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1. Introduction

1.1. opérateur et polynémes. Soit la suite

{...,X(_Zh),x(_h),x(()), X(h),X(Zh),...}

on lui associe un nouvel objet par isomorphisme
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1.2. C’est un série formelle en 7 ~/ Y, 7/61 e/t wUn i/ﬂlfﬂé'

Avantage: Pour les suites finies, la convolution se transforme en une multiplication de

polyndémes. On avait la méme propriété avec I’opérateur d’avance q Exemple:
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1.3.Progression géométrique

Soit a une variable réelle ou complexe

(1+a+a2+...+aN)(1—a) =2

= l+a+d®+...+a" o,
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Série infinie Si |a| < 1, limy_o, a” = 0, ainsi v
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Cette idée est utilisée pour remplacer les suites infinies d’échantillons par des fractions.

Notation: Dorénavant {0,...,0,x(0), x(h), x(2h),...} = {x(kh)}, autrement dit, on a systé-

matiquement x(kh) =0, k <O0.

Probleme

Ilyaun probléme lorsque |al| > 1 car la progression géométrique est divergeante.

2. Transformée en 27

Définition: La transformée en Z d’une suite
{x(kh)|k =0}

est donnée par la série infinie, avec z comme variable complexe:
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Exponentielle. Rappel en Laplace
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On reconnait une progression géométrique avec ) ,.>) a@" avec
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Convergence de la progression géométrique quel que soit a (méme lorsque |a| > 1). La

série converge lorsque le*" z71| < 1, autrement dit lorsque
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On peut s’interroger sur le domaine des valeurs de a qui est associé a une suite bornée

d’échantillons.

Premier ordre Dans le domaine discret
Dans le domaine analogique
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Cosinus

On peut utiliser le résultat de I’exponentielle pour un parametre a € C pour déterminer la

transformée en Z. . ,
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transformée en Z
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3. Propriétés

3.1 linéarité

Zlatx (ki) + b (k)|
= aZ (10 (kh)}) + bZ (Lx(k)Y)
=aX;(z)+ bX,(2)

3.2 convolution iy
{x1(kh)} * {x2(kh)} 2 X, (2) - X2(2)

Attention: le domaine de convergence est / 5'/7/@/./@(5’”7 0/?4 Aprainel
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3.3 Décalage temporel

retard Z({x(kh—dh)})=z"9X(z)
avance Z({x(kh+dh)}) =2z%X(z) - Zz;é x(kh)z%k

La transformée en Z est définie pour la collection d’échantillons {x(kh)|k = 0} et suppose
par définition x(kh) = 0 pour k < 0. Lors du retard, les zéros sont décalés a droite (partie

positive des indices) et cela n’affecte pas la propriété que ¥&="0pour k < 0.

X//m/——é/éﬂ/:() Y 4(0

Par contre, lors de 'avance, les d premiers échantillons (potentiellement non nuls) ar-
rivent dans la partie négative des indices et sont considérés nuls dans la définition de la
transformée en Z. Il faut donc soustraire les échantillons décalés dans la partie négative

k < 0 apres avance.

Démonstration pour I'opérateur d’avance

Y xtkh+dmz*=2zY x(kh+dhz "% Kk =k+d
k=0

. | k:o:m /c/ _’—/ , —4/
— z2%Y x(khz " = 2‘/2/ )([4/%/2— — ZC/Z/ )(/4 /)Z
4 /

K'=d /
= O ~/ 470

'

ZC/ X/z)-*}z X/é/f/z-/wz



3.4 Dérivation complexe

Z({khw(kh)}) = —hzd—W

dz
rayon de convergence inchangé
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3.5 Mise a I’échelle 2

Z (ta*" x(kh)}) = >< ( _‘44

rayon de convergence |a|"r avec r celui de X(z). La démonstration s’obtient en appli-

quant la définition de la transformée en Z.
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Démonstration: I'idée est d’avancer la suite (série) et soustraire la suite (série)

bim (x(O)—0+x(h)—x(0)+---+x(nh) wnh—h) )= X/ng/
N =200 Nn-=20

Cette opération se résume par [ I—Z—') )((2 / et pour n‘avoir plus la variable z devant

I’échantillon,on remplace z par 1.
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3.7 accumulation

Z({gx(lh)lkzo}): _7_ )(()

/ .
Le domaine de convergence est é /'/77‘5’/.’/%4/17 6’//‘76 celuide {1,1,---,1,---} et {x(kh)}.
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Le rayon de convergence demeure inchangé.
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4, Transformée en 7 inverse

4.1 décomposition en éléments simples poles simples réels:

X(2) = o+ Cl—— t -t e, pieR  i=1,..n
z—1 Z— Pn
) 2— F/
co = X(0) o= Cim J )([2)
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En posant p = re/? et c = x+ jy, il y a forcément un pole complexe conjugué p dont le

résidu est le complexe conjugué ¢ = x — jy de telle sorte que...




la progression géométrique associée peut se mettre sous la forme:

w(kh) = (>(+ng) fk@deJr (X—jy) Pk €
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4.2 inversion numérique
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Exemple:
z3-22%2-2z — L — l
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l+az7 +---+a,z "

= X(2)
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ainsi c’est la convolution
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formule obtenue en isolant le dernier terme du résultat de la convolution. En détails:
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On peut également procéder par division;
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