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Exercise 4.1

Thermal energy storage systems commonly involve packed bed of solid spheres, through which a hot
gas flows if the system is being charged, or a cold gas if it is being discharged. In a charging process,
heat transfer from the hot gas increases thermal energy stored within the colder spheres; during
discharge, the stored energy decreases as heat is transferred from the warmer spheres to the cooler
gas. Consider a packed bed of 75 mm diameter aluminum spheres (p = 2700 kg/m?, ¢ = 950J /kgK,
k = 150 W/mK) and a charging process for which gas enters the storage unit at a temperature of
T,; = 300°C. If the initial temperature of the spheres is T; = 25°C and the convection coefficient is
h = 75 W/m?K, calculate:

a) How long does it take a sphere near the inlet of the system to accumulate 90% of the maximum
possible thermal energy?

b) What is the corresponding temperature at the center of the sphere?

c) Is there any disadvantage to using copper instead of aluminum pc, = 8900kg/m? and cc,, = 400
J/keK) 7

d) Calculate the time needed to accumulate 90% of the maximum possible thermal energy and the
corresponding temperature at the center of the sphere if the spheres are made of Pyrex, with
p = 2225kg/m? ,c = 835 J/kg K, k = 1.4W/mK.
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Solution
> o«— Aluminum sphere
% D =75mm, T;=25°C
—> p = 2700 kg/m3
Tgi=300°C ¢ = 950 J/kg-K
h = 75 W/m2-K k = 240 W/m-K
—
First of all, we compute the Biot number:
h(ro/3)  75W/m?K(0.0125
pi = 1o/3) _ T5W/mK( ™ 0.00625 < 0.1

k 150W /m- K

The total thermal energy that a particle can accumulate is equal to its thermal capacity times the
maximum AT,q, = Ty — T; = 0;. Therefore Qremovea = 0.9 - pcV 0;. Therefore, remebering that
the total heat removed added during a transient is expressed as Q(t) = pcV6;(1 — exp(—t/1)), we
get:

removed
Cgpcw =090=1- eXp(—t/Tt)
o pVe pDe 2700kg/m? x 0.075m x 950J /kgK _ 4975
YT hA, T 6h 6 x 75W/m2K -

t = —71;1In(0.1) = 427s x 2.30 = 984s

—6ht
T(984S) = Tgﬂ' + (Tl - Tg,i) exp ( pDc >

—6 x 7T5W/m?K x 984s
2700kg/m? x 0.075m x 950J /kgK

= 300°C — 275°C exp (
=272.5°C
For Cu, the heat capacity is:
pe = 8900kg/m> x 400J /kgK = 3.56 x 105 /m®*K > (pc)a; = 2.57 x 106 /m3K

So for Cu spheres, we could store ~38% more thermal energy.

Comments: Before the packed bed becomes fully charged, the temperature of the gas decreases as it
passes through the bed. Hence, the time required for a sphere to reach a prescribed state of thermal
energy storage increases with increasing distance from bed inlet.
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(:HE;;_‘“- - o— Pyrex sphere
x_.»--—r‘r' — D=75mm, T, = 252C
- 5 P = 2225 hg.'l'l"la'
T_g"?;, ?,f}c : « ¢ = 835 Jikg-K
n= 75 Win . k= 1.4 WimK

We re-calculate the Biot number for the Pyrex spheres:

h(ro/3)  75W/m?K(0.0125m)
ko 1.4W/m- K

Bi = = 0.67

We see that the lumped capacitance model approximation is no longer valid. So, we need ti use the
solution for transient heat transfer from a sphere under convective boundary conditions.

We have for a sphere:

Q =1- ieo[sin )\1 - /\1 COSs )\1] =0.9

Qo A3
0o = Ay exp(—)\%Fo)
We have to remember that the Bi definition for the spatial effects equation is different from the lumped

capacitance model definition. So, we re-calculate:

h?“()
Bi=—=2.01
T

And from the interpolation in the table, we get: A\; = 2.03 and A; = 1.48.

So, we have:

A3 Q 8.37
0y = L 1— =)= 0.1 =0.155
7 3[sin Ay — Aq cos Aq] < Qo) 3[0.896 — 2.03 x (—0.443)] %

So, we can get the temperature at the center as:

TO - Tgasi
—— =y =0.155
T% - Tgas,i 0
Therefore, Ty = 257.3°C.
Finally, we use:
qat
90 = A1 exp _)\172
7o
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Exercise 4.2

Circuit boards are treated by heating a stack of them under high pressure. The platens at the top
and bottom of the stack are maintained at a uniform temperature by a circulating fluid. To achieve a
curing condition, the epoxy has to be maintained at or above 170°C' for at least 5 min. The effective
thermo-physical properties of the stack are k = 0.613W/mK and pc, = 2.73 - 105.J/m3K.

a) If the stack is initially at 15°C' and, following application of pressure, the platens are suddenly
brought to a uniform temperature of 190°C', calculate the elapsed time t, required for the mid-
plane of the stack to reach the cure temperature of 170°C'.

b) If at this time ¢ = t., the platen temperature were reduced suddenly to 15°C, how much energy
would have to be removed from the stack by the coolant circulating in the platen in order to
return the stack to its initial uniform temperature?

Applied forca
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Solution

o
Stack, T(x,0)=T;
#48°C, L2285 mm

First of all we must determine the missing property : a = % =2.245-107".

Having all the required properties, we can begin the analysis and solving of the problem.

a) Here we can recognize that sudden application of surface temperature is equivalent to having an
infinite Biot number (Bi — 00), or to h — co. With Ty = Ti.

; _ T(0,t) =Ty 170 — 190
T T T, T 15—190

0o = Ay - exp{—)\% -Fo}
with \; = 1.5707 A; = 1.2733. The equation can be used to find the value of Fo using the

same table as in exercise 4.1: ) o
Fo=—-In(-% ) =0.977
M (A1>

=0.114

Then using the definition of Fo = at/L?, we find out the required t:

_Fo-L? 0.977-(25-107%)?

t =
« 2.245-10~7

= 2720s = 45.3min

b) The energy removal is equivalent to the energy gained by the stack per unit area for the time
interval going from 0 to t.. With QS corresponding to the maximum amount of energy the could
be transferred.

Qo=p-cp-2L-(T; —Too) =2.73-10°-2-25-1073 - (15 — 190) = —2.389 - 10" J/m?

We can also determine @, using the following equation:

9

g”:l_SiDAl

-0y = 0.927
Qo A1 0

Having the heat removed by unit of volume we can find out the heat to be removed per unit
area. This heat must be removed to return to T;.

Q =0.927-Qy = 0.927-2.389 - 107 = 2.21 - 10".J /m?
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Note:

For question b if we compute 6y the value will be zero, as such the Fourier number will be infinite.
Since Fo = E%, then the time required for this heat transfer will be infinite as well and as such the
heat to be transferred is equal to maximum amount of energy transfer that could occur if the process
were continued to infinite time QQg. Specifically if we compute it for case b

Qo=p-cp-2L-(T; —Too) =2.73-10°-2-25-1073 - (170 — 15) = 2.12- 10".J/m?

that is only 4% lower than the value obtained in the solution for b.

However, we can see the problem in b as such: We want to remove the heat transferred to the stack
between 0 and t. and this heat can be actually estimated with the approximated solution given in
chapter 5.5.3 at page 275. In this formula @)y is the maximum amount of energy transfer that could
occur if the process were continued to infinite time. However, this heat transfer takes place in a
finite time in question a and as such the actual heat transferred would be a fraction of Jg and to
estimate this rate we use a formula that is an approximated solution. Since both formulas are from
approximated solutions their values are not exact and which one to prefer will depend on how much
precision is required.
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Exercise 4.3

A procedure for determining the thermal conductivity of a solid material involves embedding a ther-
mocouple in a thick slab of the solid and measuring the response to a prescribed change in temperature
at one surface. Consider an arrangement for which the thermocouple is embedded 10mm from a sur-
face that is suddenly brought to a temperature of 100°C by exposure to boiling water. If the initial
temperature of the slab was 30°C' and the thermocouple measures a temperature of 65°C 2min after
the surface is brought to 100°C, what is the thermal conductivity? The density and specific heat of
the solid are known to be p = 2200kg/m? and c, = 700.J/kgK .
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Solution

T0+) =T,=100T

T(x,0)=T;=30°C
P =R200kg[/m>
c=700Jfkg-K l—-)‘— x=10mm

Thermocouple,
/—T(0.0lm, 120s)=65°C

Assumptions:
a) One-dimensional conduction in x
b) Slab semi-infinite medium
c) Constant properties

Analysis:

To solve this problem we use the semi-infinite medium model with constant surface temeprature
boundary condition. Therefore we have:

T(x,t) —Ts x ) 65 — 100

0.01
T, — 1T, erf<2 (o t)05 )

~30-100 erf(Q (- 120005

The equation is non linear so the values for the erf function must be taken from a table and it is
possible to find: erf(x) = 0.5 <= = = 0.477, hence:

0.01

0.01 2 9.156 - 10~ "m?
o.477> — a=9.156-10""m"/s

a-120:(

k
Sincea=— —k=a-p-cp=141W/mK
PCp
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Exercise 4.4 FOR REVISION

A chip that is of length L = 5mm on a side and thickness ¢ = Imm is encased in a ceramic substrate,
and its exposed surface is convectively cooled by a dielectric liquid for which h = 150W/m?K and
T, = 20°C. In the off-mode the chip is in thermal equilibrium with the coolant (T; = T,). When
the chip is energized, however, its temperature increases until a new steady-state is established. For
purposes of analysis, the energized chip is characterized by uniform volumetric heating with ¢ = 9 x 106
W /m3.

a) Assuming an infinite contact resistance between the chip and substrate and negligible conduction
resistance within the chip, determine the steady-state chip temperature T%. Following activation
of the chip, how long does it take to come within 1°C of this temperature? The chip density and
specific heat are p = 2000 kg/m? and ¢ = 700J /kgK, respectively.

b) For a more realistic analysis the indirect transfer from the chip to the substrate and then from
the substrate to the coolant needs to be accounted for. The total thermal resistance associated
with this indirect route includes contributions due to the chip-substrate interface (a contact
resistance), multidimensional conduction in the substrate and convection from the surface of the
substrate to the coolant. If this total thermal resistance is Ry = 200W /K, what is the steady
state chip temperature T 7 Following the activation of the chip, how long does it take to come
within 1°C of this temperature?

Chip,
T, h § 05
# ' £  Substrate
L B
/ i
| 74
S ¥

Hint: The general equation for heat transfer accounting for ALL of the mechanisms is:

Gl + E,— [B(T— T.) + oo (T — TP Ayey = pVels

An exact solution to Equation 5.15 may also be obtained if radiation may be
neglected and # is independent of time. Introducing a temperature difference
0=T — 1., where di/dt = d77dt, Equation 5.15 reduces to a linear, first-order,

nonhomogeneous differential equation of the form

CE@ — =
Ctat—b=0 (5.20)

10
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where a= (BA, /pVe) and b= [(qA,, + Eg)/ch]. Although Equation 5.20 may
be solved by summing its homogeneous and particular solutions, an alternative
approach is to eliminate the nonhomogeneity by introducing the transformation

0'=6—2 (5.21)

a

Recognizing that d9’/dt = db/dt, Equation 5.21 may be substituted into (5.20) to
yield

&
T+l =0 (5.22)

Separating variables and integrating from O to ¢ (6’ to 8), it follows that

!

% = exp(—a) (5.23)
or substituting for 8’ and 6,
I—71,—(Wa B
T—T.— (s P (5.24)
Hence
;:: ]?:Z = exp(—at) + T-b—/aToo [1 — exp(—ar)] (5.25)

11
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Solution

—> T,=20°C
" h=150Wfm*K 49,
i I

onv

Chip, §= xl0° Wﬁn",
L=Smm, t=1mm

Properties: chip material (given): p = 2000kg/m?, ¢ = 700 J/kgK.
Analysis: At steady-state, conservation of energy yields:
_Eout + Eg =0
—hIL*(Ty — Teo) + ¢L*t =0
at
h

9 x 105W/m? x 0.001m
150W /m?K

Tf:Too—l-

Ty = 20°C + = 80°C

From the lumped capacitance analysis the general heat transfer equation reduces to:

dr
pL%cE = GL*t — h(T — Ty, L?

with ) 2
1
o= = 150W/m — 0.1075"
ptc  (2000kg/m>)(0.001m)(700J /kgK)
. 6 3
p= 4 9x10°W/m = 6.429K /s

pc (2000kg/m3)(700J /kgK)
From equation 5.25,

T—Tw—b/a (79— 20 — 60)K
—at) = - = 0.016
xp(=0t) = o e ~ @o—20— 6ok _ 01067

 In(0.01667)

01075 1 oo

12



Heat and Mass Transfer ME-341 -(I)f(-
iuli i EXERCISE SET 4

Prof. Giulia Tagliabue ECOLE POLYTECHNIQUE

EPFL-STI-GM-LNET FEDERALE DE LAUSANNE
ol*h)
> Toe20°C ya lr‘—RfZOOK/W—i s
I __DAJ‘SawﬁRKf Pad (;’La)-x Rf,c Reond Rconv

Substrate - Chip, g=9x10° W/m3, L=Smom | t=1mm

Assumptions: Constant properties

Analysis: the direct and indirect path for heat transfer from the chip to the coolant are in parallel,
and the equivalent resistance is:

Requiv = [PL* + Ry T = [(3.75 x 1073 + 5 x 1073)W/K] ' = 114.3K/W

The corresponding overall heat transfer coefficient is:

(Requiv)il . 000875W/K

_ 2
12~ (ooosm  POW/mK

U =

To obtain the steady-state temperature, apply conservation of energy to a control surface about the
chip: _ .
~FBot +Eg=0  —UL*(Ty —Tw) +¢L* =0
gt 9 x 105W/m? x 0.001m
Ty =T, — =20°C
f=te * 350W /m2K

From the general lumped capacitance analysis, the general equation for heat transfer yields:

=45.7°C

dr
pL?tc— = L*t — U(T — T )L?

dt
with )
K
o= = 350W/m — 02505~
ptc  (2000kg/m?)(0.001m)(700J /kgK)
. 1 6 3
b= L _ 9 x 10°W/m = 6.429K /s

pc (2000kg/m?3)(700J /kgK)
Equation 5.24 yields

T—Tw—bla (44.7—-20—-25.7)K
*p(=at) T, — T —b/a (20 —20 — 25.7)K 00389

—1n(0.0389)/0.250s " = 13.0s

Comments: Heat transfer through the substrate is comparable to that associated with direct con-
vection to the coolant.

13
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Exercise 4.5 FOR REVISION

A plastic coating is applied to wood panels by first depositing molten polymer on a panel and then
cooling the surface of the polymer by subjecting it to air flow at 25°C. As first approximation, the
heat of reaction associated with solidification of the polymer may be neglected and the polymer/wood
interface may be assumed to be adiabatic. If the thickness of the coating is L = 2mm and it has
an initial uniform temperature of T; = 200°C, how long will it take for the surface to achieve a
safe-to-touch temperature of 42°C' if the convection coefficient is h = 200W/m?K ?

What is the corresponding value of the interface temperature?

The thermal conductivity and diffusivity of the plastic are k = 0.25W/mK and a = 1.2:10~"m?/s.

Air
—
—» T,k
—
- Plaztic coating
_1[ k&, T
_—"t00d panel

g—

14
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Solution

Assumptions:
a) One-dimensional conduction in coating

b) Negligible radiations

d

)

C) Constant properties
) Negligible heat from reaction
)

e) Negligible heat transfer across plastic/wood interface

A|r —> lq D = 25‘(;
-~ —  h =200 Wim2K

Plastc
X 4 £ .y T = 200°C
T k = 0.250 Wim-K

- a = 1.20x10~" ma/s
| 0002 m

\

S—— ‘O.l':)[)d

With a Bi = hL/k = 200 -0.002/0.25 = 1.6 > 0.1, we must avoid using the lumped capacity method.
To use the approximate solution we first have to consider more closely the physics of this problem
and the conditions under which the formulas have been derived in class. The expression reported in
the formula sheet is obtained for a plate of thickness 2Ly that is convectively cooled on both sides.
Clearly the solution is symmetric around the centerline of the wall and indeed we have observed that
the characteristic dimension describing the temperature change in the wall and the Bi number is half
the length of such a wall, Ly. In this case, however, the wall is convectively cooled on one side but
insulated on the other side. We then remember that the adiabatic boundary condition is equivalent to
a symmetry condition for the temperature profile. Therefore, the plate under study, of thickness L, will
have a temperature profile that is equal to that of half a plate with thickness 2Lg. We thus realize that
the thickness L of the plate studied in this problem is equal to half the thickness of the convectively
cooled plate we used to derive the expressions in the formula sheet. Therefore, the total thickness
of the plate of this problem is the characteristic dimension we have to use to calculate the Bi anf Fo
numbers for this problem. Thus with Bi = hL/k = 1.6 we get A; = 1.1593 and A\; = 1.00842:

T—-Tw 42 — 25
o T, —Txw 200 —25 0.097

0 = Ay -exp{—A} - Fo} - cos (A1 - @/L) = 1.1593 exp{ —1.00842” - Fo} - cos(1.00842)

For the case where x = L

In ( 0.0971 >
Fo — 1.1593-cos(1.00842) ) 189
B 1.008422 -
Fo-L? 1.82-0.0022
t= = = 60.7
a 1.20 - 107 y
From the expression for the dimensionless temperature at the center of the sphere 6y = YTE’:%:: =

Arexp(—A? - Fo) we get:

Ty = T + (Ti — Too) - Ay exp{—A? - Fol} = 25 4+ 175 - 1.1593 - exp{ —1.00842° - 1.82} = 56.88°C

15



