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Probléme 1 — (15 pts)

Soit la fonction de transfert continue

150
Gls) = s2 +20s +2

Cette fonction de transfert est échantillonnée a 1’aide d’une période d’échantillonnage de 1 [s]. On
demande de calculer:

1. L’équivalent discret par la méthode "zoh’, maintien d’ordre zéro.

2. L’équivalent par la transformée bilinéaire de Tustin.

3. Expliquer la différence obtenue au niveau des poles. Est-ce que la stabilité est maintenue ?
4

. Etablir la relation exacte théorique entre les poles discrets et continu. Laquelle des deux méthodes
proposées garantit approximativement cette correspondance?

5. Proposer une solution pour corriger la différence constatée.

Corrigé du probleme 1.

1.1 Equivalent par ‘zoh’. Il s’agit de calculer

Pl (69)

V4 S

Les deux racines du dénominateur sont —10 + 7+/2 et —10 — 7+/2. Décomposons G(s)/s en éléments
simples.

G(s) o p gt

= -+ +

s S s+10—7v2 s+10+7V2
U B 04
~ogT s+ 0.1005 * s+ 19.899



avec

150 150
© = Mo ist2 2 7
g = lim E 150 = L 150 ~ —75.38
s5-1047v2 S s +10+7v2  —10+7v/214V2
150 1 —150 150
= lim = = = ~ 0.3807
! s5-10-7v255+10—7v/2  —10—-7v214v/2 (10 +7v/2)14V/2
De telle sorte que
-1 (G(S)> — 75e (k) + 1 150 (—10+7v2)k 150 o(~10-7v2)k
s 7v/2 — 101412 (10 +7+/2)14v/2
Ceci conduit alors a la fonction de transfert discrete
H(z) — z—lZ£1<G(s)):75+z—1 150 z
z 5 z (7v2—10)14y2 z — e 10+7V2
z—1 150 z

z (10+47v2)z — e 10-7V2

On peut laisser I’expression sous cette forme. On constate, deux poles discrets, un rapide proche de
zéro et un relativement lent. Leurs expressions sont

21 = e~ 1047V2 4 0,904
2p = e 10-7V2 5 2279 % 1079 (1)

1.2 Equivalent par la méthode de Tustin. On a les relations bilinéaires suivantes avec 1 = 1 [s]:

S 1+5 2+s
o 1-5 2-s
z—1
= 2
z+1

En utilisant la deuxiéme expression, la fonction de transfert s’écrit

H(z) = 150 B 150(z + 1)?
N _1)?2 _ 422 -2z+1)+40(z—1)(z+1) +2(z + 1)?
1 1
(221) 420 (2) 42 X )+40z—1)(z+1) +2(z +1)
150(z% +2z 4+ 1)

472 — 824444022 — 40+ 222 + 4z +2
150(z% +2z 4+ 1)
4622 — 4z — 34
150/46 (22 +2z +1)
72 —4/46z —34/46
3.2622 +6.52z + 3.26
22 — 0.086956 z — 0.73913

1.3 Différence entre les deux résultats et 1.4 relation exacte. Calculons la position de racines dans
la méthode de Tustin:

 —0.087++/(0.087)2+4x 0739 [ —0.817
2= 2 ~ 1 +0.904

On constate que 0.904 est proche de la valeur théorique ¢~ 10+7V2_ Par contre, —0.817 ne correspond
pas a la valeur théorique de e710-7V2 227979, La valeur théorique est donnée au numéro suivant.



1.4 Relation exacte entre les poles. La valeur théorique des pdles obéissent a la relation

el = z; i=1,2 h=1

1.5 Solution pour améliorer la situation.  La différence entre un des poles entre le deux méthodes
provient du fait que le pole rapide nécessite une période d’échantillonnage petite pour étre fidélement
restitué. Dans la méthode "zoh’ nous avons pu calculer le p6le en utilisant la méthode théorique par
correspondance des éléments simples discrets et continus. Avec la transformation bilinéaire ce n’était
pas possible.

Un remede est de diminuer la période d’échantillonnage afin que la position du pole simple
rapide soit en bonne correspondance avec ’équivalent bilinéaire.

Probléme 2 — (15 pts)

Deux codes semblent donner la méme solution au niveau de la relation entre le signal d’entrée {u(k) }
et le signal de sortie {y(k)}.
Le premier code est décrit par les lignes Matlab suivantes:

% uu contient les entrees. yy contient les sorties
ukl = 0; ykl = 0; yk2 = 0;

uu = ones(1,n);
yy = zeros(1,n);
for k=1:n
uk = uu(k);
a = 0.2%ykl + 0.48%yk2;
b = uk-0.2%ukl;
yy(k) = a + b;
ukl = uk;
yk2 = yki;
yk1 = yy(k);
end;

Le second par:

% uu contient les entrees. yy contient les sorties
ukl = 0; vkl = 0; ykl1 = 0;
uu = ones(1,n);
yy = zeros(1l,n);
for k=1:n
uk = uu(k);
vk = 0.8%vkl + uk - 0.2*ukl;
yy(k) = -0.6xykl + vk;

ukl = uk;
vkl = vk;
ykl = yy(k);

end;

1. Donner une démonstration de 1’équivalence des deux codes au niveau du comportement entrée
sortie en absence d’erreur d’arrondi.

2. Compléter la troisieme variante du code en déterminant les valeurs de a et b dans la partie du
code suivant:

a=...;
b= ...

vk = 0.8%xvkl + axuk;
wk = -0.6*xwkl + b*uk;



et compléter le code pour qu’il donne la méme relation entrée uu et sortie yy que les deux autres
codes.

INDICATION: Utiliser la transformée en z.

Corrigé du probleme 2.

2.1 Equivalence des deux codes. Dans les codes, on constate les correspondance suivantes entre les
variables du code et les expressions mathématiques correspondantes:

code | math

uk u(k)

ukl | u(k—1)
vk v(k)

vkl | o(k—1)
wk w(k)
wkl w(k—1)
vk | y(k)

yki | y(k—1)
yk2 | y(k—2)

Ainsi, la relation entrée sortie du premier code est décrit par les équations aux différences
y(k) =02y(k—1)+048y(k—2) +u(k) —02u(k—1)
ce qui correspond a la fonction de transfert

Y(z)  z2-02z
U(z) z2-02z-048

H(z) =

Pour le deuxiéme code, nous avons les équations aux différences

v(k) = 08v(k—1)+u(k)—02u(k—1)
y(k) = —-0.6y(k—1)+ov(k)

Ceci correspond au produit de deux fonction de transfert en z

Y(z) V(z)Y(z) z-02 z
U(z) U(z)V(z) z—-08z+0.6
72— 0.2z
(z—8)(z+0.6)
z2 —0.2z
z2 — 0.2z +0.48

Hy(z) =

Comme H,(z) = H(z), et que les conditions initiales sont nulles et identiques, le comportement
entrée sortie est identique.

2.2 Troisiéme variante. On constate que les deux équations aux différences sont découplées et ont
la méme entrée u(k). Ceci suggere la somme de deux fonctions de transferts équivalante a H(z). Ceci
est possible si on procéde a une décomposition en éléments simples.

z z
HE=) = 0 =55 T os
az (z+0.6) + bz (z — 0.8)
(z+0.6)(z—0.8)
z2 - 02z

z2 — 0.2z 4+ 0.48
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et en identifiant les numérateurs par puissance de z

az2+bz2 = 122
a06z—008z = —-02z

En écriture matricielle

et en inversant la matrice

on trouve
—0.8+0.2 56 3
a = {4 770~ 7 ~ 0.42857
—06—-02 58 4
b = 11 516 =z ~ 0.571429

ce qui conduit au code complété

% uu contient les entrees. yy contient les sorties
vkl = 0; wkl = 0;

uu = ones(1l,n);

yy = zeros(1l,n);

a = 3/7;
b = 4/7;
for k=1:n
uk = uu(k);
vk = 0.8xvkl + ax*uk;

wk = -0.6*wkl + b*uk;
yy (k) = vk + wk;
wkl = wk;
vkl = vk;
end;

11 est judicieux de sortir a et b de la boucle for.

Probleme 3 — (15 pts)
Une fonction de transfert discrete est approximée par le modéle pseudo-analogique:

, —0.5w +50
G () = 0w+ 20

Déterminer un régulateur par avance de phase

afin d’atteindre les performances suivantes:

1. Une erreur de statisme d’au maximum 0.12.

2. Une marge de phase de 60 degrés.
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Figure 1: Diagramme de Bode du module de la fonction de transfert a régler (en horizontal [rad/s]
et en vertical [dB]).

-100 -

-150 4

-200 -

Figure 2: Diagramme de Bode de la phase de la fonction de transfert a régler (en horizontal [rad/s]
et en vertical [deg]).
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Figure 3: Diagramme de Bode du régulateur normalisé m = pour m = 2,3,4,5,6. La valeur m = 2
correspond a la courbe inférieure. Les unités sont le [dB] sur I’axe vertical. En horizontal, la pulsation
v est exprimée en [rad/s].
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Figure 4: Diagramme de Bode du régulateur normalisé m% pour m = 2,3,4,5,6. La valeur m = 2

correspond a la courbe inférieure. Les unités sont les degrés sur 1’axe vertical. En horizontal, la
pulsation v est exprimée en [rad/s].



INDICATIONS: On a représenté dans les graphiques le diagramme de Bode de G (jv) en module
et en phase. On a également représenter le régulateur normalisé en gain y = 1 et en fréquence () = 1
pour plusieurs valeurs de m. Marche a suivre: 1. Déterminer  pour avoir la spécification sur le
statisme. 2. Déterminer () en fonction de la pulsation de croisement. 3. Déterminer m pour avoir la
bonne marge de phase. 4. Ajuster si nécessaire.

Donner le pseudo-code du régulateur et déterminer les conditions initiales et les variables in-
termédiaires supplémentaires si nécessaire. Utiliser les deux méthodes suivantes avec i = 0.01:

3. L'équivalent "zoh’; INDICATION: diviser les polyndmes.
4. La méthode de Tustin (transformée bilinéaire).

5. Vérifier s’il existe une différence similaire a celle constatée dans le probleme 1.

Corrigé du probleme 3.

3.1 Design pour un statisme au maximum de 0.12 Supoosons un régulateur proprotionnel pur et
de gain unité K = 1. Le gain de la boulce KG pour la composante continue w = 0 donne un gain de

boucle

K(0)G(0) = 12 _25

ce qui conduit en boucle fermée au transfert entre la consigne et la grandeur mesurée de

K(0)G(0) 3 5 5

= = == =07142
1+K(0)G(0) 1+3 2+5 7 071429

engendrant une erreur de 1 — 0.71429 = 0.28571 > 0.12. II faut donc augmenter le gain K pour
atteindre la spécification sur le statisme. L'équation a résoudre est pour le gain minimal K(0)

K(0)32
th; =1-0.12=0.88
1+ K(0)3

ce qui conduit a

176 +44K = 5K
1.76
K = — =293
0.6
Ainsi avec un gain K = 3 > 2.93 on satisfait la spécification sur le statisme. Ceci correspond a décaler
le diagramme de Bode en amplitude de la quantité

20 log,,3 = 9.54[dB]

Pour faire simple, tout en garantissant la spécification sur le statisme, on augmente un petit peu le
gain pour avoir 10 [dB]. Mais gardons K = 3 pour les figure. Nous avons représenter a la figure 5 le
diagramme de Bode en amplitude de KG avec K = 3.

3.2 Marge de phase. En examinant la courbe du milieu de la figure 5, c.-a-d. celle obtenue lorsque
le régulateur est purement proportionnel K = 3, on constate que celle-ci croise 0 [dB] pour une pulsa-
tion approximativement de v = 11 [rad/s]. Calculons précisément cette quantité (0 [dB] correspond
a un gain de 1 en boucle ouverte). Ce calcul précis est facultatif. On le donne pour le corrigé.

—0.5jv + 50
(jv)24+10jv +20
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Figure 5: Diagramme de Bode en amplitude (axe vertical [dB], axe horizontal v en [rad/s]) du
systeme a régler et de deux régulateurs, le premier (courbe du milieu) est une régulateur propor-
tionnel pur K = 3 et le second (courbe du haut) est le résultat du régulateur par avance de phase
demandé dans le probleme.

En égalant le carré des modules du numérateur et du dénominateur

(150)% + (1.5jv)% = (20 — v2)? + 10012
0 = 400 — 150% + (60 — 1.52) v + v*
0 = v* +57.750% — 22100

ce qui donne une quadratique pour x = v2

x% +57.75x — 22100 0

—57.75 4 1/(57.75)2 4 4 x 22100

2

5775 ; 302878 _ 155 5639

X fnd

ce qui donne finalement
v = 11.07086 [rad/s]

Enreportant les 11 [rad /s] sur le diagramme de phase de la fonction de transfert en boucle fermée
on constate que la marge de phase y serait de

180 — 140 =40  [deg]

Il manque 20 [deg.]. Cet appport manquant sera fourni par 1’avance de phase. Pour dimensionner
celle-ci, on se place sur le diagramme normalisé ((2 = 1) et a la pulsation de v = 1 [rad/s]. En
prenant m = 2, on a seulement +18 [deg.]. Par contre, en choisissant m = 3, on a +26 [deg.] ce qui
donne les 20 [deg.] manquants. En choisissant ensuite () = 11 [rad/s] pour décaler le réseau a la
pulsation de v = 11 [rad/s] au lieu de v = 1 [rad/s], on obtient avec y = 3 pour assurer le bon gain
statique, le régulateur demandé

w+11 w411

K= _
3X3 T ix3  Ywim
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Figure 6: Diagramme de Bode de K(jv)G(jv) (courbe du haut) comparé a G(jv) (courbe du bas), et on
constate la bonne marge de phase autour des 11 [rad/s]. En prenant un peu de marge en considérant
jusqua 15 [rad/s] (cf. diagramme a la figure 5, courbe supérieure) on a toujours suffisament de marge
de phase (> 60 [deg.]). L'échelle verticale est en [deg.] et en horizontal v est représenté en [rad/s].

3.3 Equivalent ‘zoh’ du régulateur.

seule fois dans w + 11 et il reste —22, i.e.

w+11 = 1(w +33) — 22

ce qui conduit a la décomposition du régulateur

22
K=9(1-
9( w+33)

ce qui donne en appliquant la formule

en commengant par

onaa = —f = 6etdonc

ainsi

Kw) 9 198

w w w(w+33)
_ 9 B
T ow w  w+33

w w w  w-+33
z—1 z
Kz) = 3+— 7 _ —33x0.01
9z — 8.1567
z—0.7189

10

En procédant par division, on constate que w + 33 entre 1



3.4 Equivalent de Tustin (bilinéaire) du régulateur. = On applique la transformée bilinéaire avec
h=0.01

2z—1 2002—1

T hz+1 T z41
avec 9( 11)
w ~+
Kw) = >—-"-
(@) = =733
on a
Kz = 9x 20057 +99  9x200(z—1)+99(z+1)
© 20051433 200(z—1)+33(z+1)
1899z — 1701
233z — 167

en rendant monic

B2z 21 8150214592z — 7.3004329

z— % N z —0.71673

K(z) =

3.5 Comparaison des deux méthodes. = Contrairement au premier probléme, on trouve peu de
différence entre la position du pole. En effet

% = 0.71673 ~ ¢~ 3*001 _ 7189

Dans ce probleme on peut dire que la période d’échantillonnage est correctement choisie pour avoir
une bonne approximation du pole dominant du régulateur par la méthode bilinéaire.

Probléme 4 — (15 pts)

Soit la fonction de transfert d’un systéme discret

avec A(z) =z+02etB(z) =z+1.2.

Le polyndme observateur est Ap(z) = z et le modele a poursuivre est

_z+1.2
T z-06

Hn(2)

1. Déterminer un régulateur RST qui atteint les spécifications.
2. Donner la matrice de Sylvester associée.

3. Ecrire un code correspondant au régulateur proposé.

Corrigé du probléeme 4

11



4.1 Détermination d’un régulateur RST Il s’agit de résoudre dans un premier temps ’équation de
Diophante
AR+ BS = A Ao

avec Ag = z le polyndme observateur donné et A;; = z — 0.6 le dénominateur de Hy,.
La premiére méthode est d’essayer d’identifier les coefficients directement. Posons R = z 4 r et
S = s un scalaire.

AR+BS = (z+402)(z+71)+ (z+12)s = AgAp = z(z —0.6)
224+ (r+02)z24+02r+sz+1.2s
= 224 (r4+5s402)z4+02r+125s=2>-062z

ce qui conduit au systeme d’équation en identifiant les puissance de z successives

r+s+02 = 0.6
02r+12s = 0
La deuxiéme équation donne r = —6s que 1'on introduit dans la premiere pour obtenir —6s + s +
0.2 = —0.6 ce qui fournit
24
= ——=-09
' 25
4
= —=016
* T

etainsiR(z) =z — 33 =z—-096etS = 5t = 0.16.
En ce qui concerne le polyndme T, on doit avoir BT = B, Ag = z> + 1.2z et comme B = z + 1.2,
celadonne T = z

4.2 Matrice de Sylvester. En écrivant I'identification des coefficients des puissances de z de
AR+ BS = ApAp

sous forme de vecteurs lignes, on a

102 0
(1 rs){0 1 02 |=(1 —06 0)
0 1 12
ou en transposant
1 0 O 1 1
02 1 1 r = —0.6
0 02 12 s 0

ce qui fait apparaitre la matrice de Sylvester que 1’on peut inverser a ’aide de 1'aide donnée dans le
formulaire. En regardant le formulaire, on constate que la forme en vecteur ligne convient mieux et
ona

-1 2 6 1
(1) Oiz 002 . 1.250.2 —1%;0.2 0.52 (1) % B
: = —— : —02 | = 50075
0 1 12 12-02 0 1 1 0 -1 1
6 1
! _6ﬁ g1 _ 6 3x6 1 3 _ 24 4
(1 —0.6 0) 8 31 —15 —(1 257 25 25*‘25)—(1 25 25)

et on retrouve la méme solution qu'auparavant R = z — % etS = %. Méme méthode pour trouver
le polyndme T que celle déja présentéeetona T = z.

12



4.3 Code correspondant au RST. Il ne faut pas implémenter les fonctions de transfert T(z)/R(z)
et S(z)/T(z) de manieére isolée, mais sous la forme de la relation en transformée en z

sous la forme

U(z)R(z) = T(z)Ye(z) —S(2)Y(2)
U(z)(z+r) = zYe(z) —sY(z)

ce qui conduit a I’équation aux différences
u(k) +ruk—1) =yc(k) —sy(k—1)
ce qui se met sous la forme de pseudo-code

r = -24/25; s = 4/25;

uk = -r*ukl - yck - s*ykil;
ukl = uk;
ykl = yk;

Répartition des points

exercice | points
1.1 5
1.2 5
1.3 2
1.4 1.5
1.5 1.5
21 10
2.2 5
3.1 2
3.2 5
3.3 3
3.4 3
3.5 2
41 8
42 5
43 2

Bareme

La formule est fort simple, soit p la note n est donnée par la formule suivante, aprés arrondi au 1/4
de note.
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