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Enseignant: Ph. Müllhaupt

Nom, Prénom, SCIPER :

total : 70 pts
1. 2. 3. 4. Tot.

Corrigé

Problème 1 — (15 pts)

Déterminer les transformées en Z des signaux suivants:

1.
{e−3k cos(6k− 3)}

2.
{k(−0.9e−2k)− e−2k}

Corrigé 1.1 : En appliquant la formule de trigonométrie

cos(a + b) = cos(a) cos(b)− sin(a) sin(b) (1)

Si on ne se souvient pas de ces formules, on utilise le produit de deux matrices de rotations:(
cos(a) − sin(a)
sin(a) cos(a)

)(
cos(b) − sin(b)
cos(b) sin(b)

)
=

(
cos(a + b) − sin(a + b)
sin(a + b) cos(a + b)

)
et on a cos(a + b) donné par le produit de la première ligne de la matrice de gauche par la première
colonne de la matrice suivante, ce qui donne le résultat (1).

Ainsi

e−3k cos(6k− 3) = e−3k cos(6k) cos(−3)− e−3k sin(6k) sin(−3)

↔ cos(−3)
z(z− e−3 cos(6))

z2 − 2e−3 cos(6)z + e−6 − sin(−3)
e−3 sin(6)z

z2 − 2e−3 cos(6)z + e−6

=
z2 cos(−3)− e−3(sin(−3) sin(6) + cos(−3) cos(6))z

z2 − 2e−3 cos(6)z + e−6

=
−0.989992497 z2 + 0.04562505 z

z2 − 0.095608127 z + 0.002478752 z

Corrigé 1.2 : En utilisant les tables:

e−2k ↔ z
z− e−2

k e−2k ↔ e−2z
(z− e−2)2
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k(−0.9 e−2k)− e−2k ↔ −0.9 e−2 z
(z− e−2)2 −

z(z− e−2)

(z− e−2)2

=
−z2 + 0.1 e−2 z

z2 − 2e−2 z + e−4

=
−z2 + 0.0135333528 z

z2 − 0.270670566 z + 0.018315639

Problème 2 — (15 pts)

Déterminer la transformée en Z inverse (réponse impulsionnelle):

1.
z2 − 4z

z2 + 0.2 z + 0.0075

2.
z2 − 0.2 z

z2 − 1.13137 z + 0.64

Corrigé 2.1 : Le polynôme du dénominateur à deux pôles réels: −0.15 et −0.05

(z + 0.05)(z + 0.15) = z2 + 0.2z + 0.0075

Ainsi la transformée en Z initiale est combinaison des deux éléments simples:

z2 − 4z
z2 + 0.2z + 0.0075

= α
z

z + 0.15
+ β

z
z + 0.05

En réduisant sous un dénominateur commun le membre de droite et en identifiant les numérateurs,
on obtient

α(z(z + 0.05)) + β(z(z + 0.15)) = z2 − 4z

ce qui conduit au système

α + β = 1
α× 0.05 + β× 0.15 = −4

La première équation donne β = 1− α et introduit dans la seconde équation

α(0.05− 0.15) = 4− 0.15

α =
−4− 0.15
0.05− 0.15

=
−4.15
−0.1

= 41.5

Et β = 1− α donne alors
β = 1− α = −40.5

Cela permet d’écrire la solution du problème sous la forme

41.5 (−0.15)k − 40.5 (−0.05)k
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Corrigé 2.2 : Les racines du dénominateurs sont complexes conjuguées. Il s’agit donc de sinus et
cosinus amorti.

On a
z2 − 1.13137z + 0.64 = z2 − 2e−ah cos(ωh)z + e−2ah

Ainsi

0.64 = e−2ah

−1.13137 = −2eah cos(ωh) (2)

ce qui donne

ah = −1
2

ln(0.64) = 0.223

et e−ah = e−0.223 ≈ 0.8

cos(ωh) =
1.13137

2
e0.223 = 0.707004 ≈

√
2

2
Ce qui donnne

ωh = cos−1(0.707) ≈ 0.7855

Ainsi on aura deux contributions, une en 0.8k sin(0.7855 k) et une autre en 0.8k cos(0.7855 k).
Pour trouver les poids respectif il faut identifier les numérateurs

αz(z− e−ah cos(ωh)) + βe−ah sin(ωh) z = z2 − 0.2z

On trouve

α = 1

β =
−0.2− e−ah cos(ωh)

e−ah sin(ωh)

=
−0.2− 0.8× 0.707

0.8× 0.707
= −1.3536

Et ainsi
0.8k cos(0.785 k)− 1.3536(0.8)k sin(0.785 k)

Problème 3 — (20 pts)

On aimerait un filtre digital de Butterworth du 2ème ordre avec une fréquence de coupure de 20
[Hz].

1. Donner la fonction de transfert analogique du filtre.

2. Parmis les trois périodes d’échantillonnage suivantes, 50 [ms], 5 [ms], 1 [ms], lesquelles ou
laquelle est convenable ? Justifier.

3. Choisir une période d’échantillonnage convenable obtenue au point 2. et discrétiser le filtre à
l’aide de la méthode de Tustin (méthode bilinéaire).

4. Quelle est la plage de fréquence qui donne une distortion entre ω et ν d’au maximum 5 % ?

5. Implémenter le filtre en pseudo-code en prenant soin d’indiquer les conditions initiales et la
boucle principale. Une syntaxe Matlab est la bienvenue mais pas nécessaire pour autant que le
pseudo code soit compréhensible.

Corrigé du problème 3:
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3.1: La fonction de transfert analogique du filtre de Butterworth d’ordre 2 à fréquence de coupure
unité normalisée est la factorisation de

1
(s + 1)4

ce qui conduit à 4 pôles dont on ne retient que ceux qui on une partie réelle négative (filtre stable).
On a ainsi

1(
s +

√
2

2 −
√

2
2 j
) (

s +
√

2
2 +

√
2

2 j
) =

1
s2 +
√

2s + 1

En mettant en échelle la fréquence pour avoir la fréquence de coupure à 20 [Hz], ce qui donne ωc =
2π × 20 = 125.66 [rad/s].

G(s) =
1(

s
ωc

)2
+
√

2 s
ωc

+ 1
=

1( s
125.66

)2
+
√

2 s
125.66 + 1

4 pts

3.2 La fréqunce de repli est la fréqunce de Nyquist qui est la fréquence d’échantillonnage divisée
par 2.

fN = 500 [Hz] pour h = 1 [ms]

fN = 200 [Hz] pour h = 5 [ms]

fN = 10 [Hz] pour h = 50 [ms]

En appliquant le critère de Shannon-Nyquist, seules les deux premières périodes d’échantillonnage
sont convenables, car la fréquence de coupure est inférieure à la fréquence de Nyquist. 2 pts

3.3 La méthode bilinéaire consiste à remplacer l’opération de dérivation s par son approximation

s ≈ 2
h

z− 1
z + 1

H(z) =
1(

2
125.66 h

z−1
z+1

)2
+
√

2
( 2

125.66h
) z−1

z+1 + 1
2 pts

En désignant le facteur

α =
2

h ωc

on a, pour le cas h = 1 [ms]

α =
2

2π × 20× 0.001
= 15.915494309

et pour le cas h = 5 [ms]

α =
2

2π × 20× 0.005
= 3.183098862

La fonction de transfert du filtre digital se met (en utilisant α) sous la forme

H(z) =
z2 + 2z + 1

α2(z2 − 2z + 1) +
√

2α(z2 − 1) + z2 + 2z + 1

=
z2 + 2z + 1

(α2 +
√

2α + 1)z2 + (2− 2α2)z + α2 −
√

2α + 1

=

1
α2+
√

2α+1
(z2 + 2z + 1)

z2 + 2−2α2

α2+
√

2α+1
z + α2−

√
2α+1

α2+
√

2α+1
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Pour α = 15.915494309 (i.e. h = 1 [ms]), cela donne

H(z) =
0.003612575 (z2 + 2z + 1)

z2 − 1.822926692 z + 0.837376992
4 pts (3)

et pour α = 3.183098862 (i.e. h = 5 [ms]), cela donne

H(z) =
0.06395385 (z2 + 2z + 1)

z2 − 1.168260667 z + 0.424118207

Une discussion à ce stade est importante. Cependant plus h est petit et plus la précision numérique
sur les coefficients sera importante. Dans cet ordre d’idée, si on effectue une troncature dans le calcul
de α = 15.92 par exemple, puis ’autres troncatures sur les coefficients du polynôme du dénominateur
de la transformée en z pour aboutir à

z2 − 1.822976 z + 0.837342

on ne se trompera pas trop dans la position des pôles. En effet, (3) donne

0.911463346000000± 0.081311505326643 j

et dans le cas des troncatures (bonus +2 pts)

0.911488000000000± 0.080818474719584 j

ce qui est très similaire et ne se remarquera pratiquement pas. Par contre, il ne faut absolument pas
faire la même chose avec le numérateur. Pour trouver le numérateur convenable pour la fonction de
transfert tronquée on remarquera que le polynôme du numérateur est toujours γ(z2 + 2z + 1) avec
γ une valeur numérique. On calculerat ainsi γ pour que le gain en régime permanent soit l’unité
autrement dit que H(1) = 1. Ainsi

4γ = 1− 1.822976 + 0.838342

donnera
γ =

1− 1.822976 + 0.838342
4

= 0.0035915

On a représenté les diagrammes de Bode discrets résultants à la figure 1
Comparons avec les résultats de Matlab/Sysquake
Pour h = 0.001 [ms], un rapide calcul donne fe = 1000 [Hz] ce qui donne pour la fréquence de

Nyquist fN = 500 [Hz] et donc le coefficient fc/ fN = 0.04. Ainsi en tapant

[num,den] = butter(2, 0.04)

cela affichera

num =

0.003621681514929 0.007243363029857 0.003621681514929

den =

1.000000000000000 -1.822694925196308 0.837181651256022

ce qui est très similaire (mais pas exctement) ce que l’on a calculé plus haut (cf. (3)).
Pour la deuxième période d’échantillonnage h = 5 [ms] on aura fe = 200 [Hz] et donc fN = 100

[Hz] et fc
fN

= 20
100 = 0.2.

En tappant dans SysQuake/ Matlab

[num,den] = butter(2, 0.2)

on obtiendra

0.067455273889072 0.134910547778144 0.067455273889072

den =

1.000000000000000 -1.142980502539901 0.412801598096189

ce qui est sensiblement différent de ce que l’on a calculé.
La différence et la correction (bien entendue facultative pour l’examen) sera donnée au point

suivant.
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Figure 1: Diagramme de Bode en amplitude pour la réponse harmonique de la fonction de transfert
digitale H(z) pour la fonction de transfert calculée sans troncature et celle avec troncature. Il y a
peu de différence pour autant que le numérateur soit calculé à partir des coefficients tronqués pour
garantir un gain équivalent unitaire en basse fréquence (i.e. H(1) = 1).

3.4 Lorsque la période d’échantillonnage est petite h = 1 [ms], il y aura peu de distortion entre
l’échelle des ν (pulsation analogique qui tient compte de la distortion provoquée par la transforma-
tion bilinéaire) et la pulsation analogique réelle ω.

Rappelons que la réponse harmonique du filtre digital est donné par

H(ejωh)

En utilisant la transformée bilinéaire, la pulsation est ν. La plage de fréquence donnant peu de
distortion est celle pour laquelle il y a peu de différence entre ν (la pulsation suite à la transformation
bilinéaire) et la vraie pulsation ω. Les deux sont connectées par la formule vue au cours

ω =
2
h

tan
(

ν h
2

)
2 pts (4)

ou si l’on prend la réciproque

ν =
2
h

tan−1
(

ω h
2

)
Lorsque h est petit on a approximativement ν = ω. Lorsque h devient plus importante il y aura

une différence.
Regardons la distortion à la fréquence de coupure de 20 [Hz]. Le vrai ω devrait être ω = 20×

2× π = 125.66
Pour h = 1 [ms]

ν =
2
h

tan−1
(

ωh
2

)
= 125.498

La différence est 0.16498 ce qui représente 0.13 %, qui est négligeable.
Pour h = 5 [ms]

ν =
2

0.005
tan−1

(
125.6637062× 0.005

2

)
= 121.7588 2 pts
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La différence est de 3.9 qui est commence à être non négligeable car c’est égal à environ 3.1 % (la
distortion des 5 % demandée dans l’énoncer est donc juste après la fréquence de coupure des 20
[Hz]. Ainsi la première période d’échantillonnage est plus convaincante.)

Ainsi on impose avec la transformation bilinéaire la pulsation de coupure νc et non la vraie pul-
sation ωc. Ainsi pour obtenir la réponse harmonique H(ejωh) à la pulsation de coupure ωc, il est
judicieux d’ajuster νc pour avoir le bon ωc et calculer la transformation bilinéaire avec le νc ajuster
(et pas comme on a fait au point préédent avec νc = ωc).

Ainsi pour avoir ωc = 2π × 20 = 125.6637062 il faut fixer

νc =
2

0.005
tan

(
125.6637062× 0.005

2

)
= 129.967878494

ce qui donne

α =
2

νc h
=

2
0.005× 129.967878494

= 3.077683537

et en refaisant les calculs avec cette nouvelle valeur de α on trouve ce que Matlab/SysQuake donne
comme valeur numérique du filtre:

H(z) =
0.067455274(z2 + 2z + 1)

z2 − 1.142980503 z + 0.412801598
Bonus + 2 pts

Bien entendu, ce dernier calcul et la comparaison avec Matlab ne sont pas demandés à l’examen.
REMARQUE: Le calcul des 5 % de distortion nécessite de calculer la solution numérique à une

équation non-linéaire ce qui n’est pas réaliste avec le temps de l’examen. Par contre, une discus-
sion et un ordre de grandeur de la distortion maximale (par exemple le calcul des 3 % ci-dessus à
la fréquence de coupure) répond parfaitement à l’examen. Ce qui est important est de donner la
formule (4) avec la tangente et de discuter du phénomène.

3.5 : Une implémentation possible est la suivante (4 pts)

N = 512;

b = 0.067455274;

a1 = - 1.14980503;

a2 = 0.412801598;

uin = randn(1,N);

yout = zeros(1,N);

% memoire sur les entrees

u1 = 0; % u(k-1)

u2 = 0; % u(k-2)

% conditions initiales

y1 = 0; % y(k-1)

y2 = 0; % y(k-2)

% boucle principale

for i=1:N

yout(i) = - a1*y1 - a2*y2 + b*(uin(i) + 2*u1 + u2);

y2 = y1; % decalage !

y1 = yout(i);

u2 = u1;

u1 = uin(i);

end;

scale logdb;

plot(abs(fft(yout)));
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Problème 4 — (20 pts)

Un système est donné par la fonction de transfert suivante:

H(z) =
B(z)
A(z)

=
z− 0.9
z + 1.1

Un régulateur RST a été calculé avec les polynômes suivants:

R(z) = z2 + 1.1z− 1.7
S(z) = −z2 − 1.1z− 1.6
T(z) = z + 0.9

1. Est-ce que système initial est BIBO stable ? Justifier.

2. Est-ce que le système en boucle fermée est stable ? Justifier.

3. Quel est le modèle à poursuivre sachant que le polynôme observateur est constant et égal à

A0(z) =
1
2

4. Proposer un régulateur d’ordre plus réduit conduisant au même modèle à poursuivre.

5. Quelle est la matrice de Sylvester pour le régulateur réduit ?

6. Quel est le polynôme Q qui relie le régulateur initial avec le régulateur réduit ?

Corrigé du problème 4:

4.1: Le système en boucle ouverte n’est pas BIBO stable car le dénominateur de H(z) est égal à
z + 1.1 et s’annule pour une valeur qui est à l’extérieur du cercle unité. 2 pts

4.2: Le système est stable si tous les zéros du polynôme AR + BS sont à l’intérieur du cercle unité.

AR + BS = (z + 1.1)(z2 + 1.1z− 1.7) + (z− 0.9)(−z2 − 1.1z− 1.6)
= (1− 1)z3 + (1.1 + 1.1 + 0.9− 1.1)z2

+[−1.7 + (1.1)2 + (−0.9)(−1.1)− 1.6] z
+(1.1)(−1.7) + (−0.9)(−1.6)

= 2z2 − 1.1z− 0.43 4 pts
= 2(z− z1)(z− z2)

avec

z1,2 =
1.1±

√
1.12 + 4× 2× 0.43

4

=
1.1± 2.156385865

4

=

{
−0.264096466
0.814096466 4 pts

Les deux zéros de AR + BS sont bien à l’intérieur du cercle unité. Le système est stable en boucle
fermée.
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4.3: Le modèle à poursuivre est défini par

BT
AR + BS

= Hm(z) =
Bm(z)
Am(z)

En général on pose

Am = A0(AR + BS) =
1
2
(2z2 − 1.1z− 0.43) = z2 − 0.55z− 0.215

Bm = A0BT =
1
2
(z− 0.9)(z + 0.9) = 0.5z2 − 0.405

ce qui donne le modèle à poursuivre

Hm(z) =
0.5 z2 − 0.405

z2 − 0.55 z− 0.215

4.4: Pour obtenir un régulateur d’ordre plus réduit, on peut partir de la paramétrisation de tous
les régulateurs conduisant au même modèle à poursuivre. Cette paramétrisation est donnée sous la
forme d’un polynôme Q:

R = R
′ −QB (5)

S = S
′
+ QA (6)

avec R
′

et S
′

une solution de degré inférieur à la solution proposée R et S. (Remarque: les signes
devant Q peuvent être changée dans chacune des équations à condition d’avoir toujours des signes
alternés dans les deux équations.)

Pour obtenir Q, on procède par division euclidienne, en divisant R par B. Le quotient sera ainsi
Q et le reste R

′
selon (5).

Par division polynomiale on vérifie

z2 + 1.1z− 1.7 = (z + 2)(z− 0.9) + 0.1

ce qui permet d’écrire

Q = z + 2

R
′

= 0.1 = R
′

4 pts

Pour obtenir S
′
, on utilise (6)

S
′
= S−QA = −z2 − 1.1z− 1.6− (z + 2)(z + 1.1) = −z2 − 1.1z− 1.6 + z2 + 3.1z + 2.2

= 2z + 0.6 = S
′

On constate que ce régulateur est non causal car le degré de S est supérieur au degré de R.
Pour fabriquer un régulateur causal mais d’ordre réduit, on peut utiliser à nouveau la paramétrisation

avec un autre polynôme Q. En prenant par exemple Q = 1, cela permettra d’élever le degré de R
′

sans affecter le degré de S
′′

R
′′

= R
′ −QB = R

′ − B = 0.1− (z− 0.9) = −z + 1 = R
′′

S
′′

= S
′
+ QA = S

′
+ A = 2z + 0.6 + z + 1.1 = 3z + 1.7 = S

′′

On obtient de la sorte un régulateur causal et de degré réduit par rapport à celui de départ.
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4.5: On va déterminer les matrices de Sylvester dans les deux cas, le régulateur réduit non causal
et le régulateur réduit causal.

Pour R
′
= 0.1 et S

′
= 2z + 0.6, on peut arranger en puissance sucessives de z selon la ligne. Les

coefficients du dénominateur du modèle à poursuivre, 2z2 − 1.1z− 0.43 sont alors(
2 −1.1 −0.43

)
ce qui conduit à la matrice de Sylvester

Sm =

 0 1 1.1
1 −0.9 0
0 1 −0.9

 6 pts

et on vérifie sans peine que (
0.1 2 0.6

)
Sm =

(
2 −1.1 −0.43

)
On peut également transposer la matrice de Sylvester si on aligne les coefficients des puissances de
z en colonne. Les deux sont comptés comme justes pour le corrigé.

Pour la solution R
′′
= −z + 1 et S

′′
= 3z + 1.7 on a la matrice de Sylvester suivante

Sm,2 =


1 1.1 0
0 1 1.1
1 −0.9 0
0 1 −0.9


et on vérifie sans peine (

−1 1 3 1.7
)

Sm,2 =
(

2 −1.1 −0.43
)

4.6: Pour obtenir le polynôme Q qui met en correspondance directe la solution causale avec le
problème initial, il faut simplement garder trace des deux transformations effectuées. Posons Q =
z + 2 (le quotient de la division conduisant à la solution non causale) et

Q
′
= 1

la correction pour obtenir la solution causale. On calcule

R
′′
= R

′ −Q
′
B = R−QB−Q

′
B = R− (Q + Q

′
)B

le polynôme

Q
′′
= Q + Q

′
= z + 2 + 1 = z + 3 bonus + 4 pts

est le polynôme Q cherché. En effet

R
′′
= R−Q

′′
B = z2 + 1.1 z− 1.7− (z + 3)(z− 0.9)

= z2 + 1.1 z− 1.7− (z2 + 2.1 z− 2.7)
= −z + 1

S
′′
= S + Q

′′
A = −z2 − 1.1 z− 1.6 + (z + 3)(z + 1.1)

= −z2 − 1.1 z− 1.6 + z2 + 4.1 z + 3.3
= 3z + 1.7

Remarque:
Une autre façon de procéder est d’essayer de résoudre directement l’équation de Bézout. On

cherche ainsi

AR + BS = z2 − 0.55z− 0.215
= (z + 1.1)(z + r1) + (z + 0.9)s1

= z2 + (1.1 + r1) z + r1 1.1 + z s1 − 0.9 z
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Sous forme matricielle 1 0 0
0 1 1
0 1.1 0.9

 1
r1
s1

 =

 1
−0.55− 1.1
−0.215

 =

 1
−1.65
−0.215


En réduisant en éliminant la première ligne et la première colonne(

r1
s1

)
=

1
−0.9− 1.1

(
−0.9 −1
−1.1 1

)(
−1.65
−0.215

)
=

(
−0.85
−0.8

)
On multiplie par 2 pour avoir la solution à

AR + BS = 2z2 − 1.1z− 0.43

ce qui donne finalement la solution causale

R = 2z− 1.7

S = −1.6
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Barème:
Le barème est linéaire et correspond aux points divisés par 10. La note est la note la plus grande

contenue dans ce nombre. Par exemple 54.9 pts donne 5.49 et on attribue alors 5.25 et non 5.5.
En notation polonaire inverse (RPN):

P ↑ 10/4 ∗ IP 4/
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