
Solid Mechanics: Elements of linear viscoelasticity

In linear viscoelasticity we study the constitutive response of materials
when it is dominated by linear elastic and viscous characteristics.

We aim to model materials such as elastomers, gels, polymers,
composites, and other materials with time dependent mechanical response.

We suppose that the strains are infinitesimal:
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LINEAR ELASTICITY
A linear elastic response, described by Hook's law, describes a time independent 
linear relationship between the stresses and strains. 

Furthermore, it implies that the response to a given input is instantaneously realized, 
or there is no phase lag between input and output. 

LINEAR VISCOELASTICITY
A linear viscoelastic response also suggests a linearity between stresses and strains. 
This relationship, however, is a functional of the load-time history. 
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The basic criteria in the linear theory of viscoelasticity are two: 

1. proportionality 
2. superposition 

Define the input I and corresponding response R

[ ]R R I=

For a linear viscoelastic material we have:

Proportionality: 

Superposition:  

[ ] [ ]R cI cR I=

[ ] [ ] [ ]a b a bR I I R I R I+ = +

Based on two criteria we can define the stress-strain 
relationship, known as the Boltzmann superposition integral.
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In viscoelasticity, the characteristics of time-dependent 
material response are conventionally identified by:
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The objective of viscoelasticity is 
to model the strain or stress response

Input stress in known,
measure the resulting strain

Input strain in known,
measure the resulting stress
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BOLTZMANN SUPERPOSITION INTEGRALS:
(consecutive creep loads)
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Similarly for relaxation experiment



Solid Mechanics: Elements of linear viscoelasticity

BOLTZMANN SUPERPOSITION INTEGRALS:

They are transformed in ordinary differential equations
using Laplace Transforms:
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linear viscoelastic response can be described 
either by the Boltzmann's superposition integrals
or a differential equation.
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Experimental Observations

CREEP Testing
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Creep of High Density Polyethylene at 21oC under different stresses 
(A): 9.0 (blue), 11 (green), 13 (red);   (B) 14. (blue), 15 (red). (units in MPa).

FROM: A. D. Drozdov,  et al, Lifetime Predictions for High-Density Polyethylene 
under Creep: Experiments and Modeling, Polymers 2023, 15, 334.
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Experimental Observations

RELAXATION Testing
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Stress relaxation of bone at 21oC 
under three initial strains.

Stress relaxation solder alloy at 21oC 
with two different grain size.

FROM: Q. Liu, et al, The compression stress relaxation and creep study 
of three heading on femoral neck cancellous bone. J. Biomed. Eng. Res. 27(2), 93–96, 2008.
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Linear theory of viscoelasticity builds models based on two
mechanical analoges: Spring and dashpot elements: 

Spring : Linear Elastic

Dashpot : Linear Viscous Respone
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Maxwell model
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Maxwell model Creep response Relaxation response
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Kelvin-Voight model
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Kelvin-Voight model Recovery responseCreep response
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)

Rheological Equation 
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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We need two conditions to determine the two unknown coefficients
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)

Alternatively, to apply this model in creep we consider the creep of each model.
Stress is the same in each model and strains are added to get the total strain
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Creep of the four-parameter model
(Maxwell and Kelvin-Voigt in series)
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There is only one oblique 
asymptote to this function
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FROM: A. D. Drozdov,  et al, Polymers 2023, 15, 334.
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VISCOELASTIC STRESS ANALYSIS For a body in equilibrium, the governing
equations are:

Equilibrium:

Strain-rate-velocity
equations:

Constitutive 
Equations :

Initial conditions:
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For simple geometries and loading conditions, and when the constitutive
relation is represented by a simple equation, the field equations above
can be integrated to obtain the solution.
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VISCOELASTIC STRESS ANALYSIS
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For general conditions, it is not easy to integrate the field 
equations (with a time variable). 

In such cases we can use the correspondence principle:

The field equations are transformed to corresponding 
equations using the Laplace Transform (with a complex variable).

The resulting equations are simpler to solve.

We apply the inverse Laplace transform to
obtain the solution on the original space (time variable).
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