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2. Echantillonnage et reconstruction

Illustration de la formule de reconstruction

L’objectif de cet exercice est de constater, à travers un exemple, la qualité de la reconstruction lorsque les
hypothèses du théorème de Nyquist-Shannon sont plus ou moins satisfaites.

1. Calculer la transformée de Fourier de la gaussienne e−t2 . INDICATION : Compléter les carrés en
utilisant la formule (

t+
j ω

2

)2

= t2 + jωt− ω2

4

2. En utilisant le résultat obtenu, déterminer une période d’échantillonnage conveneable pour échan-
tillonner la gaussienne e−t2 .

3. Calculer et dessiner la dérivée de la gaussienne e−t2 .

4. Calculer, en utilisant la règle de la dérivée, la transformée de Fourier de la dérivée de la gaussienne.
En déduire sa nature purement complexe et montrer que son module est localisé au même endroit que
la transformée de Fourier de la gaussienne.

5. En déduire une période d’échantillonnage adéquate pour la dérivée de la gaussienne.

6. Dessiner à l’aide de Sysquake/Matlab le signal échantillonné.

7. Utiliser la formule de reconstruction pour reconstruire le signal à partir de sa version échantillonnée.

8. Prendre les périodes d’échantillonnage de h = 0.8 et h = 1 [s] et refaire les deux étapes précédentes.

Corrigé

1. La transformée de Fourier est donnée, par définition, par la formule

F (ω) =
1√
2π

∫ +∞

−∞
f(t) e−jωt dt

En appliquant au cas de l’exercice, et en utilisant l’indication donnée, on obtient en utilisant le changement
de variable τ = t+ jω

2 et le résultat classique
∫ +∞
−∞ e−t

2
dt =

√
π

F (ω) =
1√
2π

∫ +∞

−∞
e−t

2−jωtdt =
1√
2π

∫ +∞

−∞
e−(t+

jω
2 )

2−ω2

4 dt

= e−
ω2

4
1√
2π

∫ +∞

−∞
e−τ

2
dτ = e−

ω2

4
1√
2π

√
π =

1√
2
e−

ω2

4

C’est une gaussienne de hauteur 1√
2
et plus élargie d’un facteur de 4 que la gaussienne de départ.

2. En dessinant le contenu fréquentiel F (ω) on obtient le graphique de droite de la figure 1. Les commandes
associées sont

> clf
> om = linspace(-6,6,500);
> plot(om, exp(-om.^2/4)*1/sqrt(2))
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En ce qui concerne le graphique de gauche de la figure 1, le signal original, les commandes dans Sys-
quake/Matlab sont

> clf
> tt = linspace(-5,5,500);
> plot(tt, exp(-tt.^2))
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Figure 1 – A gauche la signal original qui est une gaussienne x(t) = e−t
2 . A droite, sa transformée de

Fourier X(ω) = 1√
2
e−

ω2

4 .

function [gaussEch,derGaussEch,li,tt,li2,li3,h,ome] = reconstr

% la periode d’echantillonnage
h = 0.628;

% Tmax est le temps d’observation de -Tmas a Tmax
Tmax = 5;

% les indices d’echantillonnage
ind = - round(Tmax/h):(Tmax/h);
% le nombre de points pour le trace "analogique"
nbp = 500;

% li contiendra les fonctions sinc decalees et centrees sur les periodes d’echantillonnage
li = zeros(length(ind),nbp);
li2 = li;
li3 = li;

% le temps "analogique"
tt = linspace(-5,5,nbp);

ome = 2*pi/h;

% echantillonnage de la gaussienne
gaussEch = exp(-(ind*h).^2);
derGaussEch = 2*exp(-(ind*h).^2).*ind*h;

% construction des fonctions interpolantes
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for k =1:length(ind);
li(k,:) = sinc(ome/(2*pi)*(tt-ind(k)*h));
li2(k,:) = li(k,:)*gaussEch(k);
li3(k,:) = li(k,:)*derGaussEch(k);
end;

% version echantillonnee. Si vous utilisez Matlab au lieu de Sysquake, utiliser
% stem(ind*h, gaussEch)
% au lieu de plot
plot(ind*h, gaussEch, Stems=true)
figure
plot(ind*h, derGaussEch, Stems=true)

% reconstruction
figure
plot(tt,gaussEch*li)
figure;
plot(tt,derGaussEch*li)

% les fonctions interpolantes
figure
plot(tt, li2)
figure
plot(tt, li3)

En examinant la transformée de Fourier de la gaussienne, on voit qu’elle est quasiment zéro à partir de ω = 5
[rad/s]. On pose ainsi

ω0 = 5 [rad/s]

ce qui nous conduit à obtenir comme pulsation minimale d’échantillonnage

ωe = 2ω0 = 10 [rad/s]

ce qui conduit à la pulsation d’échantillonnage maximale de

h =
2π

ωe
≈ 0.628 [s]

3. Dérivée de la gaussienne. On applique la règle de la dérivée en chaîne :

d

dt
e−t

2
= −2te−t2

4. Transformée de Fourier de la dérivée de la gaussienne. Elle s’obtient directement en utilisant la règle de
la dérivée

f ′(t)↔ jωF (ω)

et donc en appelant G(ω) la T.F. de d
dte
−t2 on a

G(ω) = jω
1√
2
e−

ω2

4

dont le module est représenté à la figure 5.

5. Comme la transformée de Fourier est concentrée dans le même intervalle que la transformée de Fourier
de la gaussienne, on peut prendre la même période d’échantillonnage que pour la gaussienne. Ainsi
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Figure 2 – A gauche la reconstruction de la gaussienne e−t2 pour une période d’échantillonnage de h =
0.628[s]. A droite, les fonctions interpolantes mises à l’échelle par la valeur de l’échantillon pour constituter
les diverses contributions à la reconstruction. On constate que la reconstruction est excellente.
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Figure 3 – Pour une période d’échantillonnage de h = 0.8[s], la reconstruction de la gaussienne e−t2 se
dégrade.

ω0 = 5 [rad/s]

conduisant à la pulsation d’échantillonnage minimale

ωe = 2ω0 = 10 [rad/s]

de qui donne
h ≈ 0.628 [s]

6. Le signal échantillonné de la gaussienne et de la dérivée de la gaussienne sont représentés à la figure 6

7. et 8. La reconstruction est illustrée dans les figures 7, 8 et 9 en fonction de la période d’échantillonnage
choisie.
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Figure 4 – Pour une période encore plus grande de h = 1[s], la reconstruction de la gaussienne e−t2 est
mauvaise.
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Figure 5 – Module |X(ω)| de la transformée de Fourier de x(t) = −2te−t2 .
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Figure 6 – La gaussienne e−t2 et la dérivée de celle-ci −2t e−t2 sont échantillonnées avec une période
h = 0.628.
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Figure 7 – Reconstruction après échantillonnage avec une période de h = 0.628[s] du signal x(t) = −2te−t2 .
La reconstruction est excellente.
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Figure 8 – La reconstruction se dégrade avec h = 0.8[s].
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Figure 9 – La reconstruction est mauvaise avec h = 1[s].
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