Examen Commande Numérique des Systemes Dynamiques Eté 2023

Enseignant: Ph. Miillhaupt

Nom, Prénom, SCIPER : Corrigé

1.12.]3. |4 | Tot.

total : 70 pts

Probléme 1 — (15 pts)

Déterminer les transformées en Z des signaux suivants:

1.
{e=3 cos(6k — 3)}

{k(—0.9¢7 %) — =2}

Corrigé 1.1: En appliquant la formule de trigonométrie
cos(a+b) = cos(a) cos(b) — sin(a) sin(b) (1)
Si on ne se souvient pas de ces formules, on utilise le produit de deux matrices de rotations:

(cosle) oim) ) (cos) ) ) = (eoslet ) b))

et on a cos(a + b) donné par le produit de la premiere ligne de la matrice de gauche par la premiere
colonne de la matrice suivante, ce qui donne le résultat (1).
Ainsi
e cos(6k—3) = e cos(6k) cos(—3) — e sin(6k) sin(—3)
z(z — e 3 cos(6)) e 3sin(6)z
72 —2¢=3cos(6)z +e 0 22 —2¢3cos(6)z +e
2% cos(—3) — e~3(sin(—3) sin(6) + cos(—3) cos(6))z
z2 —2e 3 cos(6)z + e~
—0.989992497 z2 + 0.04562505 z
z2 — 0.095608127 z 4 0.002478752 z

< cos(—3)

— sin(—3)

Corrigé 1.2:  En utilisant les tables:
—2k z
z—e?

—2k
ke™™" < e 22



_ _ —09e72z  z(z—e7?)
k(—0.9 2ky\ 2k _
( e e H (z—e2)2 (z—e2)2
—22401e 2z
22 —2¢2z+e4
—2z? 4 0.0135333528 z
z2 — 0.270670566 z + 0.018315639

Probléme 2 — (15 pts)

Déterminer la transformée en Z inverse (réponse impulsionnelle):

1.
22 — 4z
z2 4+ 0.2z + 0.0075
2.
2202z

z2 —1.13137z + 0.64

Corrigé 2.1: Le polynéme du dénominateur a deux poles réels: —0.15 et —0.05

(z 4 0.05)(z 4 0.15) = z% 4 0.2z + 0.0075
Ainsi la transformée en Z initiale est combinaison des deux éléments simples:
72 —4z z z

2702200005 “zro015  Pzro0s

Enréduisant sous un dénominateur commun le membre de droite et en identifiant les numérateurs,
on obtient

a(z(z +0.05)) 4 B(z(z +0.15)) = 22 — 4z
ce qui conduit au systeme

x+p =1
xx005+px015 = —4

La premieére équation donne = 1 — a et introduit dans la seconde équation

®(0.05-0.15) = 4-0.15
—4-015 —4.15
0.05—0.15 —0.1

o = =415

Et B =1 — a donne alors
B=1—a=-405

Cela permet d’écrire la solution du probleme sous la forme

41.5(—0.15)F — 40.5 (—0.05)F




Corrigé 2.2: Les racines du dénominateurs sont complexes conjuguées. Il s’agit donc de sinus et
cosinus amorti.

Ona
7> —1.13137z + 0.64 = 2% — 2¢~ " cos(wh)z + e 2"
Ainsi
064 = e 2
—1.13137 = —2¢"" cos(wh) )

ce qui donne

ah = —% In(0.64) = 0.223

ete @ =¢0228 1 08
113137 5 _

0.707004 ~
2

cos(wh) =

ol

Ce qui donnne
wh = cos~1(0.707) ~ 0.7855

Ainsi on aura deux contributions, une en 0.8% sin(0.7855 k) et une autre en 0.8 cos(0.7855 k).
Pour trouver les poids respectif il faut identifier les numérateurs

wz(z — e~ cos(wh)) + Be~" sin(wh) z = 22 — 0.2z

On trouve
a = 1
B = —0.2 — e~ cos(wh)
e~ sin(wh)
—0.2 —-0.8 x 0.707
- 08xo0707 1%
Et ainsi

\ 0.8% cos(0.785 k) — 1.3536(0.8)F sin(0.785 k)

Probléme 3 — (20 pts)

On aimerait un filtre digital de Butterworth du 2éme ordre avec une fréquence de coupure de 20
[Hz].

1. Donner la fonction de transfert analogique du filtre.

2. Parmis les trois périodes d’échantillonnage suivantes, 50 [ms], 5 [ms], 1 [ms], lesquelles ou
laquelle est convenable ? Justifier.

3. Choisir une période d’échantillonnage convenable obtenue au point 2. et discrétiser le filtre a
I'aide de la méthode de Tustin (méthode bilinéaire).

4. Quelle est la plage de fréquence qui donne une distortion entre w et v d’au maximum 5 % ?

5. Implémenter le filtre en pseudo-code en prenant soin d’indiquer les conditions initiales et la
boucle principale. Une syntaxe Matlab est la bienvenue mais pas nécessaire pour autant que le
pseudo code soit compréhensible.

Corrigé du probleme 3:



3.1: La fonction de transfert analogique du filtre de Butterworth d’ordre 2 a fréquence de coupure

unité normalisée est la factorisation de ,

G+
ce qui conduit & 4 poles dont on ne retient que ceux qui on une partie réelle négative (filtre stable).

On a ainsi
1 1

(o) (r f o)) AR

En mettant en échelle la fréquence pour avoir la fréquence de coupure a 20 [Hz], ce qui donne w, =
27t x 20 = 125.66 [rad/s].

1 1
2 - 2
(i) +\@%€+1 (12866) + V21asgs +1

We

G(s) = 4 pts

3.2 La fréqunce de repli est la fréqunce de Nyquist qui est la fréquence d’échantillonnage divisée
par 2.

fn =500 [Hz] pour & = 1 [ms]
fn = 200 [Hz] pour i = 5 [ms]
fn =10 [Hz] pour h = 50 [ms]

En appliquant le critére de Shannon-Nyquist, seules les deux premiéres périodes d’échantillonnage
sont convenables, car la fréquence de coupure est inférieure a la fréquence de Nyquist. 2 pts

3.3 La méthode bilinéaire consiste a remplacer I'opération de dérivation s par son approximation

SN%Z—l
T hz+1
1
H(z) = 2 pts

2
2 z-1 2 -1
(125.66h §+1) +V2 (1) 51 +1
En désignant le facteur
2

hwe

K =
on a, pour le cas h = 1 [ms]

2

et pour le cas & = 5 [ms]
2

&= 20 %20 % 0.005

La fonction de transfert du filtre digital se met (en utilisant «) sous la forme

= 3.183098862

H(z) = 22+2z+1
02(z2 =2z +1) +vV2u(z22 — 1) + 22 + 2z + 1
_ z2+2z+1
(a2 +v2u +1)22 4+ (2 - 262)z + a2 — V20 + 1
1 2
B peaRYL PO (z+2z+1)
) 2242 2=\ 2a+1
Pt a1t T e



Pour & = 15.915494309 (i.e. h = 1 [ms]), cela donne

0.003612575 (2% 42z + 1)
H(z) = 4pt 3
(2) = 71822926692 2 + 0.837376992 pts ®)

et pour & = 3.183098862 (i.e. h = 5 [ms]), cela donne

H(z) = 0.06395385 (22 + 2z + 1)
T 22 —1.168260667 z + 0.424118207

Une discussion a ce stade est importante. Cependant plus / est petit et plus la précision numérique
sur les coefficients sera importante. Dans cet ordre d’idée, si on effectue une troncature dans le calcul
de a = 15.92 par exemple, puis "autres troncatures sur les coefficients du polynéme du dénominateur
de la transformée en z pour aboutir a

2% — 1.822976 z + 0.837342
on ne se trompera pas trop dans la position des poles. En effet, (3) donne
0.911463346000000 = 0.081311505326643 j
et dans le cas des troncatures (bonus +2 pts)
0.911488000000000 + 0.080818474719584 |

ce qui est trés similaire et ne se remarquera pratiquement pas. Par contre, il ne faut absolument pas
faire la méme chose avec le numérateur. Pour trouver le numérateur convenable pour la fonction de
transfert tronquée on remarquera que le polynéme du numérateur est toujours y(z> + 2z + 1) avec
7 une valeur numérique. On calculerat ainsi y pour que le gain en régime permanent soit 1'unité
autrement dit que H(1) = 1. Ainsi

4y =1 —1.822976 + 0.838342

donnera
= 0.0035915

1 —1.822976 + 0.838342
Y= 4

On a représenté les diagrammes de Bode discrets résultants a la figure 1

Comparons avec les résultats de Matlab/Sysquake

Pour h = 0.001 [ms], un rapide calcul donne f, = 1000 [Hz] ce qui donne pour la fréquence de
Nyquist fy = 500 [Hz] et donc le coefficient f./ fy = 0.04. Ainsi en tapant

[num,den] = butter(2, 0.04)
cela affichera

num

0.003621681514929 0.007243363029857 0.003621681514929
den =
1

.000000000000000  -1.822694925196308 0.837181651256022

ce qui est trés similaire (mais pas exctement) ce que 1’on a calculé plus haut (cf. (3)).

Pour la deuxieme période d’échantillonnage & = 5 [ms] on aura f, = 200 [Hz] et donc fy = 100
[Hz] et ;LN =20 —02.
En tappant dans SysQuake/ Matlab

[num,den] = butter(2, 0.2)
on obtiendra

0.067455273889072 0.134910547778144 0.067455273889072
den =
1.000000000000000 -1.142980502539901 0.412801598096189

ce qui est sensiblement différent de ce que ’on a calculé.
La différence et la correction (bien entendue facultative pour 1'examen) sera donnée au point
suivant.
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Figure 1: Diagramme de Bode en amplitude pour la réponse harmonique de la fonction de transfert
digitale H(z) pour la fonction de transfert calculée sans troncature et celle avec troncature. Il y a
peu de différence pour autant que le numérateur soit calculé a partir des coefficients tronqués pour
garantir un gain équivalent unitaire en basse fréquence (i.e. H(1) = 1).

3.4 Lorsque la période d’échantillonnage est petite # = 1 [ms], il y aura peu de distortion entre
I’échelle des v (pulsation analogique qui tient compte de la distortion provoquée par la transforma-
tion bilinéaire) et la pulsation analogique réelle w.

Rappelons que la réponse harmonique du filtre digital est donné par

H(ejwh)

En utilisant la transformée bilinéaire, la pulsation est v. La plage de fréquence donnant peu de
distortion est celle pour laquelle il y a peu de différence entre v (la pulsation suite a la transformation
bilinéaire) et la vraie pulsation w. Les deux sont connectées par la formule vue au cours

2 vh
w = Etan <2> 2 pts 4)

1/—gtn*1 w—h
T 2

Lorsque & est petit on a approximativement v = w. Lorsque h devient plus importante il y aura
une différence.

Regardons la distortion a la fréquence de coupure de 20 [Hz]. Le vrai w devrait étre w = 20 X
2 x T =125.66

Pour h = 1 [ms]

ou si l’on prend la réciproque

2 h
v=tan! (“;) — 125.498
La différence est 0.16498 ce qui représente 0.13 %, qui est négligeable.

Pour & = 5 [ms]

2 tan—1 (125.6637062 x 0.005

= 0.005 an 5 ) = 121.7588 2 pts



La différence est de 3.9 qui est commence a étre non négligeable car c’est égal a environ 3.1 % (la
distortion des 5 % demandée dans 1’énoncer est donc juste apres la fréquence de coupure des 20
[Hz]. Ainsi la premiere période d’échantillonnage est plus convaincante.)

Ainsi on impose avec la transformation bilinéaire la pulsation de coupure v, et non la vraie pul-
sation w,. Ainsi pour obtenir la réponse harmonique H(e/“") a la pulsation de coupure w, il est
judicieux d’ajuster v, pour avoir le bon w, et calculer la transformation bilinéaire avec le v, ajuster
(et pas comme on a fait au point préédent avec v, = w,).

Ainsi pour avoir w, = 27t x 20 = 125.6637062 il faut fixer

2 125.6637062 x 0.005
Ve = 5005 tan ( 5 ) = 129.967878494
ce qui donne
2 2

= 3.077683537

veh ~ 0.005 x 129.967878494

et en refaisant les calculs avec cette nouvelle valeur de & on trouve ce que Matlab/SysQuake donne
comme valeur numérique du filtre:

H(z) = 0.067455274(2% + 2z + 1)
"~ 22— 1.142980503 z + 0.412801598

Bien entendu, ce dernier calcul et la comparaison avec Matlab ne sont pas demandés a I'examen.

REMARQUE: Le calcul des 5 % de distortion nécessite de calculer la solution numérique a une
équation non-linéaire ce qui n’est pas réaliste avec le temps de I'examen. Par contre, une discus-
sion et un ordre de grandeur de la distortion maximale (par exemple le calcul des 3 % ci-dessus a
la fréquence de coupure) répond parfaitement a I’examen. Ce qui est important est de donner la
formule (4) avec la tangente et de discuter du phénomene.

Bonus + 2 pts

3.5: Une implémentation possible est la suivante (4 pts)

N = 512;

b = 0.067455274;
al = - 1.14980503;
a2 = 0.412801598;

uin = randn(1,N);
yout = zeros(1,N);

% memoire sur les entrees
ul = 0; % u(k-1)
u2 = 0; % u(k-2)

% conditions initiales
yl =0; % yk-1)
y2 = 0; % y(k-2)

% boucle principale

for i=1:N
yout(i) = - al*yl - a2xy2 + bx(uin(i) + 2*ul + u2);
y2 = y1; % decalage !
y1 = yout(i);
u2 = ul;
ul = uin(i);
end;

scale logdb;
plot(abs(fft(yout)));



Probleme 4 — (20 pts)

Un systeme est donné par la fonction de transfert suivante:
B(z) z-09
A(z)  z+11

Un régulateur RST a été calculé avec les polyndmes suivants:

H(z) =

R(z) = 22+11z-17
S(z) = —22-11z—-16
T(z) = z+4+09

1. Est-ce que systéme initial est BIBO stable ? Justifier.
2. Est-ce que le systeme en boucle fermée est stable ? Justifier.

3. Quel est le modele a poursuivre sachant que le polynéme observateur est constant et égal a

4. Proposer un régulateur d’ordre plus réduit conduisant au méme modéle a poursuivre.
5. Quelle est la matrice de Sylvester pour le régulateur réduit ?

6. Quel est le polynéme Q qui relie le régulateur initial avec le régulateur réduit ?

Corrigé du probleme 4:

4.1: Le systéme en boucle ouverte n’est pas BIBO stable car le dénominateur de H(z) est égal a
z 4 1.1 et s’annule pour une valeur qui est a I'extérieur du cercle unité. 2 pts

4.2: Le systéme est stable si tous les zéros du polynéme AR + BS sont a l'intérieur du cercle unité.

AR+BS = (z4+11)(22+11z2—1.7) + (z—0.9)(—2z> — 1.1z — 1.6)
= 1-1D)Z2+(11+114+09—-1.1)z2
+[~1.74 (1.1)* + (=0.9)(~1.1) — 1.6]
+(1.1)(=1.7) + (—0.9)(—1.6)
= 222-11z-043  4pts
2(z—2z1)(z —2zp)

avec

1.1+v112+4x 2 x 043

212 = 4
1142156385865
a 4
[ —0.264096466 ot
0.814096466 pts

Les deux zéros de AR + BS sont bien a l'intérieur du cercle unité. Le systéme est stable en boucle
fermée.



4.3: Le modele a poursuivre est défini par

BT Bu(z)
— _—H _
AR+ Bs ) =7 0
En général on pose
1
An = Ag(AR+BS) = E(2z2 — 1.1z — 0.43) = 22 — 0.55z — 0.215

B

1
AgBT = - (2= 09)(z+09) = 0.5z% — 0.405
ce qui donne le modele a poursuivre

0.5z% — 0.405
H =
m(2) = 7555 0215

4.4: Pour obtenir un régulateur d’ordre plus réduit, on peut partir de la paramétrisation de tous
les régulateurs conduisant au méme modele a poursuivre. Cette paramétrisation est donnée sous la
forme d’un polyndme Q:

- R -QB (5)
S = S +QA 6)

avec R’ et S’ une solution de degré inférieur a la solution proposée R et S. (Remarque: les signes
devant Q peuvent étre changée dans chacune des équations a condition d’avoir toujours des signes
alternés dans les deux équations.)

Pour obtenir Q, on procede par division euclidienne, en divisant R par B. Le quotient sera ainsi
Q et le reste R selon (5).

Par division polynomiale on vérifie

22411z -17 = (z4+2)(z—0.9) + 0.1
ce qui permet d’écrire

Q = z+2

R- 4pts

Pour obtenir S, on utilise (6)

S=85-QA = —22-11z-16—(z+2)(z+1.1) = —2> — 1.1z — 1.6 + 22 + 3.1z + 2.2

— [2z406=5

On constate que ce régulateur est non causal car le degré de S est supérieur au degré de R.

Pour fabriquer un régulateur causal mais d’ordre réduit, on peut utiliser a nouveau la paramétrisation
avec un autre polynome Q. En prenant par exemple Q = 1, cela permettra d’élever le degré de R
sans affecter le degré de S”

R = R—QB=R -B=01-(z-09)=|-z4+1=R’

" = S 4+QA=S+A=22406+z+11=[3z+17=5"

On obtient de la sorte un régulateur causal et de degré réduit par rapport a celui de départ.




4.5:  On va déterminer les matrices de Sylvester dans les deux cas, le régulateur réduit non causal
et le régulateur réduit causal.

Pour R = 0.1etS =2z+0.6, on peut arranger en puissance sucessives de z selon la ligne. Les
coefficients du dénominateur du modele & poursuivre, 2z> — 1.1z — 0.43 sont alors

(2 —11 —043)

ce qui conduit a la matrice de Sylvester

0 1 1.1
Swm={(1 =09 0 6 pts
0o 1 -09

et on vérifie sans peine que
(01 2 06)S,=(2 —11 —-043)

On peut également transposer la matrice de Sylvester si on aligne les coefficients des puissances de
z en colonne. Les deux sont comptés comme justes pour le corrigé.

Pour la solution R = —z 4+ 1etS" = 3z + 1.7 on a la matrice de Sylvester suivante
1 11 0
S - 0 1 1.1
"=l 1 —09 0
0 1 -09

et on vérifie sans peine

(-1 1 3 17)Sup=(2 —-11 —043)

4.6: Pour obtenir le polyndme Q qui met en correspondance directe la solution causale avec le
probleme initial, il faut simplement garder trace des deux transformations effectuées. Posons Q =
z 4 2 (le quotient de la division conduisant a la solution non causale) et

Q=1
la correction pour obtenir la solution causale. On calcule
R'=R -QB=R-QB-QB=R-(Q+Q)B

le polyndéme

Q”:Q+Q/:z+2+1:z+3 bonus + 4 pts

est le polyndme Q cherché. En effet

R'=R-Q'B = 2411z2-17—(z43)(z—09)
= 224+11z2-17— (2 +212-27)
= —z+1

S"=5+Q'A4 = —22-11z—16+ (z+3)(z+11)
= —22-11z-16+2>+41z+33
= 3z+17

Remarque:
Une autre facon de procéder est d’essayer de résoudre directement I'équation de Bézout. On
cherche ainsi
AR+BS = z*—055z—0215
(z+11)(z+7r1)+ (z+09)s;
224+ (11+r)z+r1l42s5 —09z

10



Sous forme matricielle

1 0 0 1 1 1
0 1 1 rn | = —-055-11 | = —1.65
0 1.1 09 s1 —0.215 —0.215
En réduisant en éliminant la premiere ligne et la premiére colonne
1\ 1 -09 -1 —-1.65 \ [ —0.85
st ) —09-11\ -11 1 —0215 ) — \ —08
On multiplie par 2 pour avoir la solution a

AR +BS =272 —1.1z—043

ce qui donne finalement la solution causale

R=2z—-1.7

11



Baréme:
Le baréme est linéaire et correspond aux points divisés par 10. La note est la note la plus grande
contenue dans ce nombre. Par exemple 54.9 pts donne 5.49 et on attribue alors 5.25 et non 5.5.
En notation polonaire inverse (RPN):

]P¢10/4*1P4/

12



