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Expérience : 6. Fonction de transfert harmonique - réponse
harmonique

1 Matériel

La partie matérielle est identique à celle de la manipulation 5.

2 Objectif

On va illustrer, dans la partie pratique, quelques éléments de l’interprétation de la fonction de transfert
harmonique en boucle fermée. Plusieurs expériences spécifiques seront effectuées pour déterminer des
points clés sur la courbe du transfert harmonique. Il s’agit des points liés aux phénomènes suivants :

— Déterminer la valeur de la fréquence d’un signal sinusoidal pur (ou signal harmonique) pour
lequel le signal de sortie est inversé (c.-à-d. changement de signe à chaque échantillon par
rapport à la moyenne). Ceci correspond à une phase de −π.

— Déterminer la pulsation de résonance et l’amplitude à la résonance, si une résonance est pré-
sente.

— Obtenir la valeur de la phase lorsque l’amplitude de sortie est identique à celle de l’entrée pour
une fréquence du signal d’entrée au delà de la fréquence de résonance.

— Mettre en évidence les particularités de la réponse harmonique lors de la présence d’un système
échantillonné.

Tous ces relevés se feront expérimentalement à l’aide de l’oscilloscope.
Un autre objectif de cette manipulation est de discuter la différence entre la boucle fermée purement
analogique obtenue lorsque le système à régler est bouclé avec un régulateur proportionnel K, avec
la fonction de tranfert en boucle fermée obtenue lors de la manipulation 5. La différence provient
de l’échantillonneur bloqueur. On illustrera aussi l’interprétation de la fonction de transfert H ′

(w)
introduit dans le cours Leçon 6 sous la dénomination G′

(w), ainsi que de l’équivalence approximative
de l’échantillonneur bloqueur par un retard d’une demi-période (à la fin de cette leçon).

3 Partie théorique

3.1 Rappel des résultats théoriques obtenus lors de la manipulation 5

Fonction de transfert analogique G(s) donnée par

G(s) =
18

s(s+ 6)

Fonction de transfert H(z) = Z
[
L−1(G(s)/s)

]
, fonction de transfert discrète représentant le système

à régler perçu par le régulateur

H(z) =
0.13894z + 0.1321

z2 − 1.3679z + 0.3679

1



Fonction de transfert discrète, en asservissement, en boucle fermée, lors de l’utilisation d’un régulateur
proportionnel K = 2

Hbf =
KH(z)

1 +KH(z)
=

0.3679z + 0.2642

z2 − z + 0.6321

3.2 Fonction de transfert analogique en boucle fermée lors de rétroaction pure-
ment analogique

A des fins de comparaison, on introduit la fonction de transfert en boucle fermée qui aurait été obtenue
si l’asservissement était fait de manière analogique en utilisant le même régulateur proportionnel
K = 2

Gbf =
KG(s)

1 +KG(s)
=

2 18
s(s+6)

1 + 2 18
s(s+6)

=
36

s2 + 6s+ 36

3.3 Fonction de transfert analogique en boucle fermée avec régulateur numérique

Il s’agit de la fonction de transfert obtenue en prenant compte de l’élément de conversion digital
analogique par maintien d’ordre zéro. On a vu que celui-ci pouvait grosso modo être approximé par
un retard d’une demi période d’échantillonnage qui est la conséquence de la modulation provoquée par
la cascade de l’échantillonneur à impulsions et du maintien d’ordre zéro. Ainsi le régulateur analogique
équivalent au régulateur proportionnel est

K1(s) = Ke−sh/2

Cette fonction de transfert est irrationnelle. Pour la rendre rationnelle on utilise l’approximation
bilinéaire de Tustin (obtenue en écrivant e−sh/2 = (e−sh/4/esh/4) et en développant en série de Taylor
numérateur et dénominateur au premier ordre)

K1 = K
1− sh4
1 + sh4

ce qui donne avec la période d’échantillonnage h = 1/6 = 0.166666[s] et avec K = 2

K1 = K
24− s
24 + s

=
48− 2s

s+ 24

En boucle fermée :

Gbf,a =
K1G

1 +K1G
=

48−2s
s+24

18
s(s+6)

1 + 48−2s
s+24

18
s(s+6)

=
18(48− 2s)

s(s+ 24)(s+ 6) + 18(48− 2s)

=
864− 36s

s3 + 30s2 + 108s+ 864

REMARQUE : On constate la présence d’un zéro dans le demi-plan droit du plan complexe. De tels
systèmes sont appelés des systèmes à non minimum de phase. La présence de ce zéro est ainsi dû au
phénomène de commande numérique (retard d’une demi-période d’échantillonnage) par rapport au
gain proportionnel sans retard.
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3.4 Fonction de transfert analogique approximante H ′

bf(w)

Il s’agit de calculer H ′
bf(w), c.-à-d. la fonction de transfert en introduisant le changement de variable

w =
2

h

z − 1

z + 1

dont la réciproque est la transformation

z =
1 + wh

2

1− wh
2

=
2 + wh

2− wh
(1)

ATTENTION : Il ne faut pas confondre la variable w ∈ C avec la pulsation ω ∈ R.
Ainsi,

H
′
bf(w) =

0.36792+wh
2−wh + 0.2642(

2+wh
2−wh

)2
− 2+wh

2−wh + 0.6321

=
0.3679(2 + wh)(2− wh) + 0.2642(2− wh)2

(2 + wh)2 − (2 + wh)(2− wh) + 0.6321(2− wh)2

=
(0.2642− 0.3679)w2h2 − 4 · 0.2642wh+ 4(0.2642 + 0.3679)

(2 + 0.6321)w2h2 + 4(1− 0.6321)wh+ 4 · 0.6321

=
−0.1037
2.6321 w

2 − 1.0568
2.6321hw + 2.5284

2.6321h2

w2 + 1.4716
2.6321hw + 2.5284

2.6321h2

Ce qui donne avec h = 1/6

H
′
bf(w) =

−0.039398w2 − 2.409027w + 34.58166

w2 + 3.35458w + 34.58166

Remarque : Cette fraction rationnelle est calculée par Sysquake en utilisant les commandes

numd = [0.3679,0.2642];
dend = [1,-1,0.6321];
(numw,denw) = d2cm(numd,dend,1/6)

et on obtient

numw =
-0.039398199156567 -2.409027012651494 34.581664830363592

denw =
1.000000000000000 3.354583792409102 34.581664830363592

En ce qui concerne Matlab, on peut le faire en une ligne

d2c(tf([0.3679,0.2642],[1,-1,0.6321],1/6),’Tustin’,1/6)

ce qui donne

ans =

-0.0394 s^2 - 2.409 s + 34.58
-----------------------------

s^2 + 3.355 s + 34.58

Continuous-time transfer function.

Attention à bien interpréter la variable s. A cause de la distortion de l’échelle de la pulsation ω en
ν introduite par la transformation bilinéaire (de Tustin), équation (1), la variable s est en fait la
variable w.
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3.5 Diagrammes de Bode

On va représenter

1. Hbf(e
jωh)

2. H ′
bf(jν)

3. Gbf (jω)

4. Gbf,a(jω)

3.5.1 Hbf(e
jωh) par rapport à Gbf(jω)

La figure 1 représente le module à gauche et la phase à droite. On constate que la résonance est sous-
estimée avec Gbf(jω) et que la phase ne devient jamais plus négatives que −π. Les deux phénomènes
sont imputables au fait que le retard induit par le maintien d’ordre zéro n’est pas pris en compte lors
du calcul de Gbf(jω). On ne peut donc pas traiter le système uniquement avec les outils analogiques.
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Figure 1 – Graphique du module en dB et de la phase. La pulsation ω est représentée en échelle
logarithmique. La comparaison est entre la fonction de transfert harmonique discrète en boucle fermée
Hbf(e

jωh) et la fonction de transfert qui aurait été obtenue en fermant la boucle avec un régulateur
proportionnel analogique, sans tenir compte de la discrétisation. Cette fonction de transfert harmo-
nique est Gbf(jω). .

Remarquer aussi que le module de Hbf chute très rapidement autour de la fréquence de Nyquist,
dont la pulsation est ωN = π

h = 6π = 18.85 [rad/s], ce qui correspond à fN = 3 [Hz]. La période
d’échantillonnage pour la partie pratique est mesurée comme h = 2/13 = 0.154 [s] et cela donne
ωN = 20.42 [rad/s] et ainsi fN = 3.25 [Hz] (cf. partie pratique).
La phase à la résonance est approximativement π

4 et que la phase change rapidement autour de la
résonance, bien plus que le module ne change.

3.5.2 Hbf(e
jωh) par rapport à H

′
bf(jν)

La figure 2 représente le module (graphique de gauche) et la phase (graphique de droite). La valeur
de la résonance et l’approximation autour de celle-ci est bien estimée par H ′

bf, principalement par le
fait que la pulsation de résonance est assez éloignée de la pulsation de Nyquist.
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20 log |Hbf(e^(j om h))| 
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Figure 2 – Graphique du module en dB et de la phase. La pulsation ω est représentée en échelle
logarithmique. La comparaison est entre la fonction de transfert harmonique discrète en boucle fermée
Hbf(e

jωh) et la fonction de transfert harmonique analogique approximante H ′
(jν), obtenue avec la

transformée bilináire de Tustin. La distortion de l’échelle, passage de ω vers ν est visible. La résonance
est bien prédite car ν ≈ ω autour de celle-ci. La phase devient plus négative que −π ce qui est une
bonne chose.

On observe une distortion du module lorsque la pulsation s’approche de celle de Nyquist. Ceci est dû
à l’échelle ν par rapport à l’échelle ω et la formule de l’arctangeante fait correspondre l’une à l’autre.
Le graphique surperpose ν et ω sans tenir compte de cette distortion.
La phase est bien mieux prédite que pour Gbf,a(jω) et dépasse la valeur de π.

3.5.3 Hbf(e
jωh) par rapport à Gbf,a(jω)

20 log |Hbf(e^(j om h))| 
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Figure 3 – Graphique du module en dB et de la phase. La pulsation ω est représentée en échelle
logarithmique. La comparaison est entre la fonction de transfert harmonique discrète en boucle fermée
Hbf(e

jωh) et la fonction de transfert harmonique analogique obtenue en tenant compte d’un retard
d’une demi-période d’échantillonnage. La résonance est bien prédite, il n’y a pas de distortion de la
pulsation. La phase est bien prédite mais elle est toujours monotone.
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3.6 Adaptation de certaines constantes par mesure directe sur la manipulation
en boucle fermée

Les composants électroniques ont des tolérances diverses, la période d’échantillonnage n’est pas forcée
par des interruptions, les amplificateurs opérationnels peuvent saturer durant le transitoire. Ainsi, il
y a plusieurs sources d’erreur entre le modèle théorique et la réalisation pratique.
Par l’entremise de l’oscilloscope, il est possible de mesurer la période d’échantillonnage, simplement
en comptant ne nombre de marches d’escaliers sur un laps de temps donné. On obtient (cf. Figure 4)

h =
2

13
= 0.1538[s]

en comptant approximativement 13 marches durant 2 secondes. (Attention la périodes de la consigne
est plus grande que 4 secondes, cf. Figure 4)

Figure 4 – Signal de commande en boucle fermée permettant de compter les "marches d’escalier"
et d’évaluer la durée associée ce qui donne la période d’échantillonnage réelle.

En ce qui concerne le gain statique γ et la constante de temps du système analogique, on procède
sans régulateur et avec deux essais en boucle ouverte.
Tous les deux comportent un signal carré qui alterne entre deux valeurs. Pour mesurer γ on estime la
pente de la sortie du système analogique (Figure 5). On confirme la valeur de γ = 30, valeur obtenue
à partir des valeurs des composants dans la manip 5. On mesure la pente du signal bleu et on divise
la pente par la différence entre la valeur maximum du signal carré jaune et la moyenne du signal carré
jaune.
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Figure 5 – Sortie du système analogique à commander en boucle ouverte. L’entrée est stimulée par
un signal carré (fréquence basse). La pente du signal de sortie, obtenu après le transitoire, permet de
déterminer le gain γ.

En ce qui concerne la constante de temps, on mesure la sortie juste avant l’intégrateur. S’il s’agissait
d’un moteur électrique réel, on mesure la vitesse de celui-ci. La constante de temps est lisible sur la
réponse ainsi obtenue. (Figure 6)

Figure 6 – Sortie du système du premier ordre avant l’intégrateur. La constante de temps est alors
lisible.

Le modèle obtenu par la valeur des composants est confirmé, la constante de temps valant approxi-
mativent τ = 0.15. Ainsi la partie du premier ordre associé au modèle est

6.68

s+ 6.68

Finalement, en ajoutant la partie intégrateur et le gain γ = 30, on confirme bien le modèle du système
à régler obtenu à partir des valeurs des composants électroniques

G(s) =
30

s(s+ 6.68)
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4 Partie pratique

Faisons un tableau récapitulatif des fonctions de transfert essentielles.

quantité valeur théorique valeur pratique commande sysquake

h 1/6 2/13 h = 2/13;

G(s) 18
s(s+6)

30
s(s+6.68)

num = 30;
den = [1 6.68 0];

K 2 1.2
K = 1.2;

H(z) 0.13895z+0.1321
z2−1.3679z+0.3679

0.25919z+0.1845
z2−1.3578z+0.3578

(numdo,dendo) =
c2dm(num,den,h);

Hbf(z)
0.3679z+0.2642
z2−z+0.6321

0.31103z+0.2214
z2−1.04068z+0.57923

numd = K*numdo;
dend = dendo;
dend(2:end) =
dend(2:end)+numd;

H
′
bf(w)

−0.0394w2−2.409w+34.58
w2+3.355w+34.58

−0.034w2−2.192w+34.26
w2+4.166w+34.26

(numw,denw) =
d2cm(numd,dend,h);

On enclenche le dispositif et on lui applique une consigne sous forme de signal carré, exactement
comme pour la manipulation 5.
Sur l’écran de l’oscilloscope, on apperçoit le signal de sortie qui est un signal continu et qui passe
par les points de la réponse indicielle de la fonction de transfert en boucle fermée numérique calculée
dans la partie théorique de la manipulation 5. Ce signal oscille durant la phase transitoire et ensuite
parvient sans erreur en régime asymptotique au niveau de consigne du signal carré de l’entrée. On
retrouve le résultat de la manipulation 5 (cf. Figure 7).

Figure 7 – Réponses indicielles du système en boucle fermée obtenu lors de la manip 5 (gauche) et
grandeur de commanade en boucle fermée (droite).

Pour la manipulation 6, on change de type de consigne et on enclenche le bouton du générateur de
tension qui produit un signal sinusoidal (au lieu du signal carré). On peut ajuster la composante
continue (valeur moyenne du sinus, appelé aussi offset), ainsi que la fréquence (bouton principal) et
l’amplitude (bouton secondaire).
On commence avec une fréquence basse. Le signal de sortie est légèrement en retard (déphasage)
sur le signal sinusoidal d’entrée. Le signal de sortie est parfaitement sinusoidal et d’ampilitude quasi-
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identique à l’amplitude du signal d’entrée (qui est la consigne du système en boucle fermée). On ajuste
le bouton d’offset pour que le décalage dû au déphasage soit identique lors des phases ascendantes
et descendantes des sinus (qui sont presque identiques car la fréquence est basse) Le résultat est
représenté à la figure 8.

Figure 8 – Consigne sous forme sinusoïdale (jaune) et sortie du système à régler en boucle fermée
(bleu). Le régulateur est numérique mais le signal de sortie est analogique.

4.1 Détermination de la résonance

Graduellement la fréquence du signal d’entrée est augmentée en attendant, à chaque changement
de la fréquence, que le transitoire s’estompe. Lorsque l’amplitude atteind un maximum, on note la
fréquence associée, c’est la fréquence de résonance (cf. Figure 9).

Figure 9 – A la résonance, l’amplitude du signal bleu (sortie du système à régler en boucle fermée)
atteind son maximum. En mode XY de l’oscilloscope, l’axe X est la consigne (signal jaune du graphique
de gauche) et l’axe Y est la sortie du système à régler (signal bleu du graphique de gauche). Le
rapport entre la hauteur et la largeur donne le gain à la résonance. La phase est approximativement
−π

2 . L’ellipse est parfaitement verticale pour une phase de −π
2 .

En divisant par l’amplitude d’entrée, le module du transfert harmonique est obtenu à la fréquence
d’entrée f : ∣∣∣Hbf

(
ej 2π f t

)∣∣∣
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La fréquence fr = 2πωr, pour laquelle le rapport d’amplitude est le plus grand, est la fréquence de
résonance. Elle correspond donc au maximum de l’ordonnée du diagramme de Bode d’amplitude de
la fonction de transfert harmonique H(ejω h), où h est la période d’échantillonnage.

ωr = argmax
ω

∣∣∣Hbf

(
ejω h

)∣∣∣
On obtient approximativement ωr = 5 [rad/s] ce qui donne fr = 0.7958 [Hz].
En ce qui concerne le gain, on lit approximativement 4 dB sur le diagramme de Bode (cf. Figure 12)
et cela correspond à un gain de 104/20 = 1.58. On constate un gain d’environ 1.44 en examinant le
rapport des excursions maximales du signal bleu sur le signal jaune à la figure 9, pour une période de
1.5 [s], ce qui donne 0.66 [Hz]. Le générateur est réglé ainsi juste avant la résonance à la figure 9.

4.2 Détermination du gain à l’inversion de phase

En augmentant la fréquence au-delà de la fréquence de résonance, on obtient à un certain moment
un signal de sortie (la grandeur commandée, en bleu) dont le sens est inversé par rappor au signal
d’entrée (la consigne, en jaune). Le gain est inférieur à un, mais la différence de phase est exactement
−π (retard d’une demi période). Ceci est illustré à la figure 10 et le phénomène à lieu pour f = 1.30
[Hz] approximativement ce qui correspond à ω = 8.17 [rad/s].

Figure 10 – Lorsque f = 1.30 [Hz] approximativement, il y a inversion de la phase et le signal bleu
(sortie du système à régler en boucle fermée) est en retard exactement d’une demi-période sur le
signal jaune (la consigne). En mode XY, l’ellipse dégénère en un segment de droite de pente négative.
Le rapport entre l’excursion verticle sur l’excursion horizontale donne le gain à l’inversion de phase.

4.3 Retard de phase inférieur à −π

On constate également une phase en retard de plus de −π radians lorsque la fréquence augmente.
Par exemple, pour 1.82 [Hz] ce qui correspond à une pulsation de ω = 2π · 1.82 = 11.44 [rad/s] on
observe ce qui est représenté à la figure 11
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Figure 11 – La présence d’une phase inférieur à −π témoigne de la présence d’une commande
numérique pour un système en boucle ouvert du type a/(s(s+ b)) bouclé avec un gain K constant.

4.4 Diagrammes de Bode obtenus à partir de valeurs des composants

La fonction de transfert harmonique correspondant aux valeurs pratiques (obtenus à partir des valeurs
des composants) est représentée à la figure 12.
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Figure 12 – Représentation de la fonction de transfert harmonique discrète Hbf (e
jωh) obtenue à

partir de la valeur des composants avec, à gauche, le module et, à droite, la phase.

La valeur de la résonance, la fréquence de résonance, la pulsation pour à l’inversion de phase et la
phase pour un gain unité peuvent tous être obtenu par lecture du diagramme.
On confirme un pulsation de résonance autour des 5 [rad/s] avec un gain de 4 [dB], ce qui donne
104/20 ≈ 1.58. La pulsation d’inversion de phase est approximativement 8.2 [rad/s]) et la phase pour
un gain unité (0 [dB]) pour une pulsation supérieure à la pulsation de résonance est approximativement
7 [rad/s]. Ces valeurs sont en adéquation avec les mesures prisent en utilisant l’oscilloscope (cf. la
vidéo).
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