Commande Numérique des Systémes Dynamiques — Dr. Ph. Miillhaupt

3 mars 2025

Expérience : 3. Systémes discrets

Opérateur de retard et modulation a largeur d’impulsion (MLI = PWM)

1 Matériel

générateur de fonction

oscilloscope

Arduino Uno/Genuino

Olimexino 85

ordinateur avec Processing

cable USB qui fait office de ligne série de transmission
résistance de 220[k€|

capacités C' = 68, 6.8 et 100[nF] respectivement.

W = = = =
X X X X X X X X

2 Objectif

L’objectif consiste en la réalisation de I'opérateur de retard ¢—' et d’un échantillonneur-bloqueur

(Sample and Hold : S/H). Il s’agit également de présenter les sorties dites analogiques de I’Arduino
Uno/Genuino et de I’Olimexino 85. Ce sont les sorties dites analogiques des microcontrdleurs AVR.
Pour obtenir une valeur analogique la sortie est modulée en largeur d’impulsion (MLI=PWM) et c’est
la valeur moyenne de ce signal qui donne la valeur analogique. Un filtre RC produit ainsi le signal
analogique de sortie.

3 Schéma

— L’entrée #2 de I’Olimexino regoit le signal du générateur.

— La sortie #1 pilote la résistance du circuit RC.

— L’Arduino prend la valeur A0 qui provient du générateur de fonction. Il regoit également en
A1 la sortie du filtre RC. Ces deux valeurs sont envoyées sur la ligne série TTY a l'ordinateur
central. L’Arduino remet a jour et échantillonne les deux signaux AQ et Al de telle sorte a
pouvoir opérer a 9600 bauds avec ’ordinateur central.

— L’ordinateur central ne fait que représenter graphiquement les deux suites de valeurs regues de
la ligne série. Il opére donc a 9600 bauds.

— (C’est dans 1’Olimexino 85 que I'opérateur de retard ¢! est réalisé. La période d’échantillon-

nage est totalement découplée de la transmission série entre I’Arduino et 'ordinateur central.

Elle est garantie par un délai dans la boucle principale du code de I’Olimexino (cf. ci-dessous).

— Un oscilloscope est utilisé pour examiner la nature du signal analogique avant le filtre RC et
apreés le filtre RC et également le signal du générateur.

FIGURE 1 — Schéma général de I'expérience.

4 Code de I’Arduino

La période d’échantillonnage n’est pas explicitement garantie. Elle est fixée indirectement par la
cadence de la ligne série. Celle-ci est fixée & 9600 Bauds.

L’Arduino se comporte uniquement comme oscilloscope, c.-a-d. qu'il lit les entrées A0 et Al et trans-
met ces deux valeurs sur la ligne série. On utilise une chaine de caractéres pour transmettre ces deux
valeurs en un coup avec un espace unique qui sépare les valeurs.

int i=0;
void setup() {

Serial.begin(9600);
}

void loop() {
int entreeX

analogRead (A0) ;
int entreeY = analogRead(Al);
char buffer [50];
i=sprintf (buffer, "%d %d\n" , entreeX, entreeY);
for(int 1= 0; 1<=i; 1++)
Serial.print(buffer[1]);
delay(1);
}

5 Code de I'Olimexino 85

5.1 Code pour le PWM standard a ~ 500 [Hz]

int ADC_k = 0; // valeur a 1l’echantillon k
int ADC_k1 = 0; // valeur a 1l’echantillon k-1;

// Mise en place

void setup() {
pinMode (1, OUTPUT); // broche 1 comme sortie
analogWrite(1, LOW);

}
void loop() {
analogWrite(1, (ADC_k1/4)); // PWM de la valeur de from 0 to 255 (max) sur la broche 1
// qui est egalement la LED
ADC_k = analogRead(1); // lecture de la broche 2. La valeur est comprise entre 0..1023

delay(400); // delai pour implementer la periode d’echantillonnage
ADC_k1 = ADC_k; // 1’operateur ’retard’ est code
}

/* Attention : la broche physique 2 de 1’0limexino est indexee par 1l’index 1.
* La broche physique 2 correspond a ADCl, et donc index 1 egalement, ainsi on ecrit
* analogRead(1) pour lire la broche 2
*/

5.2 Code pour le PWM a haute fréquence ~ 30 [kHz|

int ADC_k = 0; // valeur a 1l’echantillon k
int ADC_k1 = 0; // valeur a 1l’echantillon k-1;

// Mise en place
void setup() {

pinMode (1, OUTPUT); // broche 1 comme sortie

// Configuration du mode MLI haute frequence 30 kHz.
// Nous n’entrons pas dans les details de cette sequencen d’instruction
// se referer a la fiche technique de 1’ATTiny.

TCCROA = 2<<COMOAO | 2<<COMOBO | 3<<WGMOO;

TCCROB = 0<<WGM02 | 1<<CS00;

TCCR1 = O<<PWM1A | O<<COM1AO | 1<<CS10;

GTCCR = 1<<PWM1B | 2<<COM1BO;

analogWrite(1, LOW);
}

void loop() {

analogWrite(1, (ADC_k1/4)); // MLI (PWM) de la valeur de from O to 255
// qui est egalement la LED

ADC_k = analogRead(1); // lecture de la broche 2. La valeur est comprise entre 0..1023
delay(20000); // delai pour implementer la periode d’echantillonnage 0.2 [s]
ADC_k1 = ADC_k; // l’operateur ’retard’ est code

b

/* Attention : la broche physique 2 de 1’0limexino est indexee par 1’index 1.
* La broche physique 2 correspond a ADCl, et donc index 1, ainsi on ecrit
* analogRead(1) pour lire la broche 2

*/

6 Code dans Processing

mport processing.serial.x*;

Serial myPort; // Le port serie

int xPos = 0; // Position horizontale dans le graphique
float inY1 = 300.0;

float inY2 = 300.0;

float o0ldY1;
float 01dY2;
String[] list;

void setup () {
// taille de la fenetre:
size (900, 600);
//size(1800,900); //en auditoire
// Ouverture de la ligne serie et configuration de celle-ci pour 9600 Bauds
myPort = new Serial(this, Serial.list()[1], 9600);
myPort.bufferUntil(’\n’);
// on colorie le fond de 1l’ecran en noir
background (0) ;

void draw () {
// on dessine le signal en dessinant seulement entre deux echantillons:
strokeWeight (4) ;
stroke (255,255, 0);
line(xPos-2, height-o0ldY1l, xPos, height-inY1);
stroke (0,255,255) ;
line(xPos-2, height-0ldY2, xPos, height-inY2);
oldy1l inY1;
oldY2 inY2;
// si fin de 1’ecran, on recommence et on efface
if (xPos >= width) {
xPos = 0;
background (0) ;
} else {
// increment de deux pixels pour chaque echantillon:
xPos+=2;

void serialEvent (Serial myPort) {

String inString = myPort.readString();

String[] valueArray = split(inString,’ ’);

if (inString != null) {
inY1=float (trim(valueArray[0]))+40.0;
in¥2=float (trim(valueArray[1]))+40.0;
inY1 = map(inY¥1l, 0, 1023, 0, height);
inY2 = map(inY2, 0, 1023, 0, height);

7 Expérience et résultats

L’expérience consiste & coder I’Olimexino 85 afin que celui-ci réalise un retard apreés la saisie du signal
analogique par 1’échantillonneur. La sortie est un signal & modulation de largeur d’impulsion (MLI)
d’un signal issu d’un bloqueur situé en amont du modulateur MLI. Un filtre RC externe élimine les
oscillations et lisse le signal MLI pour le transformer en un signal analogique. Un échantillonneur-
bloqueur avec une représentation de 0 & 1023 valeurs discrétes est ainsi réalisé. La valeur 0 correspond
a une entrée analogique de 0 [V] et 1023 correspond a une valeur de 5 [V].

7.1 Implémentation du retard

Le retard est obtenu en utilisant une variable interne qui est mise & jour par rapport & la valeur
obtenue avant le retard. La période d’échantillonnage est obtenue par ’entremise d’un délai. Nous
verrons des méthodes basée sur les interruptions dans les manips ultérieures.

Le systéme posséde une seule condition initiale dans la variable

ADC_k1

Le code est donné a la Section 5.1 et les instructions essentielles sont résumées ci-dessous :
Initialisation :

int ADC_k = 0; // valeur a 1l’echantillon k
int ADC_k1 = 0; // valeur a 1l’echantillon k-1;

Induction :

void loop() {

/...

analogWrite (ADC_k1);
ADC_k = analogRead(1);
delay (400) ;

ADC_k1 = ADC_k;

/...

}

7.2 La sortie analogique par MLI (modulation de largeur d’impulsion)
7.2.1 Fréquence standard =~ 500 [Hz]

Le générateur envoie un signal sinusoidal a I’entrée analogique de I’Olimexino.
Un filtre RC lisse la sortie "analogique" de I’Olimexino (lisse le signal MLI) avec comme valeurs

R = 220k
C = 0.15[uF|

Les résultats sont représentés a la figure 2.

7.2.2 Fréquence haute ~ 30 [kHz|

On modifie le code de I’Olimexino 85 afin d’augmenter la fréquence du MLI en la forcant & ~ 30 kHz.
Cette partie est technique et elle est décrite dans la fiche technique de ’AVR ATTiny. Il s’agit de
configurer le temporisateur-compteur de maniére adéquate.

7.2.3 Absence de filtre RC

En absence de filtre RC, la modulation en largeur d’impulsion est visible comme en (figure 5), obtenue
pour fréquence de modulation de 500 [Hz|. On peut également constater la MLI en haute fréquence
en augmentant la résolution temporelle de 'oscilloscope comme en figure 6.

[@B 500mV
(Please wait....

FIGURE 2 — Signal sinusoidal a la sortie du générateur en bleu (oscilloscope) et en magenta (Proces-
sing). En jaune, la sortie du filtre RC avec R = 220(kQ2] et C' = 0.15[uF]. L’Arduino est utilisé en
oscilloscope lorsqu’il est couplé a Processing. Le filtre est un peu trop prononcé car les flancs ne sont
pas assez raides.

@ 500mV (M 1.00s J(ch1 ~ 80omv
(Please wait.... Mar 02,

FIGURE 3 — Signal sinusoidal & la sortie du générateur en bleu (oscilloscope) et en magenta (Pro-
cessing). En jaune, la sortie du filtre RC avec R = 220[k(2] et C' = 68|nF]. L’Arduino est utilisé en
oscilloscope lorsqu’il est couplé a Processing. Bien que les flancs soient rapides, le filtre RC n’arrive
pas & lisser suffisament le MLI.

(@B 500mV

[Please wait....

FIGURE 4 — Signal sinusoidal & la sortie du générateur en bleu (oscilloscope) et en magenta (Pro-
cessing). En jaune, la sortie du filtre RC avec R = 220kQ2] et C' = 6.8[nF]. L’Arduino est utilisé en
oscilloscope lorsqu’il est couplé a Processing. Les flancs sont raides et le filtrage est suffisant.

(@D 1.00v

(Please wait....

FIGURE 5 — En absence de filtre RC, la modulation & largeur d’impulsion est visible.

10

(@D 1.00v

(Please wait....

1(ch1 - 800mV 6
Mar 02,

FIGURE 6 — La modulation & largeur d’impulsion est rendue plus nette en augmentant la résolution
temporelle de V'oscilloscope. Plus le signal bleu est au milieu de la plage possible, plus le rapport
cyclique est proche de 50 %. C’est ce qui se passe sur le graphique du haut. En bas, on constate que
la modulation est effectuée de telle sorte que la valeur moyenne du signal jaune soit égale au signal
lentement variable bleu qui apparait constant pour la fenétre temporelle choisie.

11

