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Problème 1 — (15 pts)

Soit le système donné à la figure 1.
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Figure 1: Schéma avec deux délais.

• Compléter le code suivant pour que le code calcule la sortie du diagramme.

#include <stdio.h>

int main(int argc, char* argv[])

{

int i;

float y, ym, ymm, u;

float a, b;

ym = 1500.0;

ymm = -20.0;

u = 0.0;

a = // A COMPLETER

b = // A COMPLETER

for (i=1; i<3; i++) {

y = a * ym + b * ymm + u;

ymm = ym;
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ym = y;

}

printf("la solution est %f \n",y);

}

• Déterminer les conditions initiales des deux retards qui apparaissent dans la figure 1 pour que
la sortie y(k) soit rigoureusement la même dans les deux cas, la sortie y(k) de la figure 1 et la
sortie calculée par le code.

• Quelle est la valeur affichée par l’ordinateur à la fin de l’exécution du code ?

Corrigé du problème 1

On constate deux fonctions de transfert du premier ordre branchées en parallèle. On peut donc cal-
culer séparemment ces deux fonctions de transfert. La branche directe est z−1 et la boucle est−0.6 z−1

pour la première fonction de transfert (celle du haut comprenant les blocs i) addition-soustraction,
ii) le bloc z−1, et iii) le bloc gain −0.6. Ainsi pour cette première fonction de transfert, en appliquant
la règle ”branche directe divisée par un plus la boucle”:

H1(z) =
z−1

1 + (−0.6 z−1)
=

1
z− 0.6

On arrive par un raisonnement analogue à la deuxième fonction de transfert

H2(z) =
1

z− 0.5

L’assemblage parallèle Y(z) = (H1(z) + H2(z))U(z) donne

Y(z) =

(
1

z− 0.6
+

1
z− 0.5

)
U(z)

=
z− 0.5 + z− 0.6
z2 − 1.1 z + 0.3

U(z)

=
2z− 1.1

z2 − 1.1 z + 0.3
U(z)

L’équation aux différences s’écrit à partir de l’expression en puissances négatives

Y(z) =
2z−1 − 1.1z−2

1− 1.1 z−1 + 0.3 z−2 U(z)

ce qui conduit à

y(k) = 1.1 y(k− 1)− 0.3 y(k− 2) + 2 u(k− 1)− 1.1 u(k− 2) (1)

En examinant le code proposé dans l’énoncé du problème, on constate que u du code correspond à la
combinaison 2 u(k− 1)− 1.1 u(k− 2) de l’équation aux différences (1). La correspondance u=0 avec
u(k) fonctionne dans le cas particulier u(k) = 0 quel que soit k. De plus, la fin du code

ymm = ym;

ym = y;

indique que ymm correspond à y(k − 2) et ym correspond à y(k − 1). Par identification des termes
entre l’équation aux différences (1) et la ligne de code

y = a * ym + b * ymm + u;

on identifie les coefficients et on complète les lignes de codes:

a = 1.1;

b = - 0.3;
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Conditions initiales

En désignant par α la condition initiale du premier retard, c.-à-d. la sortie du retard z−1 dans le
diagramme, son entrée est −0.6 α psuisque l’entrée u(k) = 0 quel que soit k. En désignant par β la
condition initiale du second retard en dessous de la figure, on obtient le système d’équations suivant
qui relie aux conditions initiales ym et ymm ddu code:

α + β = yk = ymm = −20
−0.6 α− 0.5 β = yk+1 = ym = 1500

En mettant sous forme matricielle(
1 1
−0.6 −0.5

)(
α
β

)
=

(
−20
1500

)
et en inversant la matrice(

α
β

)
= 10×

(
−0.5 −1
0.5 1

)(
−20
1500

)
=

(
−14900
14880

)

Valeur affichée

En itérant on trouve

la solution est 1371.599976

Problème 2 — (20 pts)

Déterminer la transformée en Z inverse (signaux) avec h = 0.1 [s]

1.
7 z3 − 6.05361 z2 + 0.767462 z

z3 − 2.755164 z2 + 2.755164 z− 1

2.
7 z2 − 4.185916 z

z2 − 1.272679 z + 0.332856919

Corrigé du problème 2

2.1

On constate en examinant les entiers positifs successifs que z = 1 annule le dénominateur. On peut
donc factoriser par division polynomiale avec le diviseur z− 1. Le dénominateur s’écrit alors

z3 − 2.755164 z2 + 2.755164 z− 1 = (z− 1) (z2 − 1.755164 z + 1)

En effet, en posant

(z− 1)(z2 + az + b) = z3 − z2 + az2 − az + bz− b

On identifie

a = −1.755164
b = 1
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Avec 6 chiffres significatifs on a la factorisation avec deux racinces complexes conjuguées sur le cercle
unité

z2 − 1.755164 z + 1 ≈ (z− 0.877582 + 0.479427 j)(z− 0.877582− 0.479427 j)
En effet

2× (−0.875582) = −1.755164
(0.877582)2 + (0.479427) = 1.000000415 ≈ 1

REMARQUE: L’apparition des racines légèrement hors du cercle unité est un artefact lié à la factori-
sation numérique du polynôme z2 − 1.775164z + 1. Les racines sont parfaitement sur le cercle unité
et il n’y a pas de risque d’instabilité. En effet les racines sont

z1,2 = cos(ωh)±
√

1− cos2(ωh) j

qui ont toujours un module exactement égal à l’unité. Dans notre cas, on a

cos(ωh) =
1.755164

2
= 0.877582

qui ne dépend pas de la factorisation. Le choix des éléments simples suggère

α
z

z− 1
+

g(z)
z2 − 2 cos(ω h)z + 1

avec g(z) un polynôme qui reste à déterminer. Pour trouver ω on examine le dénominateur et on
trouve

2 cos(ω h) = 1.755164

ce qu donne

ω = arccos
(

1.755164
2

)
× 10 ≈ 5 [rad/s]

Mettons sinus et cosinus comme éléments simples à cette pulsation. On a alors trois coefficients α, β
et γ au lieu de α et g(z)

α
z

z− 1
+ β

sin(ωh)z
z2 − 2 cos(ωh)z + 1

+ γ
z(z− cos(ωh))

z2 − 2 cos(ωh) z + 1

On identifie alors le numérateur

7z3 − 6.05361 z2 + 0.767462 z = α z (z2 − 2 cos(ωh)z + 1) + β sin(ωh)z(z− 1) + γ(z− 1)z(z− cos(ωh))

= αz3 − 2α cos(ωh)z2 + αz
+β sin(ωh)z2 − β sin(ωh)z

+γz3 − γ(cos(ωh) + 1)z2 + γ cos(ωh)z
= (α + γ)z3 + (−2α cos(ωh) + β sin(ωh)− γ(cos ωh + 1)) z2

+ (α− β sin(ωh) + γ cos(ωh))

ce qui donne le système d’équations 1 0 1
−2 cos(ωh) sin(ωh) − cos(ωh)− 1

1 − sin(ωh) cos(ωh)

 α
β
γ

 =

 7
−6.05361
0.767462


dont la solution est

α = 7
β = 13
γ = 0

obtenu en utilisant

cos(ωh) = cos(0.5) = 0.877582
sin(ωh) = sin(0.5) = 0.479426

La transformée inverse est ensuite obtenue en utilisant les tables

y(k) = 7 + 13 sin(0.5k)
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2.2

On procède à la factorisation du dénominateur. On commence par remarquer que les racines sont
réelles parce que le discriminant b2 − 4ac est positif

(−1.272679)2 − 4× 0.332856919 > (−1.27)2 − 4× 0.34 > 1.61− 1.36 > 0

On peut donc poser deux nombres réels α et β à déterminer de telle sorte que

z2 − 1.272679z + 0.332856919 = (z− α)(z− β)

ce qui conduit au système d’équations

α + β = 1.272679
α× β = 0.332856919

qui se résoud facilement par substitution pour donner

α = 0.367879
β = 0.9048

On a donc deux éléments simple du premier ordre.

γ
z

z− eah + δ
z

z− ebh

avec

ea×0.1 = 0.367879
eb×0.1 = 0.9048

a = 10× ln(0.367879) ≈ −10
b = 10× ln(0.9048) ≈ −1

En ce qui concerne γ et δ, on identifie le numérateur

7z2 − 4.185915z = γ(z− ebh)z + δ(z− eah)z

= (γ + δ)z2 + (−γebh − δeah)z

ce qui donne le système d’équations sous forme matricielle(
1 1

−0.9048 −0.367879

)(
γ
δ

)
=

(
7

−4.185916

)
(2)

qui se résoud facilement

γ = 3
δ = 4

conduisant ainsi à la transformée inverse

y(k) = 3e−10×0.1×k + 4e−1×0.1×k = 3e−k + 4e−0.1×k

y(k) = 3 (0.357879441)k + 4 (0.904837418)k
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Problème 3 — (20 pts)

Soit un entrainement en position donné par la fonction de transfert

G(s) =
40

s(s + 9)

On choisit un gain de k = 2.25 pour satisfaire la spécification de traı̂née.

1. Discrétiser la fonction de transfert analogique G(s) à l’aide d’un maintient d’ordre zéro (ZOH)
et donner la transformée en Z résultante. La période d’échantillonnage est h = 0.01 [s].

2. Déterminer la valeur des paramètres a et b d’un retard de phase donné sous la forme w

Kr(w) =

(
w + a
w + b

)
b
a

pour faire perdre 20 [dB] avant d’atteindre la pulsation de croisement de νx ≈ ωx = 1 [rad/s].
Tenir compte de 11 degrés de phase perdu par le retard de phase par rapport à la boucle ouverte
à la fréquence de croisement νx ≈ ωx = 1 [rad/s]. Le régulateur final aura la forme

K(w) = k Kr(w)

avec les bonnes valeurs de a et b.

3. Quelle est la marge de phase obtenue après compensation ?

4. Déterminer la transformée en z du régulateur en utilisant la transformée de Tustin (transformée
bilinéaire) et coder l’algorithme de commande dans un pseudo-code.

On donne les diagrammes de Bode en module à la figure 2 et en phase à la figure 3 de kG(jω)

et kH
′
(jν).

Le retard de phase normalisé est donné à la figure 4 (module) et à la figure 5 (phase).

0.01 0.1 1 10 100
-60

-40

-20

0

20

40

Figure 2: Diagramme de Bode en module de la fonction de transfert harmonique kG(jω) et kH
′
(jν)

du système à régler avec gain constant de k = 2.25 pour satisfaire la spécification de la traı̂née. On
a également représenté le module de la réponse harmonique kH

′
(jν). Il y a très peu de distortion

dans la plage de fréquence car h = 0.01 est suffisament petit par rapport à la bande passante. L’axe
horizontal (abscisse) donne la pulsation en [rad/s] et l’axe vertical (ordonnée) donne les [dB].
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Figure 3: Diagramme de Bode de la phase de la fonction de transfert harmonique kG(jω) et kH
′
(jν)

avec gain constant k = 2.25. L’axe des abscisses donne la pulsation en [rad/s] et l’axe des ordonnés
donne l’angle en [rad].

Corretion du problème 3

3.1 Discrétisation par ZOH

On applique la formule

H(z) =
z− 1

z
Z
[
L−1

(
G(s)

s

)]
On décompose ainsi en éléments simples

40
s2(s + 9)

=
A
s
+

B
s2 +

C
s + 9

ce qui donne en identifiant les numérateurs

40 = As(s + 9) + B(s + 9) + Cs2

= (A + C)s2 + (9A + B)s + 9B

conduisant au système d’équation

A + C = 0
9A + B = 0

9B = 40

qui donne

A = −40
81

B =
40
9

C =
40
81

Et la transformée de Laplace inverse de ces éléments simples s’exprime

−40
81

ε(t) +
40
9

t +
40
81

e−9t
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Figure 4: Module de la fonction de transfert harmonique du retard de phase normalisé s+10
10(s+1) .

Abscisse [rad/s]. Ordonnée [dB].

à partir de laquelle en prenant la transformée en Z multipliée par z−1
z

H(z) =
z− 1

z

(
−40

81
z

z− 1
+

40
9

hz
(z− 1)2 +

40
81

z
z− e−9h

)
= −40

81
+

40
9

h
z− 1

+
40
81

z− 1
z− e−9h

=
− 40

81 (z− 1)(z− e−9h) + 40
9 h(z− e−9h) + 40

81 (z− 1)2

(z− 1)(z− e−9h)

=

(
40
81 e−9h + 40

81 (−1 + 9h)
)

z + 40
81 −

40
81 e−9h − 40

9 e−9hh

z2 − (1 + e−9h) + e−9h

En appliquant les valeurs numériques avec 6 chiffres significatifs

e−9h = e−0.09 ≈6 0.913931
40
81

e−9h +
40
81

(−1 + 9 h) ≈6 0.00194133

40
81
− 40

81
e−9h − 40

9
e−9h h ≈6 0.00188395

conduit à la solution du problème

H(z) =
0.00194133 z + 0.00188395
z2 − 1.913931z + 0.913931

3.2 Dimensionnement du retard de phase

En examinant la figure 4, la fonction de transfert normalisée s+10
10(s+1) proposée fait bien tomber de 20

[dB] le module. Il s’agit donc de placer la fin de ce diagramme en pulsation normalisée Ωx entre 12
et 100 [rad/s]. Rappel en pulsation normalisée la fonction de transfert proposée s’exprime

jΩ + 10
10(jω + 1)
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Figure 5: Phase de la fonction de transfert harmonique du retard de phase normalisé s+10
10(s+1) . Ab-

scisse [rad/s]. Ordonnée [rad].

Ensuite, il faut mettre à l’échelle en posant

γ Ωx = ωx

avec γ un facteur à déterminer et ωx = 1 [rad/s] proposé dans l’énoncé.
Pour déterminer précisément Ωx, et donc γ, on utilise le diagramme de phase de la figure 5 en p.

12, et on cherche Ωx graphiquement de telle sorte que la fin du diagramme entraı̂ne un déphasage
de −11 [deg.]

En utilisant la rèfle millimétrique, on mesure l’intersection 1 décade pour approximativement 2.1
[cm] sur le graphique. Ensuite, on mesure 3.4 [cm] à partir de 1 [rad/s] afin que la vertical coupe
l’horizontale à approximativement −11 [deg] = −0.191986 ≈ −0.2 [rad].

Ωx = 10
3.4
2.1 ≈ 41.6 [rad/s]

Vérification analytique pour avoir approximativement 11 [deg].

arg
(

j Ωx + 10
10(j Ωx + 1)

)
= arg(j Ωx + 10)− arg(j Ωx + 0.1)

= −0.211875 = −12.14 [deg]

ce qui est raisonnable.
Pour calculer précisément la valeur de manière analytique, il faut une calculette avec résolution

de fonction. En résolvant

arctan
(

Ωx

10

)
− arctan (Ωx) = −0.191986

donne le résultat
Ωx = 46.08 [rad/s]

On peut alors calculer le facteur γ pour translater Ωx verse ωx = 1 [rad/s]

γ =
Ωx

ωx
= 46.08

ce qui conduit au régulateur lorsqu’on remplace ωx par
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jγω + 10
10(jγω + 1)

=
jω + 10

γ

10
(

jω + 1
γ

) =
1

10 jω + 1
γ

jω + 1
γ

=
0.1 jω + 0.217

jω + 0.0217

et donc

Kr(w) =
0.1 w + 0.0217

w + 0.0217
=

(
w + 0.217

w + 0.0217

)
0.1

a = 0.217
b = 0.0217

3.3 Marge de phase

Pour obtenir une estimation de la marge de phase, on peut utiliser le graphique de la Figure 3 et se
placer en 1 [rad/s] et de tenir compte de 0.2 [rad] pour le régulateur. On obtient ainsi

ϕ = π − 1.7− 0.2 = π − 1.9 ≈ 1.24 [rad] = 71.04 [deg]

3.4 Régulateur discret par équivalent bilinéaire (Tustin)

On utilise la correspondance

w =
2
h

z− 1
z + 1

Kr(z) = 0.1
2

0.01
z−1
z+1 + 0.217

2
0.01

z−1
z+1 + 0.0217

= 0.1
2z− 2 + 0.00217(z + 1)
2z− 2 + 0.000217(z + 1)

= 0.1
2.00217z− 1.99783

2.000217z− 1.999783

= 0.1
1.000976394z + 0.9988066295

z− 0.9997815237

K(z) = 2.25 Kr(z) = 0.225
1.000976394z + 0.9988066295

z− 0.9997815237

Codage du régulateur:

K(z) = kKr(z) =
U(z)
E(z)

=
U(z)

Yc(z)−Y(z)
= 0.225

1.000976394z + 0.9988066295
z− 0.9997815237

= α
az + b
z + c

al = 0.225;

a = 1.000976394;

b = 0.9988066295;

c = - 0.9997815237;

uk_1 = 0; N = 1000;

% boucle sur k:

k = 0;

repeat

ek = yck - yk;

uk = - c*uk_1 + alp*(a*ek + b*ek_1)

% envoi de uk
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% fin de l’iteration

uk_1 = uk;

ek_1 = ek;

k = k+1;

until k == N;

0.01 0.1 1 10 100 1000

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 6: Indication des 11 [deg], approximativement −0.2 [rad] ce qui donne correspond à Ωx =
46.08 [rad/s].

Problème 4 — (15 pts)

Soit le système à régler

H(z) =
B(z)
A(z)

avec A(z) = z− 0.8 et B(z) = z− 0.5. Un régulateur RST à été synthétisé ce qui a conduit à

R(z) = z− 0.6
S(z) = z + 1.1

T(z) = z− 0.4 +
√

0.3
2

1. Est-ce que le système en boucle fermée est stable ?

2. Déterminer le modèle à poursuivre ainsi que le polynôme observateur.

3. Déterminer les paramètres a et b du modèle d’état du système à régler suivant, afin qu’il ait la
fonction de transfert H(z) donnée plus haut :

xk+1 = a xk + b uk

yk = xk + uk (3)

4. Compléter l’observateur (remplacer les · · · par une expression convenable)

x̂k+1 = a x̂k + b uk + l (· · · )
ŷk = x̂k + uk
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5. Déterminer la valeur du gain l pour que cette valeur soit compatible avec le polynôme obser-
vateur calculé précédemment.

6. Déterminer la valeur du gain k de commande d’un régulateur observateur et donner l’expression
afin que le système en boucle fermée se comporte comme le régulateur RST.

Corrigé du problème 4

4.1 stabilité en boucle fermée

La stabilité en boucle fermée est garantie si le zéro du polynôme AR + BS sont tous à l’intérieur du
cercle unité. Avec

A = z− 0.8
B = z− 0.5
R = z− 0.6
S = z + 1.1

on vérifie

AR + BS = (z− 0.8)(z− 0.6) + (z− 0.5)(z + 1.1)
= z2 − 1.4 z + 0.48 + z2 + 0.6 z− 0.55
= 2z2 − 0.8 z− 0.07
= 2(z2 − 0.4 z− 0.035)

Les racines

z1,2 = 0.2± 1
2

√
0.42 + 4× 0.035 = 0.2±

√
0.22 + 0.035 =

{
0.473861278
−0.073861278

Comme ces deux racines ont un module plus petit que 1, le système est stable en boucle fermée.

4.2 modèle à poursuivre et polynôme observateur

Le modèle à poursuivre et le polynôme observateur doivent satisfaire

Ao Bm

Ao Am
=

B T
AR + BS

De plus le polynôme observateur et le numérateur du modèle à poursuivre doivent respecter

BT = AoBm

On vérifie que

BT = (z− 0.5)

(
z− 0.4−

√
0.3

2

)
En examinant de plus près on constate les relations suivantes:

0.2− 1
2

√
0.3 = 0.2−

√
1
4
× 0.3 = 0.2−

√
0.075 = 0.2−

√
0.04 + 0.035 = 0.2−

√
0.22 + 0.035

autrement dit, BT a une racine en commun avec AR + BS. Ceci suggère de factoriser AR + BS de la
manière suivante

AR + BS = 2(z− 0.2−
√

0.22 + 0.035) T
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et on peut donc identifier le modèle à poursuivre et le polynôme observateur

Am = (z− 0.2−
√

0.22 + 0.035) = z− 0.473861279

Bm =
1
2
(z− 0.5)

Ao = 2T = 2z− 0.4 +
√

0.3 = 2z + 0.147722558

4.3 paramètres a et b

Première méthode: équation aux différences

En éliminant xk de l’équation aux différences

xk+1 = axk + buk

yk = xk + uk

en posant xk = yk + uk, on arrive à

yk+1 − uk+1 = ayk − auk + buk

qui se met sous la forme
uk1 + (b− a)uk = yk+1 − ayk (4)

D’un autre côté, si on part de la fonction de transfert

H(z) =
Y(z)
U(z)

=
z− 0.5
z− 0.8

et en effectuant la transformée en Z inverse on obtient à partir de la relation

U(z)(z− 0.5) = Y(z)(z− 0.8)

l’équation aux différence
uk+1 − 0.5uk = yk+1 − 0.8yk (5)

En comparant (4) et (5) on identifie
a = 0.8

b = −0.5 + a = 0.3

Deuxième méthode: fonction de transfert

En exprimant la fonction de transfert à partir de la représentation d’état

H(z) = c(z− a)−1b + d

avec d = 1 et c = 1 on a

H(z) = (z− a)−1 + 1 =
b

z− a
+ 1 =

b + z− a
z− a

=
z− a + b

z− a
=

z− 0.5
z− 0.8

et on trouve
a = 0.8

et
b = a− 0.5 = 0.3
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4.4 observateur

L’équation aux différences de l’observateur est

x̂k+1 = 0.8 x̂k + 0.3 uk + l (yk − x̂k − uk) (6)

avec l’équation de la sortie qui celle de l’énoncé

ŷk = x̂k + uk

4.5 gain l de l’observateur

En regroupant le facteur devant x̂k de l’observateur (6),

x̂k+1 = (0.8− l) x̂k + · · ·

la raison géométrique doit correspondre au zéro de Ao(z). Ainsi,

0.8− l =
0.4 +

√
0.3

2

ce qui donne

l = 0.6−
√

0.3
2

= 0.326128721

4.6 gain de commande k et observateur contrôleur

L’observateur contrôleur a la structure suivante

xk+1 = 0.8xk − 0.3kx̂k

yk = xk + uk

= xk − k(xk − x̂k)

x̂k+1 = 0.8 x̂k − 0.3kx̂k + l (yk − x̂k − uk)

= 0.8 x̂k − 0.3kx̂k + l (xk − x̂k)

Et il faut identifier le gain k en associant avec l’autre racine 0.2−
√

0.22 + 0.035. en partant de
l’équation comme si l’état xk était directement mesuré

xk1 = 0.8 xk − 0.3 kxk

Ainsi
0.8− k 0.3 = 0.2−

√
0.22 + 0.035

ce qui donne

k = 2 +
1

0.3

√
0.22 + 0.035 = 2.912870929

Finalement on vérifie bien que les valeurs propres de la matrice(
a −b k
l a− b k− l

)
=

(
0.8 −0.3× k
l 0.8− 0.3× k− l

)
correspondent bien aux zéros de AR + BS.
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Linéarité

Z({w1(kh)}+ {w2(kh)}) = Z({w1(kh)}) +Z({w2(kh)})
Z(a{w(kh)}) = aZ(w(kh)) a ∈ C

Décalages temporels

Z(w(kh− dh)) = z−dW(z) d ∈N

Z(w(kh + dh)) = zdW(z)−∑d−1
i=0 zd−i d ∈N

Dérivation complexe

Z(kh w(kh)) = −hz dW
dz (z)

Changement d’échelle complexe

Z(akhw(kh)) = W
(

z
ah

)
a ∈ C a 6= 0

Valeurs initiale et finale

w(0) = limz→∞ W(z)
limk→∞ w(kh) = limz→1(z− 1)W(z) |zi| < 1

Produit de convolution

Z
(

∑k
l=0 u(lh)g(kh− lh)

)
= G(z)U(z)

Accumulation

Z
(

∑k
l=0 w(lh)

)
= z

z−1 W(z)

Différence

Z(w(kh)− w(kh− h)) = z−1
z W(z)

Table 1: Tableau de la grammaire de la transformée en Z

15



No w(t) L(w(t)) w(kh) Z(w(kh))

1 δ(t) 1

2 ∆(kh) 1

3 1 1
s 1 z

z−1

4 t 1
s2 kh hz

(z−1)2

5 1
2 t2 1

s3
1
2 (kh)2 h2z(z+1)

2(z−1)3

6 1
(l−1)! t

l−1 1
sl

1
(l−1)! (kh)l−1 lima→0

(−1)l−1

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

7 e−at 1
s+a e−akh z

z−e−ah

8 t e−at 1
(s+a)2 kh e−akh he−ahz

(z−e−ah)2

9 1
2 t2 e−at 1

(s+a)3
1
2 (kh)2e−akh h2e−ahz(z−e−ah+2e−ah)

2(z−e−ah)3

10 1
(l−1)! t

l−1e−at 1
(s+a)l

1
(l−1)! (kh)l−1e−akh (−1)(l−1)!

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

11 sin(ωt) ω
s2+ω2 sin(ωkh) sin(ωh)z

z2−2 cos(ωh)z+1

12 cos(ωh) s
s2+ω2 cos(ωkh) z(z−cos(ωh))

z2−2 cos(ωh)z+1

13 e−at sin(ωt) ω
(s+a)2+ω2 e−akh sin(ωkh) e−ah sin(ωh)z

z2−2e−ah cos(ωh)z+e−2ah

Table 2: Tableau des transformées en Z et de Laplace
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14 e−at cos(ωt) s+a
(s+a)2+ω2 e−akh cos(ωkh) z(z−e−ah cos(ωh))

z2−2e−ah cos(ωh)z+e−2ah

15 ak z
z−a

16 k ak−1 z
(z−a)2

17 1
2 k (k− 1) ak−2 z

(z−a)3

18 1
(l−1)!

(
∏l−2

i=0(k− i)
)
(ak−l+1) z

(z−a)l

Table 3: Tableau des transformées en Z et de Laplace

 a 0 b
c b 1
1 1 0

−1

=
1

−a− b2 + bc

 −1 b −b2

1 −b bc− a
c− b −a ab


 1 a 0

0 1 a
0 1 b

−1

=
1

b− a

 b− a −ab a2

0 b −a
0 −1 1


 1 1 0

a b 1
c d e

−1

=
1

be− ae + c− d

 be− d −e 1
c− ae e −1

ad− bc c− d b− a


Table 4: Inverses de matrices particulières
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