Solid Mechanics: Elements of linear viscoelasticity

In linear viscoelasticity we study the constitutive response of materials
when it is dominated by linear elastic and viscous characteristics.

We aim to model materials such as elastomers, gels, polymers,
composites, and other materials with time dependent mechanical response.

We suppose that the strains are infinitesimal:
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LINEAR ELASTICITY
A linear elastic response, described by Hook's law, describes a time independent

linear relationship between the stresses and strains.

Furthermore, it implies that the response to a given input is instantaneously realized,
or there is no phase lag between input and output.

LINEAR VISCOELASTICITY
A linear viscoelastic response also suggests a linearity between stresses and strains.
This relationship, however, is a functional of the load-time history.
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The basic criteria in the linear theory of viscoelasticity are two:

1. proportionality
2. superposition

Define the input I and corresponding response R

mm) R = R[]

For a linear viscoelastic material we have: o _ _
| : Based on two criteria we can define the stress-strain

Proportionality: R[cl] _ cR[]] | relationship, known as the Boltzmann superposition integral.

Superposition: R[I, +1,|=R[1,]+R[1,]
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In viscoelasticity, the characteristics of time-dependent
material response are conventionally identified by:
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Input stress in known,
measure the resulting strain
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RELAXATION Testing
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Input strain in known,
measure the resulting stress

G(t)=0o(t)/ &,
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The objective of viscoelasticity is
to model the strain or stress response
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BOLTZMANN SUPERPOSITION INTEGRALS:
(consecutive creep loads)
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Creep compliance

Similarly for relaxation experiment

o(t) = j E(rT 7) dg(f)

Relaxation function
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BOLTZMANN SUPERPOSITION INTEGRALS:

They are transformed in ordinary differential equations

using Laplace Transforms:
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coefficients bo,bl,bz...,ao,al,az...

linear viscoelastic response can be described
either by the Boltzmann's superposition integrals
or a differential equation.

are constant
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Experimental Observations
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Creep of High Density Polyethylene at 21°C under different stresses
(A): 9.0 (blue), 11 (green), 13 (red); (B) 14. (blue), 15 (red). (units in MPa).

FROM: A. D. Drozdov, et al, Lifetime Predictions for High-Density Polyethylene
under Creep: Experiments and Modeling, Polymers 2023, 15, 334.
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Experimental Observations

RELAXATION Testing

1.3 21
Femoral neck can n
emoral neck cancellous bone Sn-40Pb-2.5Sb solder alloy
5 0
o
£ s
@ Py
(%]
0.6
0 1000 2000 3000 4000 5000 6000 7000 8000 0 100 200 300 400 500 600 700
Time (s)

Time (s)

Stress relaxation solder alloy at 21°C

Stress relaxation of bone at 21°C
with two different grain size.

under three initial strains.

FROM: Q. Liu, et al, The compression stress relaxation and creep study
of three heading on femoral neck cancellous bone. J. Biomed. Eng. Res. 27(2), 93-96, 2008.
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Linear theory of viscoelasticity builds models based on two
mechanical analoges: Spring and dashpot elements:
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Maxwell model
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Maxwell model
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Kelvin-Voight model
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Kelvin-Voight model Creep response Recovery response
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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We need two conditions to determine the two unknown coefficients
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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Alternatively, to apply this model in creep we consider the creep of each model.
Stress is the same in each model and strains are added to get the total strain
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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VISCOELASTIC STRESS ANALYSIS

oQ2

Boundary conditions:

on S,— o,(x.,0)n,(x,)=1t,(x,,1)

on S - ui(xkat) :l/_li(xkat)

u

For a body in equilibrium, the governing
equations are:

Equilibrium: — 0 (X, 0)+ 1, =0

. 1/ . .
Strain-rate-velocity —— &, (x;,1) = E(Mi’j + uj’l.)

equations:

do.(x,,t d’c.(x,,t
b0, (x.1)+b, oy (X1, 470y (1)

Consti.tutive dt Loodr
Equations : » de;(x,,1) d’e, (1)
=d €&.. +a +a T
0jj ! dt > odr’

Initial conditions: —— U, (Xk, 0) = U,

For simple geometries and loading conditions, and when the constitutive
relation is represented by a simple equation, the field equations above
can be integrated to obtain the solution.
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VISCOELASTIC STRESS ANALYSIS

oQ2

For general conditions, it is not easy to integrate the field
equations (with a time variable).

In such cases we can use the correspondence principle:

The field equations are transformed to corresponding
equations using the Laplace Transform (with a complex variable).

The resulting equations are simpler to solve.

We apply the inverse Laplace transform to
obtain the solution on the original space (time variable).
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