
Examen Commande Numérique des Systèmes Dynamiques Eté 2020
Enseignant: Ph. Müllhaupt

Corrigé

total : 70 pts
1. 2. 3. 4. Tot.

Problème 1 — (15 pts)

Déterminer les séquences (suite d’échantillons) des expressions suivantes:
(Find the samples associated with the following expressions:)

1. Soit la fonction de transfert

H(z) =
z2 − 0.45z

z2 − 0.9z + 0.81
Déterminer sa réponse impulsionnelle. (Given the transfer function, find the impulse response).

2. Soit la fonction de transfert
H(z) =

z
z2 − 0.6z + 0.08

Déterminer sa réponse indicielle. (Given the transfer function, find the step response.)

Les conditions initiales sont considérées nulles. (All initial conditions are assumed to be zero.)

1. L’expression est de la forme

z2 − e−ah cos(ωh)z
z2 − 2e−ah cos(ωh) z + e−2ah ↔ e−akh cos(ω k h)

avec
z2 − 0.9 · 0.5 · z

z2 − 2 · 0.9 · 0.5 + (0.9)2 =
z2 − 0.45z

z2 − 0.9z + 0.81

ce qui donne cos(ω h) = 0.5 et donc ωh = π
3 . D’autre part, e−ah = 0.9, ainsi{

0.9k cos
(π

3
k
)}

=
{

0.9k cos(1.047197551× k)
}

2. Il faut calculer les racines du polynôme du dénominateur (les pôles). On a

z2 − 0.6z + 0.08 = (z− 0.2) (z− 0.4)

et donc les pôles z = 0.2 et z = 0.4. Cela conduit aux éléments simples z
z−0.2 et z

z−0.4 . La
réponse indicielle est la réponse à un saut indicielle. Il faut donc déterminer la transformée en
Z inverse de

z
z− 1

z
z2 − 0.6z + 0.08

= α
z

z− 0.2
+ β

z
z− 0.4

+ γ
z

z− 1

α =
z− 0.2

z
z

(z− 0.2)(z− 0.4)
z

z− 1

∣∣∣∣
z→0.2
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=
z

(z− 0.4)(z− 1)

∣∣∣∣
z=0.2

=
0.2

(0.2− 0.4)(0.2− 1)
= 1.25 =

5
4

β =
z

(z− 0.2)(z− 1)

∣∣∣∣
z=0.4

=
0.4

(0.4− 0.2)(0.4− 1)
= −3.3333 = −10

3

γ =
z

(z− 0.2)(z− 0.4)

∣∣∣∣
z=1

=
1

(1− 0.2)(1− 0.4)
= 2.08333 =

25
12

Ce qui donne
25
12

z
z− 1

− 10
3

z
z− 0.4

+
5
4

z
z− 0.2

et donc après transformation en Z inverse

25
12
{1} − 10

3

{(
2
5

)k
}
+

5
4

{(
1
5

)k
}

et numériquement
2.083333 {1} − 3.33333 {0.4k}+ 1.25{0.2k}

Problème 2 — (15 pts)

Déterminer la transformée en Z des signaux suivants: (Find the Z transform of the following expressions:)

1. Soit {x(kh)} = {e−3kh sin(8kh + 5)} avec la période d’échantillonnage (sampling time) h = 0.1
[s].

2. Soit {x(kh)} = {kh e−8kh + e−8kh} avec la période d’échantillonnage (sampling time) h = 0.01
[s].

Corrigé

1. On peut utiliser la formule pour sin(a + b) = sin(a) cos(b) + cos(a) sin(b) et donc on cherche
la tranformée en Z de

e−3kh sin(8kh + 5) = e−3kh [sin(8kh) cos(5) + cos(8kh) sin(5)]

ce qui donne en se référant aux entrées 13 et 14 du formulaire

cos(5)e−3h sin(8h) z + sin(5) z (z− e−3h cos(8h))
z2 − 2e−3h cos(8h) + e−6h

=
sin(5) z2 +

(
cos(5)e−3h sin(8h)− sin(5)e−3h cos(8h)

)
z

z2 − 2e−3h cos(8h)z + e−6h (1)

Avec h = 0.1, cela donne numériquement (attention à ce que la calculatrice soit en mode radians):

−0.9589243 z2 + 0.6456792 z
z2 − 1.032266 z + 0.5488116

Une autre méthode est celle par le calcul complexe en remarquant

sin(8kh + 5) =
ej(8kh+5) − e−j(8kh+5)

2j

et ainsi on a

e−3k5 sin(8kh + 5) = −1
2

ej5 j e(−3+8j)kh +
1
2

e−j5 j e(−3−8j)kh
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en en utilisant la transformée en Z pour a ∈ C

e−akh ↔ z
z− e−ah

cela conduit à successivement

Z
(

e−3kh sin(8kh + 5)
)

= −1
2

ej5 j
z

z− e(−3+8j)h
+

1
2

e−j5 j
z

z− e−(+3−8j)h

=
− 1

2 ej5 j z
(

z− e−(3+8j)h
)
+ 1

2 e−j5 j z
(

z− e(−3+8j)h
)

z2 −
(
e(−3+8j)h + e−(3+8j)h

)
z + e−6h

=
1
2 j e−(3+8j)hz− 1

2 e−j5 j e(−3+8j)hz + 1
2 jz + 1

2 e−j5z

z2 − 2e−3h ej8h+ej8h

2 + e−6h

=

ej5−e−j5

2j z2 + e−3h
(

ej5e−j8h j− e−j5ej8h j
)

z

z2 − 2e−3h cos(8h) + e−6h (2)

On remarque d’une part (ej5 − e−j5)/(2j) = sin(5) et d’autre part que

1
2

(
ej5e−j8h j− e−j5ej8h j

)
= −2ej5e−j8h

4j
+

2e−j5ej8h

4j
(3)

=

(
ej5 + ej5

2

)(
ej8h − ej8h

2j

)
−
(

ej5 − e−j5

2j

)(
ej8h + e−j8h

2

)
(4)

= cos(5) sin(8h)− sin(5) cos(8h)

En effet, avec a = ej5, b = e−j5, c = ej8h et d = e−j8h, on vérifie sans peine que

−2ad + 2bc = (a + b)(c− d)− (a− b)(c + d) = ac− ad + bc− bd− ac− ad + bc + bd = −2ad + 2bc

ce qui confirme que (3) est identique à (4) et donc que (2) correspond bien à (1). En fait, cette deuxième
méthode démontre en quelque sorte la validité du formulaire, car elle n’utilise que la progression
géométrique simple avec une raison complexe. Elle n’utilise pas le formulaire.

2.

Z
(

kh e−8kh + e−8kh
)

=
he−8hz

(z− e−8h)2 +
z

z− e−8h

=
h e−8h z + z (z− e−8h)

(z− e−8h)2

=
z2 + (h− 1)e−8hz

z2 − 2e−8hz + e−16h

=
z2 − 0.99 e−0.08z

z2 − 2e−0.08z + e−0.16 =
z2 − 0.99 e−0.08z
(z− e−0.08)2

=
z2 − 0.9138852 z

z2 − 1.8462327 z + 0.8521438
=

z2 − 0.9138852 z
(z− 0.9231163)2

Problème 3 — (20 pts)

On considére la commande en boucle fermée d’un entraı̂nement électrique en position dont la fonc-
tion de transfert analogique est

(We consider a DC drive in closed loop where the position is controlled. It has the following analog transfer
function)

G(s) =
4

s(s + 1)
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1. Discrétiser le système analogique avec une période d’échantillonnage de h = 0.1 [s] à l’aide
du maintien d’ordre zéro et donner sa fonction de transfert discrète H(z). (Discretize the analog
transfer function with a sampling time of h = 0.1 [s] using a zero-order hold. Give the discrete-time
transfer function H(z).)

2. Calculer l’équivalent analogique (par la méthode de Tustin) H′(w) du système discret H(z).
(Compute the analog equivalent, using Tustin’s method, H′(w) of the discrete-time system H(z)).

3. Déterminer à l’aide de la méthode fréquentielle (en utilisant l’équivalent de Tustin H′(w)) un
régulateur proportionnel qui donne une pulsation de croisement νx = 0.03 [rad/s]. (Find using
the frequency method – using the Tustin equivalent H′(w) – a proportional controller ensuring a cross-
over frequency of νx = 0.03 [rad/s].)

4. Améliorer le résultat en utilisant un retard de phase de telle sorte que νx = 0.22 [rad/s] sans
affecter le comportement basse fréquence en boucle ouverte et en assurant une marge de phase
de 65 degrés environ. Tenir compte de 10 degrés supplémentaire pour le retard de phase du
régulateur.

(Improve the result by applying a phase-lag controller in such a way that νx = 0.22 [rad/s] without
affecting the low-frequency behavior in open loop while guaranteeing a phase margin of roughly 65
degrees. Take into account an extra 10 degrees for the phase lag compensator.)

Indication: On a représenté en figure 1 les diagrammes de Bode de la fonction de transfert en
boucle ouverte G(s) ainsi que celle obtenue au point 3, H′(w). On a également représenté,
sans les légendes et sans les valeurs numériques, l’équivalent analogique du régulateur K′(w)
demandé à la figure 2.

(Hint: In Figure 1, the Bode plots of the open-loop transfer function G(s) are given together with the ones
obtained at point 3, H′(w). There are also the plots of the required analog equivalent of the controller
K′(w) in figure 2, without any indication either on the axes or on the numerical values.)

5. Déterminer l’équation aux différences qui réalise le régulateur obtenu au point précédent.
Utiliser la transformation bilinéaire de Tustin. (Find the discrete-time equations that realize the
controller obtained at the previous step. In that respect, use the bilinear transform of Tustin.)

Corrigé

1. Discrétisation par la méthode d’ordre zéro:

z− 1
z
Z
[
L−1

(
G(s)

s

)]
=

z− 1
z
Z
[
L−1

(
4

s2(s + 1)

)]
=

z− 1
z
Z
[
L−1

(
4
s2 −

4
s
+

4
s + 1

)]
=

z− 1
z

(
4hz

(z− 1)2 − 4
z

z− 1
+ 4

z
z− e−h

)
=

4h
z− 1

− 4 +
4(z− 1)
z− e−h

=
4h(z− e−h)− 4(z2 − (1 + e−h)z + e−h) + 4(z2 − 2z + 1)

z2 − (1 + e−h)z + e−h

=
(4h + 4(1 + e−h)− 8)z− 4he−h − 4e−h + 4

z2 − (1 + e−h)z + e−h

=
0.019349672 z + 0.018715361

z2 − 1.904837418 z + 0.904837418

2. Equivalent H′(w):
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z = esh =
es h

2

e−s h
2
≈

1 + sh
2

1− sh
2

z =
2 + wh
2− wh

En posant la fonction de transfert comme az+b
z2+cz+d , on a

az + d
z2 + cz + d

=
a
(

2+wh
2−wh

)
+ b(

2+wh
2−wh

)2
+ c

(
2+wh
2−wh

)
+ w

=
a(2 + wh)(2− wh) + b(2− wh)2

(2 + wh)2 + c(2 + wh)(2− wh) + d(2− wh)2

=
a(4− w2h2) + b(4− 4wh + w2h2)

4 + 4wh + w2h2 + c(4− w2h2) + d(4− 4wh + w2h2)

=
(b− a)h2w2 − 4hbw + 4(a + 2)

(1− c + d)h2w2 + 4(1− d)hw + 4(1 + c + d)

En rendant monique

b−a
1−c+d w2 − 4b

(1−c+d)h w + 4(a+b)
(1−c+d)h2

w2 + 4(1−d)h
(1−c+d)h2 w + 4(1+c+d)

(1−c+d)h2

On a
1 + c + d = 0

et
1− c + d = 3.809674836

et on obtient numériquement successivement

b− a
1− c + d

= −0.000166500

− 4b
(1− c + d)h

= −0.19650350

4(a + b)
(1− c + d)h2 = 3.996670019

4(1− d)h
(1− c + d)h2 = 0.999167500

ce qui conduit finalement au résultat

H
′
(w) =

−0.0001665 w2 − 0.1965035 w + 3.99667
w2 + 0.9991675 w

3. Régulateur proportionnel (gain) pour atteindre νx = 0.03 [rad/s]:

Il faut atteindre un gain de 1 (c.-à-d. 0 [dB]) pour la pulsation νx = 0.03 [rad/s]. On se concentre
ainsi que sur le module dans le diagramme de bode et on translate la courbe verticalment afin que
celle-ci croise 0 [dB] à la pulsation νx = 0.03 [rad/s]. En examinant la figure on remarque qu’il faut
un gain d’approximativement -42 [dB], autrement dit

Kp = 10−42/20 = 0.007943282

On obtient cette valeur en constatant que la distance en [cm] entre 0.001 (dont le log vaut -3) et 10
(dont le log vaut 1) sur les abscisses vaut 8.6 [cm]. La distance logarithmique entre 1 et 0.001 est donc
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de 4. Le facteur en centimètres vaut donc 8.6/4 [cm/log]. En calculant log(0.03) = −1.52 la distance
logarithmique entre −3 et −1.52 vaut 1.48. On reporte donc la distance

8.6
4
× 1.48 = 3.18[cm]

à partir de l’abscisse en 0.001 et on trouve la position de νx = 0.03. En remontant à la verticale on
détermine la valeur du module qui vaut approximativement 42 [dB]. Confirmons le gain Kp par le
calcul. Calculons H′(j0.03):

H
′
(j0.03) =

0.0001665× (0.03)2 − 0.1965035 j 0.03 + 3.99667
−0.032 + 0.9991675× 0.03 j

|H′(j0.03)| =

√
(0.1965035× 0.03)2 + (3.99667 + 0.000165× (0.03)2)2√

(0.9991675× 0.03)2 + 0.034
=

3.996674496
0.029988533

= 133.2734238

Le régulateur proportionnel est donc l’inverse de cette valeur

Kp =
1

133.2734238
≈ 0.0075

Graphiquement, on constate également que la fonction de transfert analogique est confondue avec
H′(jν) pour ν autour de νx = 0.03. On peut donc simplifier un peu les calculs:

|G(j0.03)| ≈ |H′(j0.03)| =
∣∣∣∣ 4

j× 0.03× (j× 0.03 + 1)

∣∣∣∣ = 4√
(0.03)4 + (0.03)2)

= 133.27233738

Le gain vaut

Kp =
1

133.27233738
≈ 0.0075

ainsi sur le graphique c’est plus proche de 42.5 [dB] que de 42 [dB].

4. Design du retard de phase:
Ce dernier a pour expression

K
′
(w) =

w + λ b
λ (w + b)

avec b qui détermine la pulsation et λ le rapport entre le gain basse fréquence et haute fréquence.
On commence par examiner le gain manquant (sur la figure par exemple) à νx = 0.22. On voit que
|K′(j 0.22)| ≈ 25 [dB]. Ainsi on détermine λ pour avoir −25 [dB]. On pose pour commencer b = 1 (le
cas normalisé) et on détermine λ. L’expression

jν + λ

λ(jν + 1)

a deux valeurs asymptotiques, une en ν = 0 qui prend la valeur 1 et une autre en ν→ +∞ qui prend
la valeur 1

λ et donc atténue d’un facteur λ. Ainsi

20 log
(

1
λ

)
= −25 = −20 log(λ)

λ = 10
25
20 = 17.78

On cherche alors la pulsation pour laquelle le réseau normalisé déphase de - 10 degrés. Ceci se
produit pour ν = 100 [rad/s]. En effet (calculatrice en mode degrés)

arg
(

j100 + 17.78
17.78(j100 + 1)

)
= arg(j100 + 17.78)− arg(j100 + 1) =

arctan
(

100
17.78

)
− 90 = −10.08183221[deg]

Il reste à adapter le cas normalisé au cas demandé. Il s’agit d’utiliser le facteur b pour translater la
pulsation obtenue de 100 [rad/s] vers 0.22 [rad/s]. Ainsi

b =
0.22
100

= 0.0022
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ce qui donne le régulateur par retard de phase demandé

K
′
(w) =

w + λ b
λ (w + b)

=
w + 17.78× 0.0022

17.78× (w + 0.0022)

=
w + 0.039116

17.78× w + 0.039116

5. Réalisation du retard de phase par une équation aux différences:
Il faut effectuer la transformation bilinéaire inverse, autrement dit poser

w =
2
h

z− 1
z + 1

= 20
z− 1
z + 1

dans l’expression du régulateur K
′
(w) pour obtenir

K(z) =
20 z−1

z+1 + 0.039116

20× 17.78× z−1
z+1 + 0.039116

=
20× (z− 1) + 0.039116× (z + 1)

355.6× (z− 1) + 0.039116× (z− 1)

=
20.039116× z− 19.960884

355.639116× z− 355.560884

=
20.039116

355.639116 × z− 19.960884
355.639116

z− 355.560884
355.639116

=
0.056346771× z− 0.056126796

z− 0.999780024

REMARQUE: Dans tous ces calculs, il est important d’utiliser toute la précision de la calculatrice.
C’est une particularité des systèmes discrets d’être très sensible aux erreurs d’arrondi. On ne peut
pas utiliser les règles de l’ingénieur des chiffres significatifs dans le domaine des z. C’est ok pour
les grandeurs analogiques en s et en w toutefois. Lors de la conversion, il faut utiliser pleinement
les capacités numériques de la calculatrice. Un petit truc est de vérifier la correspondance des pôles
après calcul. On doit toujours avoir quelque chose de proche de zp = esph avec zp le pôle discret
et sp le pôle analogique. Bien que nous n’ayons pas utiliser la fonction exponentielle dans le calcul
(que son approximation par la transformation bilinéaire) vérifions la correspondance avec le pôle
analogique sp ≈ wp = −17.78/0.039116 = −0.0022 et le pôle discret correspondant

zp = esph = e−0.0022×0.1 = 0.999780024

ce qui confirme que les calculs sont corrects en ce qui concerne le pôle.
Sachant que K(z) = U(z)

E(z) avec u(k) la sortie du régulateur qui est la grandeur de commande du
système et e(k) = yc(k)− y(k) qui est l’erreur entre la consigne et la grandeur mesurée, on arrive à
l’équation aux différences

u(k) = 0.999780024× u(k− 1) + 0.056346771× e(k)− 0.056126796× e(k− 1)

Problème 4 — (20 pts)

Soit la fonction de transfert d’un système discret

H(z) =
B(z)
A(z)

(5)

avec A(z) = z2 + 0.9z + 0.81 et B(z) = z− 0.5
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1. Est-ce que le système est BIBO stable (is the system BIBO stable) ?

2. Calculer un régulateur RST qui réalise un comportement en boucle fermée donnée par le modèle
à poursuivre suivant: (Compute a RST controller that achieves a closed-loop behavior by matching the
following model:)

Hm(z) =
Bm(z)
Am(z)

=
z2 − 0.7z + 0.01
z2 − 1.2z + 0.36

(6)

Utiliser, si besoin est, le lemme d’inversion matriciel donné dans le formulaire. (If need be, use the
inversion formula given in the table below.) Prendre comme polynôme observateur A0 = z− 0.5.
(Choose A0 = z− 0.5 as observer polynomial.)

3. Calculer la réponse impulsionnelle en boucle fermée (d’asservissement) du système obtenu.
(Compute the tracking impulse response in closed-loop of the resulting system.)

Corrigé

1. Les deux pôles de la fonction de tranfert sont à l’intérieur du cercle unité car z2 + 0.9z + 0.81 =
(z + 0.9)2 et comme | − 0.9| = 0.9 < 1, le système est BIBO stable.

2. Il faut déterminer R,S et T de telle sorte que

BT
AR + BS

=
Bm A0

Am A0

Il faut résoudre le l’équation de Diohante AR + BS = Am A0 avec

A = z2 + 0.9 z + 0.81
B = z− 0.5

Am = z2 − 1.2z + 0.36
A0 = z− 0.5

De là, on déduit
C = Am A0 = z3 − 1.7z2 + 0.96 z− 0.18

Résolution matricielle par l’inversion de la matrice de Sylvester modifiée: On utilise le lemme
d’inversion matriciel (le deuxième) avec a = 0.9, b = −0.5, c = 0.81, d = 0, e = −0.5 r1

s0
s1

 =

 1 1 0
0.9 −0.5 1

0.81 0 −0.5

−1 −1.7
0.96
−0.18

−
 0.9

0.81
0

 =

=
1

0.52 + 0.9× 0.5 + 0.81

 0.52 0.5 1
0.81 + 0.45 −0.5 −1

0.405 0.81 −1.4

 −2.6
0.15
−0.18


=

1
1.51

 0.25 0.5 1
1.26 −0.5 −1

0.405 0.81 −1.4

 −2.6
0.15
−0.18


=

 1
1.51 (0.25× (−2.6) + 0.5× 0.15− 0.18)

1
1.51 (1.26× (−2.6)− 0.5× 0.15 + 0.18)

1
1.51 (0.405× (−2.6) + 0.81× 0.15 + 1.4× 0.18)

 =

 −0.5
−2.1
−0.45


Ainsi on trouve

R = z− 0.5
S = −2.1z− 0.45
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Pour obtenir T, il faut que BT = Bm A0 = z3 − 1.2z2 + 0.36z − 0.005. Il faut donc faire une
division polynomiale de Bm A0 par B

+z3 − 1.2z2 + 0.36z− 0.06 z− 0.5
z2 − 0.7z + 0.01

ce qui donne
T = z2 − 0.7z + 0.01

et on vérifie que

BT = (z− 0.5)(z2 − 0.7z + 0.01) = z3 − 1.2z2 + 0.36z− 0.005 = Bm A0

3. La réponse impulsionnelle en boucle fermée d’asservissement:
C’est la transformée en Z inverse de Hm(z).

Hm(z) =
z2 − 0.7z + 0.01

(z− 0.6)2 = c0 + c1
z

z− 0.6
+ c2

0.6 z
(z− 0.6)2 (7)

En réduisant au dénominateur commun

c0(z2 − 1.2z + 0.36) + c1z(z− 0.6) + c20.6z = c0z2 − 1.2c0z + 0.36c0 + c1z2 − 0.6z + c20.6z
= (c0 + c1)z2 + (−1, 2c0 − 0.6c1 + c20.6)z + 0.36c0

= z2 − 0.7z + 0.01

ce qui conduit en identifiant les coefficients devant les puissances de z

c0 =
0.01
0.36

= 0.027̄

c1 = 1 + c0 = 0.972̄

c2 =
−0.7 + 1.2× 0.027̄ + 0.6× 0.972̄

0.6
= −0.083̄

0.6
= −0.138̄

et en prenant la transformée en Z , on obtient le résultat demandé

0.027̄ {∆(k)}+ 0.972̄ {0.6k} − 0.138̄ {k 0.6k}
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Linéarité

Z({w1(kh)}+ {w2(kh)}) = Z({w1(kh)}) +Z({w2(kh)})
Z(a{w(kh)}) = aZ(w(kh)) a ∈ C

Décalages temporels

Z(w(kh− dh)) = z−dW(z) d ∈N

Z(w(kh + dh)) = zdW(z)−∑d−1
i=0 zd−i d ∈N

Dérivation complexe

Z(kh w(kh)) = −hz dW
dz (z)

Changement d’échelle complexe

Z(akhw(kh)) = W
(

z
ah

)
a ∈ C a 6= 0

Valeurs initiale et finale

w(0) = limz→∞ W(z)
limk→∞ w(kh) = limz→1(z− 1)W(z) |zi| < 1

Produit de convolution

Z
(

∑k
l=0 u(lh)g(kh− lh)

)
= G(z)U(z)

Accumulation

Z
(

∑k
l=0 w(lh)

)
= z

z−1 W(z)

Différence

Z(w(kh)− w(kh− h)) = z−1
z W(z)

Table 1: Tableau de la grammaire de la transformée en Z
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No w(t) L(w(t)) w(kh) Z(w(kh))

1 δ(t) 1

2 ∆(kh) 1

3 1 1
s 1 z

z−1

4 t 1
s2 kh hz

(z−1)2

5 1
2 t2 1

s3
1
2 (kh)2 h2z(z+1)

2(z−1)3

6 1
(l−1)! t

l−1 1
sl

1
(l−1)! (kh)l−1 lima→0

(−1)l−1

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

7 e−at 1
s+a e−akh z

z−e−ah

8 t e−at 1
(s+a)2 kh e−akh he−ahz

(z−e−ah)2

9 1
2 t2 e−at 1

(s+a)3
1
2 (kh)2e−akh h2e−ahz(z−e−ah+2e−ah)

2(z−e−ah)3

10 1
(l−1)! t

l−1e−at 1
(s+a)l

1
(l−1)! (kh)l−1e−akh (−1)(l−1)!

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

11 sin(ωt) ω
s2+ω2 sin(ωkh) sin(ωh)z

z2−2 cos(ωh)z+1

12 cos(ωh) s
s2+ω2 cos(ωkh) z(z−cos(ωh))

z2−2 cos(ωh)z+1

13 e−at sin(ωt) ω
(s+a)2+ω2 e−akh sin(ωkh) e−ah sin(ωh)z

z2−2e−ah cos(ωh)z+e−2ah

Table 2: Tableau des transformées en Z et de Laplace
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14 e−at cos(ωt) s+a
(s+a)2+ω2 e−akh cos(ωkh) z(z−e−ah cos(ωh))

z2−2e−ah cos(ωh)z+e−2ah

15 ak z
z−a

16 k ak−1 z
(z−a)2

17 1
2 k (k− 1) ak−2 z

(z−a)3

18 1
(l−1)!

(
∏l−2

i=0(k− i)
)
(ak−l+1) z

(z−a)l

Table 3: Tableau des transformées en Z et de Laplace

 a 0 b
c b 1
1 1 0

−1

=
1

−a− b2 + bc

 −1 b −b2

1 −b bc− a
c− b −a ab


 1 1 0

a b 1
c d e

−1

=
1

be− ae + c− d

 be− d −e 1
c− ae e −1

ad− bc c− d b− a


Table 4: Inverses de matrices particulières
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Figure 1: Diagrammes de bode en amplitude et en phase de la fonction de transfert analogique G(s)
et de l’équivalent analogique du système discret H′(w). L’axe horizontal donne les pulsations en
[rad/s], ω pour G(s) et ν pour H′(w). Les angles (associés à la phase) sont en [rad] et l’amplitude en
[dB]. (Bode diagrams – magnitude and phase – of the analog transfer function G(s) together with the analog
equivalent of the disrete-time system H′(w). The horizontal axis indicates the frequency in [rad/s]—ω for
G(s) and ν for H′(w). The angles, associated with the phase, are given in [rad] and the magnitude in [dB].)
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Figure 2: Equivalent analogique K’(w) du régulateur demandé dans le problème 3. En haut
l’amplitude et an bas la phase. Il n’y a pas d’échelle et pas de valeurs numériques. (Analog equivalent
of the controller K′(w) in problem 3. Top is the magnitude, and below, the phase. There are no scales and no
numerical values.)
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