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Problème 1 — (15 pts)

Soit la fonction de transfert continue

G(s) =
150

s2 + 20s + 2

Cette fonction de transfert est échantillonnée à l’aide d’une période d’échantillonnage de 1 [s]. On
demande de calculer:

1. L’équivalent discret par la méthode ’zoh’, maintien d’ordre zéro.

2. L’équivalent par la transformée bilinéaire de Tustin.

3. Expliquer la différence obtenue au niveau des pôles. Est-ce que la stabilité est maintenue ?

4. Etablir la relation exacte théorique entre les pôles discrets et continu. Laquelle des deux méthodes
proposées garantit approximativement cette correspondance?

5. Proposer une solution pour corriger la différence constatée.

Corrigé du problème 1.

1.1 Equivalent par ’zoh’. Il s’agit de calculer

z− 1
z
ZL−1

(
G(s)

s

)
Les deux racines du dénominateur sont−10+ 7

√
2 et−10− 7

√
2. Décomposons G(s)/s en éléments

simples.

G(s)
s

=
α

s
+

β

s + 10− 7
√

2
+

γ

s + 10 + 7
√

2

≈ α

s
+

β

s + 0.1005
+

γ

s + 19.899
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avec

α = lim
s→0

150
s2 + 20s + 2

=
150

2
= 75

β = lim
s→−10+7

√
2

1
s

150
s + 10 + 7

√
2
=

1
−10 + 7

√
2

150
14
√

2
≈ −75.38

γ = lim
s→−10−7

√
2

1
s

150
s + 10− 7

√
2
=

1
−10− 7

√
2
−150
14
√

2
=

150
(10 + 7

√
2)14
√

2
≈ 0.3807

De telle sorte que

L−1
(

G(s)
s

)
= 75ε(k) +

1
7
√

2− 10
150

14
√

2
e(−10+7

√
2)k +

150
(10 + 7

√
2)14
√

2
e(−10−7

√
2)k

Ceci conduit alors à la fonction de transfert discrète

H(z) =
z− 1

z
ZL−1

(
G(s)

s

)
= 75 +

z− 1
z

150
(7
√

2− 10)14
√

2
z

z− e−10+7
√

2

+
z− 1

z
150

(10 + 7
√

2)
z

z− e−10−7
√

2

On peut laisser l’expression sous cette forme. On constate, deux pôles discrets, un rapide proche de
zéro et un relativement lent. Leurs expressions sont

z1 = e−10+7
√

2 ≈ 0.904

z2 = e−10−7
√

2 ≈ 2.279× 10−9 (1)

1.2 Equivalent par la méthode de Tustin. On a les relations bilinéaires suivantes avec h = 1 [s]:

z =
1 + s

2
1− s

2
=

2 + s
2− s

s = 2
z− 1
z + 1

En utilisant la deuxième expression, la fonction de transfert s’écrit

H(z) =
150(

2 z−1
z+1

)2
+ 20

(
2 z−1

z+1

)
+ 2

=
150(z + 1)2

4(z2 − 2z + 1) + 40(z− 1)(z + 1) + 2(z + 1)2

=
150(z2 + 2z + 1)

4z2 − 8z + 4 + 40z2 − 40 + 2z2 + 4z + 2

=
150(z2 + 2z + 1)
46z2 − 4z− 34

=
150/46 (z2 + 2z + 1)
z2 − 4/46 z− 34/46

=
3.26z2 + 6.52z + 3.26

z2 − 0.086956 z− 0.73913

1.3 Différence entre les deux résultats et 1.4 relation exacte. Calculons la position de racines dans
la méthode de Tustin:

z1,2 =
−0.087±

√
(0.087)2 + 4× 0.739

2
=

{
−0.817
+0.904

On constate que 0.904 est proche de la valeur théorique e−10+7
√

2. Par contre, −0.817 ne correspond
pas à la valeur théorique de e−10−7

√
2 ≈ 2.279−9. La valeur théorique est donnée au numéro suivant.
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1.4 Relation exacte entre les pôles. La valeur théorique des pôles obéissent à la relation

esih = zi i = 1, 2 h = 1

1.5 Solution pour améliorer la situation. La différence entre un des pôles entre le deux méthodes
provient du fait que le pôle rapide nécessite une période d’échantillonnage petite pour être fidèlement
restitué. Dans la méthode ’zoh’ nous avons pu calculer le pôle en utilisant la méthode théorique par
correspondance des éléments simples discrets et continus. Avec la transformation bilinéaire ce n’était
pas possible.

Un remède est de diminuer la période d’échantillonnage afin que la position du pôle simple
rapide soit en bonne correspondance avec l’équivalent bilinéaire.

Problème 2 — (15 pts)

Deux codes semblent donner la même solution au niveau de la relation entre le signal d’entrée {u(k)}
et le signal de sortie {y(k)}.

Le premier code est décrit par les lignes Matlab suivantes:

% uu contient les entrees. yy contient les sorties

uk1 = 0; yk1 = 0; yk2 = 0;

uu = ones(1,n);

yy = zeros(1,n);

for k=1:n

uk = uu(k);

a = 0.2*yk1 + 0.48*yk2;

b = uk-0.2*uk1;

yy(k) = a + b;

uk1 = uk;

yk2 = yk1;

yk1 = yy(k);

end;

Le second par:

% uu contient les entrees. yy contient les sorties

uk1 = 0; vk1 = 0; yk1 = 0;

uu = ones(1,n);

yy = zeros(1,n);

for k=1:n

uk = uu(k);

vk = 0.8*vk1 + uk - 0.2*uk1;

yy(k) = -0.6*yk1 + vk;

uk1 = uk;

vk1 = vk;

yk1 = yy(k);

end;

1. Donner une démonstration de l’équivalence des deux codes au niveau du comportement entrée
sortie en absence d’erreur d’arrondi.

2. Compléter la troisième variante du code en déterminant les valeurs de a et b dans la partie du
code suivant:

a = ...;

b = ...;

vk = 0.8*vk1 + a*uk;

wk = -0.6*wk1 + b*uk;

3



et compléter le code pour qu’il donne la même relation entrée uu et sortie yy que les deux autres
codes.

INDICATION: Utiliser la transformée en z.

Corrigé du problème 2.

2.1 Equivalence des deux codes. Dans les codes, on constate les correspondance suivantes entre les
variables du code et les expressions mathématiques correspondantes:

code math
uk u(k)
uk1 u(k− 1)
vk v(k)
vk1 v(k− 1)
wk w(k)
wk1 w(k− 1)
yk y(k)
yk1 y(k− 1)
yk2 y(k− 2)

Ainsi, la relation entrée sortie du premier code est décrit par les équations aux différences

y(k) = 0.2 y(k− 1) + 0.48 y(k− 2) + u(k)− 0.2 u(k− 1)

ce qui correspond à la fonction de transfert

H(z) =
Y(z)
U(z)

=
z2 − 0.2z

z2 − 0.2z− 0.48

Pour le deuxième code, nous avons les équations aux différences

v(k) = 0.8 v(k− 1) + u(k)− 0.2 u(k− 1)
y(k) = −0.6 y(k− 1) + v(k)

Ceci correspond au produit de deux fonction de transfert en z

H2(z) =
Y(z)
U(z)

=
V(z)
U(z)

Y(z)
V(z)

=
z− 0.2
z− 0.8

z
z + 0.6

=
z2 − 0.2z

(z− 8)(z + 0.6)

=
z2 − 0.2z

z2 − 0.2z + 0.48

Comme H2(z) = H(z), et que les conditions initiales sont nulles et identiques, le comportement
entrée sortie est identique.

2.2 Troisième variante. On constate que les deux équations aux différences sont découplées et ont
la même entrée u(k). Ceci suggère la somme de deux fonctions de transferts équivalante à H(z). Ceci
est possible si on procède à une décomposition en éléments simples.

H(z) = a
z

z− 0.8
+ b

z
z + 0.6

=
az (z + 0.6) + bz (z− 0.8)

(z + 0.6)(z− 0.8)

=
z2 − 0.2z

z2 − 0.2z + 0.48
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et en identifiant les numérateurs par puissance de z

a z2 + b z2 = 1 z2

a 0.6 z− b 0.8 z = −0.2 z

En écriture matricielle (
1 1

0.6 −0.8

)(
a
b

)(
1
−0.2

)
et en inversant la matrice (

a
b

)
=

1
−1.4

(
−0.8 −1
−0.6 1

)(
1
−0.1

)
on trouve

a =
−0.8 + 0.2
−1.4

=
5
7

6
10

=
3
7
≈ 0.42857

b =
−0.6− 0.2
−1.4

=
5
7

8
10

=
4
7
≈ 0.571429

ce qui conduit au code complété

% uu contient les entrees. yy contient les sorties

vk1 = 0; wk1 = 0;

uu = ones(1,n);

yy = zeros(1,n);

a = 3/7;

b = 4/7;

for k=1:n

uk = uu(k);

vk = 0.8*vk1 + a*uk;

wk = -0.6*wk1 + b*uk;

yy(k) = vk + wk;

wk1 = wk;

vk1 = vk;

end;

Il est judicieux de sortir a et b de la boucle for.

Problème 3 — (15 pts)

Une fonction de transfert discrète est approximée par le modèle pseudo-analogique:

G
′
(w) =

−0.5w + 50
w2 + 10w + 20

Déterminer un régulateur par avance de phase

K
′
(w) = γm

w + Ω
w + m Ω

afin d’atteindre les performances suivantes:

1. Une erreur de statisme d’au maximum 0.12.

2. Une marge de phase de 60 degrés.
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Figure 1: Diagramme de Bode du module de la fonction de transfert à régler (en horizontal [rad/s]
et en vertical [dB]).
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Figure 2: Diagramme de Bode de la phase de la fonction de transfert à régler (en horizontal [rad/s]
et en vertical [deg]).
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Figure 3: Diagramme de Bode du régulateur normalisé m w+1
w+m pour m = 2, 3, 4, 5, 6. La valeur m = 2

correspond à la courbe inférieure. Les unités sont le [dB] sur l’axe vertical. En horizontal, la pulsation
ν est exprimée en [rad/s].
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Figure 4: Diagramme de Bode du régulateur normalisé m w+1
w+m pour m = 2, 3, 4, 5, 6. La valeur m = 2

correspond à la courbe inférieure. Les unités sont les degrés sur l’axe vertical. En horizontal, la
pulsation ν est exprimée en [rad/s].

7



INDICATIONS: On a représenté dans les graphiques le diagramme de Bode de G
′
(j ν) en module

et en phase. On a également représenter le régulateur normalisé en gain γ = 1 et en fréquence Ω = 1
pour plusieurs valeurs de m. Marche à suivre: 1. Déterminer γ pour avoir la spécification sur le
statisme. 2. Déterminer Ω en fonction de la pulsation de croisement. 3. Déterminer m pour avoir la
bonne marge de phase. 4. Ajuster si nécessaire.

Donner le pseudo-code du régulateur et déterminer les conditions initiales et les variables in-
termédiaires supplémentaires si nécessaire. Utiliser les deux méthodes suivantes avec h = 0.01:

3. L’équivalent ’zoh’; INDICATION: diviser les polynômes.

4. La méthode de Tustin (transformée bilinéaire).

5. Vérifier s’il existe une différence similaire à celle constatée dans le problème 1.

Corrigé du problème 3.

3.1 Design pour un statisme au maximum de 0.12 Supoosons un régulateur proprotionnel pur et
de gain unité K = 1. Le gain de la boulce KG pour la composante continue w = 0 donne un gain de
boucle

K(0)G(0) = 1
5
2
= 2.5

ce qui conduit en boucle fermée au transfert entre la consigne et la grandeur mesurée de

K(0)G(0)
1 + K(0)G(0)

=
5
2

1 + 5
2
=

5
2 + 5

=
5
7
= 0.71429

engendrant une erreur de 1 − 0.71429 = 0.28571 > 0.12. Il faut donc augmenter le gain K pour
atteindre la spécification sur le statisme. L’équation à résoudre est pour le gain minimal K(0)

K(0) 5
2

1 + K(0) 5
2
= 1− 0.12 = 0.88

ce qui conduit à

1.76 + 4.4 K = 5K

K =
1.76
0.6

= 2.93

Ainsi avec un gain K = 3 > 2.93 on satisfait la spécification sur le statisme. Ceci correspond à décaler
le diagramme de Bode en amplitude de la quantité

20 log10 3 = 9.54 [dB]

Pour faire simple, tout en garantissant la spécification sur le statisme, on augmente un petit peu le
gain pour avoir 10 [dB]. Mais gardons K = 3 pour les figure. Nous avons représenter à la figure 5 le
diagramme de Bode en amplitude de KG avec K = 3.

3.2 Marge de phase. En examinant la courbe du milieu de la figure 5, c.-à-d. celle obtenue lorsque
le régulateur est purement proportionnel K = 3, on constate que celle-ci croise 0 [dB] pour une pulsa-
tion approximativement de ν = 11 [rad/s]. Calculons précisément cette quantité (0 [dB] correspond
à un gain de 1 en boucle ouverte). Ce calcul précis est facultatif. On le donne pour le corrigé.

1 =

∣∣∣∣ −0.5jν + 50
(jν)2 + 10 jν + 20

∣∣∣∣
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Figure 5: Diagramme de Bode en amplitude (axe vertical [dB], axe horizontal ν en [rad/s]) du
système à régler et de deux régulateurs, le premier (courbe du milieu) est une régulateur propor-
tionnel pur K = 3 et le second (courbe du haut) est le résultat du régulateur par avance de phase
demandé dans le problème.

En égalant le carré des modules du numérateur et du dénominateur

(150)2 + (1.5 jν)2 = (20− ν2)2 + 100 ν2

0 = 400− 1502 + (60− 1.52) ν2 + ν4

0 = ν4 + 57.75ν2 − 22100

ce qui donne une quadratique pour x = ν2

x2 + 57.75x− 22100 = 0

x =
−57.75 +

√
(57.75)2 + 4× 22100

2

=
−57.75 + 302.878

2
= 122.5639

ce qui donne finalement
ν = 11.07086 [rad/s]

En reportant les 11 [rad/s] sur le diagramme de phase de la fonction de transfert en boucle fermée
on constate que la marge de phase y serait de

180− 140 = 40 [deg.]

Il manque 20 [deg.]. Cet appport manquant sera fourni par l’avance de phase. Pour dimensionner
celle-ci, on se place sur le diagramme normalisé (Ω = 1) et à la pulsation de ν = 1 [rad/s]. En
prenant m = 2, on a seulement +18 [deg.]. Par contre, en choisissant m = 3, on a +26 [deg.] ce qui
donne les 20 [deg.] manquants. En choisissant ensuite Ω = 11 [rad/s] pour décaler le réseau à la
pulsation de ν = 11 [rad/s] au lieu de ν = 1 [rad/s], on obtient avec γ = 3 pour assurer le bon gain
statique, le régulateur demandé

K = 3× 3
w + 11

w + 11× 3
= 9

w + 11
w + 33
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Figure 6: Diagramme de Bode de K(jν)G(jν) (courbe du haut) comparé à G(jν) (courbe du bas), et on
constate la bonne marge de phase autour des 11 [rad/s]. En prenant un peu de marge en considérant
jusquà 15 [rad/s] (cf. diagramme à la figure 5, courbe supérieure) on a toujours suffisament de marge
de phase (> 60 [deg.]). L’échelle verticale est en [deg.] et en horizontal ν est représenté en [rad/s].

3.3 Equivalent ’zoh’ du régulateur. En procédant par division, on constate que w + 33 entre 1
seule fois dans w + 11 et il reste −22, i.e.

w + 11 = 1(w + 33)− 22

ce qui conduit à la décomposition du régulateur

K = 9
(

1− 22
w + 33

)
ce qui donne en appliquant la formule

K(z) =
z− 1

z
ZL−1

(
K(w)

w

)
en commençant par

K(w)

w
=

9
w
− 198

w(w + 33)

=
9
w

+
α

w
+

β

w + 33

on a α = −β = 6 et donc

K(w)

w
=

9
w
− 6

w
+

6
w + 33

ainsi

K(z) = 3 +
z− 1

z
z

z− e−33×0.01

=
9 z− 8.1567
z− 0.7189
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3.4 Equivalent de Tustin (bilinéaire) du régulateur. On applique la transformée bilinéaire avec
h = 0.01

w =
2
h

z− 1
z + 1

= 200
z− 1
z + 1

avec

K(w) =
9(w + 11)

w + 33
on a

K(z) =
9× 200 z−1

z+1 + 99

200 z−1
z+1 + 33

=
9× 200 (z− 1) + 99 (z + 1)

200 (z− 1) + 33 (z + 1)

=
1899 z− 1701

233 z− 167

en rendant monic

K(z) =
1899
233 z− 1701

233

z− 167
233

=
8.150214592 z− 7.3004329

z− 0.71673

3.5 Comparaison des deux méthodes. Contrairement au premier problème, on trouve peu de
différence entre la position du pôle. En effet

167
233

= 0.71673 ≈ e−33×0.01 = 0.7189

Dans ce problème on peut dire que la période d’échantillonnage est correctement choisie pour avoir
une bonne approximation du pôle dominant du régulateur par la méthode bilinéaire.

Problème 4 — (15 pts)

Soit la fonction de transfert d’un système discret

H(z) =
B(z)
A(z)

avec A(z) = z + 0.2 et B(z) = z + 1.2.

Le polynôme observateur est A0(z) = z et le modèle à poursuivre est

Hm(z) =
z + 1.2
z− 0.6

1. Déterminer un régulateur RST qui atteint les spécifications.

2. Donner la matrice de Sylvester associée.

3. Ecrire un code correspondant au régulateur proposé.

Corrigé du problème 4
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4.1 Détermination d’un régulateur RST Il s’agit de résoudre dans un premier temps l’équation de
Diophante

AR + BS = Am A0

avec A0 = z le polynôme observateur donné et Am = z− 0.6 le dénominateur de Hm.
La première méthode est d’essayer d’identifier les coefficients directement. Posons R = z + r et

S = s un scalaire.

AR + BS = (z + 0.2)(z + r) + (z + 1.2)s = A0 Am = z(z− 0.6)
= z2 + (r + 0.2) z + 0.2 r + s z + 1.2s
= z2 + (r + s + 0.2) z + 0.2 r + 1.2 s = z2 − 0.6 z

ce qui conduit au système d’équation en identifiant les puissance de z successives

r + s + 0.2 = 0.6
0.2 r + 1.2s = 0

La deuxième équation donne r = −6s que l’on introduit dans la première pour obtenir −6s + s +
0.2 = −0.6 ce qui fournit

r = −24
25

= −0.96

s =
4

25
= 0.16

et ainsi R(z) = z− 24
25 = z− 0.96 et S = 4

25 = 0.16.
En ce qui concerne le polynôme T, on doit avoir BT = Bm A0 = z2 + 1.2z et comme B = z + 1.2,

cela donne T = z

4.2 Matrice de Sylvester. En écrivant l’identification des coefficients des puissances de z de

AR + BS = A0 Am

sous forme de vecteurs lignes, on a

(
1 r s

) 1 0.2 0
0 1 0.2
0 1 1.2

 =
(

1 −0.6 0
)

ou en transposant  1 0 0
0.2 1 1
0 0.2 1.2

 1
r
s

 =

 1
−0.6

0


ce qui fait apparaı̂tre la matrice de Sylvester que l’on peut inverser à l’aide de l’aide donnée dans le
formulaire. En regardant le formulaire, on constate que la forme en vecteur ligne convient mieux et
on a 1 0.2 0

0 1 0.2
0 1 1.2

−1

=
1

1.2− 0.2

 1.2− 0.2 −1.2× 0.2 0.22

0 1.2 −0.2
0 −1 1

 =

 1 − 6
25

1
25

0 6
5 − 1

5
0 −1 1



(
1 −0.6 0

) 1 − 6
25

1
25

0 6
5 − 1

5
0 −1 1

 =
(

1 − 6
25 −

3×6
25

1
25 + 3

25

)
=
(

1 − 24
25

4
25

)
et on retrouve la même solution qu’auparavant R = z− 24

25 et S = 4
25 . Même méthode pour trouver

le polynôme T que celle déjà présentée et on a T = z.
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4.3 Code correspondant au RST. Il ne faut pas implémenter les fonctions de transfert T(z)/R(z)
et S(z)/T(z) de manière isolée, mais sous la forme de la relation en transformée en z

U(z) =
T(z)
R(z)

Yc(z)−
S(z)
R(z)

Y(z)

sous la forme

U(z)R(z) = T(z)Yc(z)− S(z)Y(z)
U(z)(z + r) = z Yc(z)− s Y(z)

ce qui conduit à l’équation aux différences

u(k) + r u(k− 1) = yc(k)− s y(k− 1)

ce qui se met sous la forme de pseudo-code

r = -24/25; s = 4/25;

uk = -r*uk1 - yck - s*yk1;

uk1 = uk;

yk1 = yk;

Répartition des points

exercice points

1.1 5
1.2 5
1.3 2
1.4 1.5
1.5 1.5
2.1 10
2.2 5
3.1 2
3.2 5
3.3 3
3.4 3
3.5 2
4.1 8
4.2 5
4.3 2

Barème

La formule est fort simple, soit p la note n est donnée par la formule suivante, après arrondi au 1/4
de note.

n =
p

11
+ 1
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