
Examen Commande Numérique des Systèmes Dynamiques Eté 2021
Enseignant: Ph. Müllhaupt

Corrigé

total : 70 pts
1. 2. 3. 4. Tot.

Problème 1 — (15 pts)

Déterminer les séquences (suite d’échantillons) des expressions suivantes:

1. Soit la fonction de transfert

H(z) =
2z2 − 2.5z

z2 − 2.5z + 1
Déterminer sa réponse impulsionnelle.

2. Soit la fonction de transfert
H(z) =

0.5 z
z2 − z + 0.25

Déterminer la réponse indicielle.

Les conditions initiales sont considérées nulles.

Corrigé.

1. solution:

2z2 − 2.5z
z2 − 2.5z + 1

=
2z2 − 2.5z

(z− 2)
(

z− 1
2

)
= α

z
z− 2

+ β
z

z− 1
2

2z2 − 2.5z = αz
(

z− 1
2

)
+ βz(z− 2)

= (α + β)z2 −
(α

2
+ 2β

)
z

α + β = 2
α + 4β = 5

⇒ α = β = 1. Ce qui donne la transformée en Z inverse (réponse impulsionnelle)

{2k}+
{(

1
2

)k
}
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2. solution: La réponse indicielle est celle obtenue par transformation en Z inverse de la fonction
de transfert multipliée par z

z−1 . Comme on est en présence d’un pôle double, il faut mettre à la
fois le pôle simple et le pôle double dans la décomposition en éléments simples.(

z
z− 1

)
0.5z

z2 − z + 0.25
= α

z
z− 1

+ β
1
2 z

(z− 0.5)2 + γ
z

z− 0.5
α = 2
β = −1
γ = −2

ce qui donne après transformée en Z inverse

{2} −
{

k
(

1
2

)k
}
− 2

{(
1
2

)k
}

Problème 2 — (15 pts)

Déterminer la transformée en Z, X(z), des signaux suivants:

1. Soit {x(kh)} = {e−6kh cos(8kh)} avec la période d’échantillonnage h = 0.1 [s].

2. Soit {x(kh)} = {e−j2kh+10 + e+j2kh+10} avec la période d’échantillonnage h = 0.01 [s].

Corrigé

1.

e−6kh cos(8kh) ↔ z(z− e−6h cos(8h))
z2 − 2e−6kh cos(8h)z + e−12h

=
z2 − e−6×0.1 cos(8× 0.1)z

z2 − 2e−6×0.1 cos(8× 0.1)z + e−1.2

=
z2 − 0.38236 z

z2 − 0.76472 z + 0.301194

2.

Z(ej2kh+10 + ej2kh+10) = Z(e10(ej2kh + e−j2kh))

= e10 2 Z(cos(2kh))

= e10 2
z(z− cos(2h))

z2 − 2 cos(ωh)z + 1

= 44053
z2 − 0.9998

z2 − 1.9996z + 1
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Problème 3 — (20 pts)

Soit le système à régler discret de type 0

H(z) =
3
8
(z + 1)(z + 1

3 )

z(z + 1
2 )

qui est commandé avec une période d’échantillonnage de h = 0.1 [s].

1. L’erreur sur de traı̂née doit être e(∞) = 0.02. Introduire le bon type du régulateur.

2. Trouver un régulateur par retard de phase de telle sorte que la spécification du point précédent
soit satisfaite tout en garantissant une marge de phase de 30 degrés. Laisser 10 degrés pour le
retard de phase.

3. Ecrire l’équation aux différences pour implémenter le régulateur et donner le pseudo-code ou
un code matlab ou un code en C du régulateur (ou le langage de votre choix).

INDICATION: Trouver l’équivalent analogique H′(w) dont on a représenté les intégrateurs éventuels
du régulateur à la figure 1. Compléter en indiquant la légende des graphiques et les unités.

Corrigé

1. Constante d’erreur et type.
Il faut un type 1 pour garantir la spécification sur la traı̂née. En combinant l’intégrateur avec le

système à régler initial, on a comme fonction de tranfert

H1(z) =
3
8

(z + 1)
(

z + 1
3

)
z(z− 1)

(
z + 1

2

)
Le gain γ est alors donné par

γ = lim
z→1

(z− 1)H1(z) = lim
z→1

H(z) =
3
8

2
(

1 + 1
3

)
(

1 + 1
2

) =
3
8

2× 4/3
3/2

=
3× 2× 4× 2

3× 8× 3
=

2
3

Ce qui conduit à la constante de vitesse Kv donnée par l’expression

e(∞) = 0.02 =
h

Kv
=

0.1
Kv

Kv =
0.1
0.02

= 5

et comme γ = 2
3 cela donne Kv = γKp autrement dit 5 = 2

3 Kp Le gain manquant est donc de

Kp =
15
2
≡ 20 log10

15
2

= 17.5 [dB]

Il faut ainsi augmenter le gain de 17.5 [dB] par rapport à la boucle ouverte (en basse fréquence).
Ainsi en regardant à la pulsation ω = 0.1 [rad/s] sur le graphique, au lieu de 36.5 [dB], il faudrait

avoir 54 [dB].
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2. Design du retard de phase.
Il faut tenir compte de 10 degrés pour le retard de phase.

En examinant le graphique de phase, on sélectionne la pulsation de telle sorte à avoir la bonne
marge de phase (30 degrés) auquel on ajoute les 10 degrés pour le retard de phase. Il faut donc se
placer en 180-40 = 140 degrés. En examinant le graphique, on constate que La pulsation de croisement
est νx = 10 [rad/s] pour avoir la phase de 140 degrés.

Le module à la pulsation νx = 10 [rad/s] vaut -3.5 [dB] selon le graphique. Cependant, pour sat-
isfaire les spécification sur la traı̂née, il faut ajouter 17.5 [dB]. Ainsi le gain vaut, sans la compensation
de la phase, -3.5 + 17.5 = 14 [dB].

Le rôle de retard de phase est donc de réduire le gain de -14 [dB] entre 0 [rad/s] et 10 [rad/s].
Commençons par construire un retard de phase normalisé pour réduire de 14 [dB]. Il part à 0

[dB] et on doit déterminer la pulsation pour avoir -14 [dB] à cette pulsation. On calcule sans peine
x = 14

20 = 0.7 et donc ν = 100.7 = 5 [rad/s], ce qui donne la fonction de transfert normalisée

1
5

w + 5
w + 1

Faisons la mise à l’échelle pour n’avoir que 10 degrés de perte de phase à νx = 10 [rad/s]. Il s’agit
de déterminer le facteur β dans la formule

1
5

jν
β + 5
jν
β + 1

de telle sorte à avoir au maximum 10 degrés lorsque ν = νx = 10 [rad/s]. Un calcul des arguments
donne

Arg
(

jνx

β
+ 5
)
−Arg

(
jνx

β
+ 1
)

= 10

arctan
(

10
5 β

)
− arctan

(
10
β

)
= 10

On procède par tatons en effectuant un tableau

β A = arctan
(

10
5 β

)
B = arctan

(
10
β

)
A− B

0.4 78.7 87.7 -9
0.5 75.9 87.1 -11.2
2 45 78.7 -33.7
5 21.8 63 -41
10 11.3 45 -33.7
50 2.29 11.3 -9.019

β grand donne les pulsations petites, et β petit, les pulsations grandes.
On prend donc β = 0.5 ce qui donne la fonction de transfert

1
5

w
0.5 + 5
w

0.5 + 1
=

1
5

w + 5
2

w + 1
2
=

1
5

2w + 5
2w + 1

En transformant par la transformation bilinéaire inverse w = 20 z−1
z+1 (rappel h = 0.1 [s])

1
5

40 z−1
z+1 + 5

40 z−1
z+1 + 1

=
1
5

40z− 40 + 5z + 5
40z− 40 + z + 1

=
1
5

45z− 35
41z− 39

ce qui donne le régulateur en transformée en z, une fois l’intégrateur ajouté ainsi que le gain de 15/2

K(z) =
15
2

1
z− 1

1
5

45z− 35
41z− 39
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3. Codage du régulateur.
L’entrée du régulateur est l’erreur entre la consigne yc(k) et la sortie du système à régler y(k).

Désignons donc e(k) = yc(k)− y(k) et on a la sortie du régulateur égal à la grandeur de commande
u(k). Ainsi

K(z) =
U(z)
E(z)

=
3
2

1
z− 1

45z− 35
41z− 39

2(41z2 − 39z− 41z + 39)U(z) = 2(45z− 35)E(z)
82u(k)− 160u(k− 1) + 78u(k− 2) = 90e(k− 1)− 70e(k− 2)

u(k) =
1

82
(160u(k− 1)− 78u(k− 2) + 90e(k− 1)− 70e(k− 2))

Problème 4 — (20 pts)

Soit la fonction de transfert d’un système discret

H(z) =
B(z)
A(z)

(1)

avec A(z) = z2 + 3z + 2 et B(z) = z
(

z + 1
2

)
On désire un polynôme au dénominateur du système

en boucle fermée égal à

A0 Am = z
(

z +
1
3

)
avec A0 = z, le polynôme observateur

1. Montrer avec la division polynomiale (en divisant A par B) qu’un choix possible du polynôme
R du RST tel que AR + BS = A0 Am est

R = −5
3

z3 − 1
18

z2 +
1
6

z

Que vaut S dans ce cas?

2. Déterminer une solution minimale pour R et S en introduisant un polynôme Q convenable.

Corrigé.

1. Calcul du polynôme S et confirmation du calcul du polynôme R, par division polynomiale de
A par B.

Avec
A = z2 + 3z + 2 B = z2 +

1
2

z

la première division donne le dividende 1 de telle sorte que A = B + 5
2 z + 2. Continuons et

divisons B par le reste 5
2 z + 2:

z2 + 1
2 z 5

2 z + 2

−(z2 + 4
5 z) 2

5 z− 3
25

− 3
10 z

−(− 3
10 z − 6

25 )

6
25
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En reconstruisant, en utilisant la première division qui donne 5
2 z + 2 = A − B, on obtient les

identités (rappel B = z2 + 1
2 z ):

6
25

=

(
z2 +

1
2

z
)
−
(

5
2
+ 2
)(

2
5

z− 3
25

)
= B− (A− B)

(
2
5

z− 3
25

)
= B + B

(
2
5

z− 3
25

)
− A

(
2
5

z− 3
25

)
=

(
22
25

+
2
5

z
)

B− A
(

2
5
− 3

25

)
1 =

25
6

(
22
25

+
2
5

z
)

B− A
25
6

(
2
5
− 3

25

)
=

(
11
3

+
5
3

z
)

B + A
(
−5

3
z +

1
2

)
En multipliant la dernière identité par A0 Am = z2 + 1

3 z, on trouve la solution non minimale R et
S suivante:

A0 Am =

(
z2 +

1
3

z
)(

5
3

z +
11
3

)
B +

(
−5

3
z +

1
2

)(
z2 +

1
3

)
A

=

(
5
3

z3 +
11
3

z2 +
5
9

z2 +
11
9

z
)

B +

(
−5

3
z3 − 5

9
z +

1
2

z2 +
1
6

z
)

A

=

(
5
3

z3 +
38
9

z2 +
11
9

z
)

B +

(
−5

3
z3 − 1

18
z2 +

1
6

z
)

A

S =
5
3

z3 +
38
9

z2 +
11
9

z

R = −5
3

z3 − 1
18

z2 +
1
6

z

2. Solution minimale, R1 et S1.
On introduit le polynôme Q qui paramétrise toutes les solutions et en particulier la minimale qui

s’exprime à partir de celle obtenue au point 1.

S1 = S−Q A
R1 = R + Q B

Pour obtenir Q, c’est le dividende du quotient de S par A:

+ 5
3 z3 + 38

9 z2 + 11
9 z z2 + 3z + 2

− 5
3 z3 −5z2 − 10

3 z + 5
3 z− 7

9

− 7
9 z2 − 19

9 z

+ 7
9 z2 + 7

3 z + 14
9

2
9 z + 14

9

Ainsi Q = 5
3 z− 7

9 et

S1 =
2
9

z +
14
9
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Pour obtenir R1 on utilise Q et B

R1 = R + Q B = −2
9

z

R1 et S1 donnent la solution minimale. Une vérification s’impose

AR1 + BS1 = (z2 + 3z + 2)
(
−2

9
z
)
+

(
z2 +

1
2

z
)(

2
9

z +
14
9

)
= −2

9
z3 − 2

3
z2 − 4

9
z +

2
9

z3 +
1
9

z2 +
14
9

z2 +
7
9

z

=

(
−2

3
+

15
9

)
z2 +

(
−4

9
+

7
9

)
z

=
−6 + 15

9
z2 +

3
9

z

= z2 +
1
3

z = A0 Am
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Linéarité

Z({w1(kh)}+ {w2(kh)}) = Z({w1(kh)}) +Z({w2(kh)})
Z(a{w(kh)}) = aZ(w(kh)) a ∈ C

Décalages temporels

Z(w(kh− dh)) = z−dW(z) d ∈N

Z(w(kh + dh)) = zdW(z)−∑d−1
i=0 zd−i d ∈N

Dérivation complexe

Z(kh w(kh)) = −hz dW
dz (z)

Changement d’échelle complexe

Z(akhw(kh)) = W
(

z
ah

)
a ∈ C a 6= 0

Valeurs initiale et finale

w(0) = limz→∞ W(z)
limk→∞ w(kh) = limz→1(z− 1)W(z) |zi| < 1

Produit de convolution

Z
(

∑k
l=0 u(lh)g(kh− lh)

)
= G(z)U(z)

Accumulation

Z
(

∑k
l=0 w(lh)

)
= z

z−1 W(z)

Différence

Z(w(kh)− w(kh− h)) = z−1
z W(z)

Table 1: Tableau de la grammaire de la transformée en Z
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No w(t) L(w(t)) w(kh) Z(w(kh))

1 δ(t) 1

2 ∆(kh) 1

3 1 1
s 1 z

z−1

4 t 1
s2 kh hz

(z−1)2

5 1
2 t2 1

s3
1
2 (kh)2 h2z(z+1)

2(z−1)3

6 1
(l−1)! t

l−1 1
sl

1
(l−1)! (kh)l−1 lima→0

(−1)l−1

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

7 e−at 1
s+a e−akh z

z−e−ah

8 t e−at 1
(s+a)2 kh e−akh he−ahz

(z−e−ah)2

9 1
2 t2 e−at 1

(s+a)3
1
2 (kh)2e−akh h2e−ahz(z−e−ah+2e−ah)

2(z−e−ah)3

10 1
(l−1)! t

l−1e−at 1
(s+a)l

1
(l−1)! (kh)l−1e−akh (−1)(l−1)!

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

11 sin(ωt) ω
s2+ω2 sin(ωkh) sin(ωh)z

z2−2 cos(ωh)z+1

12 cos(ωh) s
s2+ω2 cos(ωkh) z(z−cos(ωh))

z2−2 cos(ωh)z+1

13 e−at sin(ωt) ω
(s+a)2+ω2 e−akh sin(ωkh) e−ah sin(ωh)z

z2−2e−ah cos(ωh)z+e−2ah

Table 2: Tableau des transformées en Z et de Laplace
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14 e−at cos(ωt) s+a
(s+a)2+ω2 e−akh cos(ωkh) z(z−e−ah cos(ωh))

z2−2e−ah cos(ωh)z+e−2ah

15 ak z
z−a

16 k ak−1 z
(z−a)2

17 1
2 k (k− 1) ak−2 z

(z−a)3

18 1
(l−1)!

(
∏l−2

i=0(k− i)
)
(ak−l+1) z

(z−a)l

Table 3: Tableau des transformées en Z et de Laplace

 a 0 b
c b 1
1 1 0

−1

=
1

−a− b2 + bc

 −1 b −b2

1 −b bc− a
c− b −a ab


 1 1 0

a b 1
c d e

−1

=
1

be− ae + c− d

 be− d −e 1
c− ae e −1

ad− bc c− d b− a


Table 4: Inverses de matrices particulières
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Figure 1: Reprśentation du diagramme de Bode en module et en phase de l’équivalent de Tustin du
système à régler avec l’ajout éventuel d’intégrateurs pour avoir le bon type pour assurer une traı̂née
selon la spécification du problème. Comme demandé, on a jouté les légendes aux graphiques.
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