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1. Introduction Le système à régler vu par les covertis-

seurs D/A et A/D est un système discret

2. Système discret

Définition: Un système discret est une relation entre les grandeurs d’entrée et de sortie

qui n’invoque que ces grandeurs aux instants discrets t = kh.

-
{u(kh)} {y(kh)}

-

2.1.a Système discret dynamique

Définition: Un système discret est dit dynamique lorsque y(k0h) dépend non seule-

ment de u(k0h), mais également des valeurs passées et/ou futurs u(kh), 8k 6= k0,

9k0.
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2.1.b. Système discret au repos

Définition: Un système dynamique au temps 0 est au repos lorsque {y(kh)|k ∏ 0} est

déterminé de manière unique par {u(kh)|k ∏ 0}.

Cela définit une application

{u(kh)|k ∏ 0} °!G
{y(kh)|k ∏ 0}

2.1.c. Système discret dynamique au repos linéaire

-
{u(kh)} {y(kh)}G -

Supposons deux expériences {u1(kh)} °!G
{y1(kh)} et {u2(kh)} °!G

{y2(kh)}

Définition: Un système est dit linéaire si 8 {u1(kh)}, 8{u2(kh)}, on a

G({u1(kh)+u2(kh)}) = {y1(kh)}+ {y2(kh)}

G(a{ui (kh)}) = a {yi (kh)} i = 1,2

2.1.d. Système discret causal

Définition: Un système est dit causal si sa sortie y(k0h) ne dépend pas des valeurs prises

par l’entrée après l’instant t = k0h (si y(k0h) ne dépend pas, dans le cas discret, de u(kh),

k ∏ k0)
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2.1.e. Impulsion unité

¢(kh) =

8
<

:
1 k = 0

0 k 6= 0

{¢(kh)} = {. . . ,0,0,1,0,0, . . .}

2.1.f. Réponse impulsionnelle

Définition: C’est la réponse du système au repos, à une impulsion unité appliquée à

l’instant l h.

-
{¢(kh ° lh)} {g (kh, lh)}G -

2.1.g. Système discret stationnaire

Définition: Lorsque 8d ,

{g (kh, lh)} = {g (kh +dh, lh +dh)}

alors le système discret est dit stationnaire. Ceci implique que g (kh, l h) ne dépend que

de la différence k ° l

2.1.h. produit de convolution

Un système linéaire, au repos, permet d’exprimer la sortie au moyen de l’entrée et de la

réponse impulsionnelle par le produit de convolution. La réponse impulsionnelle carac-

térise entièrement un système dynamique, au repos, et linéaire.

Définition:

{y(kh)} = {u(kh)}§ {g (kh)} =
(

kX

l=0

u(l h)g (kh, lh)

)

-
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-
{u(kh)} {y(kh)}{g (kh)} -

kX

l=0

u(lh)g (kh, l h) = y(kh)

Démonstration: Application du principe de superposition et du principe de causalité

Produit de convolution

Soit {u(kh)} un signal quelconque. Comment déterminer la sortie correspondante si on

connaît la réponse impulsionnelle du système ?

-
{u(kh)} {y(kh)} =?{g (kh)} -

u(0){¢(kh)} u(0){g (kh,0)}

u(1){¢(kh °h)} u(1){g (kh,h)}

... !{g (kh,lh)}

...

u(l ){¢(kh ° lh)} u(l ){g (kh, l h)}

+ superposition +

{u(kh)} = P+1
l=0

u(l ){¢(kh ° lh)}
P+1

l=0
u(l )g (kh, lh) = {y(kh)}

{y(kh)} =
1X

l=0

u(l h)g (kh, lh)

Causalité ) impose que la réponse impulsionnelle soit nulle avant l’injection de

l’impulsion unité. Autrement dit

g (kh, lh) = 0 8k < l

On ajuste ainsi la borne supérieure de la somme y(kh) =Pk
l=0

u(lh)g (kh, l h)
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stationnaire

g (kh, lh) = g (kh ° lh)

Définition du produit § (de convolution)

{u(kh)}§ {g (kh)} =
kX

l=0

u(lh)g (kh ° lh)

Propriétés: Anneau intègre sans diviseur de zéro.

commutatif u1 §u2 = u2 §u1

distributif u1 § (u2 +u3) = u1 §u2 +u1 §u3

associatif u1 § (u2 §u3) = (u1 §u2)§u3

élément neutre {¢(kh)} = 1

3. Equations aux différences

Définition: Une équation aux différences linéaire à coefficients constants, d’ordre n est

une relation linéaire qui lie les valeurs successives de l’entrée aux valeurs successives de

la sortie. Avec ai 2R et b j 2R, i = 1, . . . ,n, j = 1, . . . ,m, on a:

y(k +n)+a1 y(k +n °1) +·· ·+an y(k) = b0 u(k +m)+b1 u(k +m °1)+·· ·+bm u(k)

En retardant de n périodes d’échantillonnage

y(k)+a1 y(k °1)+·· ·+an y(k °n) = b0 u(k +m °n)+b1 u(k +m °n °1)+·· ·+bmu(k °n) (1)

Définition: Le degré relatif d est défini par la différence

d = n °m
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le membre de droite de (1) peut se mettre sous la forme

b0 u(k °d)+b1 u(k °d °1)+·· ·+bm u(k °d °m)

Théorème: causalité , d ∏ 0

Définition: conditions initiales

y(°1), · · · , y(°n)

Théorème: Si les conditions initiales y(k °1), y(k °2), · · · , y(k °n) sont toutes nulles, et

que les entrées passées u(k °1), u(k °2), · · · sont toutes nulles, alors la sortie {y(k)|k ∏ 0}

est complètement déterminée de façon récurrente par l’entrée {u(k)|k ∏ 0}, de manière

unique
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4. opérateur avance et retard

4.1. opérateur avance

-
{æ(kh)} {æ

0
(kh)}q -

æ
0
(kh) =æ(kh +h)

4.2. opérateur retard

-
{æ(kh)} {æ

0
(kh)}q°1 -

æ
0
(kh) =æ(kh °h)

effet de l’opérateur d’avance

{0,0,3,2,1,0} !q {0,0,0,3,2,1}

effet de l’opérateur de retard

{0,0,3,2,1,0} !q°1 {0,3,2,1,0,0}

4.3. Effet sur l’équation aux différences

qn y(k)+a1qn°1y(k)+a2qn°2y(k)+·· ·+an y(k)

= qmb0u(k)+qm°1b1u(k)+·· ·+bmu(k)
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Isomorphisme

On peut introduire l’isomorphisme qui associe une suite d’échantillons

{æ(k)|k ∏ 0}

la série formelle
+1X

k=0

æ(k)qk

opérateur d’avance

{0,0,3,2,1,0} $ 3+2q +q2

de telle sorte que l’opérateur d’avance q a pour effet

q(3+2q +q2
) = 3q +2q2 +q3 $ {0,0,0,3,2,1}

opérateur de retard

{0,0,3,2,1,0} $ 3q +2q2 +q3

de telle sorte que l’opérateur de retard q°1
a pour effet

q°1
(3q +2q2 +q3

) = 3+2q +q2 $ {0,3,2,1,0,0}
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