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Exercise Set 3

Exercise 3.1

Turbine blades mounted to a rotating disk in a gas turbine engine are exposed to a gas stream that is
at T∞ = 1200°C and maintains a convection coefficient of h = 250 W/m2K over the blade.

The blades are fabricated from Inconel with k = 20 W/mK and have a length of 50 mm. The blade
profile has a constant cross-sectional area of Ac = 0.0006 m2 and a perimeter P = 110 mm. A proposed
blade cooling scheme, which involves routing air through the supporting disc, is able to maintain the
base of each blade at a temperature Tb = 300°C.

a) If the maximum allowable blade temperature is 1050°C, is the proposed cooling scheme satisfac-
tory?

Hint 1: treat the turbine blade as a fin of constant cross-section and assume that the tip of the
blade is adiabatic.

Hint2: carefully consider the physical problem and imagine where the temperature would be
maximum in this fin!!

b) For the proposed cooling scheme, what is the rate at which heat is transferred from each blade
to the coolant?

If necessary use the hyperbolic function table at the end of the document to determine the necessary
values.
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Solution

a) The blade can be considered a fin with adiabatic tip. Hence the equation that describes the
temperature profile is case B of the table:

The peak temperature in this fin will be maximum at the tip of the blade. In fact, contrary to
the case seen in class, in this case the fin removes heat from the gas stream towards the disk. So
the peak temperature will be at the farthest point from the fin base. Equation do not change
however, for x = L we obtain:

T (L)− T∞
Tb − T∞

=
1

coshmL

m =

(
hP

kAc

)1/2

=

(
250W/m2K× 0.11m

20W/mK× 6× 10−4m2

)1/2

m = 47.87m−1 and mL = 47.87m−1 × 0.05m = 2.39

From the hyperbolic function table at the end of the document, we get: coshmL = 5.51

Hence: T (L) = 1200°C + (300− 1200)°C/5.51 = 1037°C

The operating conditions are therefore acceptable.

b) Heat transfer is: Qf = M tanhmL = −517W× 0.983 = −508W

Notice the negative sign of Q. It flows opposite to the x-axis we used to derive the equations,
so from the tip towards the base of the fin.
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Exercise 3.2

The maximum operation temperature for an electronic chip is 75°C. To maximize the dissipation
from a square chip with side length W = 12.7mm, it is proposed that a 4x4 array of copper fins
(k = 400W/mK) be metallurgically joined to the outer surface of the chip.

a) Sketch the equivalent thermal circuit for the pin-chip-board assembly assuming 1D steady state
conditions and negligible contact resistance between the pins and the chip. Hint: consider the
heat removed from a unit cell of the periodic arrangement of fins. Consider the thermal resistance
of one fin and do not forget to account for convection at the exposed surface of the chip which
is not covered by the fins.

b) Write the expression for all the thermal resistances involved in the problem. Consider the
convection heat transfer at the tip of each fin.

c) the pin diameter and length are Dp = 1.5mm and Lp = 15mm respectively and the contact

resistance is R
′′
t = 10−4 [m

2K
W ], find what is the maximum heat dissipation rate Qc when Tc =

75°C and h = 1000W/m2K
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Solution

Assumptions:

a) Steady-state conditions

b) One-dimensional heat transfer in chipboard assembly

c) Negligible Pin chip contact resistance

d) Constant Properties

e) Negligible chip thermal resistance

f) Uniform chip temperature

a) The system can be modelled as:

Note that we have indicated separate parallel paths for heat transfer through the fin and through
the base of the fins. Also we have introduced the contact resistance between the chip and the
fin.

b) The thermal resistances involved are due to convection at the bottom of the chip, conduction
through the chip, contact resistance, convection at the base of the chip and conduction/convec-
tion on the fins. The first four are expressed as:

Rconv,i = 1/(hiAi)

Rcond,b = Lb/Ackb

Rt,c = R”
t,c/Ac

Rconv,b = 1/(hoAb)

Using the convection boundary condition for the tip of the fin, Rf is computed as:

Rf =
θb

16Qf
=

cosh(mL) + h0
mk · sinh(mL)

16 · (h0 · P · k ·Ac,l)1/2 · (sinh(mL) + h0
mk · cosh(mL)
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c) The analysis of the electrical equivalent circuit give us an expression for the heat transfer rate
from the chip Qc:

Qc = 16Qf +Qb +Qi

with

Qf = M ·
sinh(mL) + h0

mk · cosh(mL)

cosh(mL) + h0
mk · sinh(mL)

m =

(
h0 · P
kAc,f

)1/2

=

(
4 · h0
k ·Dp

)1/2

=

(
4 · 1000W/m2K

400W/mK · 0.0015m

)1/2

= 81.7m−1

mL = 1.23 sinh(mL) = 1.57 cosh(mL) = 1.86

ho
mk

=
1000

81.7 · 400
= 0.0306

M = (h0 · π ·Dp · k · π ·
D2
p

4
)1/2 · θb

M = (1000 ·K(π2/4) · 0.00153 · 400)1/2 · 55 = 3.17W

So we get Qf = 2.703W

The heat transfer rate from the base of the fin is equal to:

Qb = hoAb(Tc − T∞) = 1000W/mK[0.0127m2 − 16πD2/4]55 = 7.32W

The heat transfer rate from the board is:

Qi =
Tc − T∞,i(

1
hi

+R′′t,c + Lb
kb

)
· 1
Ac

=
0.0127 · 55

( 1
40 + 10−4 + 0.005)

= 0.29W

Hence the maximum chip heat rate is:

Qc = (16 · 2.703 + 7.32 + 0.29) = 50.9W
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Exercise 3.3

Two parallel pipelines spaced 0.5m apart are buried in soil having a thermal conductivity of 0.5W/mK.
The pipes have outer diameter of 100mm and 75mm with surface temperatures of 175°C and 5°C
respectively. Estimate the heat transfer rate per unit length between the two pipelines.
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Solution

Assumptions:

a) Steady-State

b) Two dimensional conduction

c) Constant properties

d) Pipes are buried deeply (So the medium around it can be considered infinite)

e) The diameters are negligible in comparison with the length of the tubes.

f) w > D1 w > D2

The heat transfer rate per unit of length from the hot pipe is : q′ = q
L = S·k·(T1−T2)

L

The shape factor S is computed using (From the slides):

S =
2π · L

cosh−1
(
4w2−D2

1−D2
2

2D1·D2

)
Using the numerical values:

S

L
=

2π

cosh−1
(
4·0.52−0.12−0.0752

2·0.1·0.075

) =
2π

cosh(65.63)
= 1.29

So q′ = 1.29 · 0.5 · (175− 5) = 110W/m
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Exercise 3.4

Consider an alloyed aluminum (k = 180W/mK) rectangular fin of length L = 10(mm), thickness
t = 1mm and width w >> t. The base temperature of the fin is Tb = 100°C and the fin is exposed to a
fluid of temperature T∞ = 25°C. Assuming a uniform convection coefficient h = 100W/m2K over the
entire fin surface, determine the fin heat transfer rate per unit width q′f , efficiency ηf , effectiveness εf
and thermal resistance per unit length R′f and the tip temperature T (L) for the case of:

a) Convective heat transfer at the tip

b) Adiabatic tip

c) How do these numbers compare to the values in the infinite fin approximation?
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Solution

From the knowledge of the heat transfer rate and the adimensional fin-base temperature we can
compute all the other performance metrics as:

ηf =
q′f

h · (2L+ t) · θb
εf =

q′f
h · t · θb

R′t,f =
θb
q′f

With the following definitions:

θ ≡ T − T∞, θb = θ0 = Tb − T∞

m ≡
√
hP

kAc
=

√
h(2w + 2t)

kwt
'
√

2h

kt
= 33.3 m−1

M ≡
√
hPkAcθb =

√
h(2w + 2t)kwtθb '

√
2hw2ktθb = 450w W

a)

q′f =
M

w

sinhmL+ (h/mk) coshmL

coshmL+ (h/mk) sinhmL
= 450W/m

0.340 + 0.0167× 1.057

1.057 + 0.0167× 0.340
= 151W/m

ηf =
151W/m

100W/m2K(0.021m75°C
= 0.96

εf =
151W/m

(0.001m75°C
= 20.2, R′t,f =

75°C
151W/m

= 0.50mK/W

T (L) = T∞ +
θb

coshmL+ (h/mk) sinhmL
= 25°C +

75°C
1.057 + (0.0167)0.340

= 95.6°C

b)

q′f =
M

w
· tanh(mL) = 450 · 0.321 = 144W/m

ηf = 0.92

εf = 19.3

R′f = 0.52mK/W

T (L) = T∞ +
θb

cosh(mL)
= 25 +

75

1.057
= 96°C

c) The infinite fin approximation is equivalent to having L→∞.

q′f =
M

w
= 450W/m

ηf = 0

εf = 60.0

R′f = 0.167mK/W

T (L) = T∞ = 25°C
9



Heat and Mass Transfer ME-341
Prof. Giulia Tagliabue
EPFL-STI-GM-LNET

Exercise Set 3

10



Heat and Mass Transfer ME-341
Prof. Giulia Tagliabue
EPFL-STI-GM-LNET

Exercise Set 3

Exercise 3.5 FOR REVISION

A disk shaped electronic device of thickness Ld, diameter L and thermal conductivity kd, dissipates
electrical power at a steady rate of Pe along one of its surfaces. The device is bonded to a cooled base
at T0 using a thermal pad of thickness Lp and a thermal conductivity kp. A long fin of diameter D
and thermal conductivity kf is bonded to the heat generating surface of the device using an identical
thermal pad. The fin is cooled by an air stream which is at temperature T∞ and provides a convection
coefficient h.

a) Construct the thermal circuit of the system and write the expression of the thermal resistances
involved.

b) Derive an expression for the temperature Td of the heat-generating surface of the device in terms
of the circuit thermal resistances , T0 and T∞

c) Calculate Td for the prescribed conditions.

Note: considered the much shorter length of the thermal pads and electronic device compared to the
fin, neglect the effect of convection along these parts.
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Solution

Assumptions:

a) Steady-state conditions

b) One-dimensional conduction through thermal pads and device.

c) No lateral losses

d) Infinitely long fin

e) Negligible contact resistance between components of the system

f) Constant properties

g) Negligible radiation transfer

a) The system can be modeled with the following equivalent thermal circuit (note that the heat
dissipation occurs just on a surface of the chip and hence appears as a power input in the
corresponding node of the thermal circuit):

We want to first determine the thermal resistances. We know that we can neglect convection
in the first part (pad + device + pad) and therefore conduction ALONG them is the only heat
transfer mechanism. The thermal resistances are:

Rp =
Lp

kp ·Ac
Rd =

Ld
kd ·Ad

NOTE : be careful and do NOT get confused. Although these parts have a circular cross-
section we use the planar resistance expressions and NOT the radial resistance expressions. In
fact what matters is in which direction the heat flows. In this case the heat flows by conduction
ALONG THE AXIS of the cylindrical objects (pads and devices). Therefore, it is a planar wall
of circular cross-section. Instead, when the heat flows ALONG THE RADIUS of a cylindrical
object, as the cross-section grows with r we need to use the radial system expressions for the
thermal resistance.
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For the fin we need first to identify the tip-BCs and in this case we use the infinite fin condition.
We know that the fin resistance is defined as:

Rf =
(Tp − T∞)

Qf
.

where Tp is the temperature of the interface between fin and thermal pad.

For an infinite fin: Qf = M =
√
hPkfAcθb =

√
hPkfAc(Tp − T∞)

Therefore we have:

Rf =
1

(hPkfAc)1/2

Note: depending on the fin boundary condition it can be convenient to determine the fin resis-
tance through the definition or through the equivalent expression:

Rf = 1/(hAfηf )

where ηf = Qf/Qf,max = Qf/(hAfθb).

b) To obtain an expression for Td, we need to perform an energy balance about the d-node:

Ėin − Ėout = qa + qb + Pe = 0

Using the thermal circuit it is clear that:

qa =
T0 − Td
Rp +Rd

qb =
T∞ − Td
Rp +Rf

Combining the above equations, it is possible to express Td:

Td =
Pe + T0

Rp+Rd
+ T∞

Rp+Rf

1
Rp+Rd

+ 1
Rp+Rf

c) Substituting numerical values with the foregoing relations, find:

Rp = 1.061K/W Rd = 4.244K/W Rf = 5.712K/W Td = 62.4°C
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Exercise 3.6 FOR REVISION

Copper tubing is joined to the absorber of a flat-plate solar collector as shown in this figure. The
aluminum alloy absorber plate is 6mm thick with k = 180 [ WmK ] and well insulated on its bottom.
The top surface of the plate is separated from a transparent cover plate by an evacuated space. The
tubes are spaced at a distance L = 0.2m from each other. Water is circulated through the tubes to
remove the collected energy and it may be assumed to have a constant temperature of Tw = 60°C.
Under steady-state operating conditions the net radiation heat flux to the surface is q′′rad = 800W/m2.
(Note: this value accounts for both the radiation absorption by the collector plate and radiative heat
exchange between the collector plate and the cover-plate).

a) Draw a schematic of the flat-plate solar collector and the water tubing with all the relevant
physical parameters and known temperature/heat flux values. Treating the flat-plate collector
as a fin, identify an infinitesimal section of it with length dx and write the energy balance for it.
Then express it as a function of the temperature. Integrate the obtained differential equation to
find the function that describes the temperature profile in the collector plate.

b) Assume that the temperature of the absorber plate directly above a tube is equal to that of the
water. What is the maximum temperature on the collector plate?

c) What is the heat transfer rate per unit length of tube?

d) Let’s now imagine that the cover plate is removed. In this case the surface of the collector
plate is directly cooled by air flowing over it with temperature T∞ and convection coefficient h.
Derive the differential equation that governs the temperature distribution T (x) in the plate and
define the appropriate boundary conditions. What is the solution for this differential equation?
(DIFFICULT)
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Solution

a)

q′x + q′′rad(dx)− q′x+dx = 0, with q′x+dx = q′x +
dq′x
dx

dx and q′x = −ktdT
dx

It follows that,

q′′rad −
d

dx

[
−ktdT

dx

]
= 0

d2T

dx2
+
q′′rad
kt

= 0

⇒ T (x) = −
q′′rad
2kt

x2 + C1x+ C2

b) The boundary conditions are at x = 0 and x = L/2 are:

T (0) = Tw ⇒ C2 = Tw

dT

dx

∣∣∣∣
x=L/2

= 0⇒ C1 =
q′′radL

2kt

The second boundary condition accounts for the symmetry of the problem. We have indeed seen
in class that a symmetry plane is equivalent to an adiabatic boundary and therefore the net heat
transfer rate is zero as well as the first derivative of the temperature profile.

Hence,

T (x) =
q′′rad
2kt

x(L− x) + Tw

The location of the maximum temperature can be found by dT/dx = 0 ⇒ x = L/2

Tmax = T (L/2) =
q′′radL

2

8kt
+ Tw

=
800W/m2(0.2m)2

8(180W/mK)(0.006m)
+ 60°C

= 63.7°C

c) Each tube collects heat from both right and left sections of the collector plate. The heat flux
can be obtained by the gradient of temperature at the tube position, i.e. x = 0. So we write:

Q = 2

[
−k(tL)

dT

dx

∣∣∣∣
x=0

]

where tL is the cross section for heat transfer rate by conduction, and therefore, dividing by L:

q′ = 2

[
−kt dT

dx

∣∣∣∣
x=0

]
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where the factor 2 arises due to heat transfer from both sides of the tube. Hence,

q′ = −Lq′′rad

And so:
q′ = −0.2m× 800W/m2 = −160W/m

d)

q′x + dq′rad = q′x+dx + dq′conv

where q′x+dx = q′x + (dq′x/dx)dx

dq′rad = q′′raddx

dq′conv = h(T − T∞)dx

Hence,
q′′raddx = (dq′x/dx)dx+ h(T − T∞)dx

From Fourier’s law, the conduction heat rate per unit width is:

q′x = −ktdT
dx

d2T

dx2
− h

kt
(T − T∞) +

q′′rad
kt

= 0

Defining θ = T − T∞, d2T/dx2 = d2θ/dx2, the differential equation becomes:

d2θ

dx2
− h

kt
θ +

q′′rad
kt

= 0

It is a second order differential equation with coefficients and a source term, its general solution
is of the form:

θ = C1e
+λx + C2e

−λx +
S

λ2

where λ =

√
h

kt
and S =

q′′rad
kt

Appropriate boundary conditions are:

θ(0) = T0 − T∞ = θ0
dθ

dx

∣∣∣∣
x=L

= 0

Hence,

θ0 = C1 + C2 +
S

λ2

dθ

dx

∣∣∣∣
x=L

= C1λe
+λL − C2λe

−λL = 0⇒ C2 = C1e
2λL

Hence,

C1 =
θ0 − S/λ2

1 + e2λL
C2 =

θ0 − S/λ2

1 + e−2λL

θ =

(
θ0 −

S

λ2

)[
eλx

1 + e2λL
+

e−λx

1 + e−2λL

]
+
S

λ2
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