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Probleme 1 — (15 pts)

Soit le systeme donné a la figure 1.
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Figure 1: Schéma avec deux délais.

e Compléter le code suivant pour que le code calcule la sortie du diagramme.

#include <stdio.h>

int main(int argc, char* argvl[])

{
int 1i;
float y, ym, ymm, u;
float a, b;

ym = 1500.0;
ymm = -20.0;
u=0.0;

(o]

// A COMPLETER
// A COMPLETER

a
b

for (i=1; i<3; i++) {
y=a*xym+ b x*x ymm + u;
ymm = ym;



ym =y;
}

printf("la solution est %f \n",y);
}

* Déterminer les conditions initiales des deux retards qui apparaissent dans la figure 1 pour que
la sortie y(k) soit rigoureusement la méme dans les deux cas, la sortie y(k) de la figure 1 et la
sortie calculée par le code.

* Quelle est la valeur affichée par l'ordinateur a la fin de I'exécution du code ?

Corrigé du probléeme 1

On constate deux fonctions de transfert du premier ordre branchées en parallele. On peut donc cal-
culer séparemment ces deux fonctions de transfert. La branche directe est z~! et la boucle est —0.6 2~
pour la premiere fonction de transfert (celle du haut comprenant les blocs i) addition-soustraction,
ii) le bloc z 71, et iii) le bloc gain —0.6. Ainsi pour cette premiére fonction de transfert, en appliquant
la regle “branche directe divisée par un plus la boucle”:

_ z71 1
14+ (-06z71)  z-06

Hy(z)

On arrive par un raisonnement analogue a la deuxiéme fonction de transfert

B 1
T z-05

L'assemblage parallele Y(z) = (Hj(z) + Hz(z))U(z) donne

Y = (z —10.6 t 10.5) U()

z—054+2z-0.6
. LR §
Z 11z503 1@

2z—-1.1

- -y
Z 11z:03"0

L’équation aux différences s’écrit a partir de I’expression en puissances négatives

H(z)

B 2z71 _1.1z72
1—-11z"1403z2

Y(z) Ufz)

ce qui conduit &
y(k) =11y(k—1) = 03y(k—2) +2u(k—1) — 1.1 u(k —2) (1)

En examinant le code proposé dans 1’énoncé du probleme, on constate que u du code correspond a la
combinaison 2 u(k — 1) — 1.1 u(k — 2) de l’équation aux différences (1). La correspondance u=0 avec
u(k) fonctionne dans le cas particulier u(k) = 0 quel que soit k. De plus, la fin du code

ymm = ym;

ym =y;

indique que ymm correspond a y(k — 2) et ym correspond a y(k — 1). Par identification des termes
entre I’équation aux différences (1) et la ligne de code

y=a*xym+ b *x ymm + u;

on identifie les coefficients et on compléte les lignes de codes:

)

=1.1
- 0.3;

a
b =



Conditions initiales

En désignant par a la condition initiale du premier retard, c.-a-d. la sortie du retard z~1 dans le
diagramme, son entrée est —0.6 « psuisque l'entrée u(k) = 0 quel que soit k. En désignant par B la
condition initiale du second retard en dessous de la figure, on obtient le systeme d’équations suivant
qui relie aux conditions initiales v, et ¥, ddu code:

“+ﬁ = Yk =Ymm = —20
—06a0—-058 = Y1 =ym=1500

En mettant sous forme matricielle

1 1 a —20
—0.6 —-0.5 g )\ 1500
et en inversant la matrice

(5)=10(ox 7") (20 )= ( im0 )

Valeur affichée

En itérant on trouve

la solution est 1371.599976

Probleme 2 — (20 pts)

Déterminer la transformée en Z inverse (signaux) avec h = 0.1 [s]

1.
723 — 6.05361 22 + 0.767462 z

23 —2.755164 22 + 2.755164z — 1

722 — 41859162
22 — 1.272679 z + 0.332856919

Corrigé du probleme 2

2.1

On constate en examinant les entiers positifs successifs que z = 1 annule le dénominateur. On peut
donc factoriser par division polynomiale avec le diviseur z — 1. Le dénominateur s’écrit alors

2% — 2755164 2% +2.755164z — 1 = (z — 1) (2> — 1.755164z + 1)
En effet, en posant
(z—1)(24az+b)=2>—22+az®> —az+bz—b
On identifie

a = -—1.755164
1



Avec 6 chiffres significatifs on a la factorisation avec deux racinces complexes conjuguées sur le cercle
unité

72 —1.755164z + 1 ~ (z — 0.877582 + 0.479427 j) (z — 0.877582 — 0.479427 f)
En effet

2 x (—0.875582) = —1.755164
(0.877582)% + (0.479427) = 1.000000415 ~ 1

REMARQUE: L'apparition des racines légerement hors du cercle unité est un artefact lié a la factori-
sation numérique du polyndme z2 — 1.775164z + 1. Les racines sont parfaitement sur le cercle unité
etil n’y a pas de risque d’instabilité. En effet les racines sont

21 = cos(wh) £+ /1 — cos?(wh) j

qui ont toujours un module exactement égal a 1'unité. Dans notre cas, on a

1.755164
cos(wh) = % = 0.877582
qui ne dépend pas de la factorisation. Le choix des éléments simples suggere
z 8(2)

o

=112 —2cos(wh)z+1

avec g(z) un polyndme qui reste & déterminer. Pour trouver w on examine le dénominateur et on
trouve
2cos(wh) = 1.755164

ce qu donne
1.755164
2

Mettons sinus et cosinus comme éléments simples a cette pulsation. On a alors trois coefficients a, §
et vy au lieu de « et g(z)

w = arccos ( ) x10~5 [rad/s]

W2 +B sin(wh)z z(z — cos(wh))
z—1 z2 —2cos(wh)z +1 z2 —2cos(wh)z+1

On identifie alors le numérateur
72> — 6.053612% +0.767462z = wz(z> —2cos(wh)z+ 1) + B sin(wh)z(z — 1) + 7(z — 1)z(z — cos(wh))
= &z’ — 2a cos(wh)z® + az
+B sin(wh)z? — Bsin(wh)z
+92% — y(cos(wh) + 1)z% 4 7 cos(wh)z
= (a+7)2 + (—2acos(wh) + Bsin(wh) — y(cos wh + 1)) 22
+ (0 — Bsin(wh) + 7y cos(wh))

ce qui donne le systéme d’équations

1 0 1 o 7
( —2cos(wh)  sin(wh) —cos(wh) —1 ) ( B ) = ( —6.05361 )
1 — sin(wh) cos(wh) 0% 0.767462

dont la solution est

o 7
B 13
0% 0

obtenu en utilisant

cos(wh) = cos(0.5) = 0.877582
sin(wh) = sin(0.5) = 0.479426
La transformée inverse est ensuite obtenue en utilisant les tables

|y(k) =7 +13sin(0.5k) |
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2.2

On procede a la factorisation du dénominateur. On commence par remarquer que les racines sont
réelles parce que le discriminant b? — 4ac est positif

(—1.272679)% — 4 x 0.332856919 > (—1.27)% —4 x 0.34 > 1.61 — 1.36 > 0
On peut donc poser deux nombres réels « et § a déterminer de telle sorte que
72 —1.272679z + 0.332856919 = (z — &) (z — B)
ce qui conduit au systeme d’équations

x+p = 1272679
axp = 0332856919

qui se résoud facilement par substitution pour donner

« = 0367879
B = 09048

On a donc deux éléments simple du premier ordre.

z z

72—e’1h+ z — ebh

avec
01 = 0367879
<0l — 09048
a = 10 xIn(0.367879) ~ —10

= 10 x In(0.9048) ~ —1

En ce qui concerne 7y et 4, on identifie le numérateur

722 — 41859152 = (z—e"M)z+6(z — M)z
= (74822 + (—ye! — se™)z

ce qui donne le systeme d’équations sous forme matricielle

1 1 7\ 7 @
—0.9048 —0.367879 s )=\ —4.185916

qui se résoud facilement

conduisant ainsi a la transformée inverse

]/(k) _ 36710><0.1><k +4671><0.1><k _ 3€7k +4670.1><k

y(k) = 3(0.357879441)F + 4 (0.904837418)*




Probleme 3 — (20 pts)

Soit un entrainement en position donné par la fonction de transfert
40
GGs) = =gy
s(s+9)
On choisit un gain de k = 2.25 pour satisfaire la spécification de trainée.

1. Discrétiser la fonction de transfert analogique G(s) a I'aide d’un maintient d’ordre zéro (ZOH)
et donner la transformée en Z résultante. La période d’échantillonnage est & = 0.01 [s].

2. Déterminer la valeur des parametres a et b d’un retard de phase donné sous la forme w

K, () = <w+a> b

w+b)a
pour faire perdre 20 [dB] avant d’atteindre la pulsation de croisement de vy ~ wy = 1 [rad/s].
Tenir compte de 11 degrés de phase perdu par le retard de phase par rapport a la boucle ouverte
a la fréquence de croisement vy ~ wy = 1 [rad/s]. Le régulateur final aura la forme

K(w) = kK, (w)

avec les bonnes valeurs de a et b.
3. Quelle est la marge de phase obtenue aprés compensation ?

4. Déterminer la transformée en z du régulateur en utilisant la transformée de Tustin (transformée
bilinéaire) et coder 'algorithme de commande dans un pseudo-code.
On donne les diagrammes de Bode en module 4 la figure 2 et en phase a la figure 3 de kG (jw)
et kH (jv).

Le retard de phase normalisé est donné a la figure 4 (module) et a la figure 5 (phase).

T T T T T T T T T T
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Figure 2: Diagramme de Bode en module de la fonction de transfert harmonique kG (jw) et kH' (jv)
du systéme a régler avec gain constant de k = 2.25 pour satisfaire la spécification de la trainée. On
a également représenté le module de la réponse harmonique kH'( jv). Il'y a trés peu de distortion
dans la plage de fréquence car i = 0.01 est suffisament petit par rapport a la bande passante. L'axe
horizontal (abscisse) donne la pulsation en [rad/s] et I'axe vertical (ordonnée) donne les [dB].
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Figure 3: Diagramme de Bode de la phase de la fonction de transfert harmonique kG (jw) et kH' (jv)
avec gain constant k = 2.25. L’axe des abscisses donne la pulsation en [rad/s] et I’axe des ordonnés
donne I'angle en [rad].

Corretion du probleme 3

3.1 Discrétisation par ZOH

On applique la formule

On décompose ainsi en éléments simples

40 A B C

s2(s+9) stetiio
ce qui donne en identifiant les numérateurs

40

As(s+9) + B(s +9) + Cs?
(A+C)s®> + (9A + B)s + 9B

conduisant au systeme d’équation

A+C = 0
9A+B = 0
9B = 40
qui donne
40
A = ——
81
40
B = —
9
40
C = —
81
Et la transformée de Laplace inverse de ces éléments simples s’exprime
40 40 40 _o,
87(—:([’) + ? t+ 871 e
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s+10

Figure 4: Module de la fonction de transfert harmonique du retard de phase normalisé 0(s+1) -

Abscisse [rad/s]. Ordonnée [dB].

N . . T 71
a partir de laquelle en prenant la transformée en Z multipliée par *=

H(z) = z—l<_40 z 40  hz +@ z )
z 81z—1 9 (z—1)2 8lz—e
90,40 b 40 2o
81 9z—1 8lz—e %
—g—(l)(z—l)(z—e’%)+%h(z—e’9h)+%(z—1)2
(z—=1)(z —e~%)
(%e_% +2(-1+ 9h)) z+ 3 — W= — We~hy

72 _ (1 + e*9h) + e~ 9

En appliquant les valeurs numériques avec 6 chiffres significatifs

e =e7009 ~¢ 0913931

40 4, 40 ~
g1 gy (~1+9) me 000194133
40 40 o, 40

— o e ey g 0.001

5 i’ 5 ¢ 6 0.00188395

conduit a la solution du probleme

~0.00194133 z + 0.00188395
22 —-1.913931z + 0.913931

H(z)

3.2 Dimensionnement du retard de phase

s+10
10(s+1)
[dB] le module. 1l s’agit donc de placer la fin de ce diagramme en pulsation normalisée (), entre 12

et 100 [rad/s]. Rappel en pulsation normalisée la fonction de transfert proposée s’exprime

En examinant la figure 4, la fonction de transfert normalisée

proposée fait bien tomber de 20

jQ+10
10(jw +1)
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Figure 5: Phase de la fonction de transfert harmonique du retard de phase normalisé 15{2 -1+01) . Ab-

scisse [rad/s]. Ordonnée [rad].

Ensuite, il faut mettre a 1’échelle en posant
Y Oy = wy

avec vy un facteur a déterminer et wy = 1 [rad/s] proposé dans 1’énoncé.

Pour déterminer précisément (), et donc -, on utilise le diagramme de phase de la figure 5 en p.
12, et on cherche ), graphiquement de telle sorte que la fin du diagramme entraine un déphasage
de —11 [deg.]

En utilisant la refle millimétrique, on mesure l'intersection 1 décade pour approximativement 2.1
[cm] sur le graphique. Ensuite, on mesure 3.4 [cm] a partir de 1 [rad/s] afin que la vertical coupe
I'horizontale & approximativement —11 [deg] = —0.191986 ~ —0.2 [rad].

Q, = 1021 ~41.6 [rad/s]

Vérification analytique pour avoir approximativement 11 [deg].

JO+10 . o
arg<10(].0x+1) = arg(jQy+10) —arg(jQx +0.1)

= —0.211875 = —12.14 [deg]
ce qui est raisonnable.

Pour calculer précisément la valeur de maniere analytique, il faut une calculette avec résolution
de fonction. En résolvant

Q
arctan (15> — arctan (Qy) = —0.191986

donne le résultat
Q, = 46.08 [rad/s]

On peut alors calculer le facteur  pour translater (), verse wy = 1 [rad/s]

Q)
y=—=46.08

X

ce qui conduit au régulateur lorsqu’on remplace wy par



jro+10  jot+D  f{iwts  01jw+0217

10(jyw +1) 10(]-w+%) Cjw+l T jw+00217

et done 0.1 0.0217 0.217
Jdw+0. w + 0.
K(w) == o7 ~ (w ¥ 0.0217) 01
a=0217
b =0.0217
3.3 Marge de phase

Pour obtenir une estimation de la marge de phase, on peut utiliser le graphique de la Figure 3 et se
placer en 1 [rad/s] et de tenir compte de 0.2 [rad] pour le régulateur. On obtient ainsi

p=m1—17-02=m—19~ 1.24 [rad] = 71.04 [deg] ‘

3.4 Régulateur discret par équivalent bilinéaire (Tustin)

On utilise la correspondance
o — 2z-1
Chz+1

R 02%2% +0.217

051 =1 +0.0217

2z —2+0.00217(z + 1)
"2z —2+0.000217(z + 1)
g 2002172~ 199783

2.000217z — 1.999783
~ o1 1.000976394z + 0.9988066295

z —0.9997815237

Ki(z) = 0

1.000976394z + 0.9988066295
z —0.9997815237

K(z) = 225K, (z) = 0.225

Codage du régulateur:

1.000976394z + 0.9988066295  az+ b
(2) =k G = £y = v —v@ ~ " 2 - 09997815257 Y te

al = 0.225;

a 1.000976394;
0.9988066295;
- 0.9997815237;

e
uk_1 = 0; N = 1000;

% boucle sur k:
k = 0;
repeat
ek = yck - yk;
uk = - c*uk_1 + alp*(axek + b*ek_1)
% envoi de uk

10



% fin de 1’iteration

uk_1 = uk;
ek_1 = ek;
k = k+1;

until k == N;

-02

-04

06}

-08}

0.01 0.1 1 10 100 1000

Figure 6: Indication des 11 [deg], approximativement —0.2 [rad] ce qui donne correspond a Q) =
46.08 [rad/s].

Probléme 4 — (15 pts)

Soit le systeme a régler

avec A(z) =z — 0.8 et B(z) = z — 0.5. Un régulateur RST a été synthétisé ce qui a conduit a

R(z) = z—-06
S(z) = z+11
T2 = z- 04++03

2
1. Est-ce que le systeme en boucle fermée est stable ?
2. Déterminer le modéle a poursuivre ainsi que le polyndéme observateur.

3. Déterminer les parametres a et b du modele d’état du systeme a régler suivant, afin qu’il ait la
fonction de transfert H(z) donnée plus haut :

X1 = axgp+buy
Ve = Xt )
4. Compléter I'observateur (remplacer les - - - par une expression convenable)

Rpp1 = afp+bue+I(-0)
I = Rpt+ug

11



5. Déterminer la valeur du gain [ pour que cette valeur soit compatible avec le polynéme obser-

vateur calculé précédemment.

6. Déterminer la valeur du gain k de commande d’un régulateur observateur et donner 1'expression

afin que le systéme en boucle fermée se comporte comme le régulateur RST.

Corrigé du probléme 4

4.1 stabilité en boucle fermée

La stabilité en boucle fermée est garantie si le zéro du polyndéme AR + BS sont tous a l'intérieur du

cercle unité. Avec

A z—0.8
B = z-05
R = z-06
S = z+11
on vérifie
AR+BS = (z—08)(z—0.6)+ (z—0.5)(z+1.1)

= 22-14z+4048+2z>4+0.6z—0.55
= 222-08z—-0.07
2(z* — 0.4z — 0.035)

Les racines

_ 1 \/2— . \/27 . 0.473861278
z10 =02+ 5 044 +4x0.035=0.2++0.2540.035 = —0.073861278

Comme ces deux racines ont un module plus petit que 1, le systéme est stable en boucle fermée.

4.2 modele a poursuivre et polyndme observateur

Le modele a poursuivre et le polyndme observateur doivent satisfaire

Ay B BT

Ay Am AR+ BS

De plus le polynéme observateur et le numérateur du modele a poursuivre doivent respecter
BT = A,By,
On vérifie que

BT = (z—0.5) (z— W)

En examinant de plus preés on constate les relations suivantes:

1 /1
02— EV 03=02- 1 x 0.3 =0.2—10.075 = 0.2 — v/0.04 + 0.035 = 0.2 — \/0.22 4+ 0.035

autrement dit, BT a une racine en commun avec AR + BS. Ceci suggere de factoriser AR + BS de la

maniere suivante

AR+BS = 2(z—02—+1/022+0.035)T

12



et on peut donc identifier le modele & poursuivre et le polynéme observateur

Ap = (z—02—1+/0.22+40.035) = z — 0.473861279

By = =(z—0.5)

N —

Ao =2T =2z—-04+ V0.3 =2z +0.147722558

4.3 parametres a et b
Premiere méthode: équation aux différences
En éliminant x; de 1’équation aux différences
X1 = axg+buy
Ye = X+ ug

en posant x; = yj + uy, on arrive a

Y1 — Ugy1 = ayy — aug + buy

qui se met sous la forme

ey + (b= a)ug = Y1 — ayi
D’un autre coté, si on part de la fonction de transfert
Y(z) z—-05
U(z) z-08

H(z) =

et en effectuant la transformée en Z inverse on obtient & partir de la relation
U(z)(z—0.5) =Y(z)(z—0.8)

I’équation aux différence
U1 — 05Uk = Y1 — 0.8y
En comparant (4) et (5) on identifie
a=0.8

b=-05+a=03]

Deuxiéme méthode: fonction de transfert

En exprimant la fonction de transfert a partir de la représentation d’état
H(z)=c(z—a) 'b+d

avecd =1letc=1ona

b _b+z—a z—a+b z-05

z—a zZ—a z—a  z—08

et on trouve

et

13



4.4 observateur

L’équation aux différences de 1’observateur est
Rper1 =088 + 03wy + 1 (yp — Rp — 1) (6)
avec I'équation de la sortie qui celle de I'énoncé
T = Xy + uy

4.5 gain [ de I'observateur

En regroupant le facteur devant £ de 1’observateur (6),

fps1 = (08—1) %+ -

la raison géométrique doit correspondre au zéro de A,(z). Ainsi,

08—1— 04++03
2
ce qui donne
[=06-— % = 0.326128721

4.6 gain de commande k et observateur contréleur

L'observateur contrdleur a la structure suivante

xk+1 = O.Sxk — O.3k92k
Y = Xp+ ug
= xp—k(xp — %)
0.8 £ — 0.3k%y + 1 (yx — £ — ux)
0.8 £ — 0.3k2y + 1 (x5 — %)

Rrt1

Et il faut identifier le gain k en associant avec I'autre racine 0.2 — v/0.22 + 0.035. en partant de
I’équation comme si I'état x; était directement mesuré

Xy = 0.8 X — 0.3 kxk

Ainsi
0.8 —k0.3=02—-+0.22+0.035

ce qui donne

1
k=2+ 03 1/0.22 4 0.035 = 2.912870929

Finalement on vérifie bien que les valeurs propres de la matrice
a —bk _ (08 —03 x k
I a—bk-1) I 08-03xk—1

correspondent bien aux zéros de AR + BS.

14



Linéarité

({ 1(kh)} + {wa(kh)}) = Z({wy(kh)}) + Z({wa(kh)})
{( h}) =aZ(w(kh)) acC

Décalages temporels

Z(w(kh —dh)) = z79W(z) deNN
Z(w(kh +dh)) :de(z)—Zfl Olzd i deNN

Dérivation complexe

Z(khw(kh)) = —hz 9Y(z)

Changement d’échelle complexe

Z(aw(kh)) :W(ﬂ%) ae€Ca#0

Valeurs initiale et finale

w(0) = lim; 00 W(z)
limy o w(kh) = lim,_,1(z — 1)W(2) |zi| <1

Produit de convolution

2 (Thoou(th)g(kh — 1)

N———
—
N
~—
c
—
N
~—

Accumulation

2 (Tow(in) = 2 W)

Différence

Z(w(kh) —w(kh —h)) = ZLW(z)

Table 1: Tableau de la grammaire de la transformée en 2
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N° w(t) L(w(t)) w(kh) Z(w(kh))

1 5(t) 1

2 A(kh) 1

3 1 1 1 =1

4 t 5 kh (zﬁzl)z

5 3t 5 3 (kh)? }122(,22(5;13)

O 1 ) img o GO 2 ()
- - L o—akh —

8 feot o Kl e~k —r

9o | e s 3 (ki 2e ek T
10 | e | iy |y laytes | CUEYL 0 ()
11 sin(wt) 74 sin(wkh) %

12 cos(wh) o cos(wkh) %

13| e tsin() | pregr | e Msin(kl) | gt

Table 2: Tableau des transformées en Z et de Laplace

16




14 || e cos(wt) ot +Z;§iw2 e~ cos(wkh) = _2253‘:: ;ZZF:}Z()‘;E),M
15 o =

16 ka*1 (Zfa)z

17 Tk (k—1)a*2 P

18 i (T2 k=) (@) =l

Table 3: Tableau des transformées en Z et de Laplace

~
0 Q
_ SO
Q=

— =

X = O

)1_

be —d —e 1
T py— c—ae e -1
- ad—bc c—d b—a

1 _11
—a—12
a—b>+bc\ . _

1 b—a
= 0
a 0

1

be — ae

b —b?
—-b bc—a
b —a ab

Table 4: Inverses de matrices particulieres
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