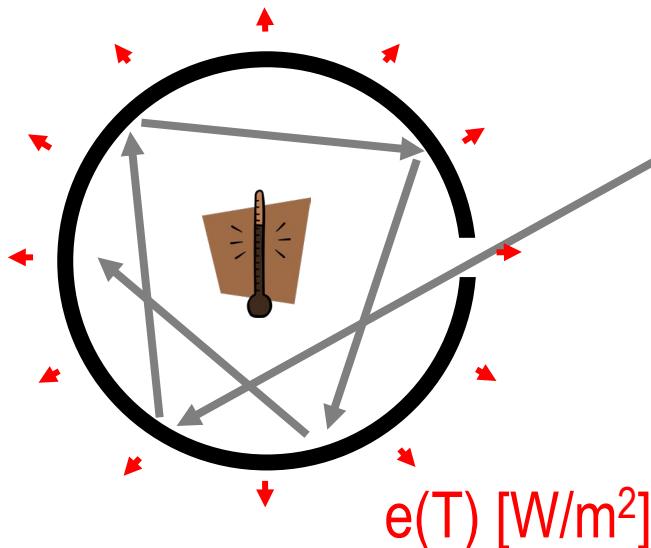
$$q'' = \bar{h} (T_s - T_\infty)$$


h = convective heat transfer coefficient, [W/m²K]

Transport Laws 2: Newton's Law of Heat Convection

<i>Situation</i>	\bar{h} , W/m ² K
<i>Natural convection in gases</i> <ul style="list-style-type: none">• 0.3 m vertical wall in air, $\Delta T = 30^\circ\text{C}$	4.33
<i>Natural convection in liquids</i> <ul style="list-style-type: none">• 40 mm O.D. horizontal pipe in water, $\Delta T = 30^\circ\text{C}$• 0.25 mm diameter wire in methanol, $\Delta T = 50^\circ\text{C}$	570 4,000
<i>Forced convection of gases</i> <ul style="list-style-type: none">• Air at 30 m/s over a 1 m flat plate, $\Delta T = 70^\circ\text{C}$	80
<i>Forced convection of liquids</i> <ul style="list-style-type: none">• Water at 2 m/s over a 60 mm plate, $\Delta T = 15^\circ\text{C}$• Aniline-alcohol mixture at 3 m/s in a 25 mm I.D. tube, $\Delta T = 80^\circ\text{C}$• Liquid sodium at 5 m/s in a 13 mm I.D. tube at 370°C	590 2,600 75,000
<i>Boiling water</i> <ul style="list-style-type: none">• During film boiling at 1 atm• In a tea kettle• At a peak pool-boiling heat flux, 1 atm• At a peak flow-boiling heat flux, 1 atm• At approximate maximum convective-boiling heat flux, under optimal conditions	300 4,000 40,000 100,000 10^6
<i>Condensation</i> <ul style="list-style-type: none">• In a typical horizontal cold-water-tube steam condenser• Same, but condensing benzene• Dropwise condensation of water at 1 atm	15,000 1,700 160,000

Transport Laws 3: Stefan-Boltzmann's Law of Radiation


$$E = h\nu = \frac{hc}{\lambda}$$

Transport Laws 3: Stefan-Boltzmann's Law of Radiation

Gray Body

$$\alpha_\lambda \neq 1$$

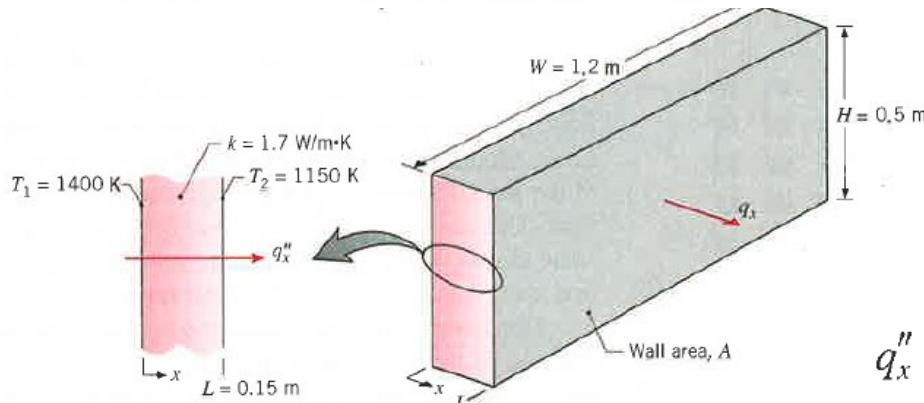
$$\alpha_\lambda = \varepsilon_\lambda$$

$$e(T) = \varepsilon \sigma T^4$$

T = absolute temperature [K]

$\sigma = 5.670367 \cdot 10^{-8} \text{ W/m}^2\text{K}^4$

ε = emittance $0 < \varepsilon < 1$

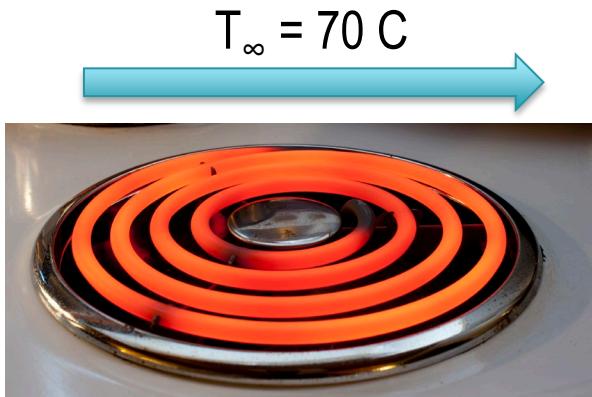

$$Q_{rad} = \varepsilon \sigma A_s (T^4 - T_{sur}^4)$$

Methodology to Solve Heat Transfer Problems

1. ***Find:*** Imagine the physical situation and define what needs to be found
2. ***Schematic:*** Draw a schematic of the system
 - Identify the boundaries of the system
 - Identify the heat transfer mechanisms at the boundaries
 - Define the arrows for heat transfer so to have consistent signs
 - Identify heat sources within the control volume
 - Add all known information about the system (dimensions, physical properties, temperatures, heat sources etc.)
3. ***Assumptions:*** List all pertinent simplifying assumptions (e.g. steady-state)
4. ***Solution:*** Write the appropriate conservation laws and transport laws
5. ***Verify:*** Verify the physical consistency of your results
 - Are temperature across bodies consistent with their physical properties? If the direction of heat flow consistent with the temperature gradients etc.

Example 1: Fourier's Law of Heat Conduction

The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m · K. Measurements made during steady-state operation reveal temperatures of 1400 and 1150 K at the inner and outer surfaces, respectively. What is the rate of heat loss through a wall that is 0.5 m by 1.2 m on a side?


Assumptions:

1. Steady-state conditions.
2. One-dimensional conduction through the wall.
3. Constant thermal conductivity.

$$q''_x = k \frac{\Delta T}{L} = 1.7 \text{ W/m} \cdot \text{K} \times \frac{250 \text{ K}}{0.15 \text{ m}} = 2833 \text{ W/m}^2$$

$$q_x = (HW) q''_x = (0.5 \text{ m} \times 1.2 \text{ m}) 2833 \text{ W/m}^2 = 1700 \text{ W}$$

Example 2: Newton's Law of Heat Convection

$T_{\text{body}} = 120 \text{ C}$

The heat flux, q , is 6000 W/m^2 at the surface of an electrical heater. The heater temperature is 120°C when it is cooled by air at 70°C . What is the average convective heat transfer coefficient, \bar{h} ? What will the heater temperature be if the power is reduced so that q is 2000 W/m^2 ?

$$\bar{h} = \frac{q}{\Delta T} = \frac{6000}{120 - 70} = 120 \text{ W/m}^2\text{K}$$

If the heat flux is reduced, \bar{h} should remain unchanged during forced convection. Thus

$$\Delta T = T_{\text{heater}} - 70^\circ\text{C} = \frac{q}{\bar{h}} = \frac{2000 \text{ W/m}^2}{120 \text{ W/m}^2\text{K}} = 16.67 \text{ K}$$

$$\text{so } T_{\text{heater}} = 70 + 16.67 = 86.67^\circ\text{C}$$

■