Examen Commande Numérique des Systemes Dynamiques Eté 2020

Enseignant: Ph. Miillhaupt

Corrigé

1.1 2. ]3. | 4. | Tot.

total : 70 pts

Probléme 1 — (15 pts)

Déterminer les séquences (suite d’échantillons) des expressions suivantes:
(Find the samples associated with the following expressions:)

1. Soit la fonction de transfert )
z¢ —0.45z
H e T ———
(2) = 2692 1081

Déterminer sa réponse impulsionnelle. (Given the transfer function, find the impulse response).

2. Soit la fonction de transfert
= (0 L —
z2 — 0.6z +0.08

Déterminer sa réponse indicielle. (Given the transfer function, find the step response.)

Les conditions initiales sont considérées nulles. (All initial conditions are assumed to be zero.)

1. L’expression est de la forme

22 — e~ cos(wh)z

z2 — 2e~ " cos(wh) z + e—2ah

e~ cos(wkh)

avec

z22-09:05-z  z2-045z
2220905+ (09)2  z2—09z+0.81
ce qui donne cos(w ) = 0.5 et donc wh = Z. D’autre part, e~ = 0.9, ainsi

{09 cos (g k) } = {09 cos(1.047197551 x k) |

2. Il faut calculer les racines du polynéme du dénominateur (les pdles). On a
72 —0.62+0.08 = (z—0.2) (z—0.4)

et donc les poles z = 0.2 et z = 0.4. Cela conduit aux éléments simples 5 et =—=53. La
réponse indicielle est la réponse a un saut indicielle. Il faut donc déterminer la transformée en
Z inverse de
z z z z z
120621008  “z-02 PzooatTz-1
z—02 b4 Z
z (z—02)(z—04)z-1

14 =
z—0.2



- = _ 0.2 P
- (z-04)(z-1)|,g, (02-04)(02-1) 7 4
z 0.4 10
- 1 25
v (z—02)(z—04)|,_;, (1-02)(1—-04) 208333 = 15

Ce qui donne
25 z 10 =z 5 z

2z-1 3z-04 4z-02
et donc apres transformation en Z inverse

L3 {@k} . {G)k}

2.083333 {1} — 3.33333 {0.4%} + 1.25{0.2%}

et numériquement

Probléme 2 — (15 pts)

Déterminer la transformée en Z des signaux suivants: (Find the Z transform of the following expressions:)

1. Soit {x(kh)} = {e~3" sin(8kh + 5)} avec la période d’échantillonnage (sampling time) h = 0.1
[s].

2. Soit {x(kh)} = {khe 8" 4 ¢85} avec la période d’échantillonnage (sampling time) h = 0.01
[s].

Corrigé

1. On peut utiliser la formule pour sin(a + b) = sin(a) cos(b) + cos(a) sin(b) et donc on cherche
la tranformée en Z de

e~ sin (8Kl + 5) = e~ [sin(8kh) cos(5) 4 cos(8kh) sin(5)]
ce qui donne en se référant aux entrées 13 et 14 du formulaire
cos(5)e 3" sin(8h) z + sin(5) z (z — e 3" cos(8h))
22 — 2e=3" cos(8h) + eO!
B sin(5) z2 + (cos(5)6*3h sin(8h) — sin(5)e 3" cos(8h)) z "

z2 — 2e=3 cos(8h)z + e oh

Avec h = 0.1, cela donne numériquement (attention a ce que la calculatrice soit en mode radians):

—0.9589243 22 + 0.6456792 z
z2 — 1.032266 z + 0.5488116

Une autre méthode est celle par le calcul complexe en remarquant
o (8KR+5) _ ,—j(8kh-+5)

sin(8kh +5) = 5

et ainsi on a

e~ 5 gin(8kh 4 5) = _%ej5j6(73+8j)kh n %efj5j6(7378j)kh
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en en utilisant la transformée en Z poura € C
L PN z
z—eh
cela conduit a successivement
1. 1 _;
z (e—3kh sin(8kh +5)) 5e jz—e(%gf)h a Z_ﬁ%w
— Lo jz (Z _ 67(3+8j)h) +1e iz (z _ e(*3+8]')h)

22 — (e(-3+8)h 1 ¢~ (B8N 7 4 ¢~6h

I
|
|

o

1je=(+80hy — Lo=5 jo(-3+8))z 4 Liz 4 1o=/5;

81y pj8h
22 _Dp—3he -z%ef 46k

5_,—j5 ; Q. i5 g .
el —ng 5,2 4 p=3h <e]5f]8h] _ o 15ef8h ]) .

- 22 —2e=3 cos(8h) + e~ 0h @)
On remarque d’une part (¢ — e /) /(2j) = sin(5) et d’autre part que
1/ = = 2e5e= 18 Dp=j5ei8h
— (efPe I8 i _ pmI5ei8N —
5 (e e i —e e ]) 5 + 5 (©)

<e]5 + ejS) <ej8h _ ej8h> B <ej5 _ e]’5) (ejSh + ej8h> ”
2 2j 2j 2
= cos(5)sin(8h) — sin(5) cos(8h)
En effet, aveca = ef°, b = ¢ /5, c = /8" et d = 778", on vérifie sans peine que
—2ad +2bc = (a+b)(c —d) — (a —b)(c +d) = ac — ad + bc — bd — ac — ad + bc + bd = —2ad + 2bc

ce qui confirme que (3) est identique a (4) et donc que (2) correspond bien a (1). En fait, cette deuxieme
méthode démontre en quelque sorte la validité du formulaire, car elle nutilise que la progression
géométrique simple avec une raison complexe. Elle n"utilise pas le formulaire.

he 8z z
—8kh |, —8kh\ _
Z (ke o788 — Goempt i

he 8z 4z (z—e 8
(z— e—5h)2
22+ (h—1)e 8z
72 — 2¢~8hz 4 g~ 16k

_ 72 —099¢ 008z 22099, 008;
T 222070083 4 o016 (7 ——008)2
72 —0.9138852z 72 —0.9138852z

72 — 1.8462327z + 0.8521438  (z — 0.9231163)2

Probleme 3 — (20 pts)

On considére la commande en boucle fermée d"un entrainement électrique en position dont la fonc-
tion de transfert analogique est

(We consider a DC drive in closed loop where the position is controlled. It has the following analog transfer
function)




1. Discrétiser le systeme analogique avec une période d’échantillonnage de & = 0.1 [s] a l'aide
du maintien d’ordre zéro et donner sa fonction de transfert discréte H(z). (Discretize the analog
transfer function with a sampling time of h = 0.1 [s] using a zero-order hold. Give the discrete-time
transfer function H(z).)

2. Calculer l'équivalent analogique (par la méthode de Tustin) H'(w) du systéeme discret H(z).
(Compute the analog equivalent, using Tustin’s method, H' (w) of the discrete-time system H(z)).

3. Déterminer a l'aide de la méthode fréquentielle (en utilisant 1'équivalent de Tustin H'(w)) un
régulateur proportionnel qui donne une pulsation de croisement v, = 0.03 [rad/s]. (Find using
the frequency method — using the Tustin equivalent H' (w) — a proportional controller ensuring a cross-
over frequency of vy = 0.03 [rad/s].)

4. Améliorer le résultat en utilisant un retard de phase de telle sorte que vy = 0.22 [rad/s] sans
affecter le comportement basse fréquence en boucle ouverte et en assurant une marge de phase
de 65 degrés environ. Tenir compte de 10 degrés supplémentaire pour le retard de phase du
régulateur.

(Improve the result by applying a phase-lag controller in such a way that vy = 0.22 [rad/s] without
affecting the low-frequency behavior in open loop while guaranteeing a phase margin of roughly 65
degrees. Tnke into account an extra 10 degrees for the phase lag compensator.)

Indication: On a représenté en figure 1 les diagrammes de Bode de la fonction de transfert en
boucle ouverte G(s) ainsi que celle obtenue au point 3, H (w). On a également représenté,
sans les légendes et sans les valeurs numériques, 'équivalent analogique du régulateur K'(w)
demandé a la figure 2.

(Hint: In Figure 1, the Bode plots of the open-loop transfer function G(s) are given together with the ones
obtained at point 3, H'(w). There are also the plots of the required analog equivalent of the controller
K'(w) in figure 2, without any indication either on the axes or on the numerical values.)

5. Déterminer I'équation aux différences qui réalise le régulateur obtenu au point précédent.
Utiliser la transformation bilinéaire de Tustin. (Find the discrete-time equations that realize the
controller obtained at the previous step. In that respect, use the bilinear transform of Tustin.)

Corrigé

1. Discrétisation par la méthode d’ordre zéro:

e ()] - ae (k)
(

4h 4(z—-1)
z—1 At z—eh
dh(z—e™™) —4(Z2 - (1 +e Mz +e™) +4(z2 -2z +1)

22— (1+e M)z e
(4h +4(1+e™) —8)z —dhe ™ —de™" -4
22— (14+e M)z +e
0.019349672 z 4- 0.018715361

72 —1.904837418 z + 0.904837418

2. Equivalent H'(w):



z = e =
e 52 1-— %
. 2+ wh
2 —wh
: az+b
En posant la fonction de transfert comme %=-%—, on a
2+wh
az+d a(z—wh>+b
2 Lomtd 2
z¢+cz+d 2+wh 24+wh
(Z—u;h) +C(2—wh) +w

a(2+ wh)(2 — wh) + b(2 — wh)?
(2+ wh)? 4 c(2+ wh) (2 — wh) + d(2 — wh)?
a(4 — w?h?) + b(4 — dwh + w?h?)
4 + dwh + w?h? + c(4 — w?h?) + d (4 — dwh + w?h?)
(b — a)h*w? — dhbw + 4(a + 2)
(1—c+d)h?w? +4(1—d)hw+4(1+c+4d)

En rendant monique

b—a .2 4b 4(a+b)
T—ctd? ~ T @ T Tocraiz
> 4(1—d)h 4(14-c+d)
Wt fmqar @ T G

Ona
1+c+d=0

et
1 —c+d = 3.809674836

et on obtient numériquement successivement

b—a

= = —0.000166500
_a—zlliui)h —  —0.19650350
m = 3.996670019
m —  0.999167500

ce qui conduit finalement au résultat

H(w) = —0.0001665 w? — 0.1965035 w + 3.99667
o w? +0.9991675 w

3. Régulateur proportionnel (gain) pour atteindre v, = 0.03 [rad/s]:

II faut atteindre un gain de 1 (c.-a-d. 0 [dB]) pour la pulsation vy = 0.03 [rad/s]. On se concentre
ainsi que sur le module dans le diagramme de bode et on translate la courbe verticalment afin que
celle-ci croise 0 [dB] a la pulsation vy = 0.03 [rad/s]. En examinant la figure on remarque qu’il faut
un gain d’approximativement -42 [dB], autrement dit

Ky = 107%/20 = 0.007943282

On obtient cette valeur en constatant que la distance en [cm] entre 0.001 (dont le log vaut -3) et 10
(dont le log vaut 1) sur les abscisses vaut 8.6 [cm]. La distance logarithmique entre 1 et 0.001 est donc



de 4. Le facteur en centimetres vaut donc 8.6/4 [cm/log]. En calculant log(0.03) = —1.52 la distance
logarithmique entre —3 et —1.52 vaut 1.48. On reporte donc la distance

84%6 x 1.48 = 3.18[cm|

a partir de 'abscisse en 0.001 et on trouve la position de v, = 0.03. En remontant a la verticale on
détermine la valeur du module qui vaut approximativement 42 [dB]. Confirmons le gain K, par le
calcul. Calculons H'(j0.03):

0.0001665 x (0.03)2 — 0.1965035 j 0.03 + 3.99667
—0.032 + 0.9991675 x 0.03 ]

+/(0.1965035 x 0.03)2 + (3.99667 + 0.000165 x (0.03)2)2 _ 3.996674496
/(09991675 x 0.03)2 + 0.03* 0.029988533

H'(j0.03) =

|H'(j0.03)| = — 133.2734238

Le régulateur proportionnel est donc I'inverse de cette valeur

K _ 1
P 7" 133.2734238

Graphiquement, on constate également que la fonction de transfert analogique est confondue avec
H'(jv) pour v autour de vy = 0.03. On peut donc simplifier un peu les calculs:
4 4

G(j0.03)| ~ |H (j0.03)| = |- i = = 133.27233738
G(j0.03)] ~ |H (j0.03)] Fx 003 (jx0.03+1)|  /(003) + (0.03)2)

~ 0.0075

Le gain vaut
1

Kr = 13327233738
ainsi sur le graphique c’est plus proche de 42.5 [dB] que de 42 [dB].

~ 0.0075

4. Design du retard de phase:
Ce dernier a pour expression
’ w + A b

K = —-

(w) A(w+Db)
avec b qui détermine la pulsation et A le rapport entre le gain basse fréquence et haute fréquence.
On commence par examiner le gain manquant (sur la figure par exemple) a vy = 0.22. On voit que

|K'(j0.22)| ~ 25 [dB]. Ainsi on détermine A pour avoir —25 [dB]. On pose pour commencer b = 1 (le
cas normalisé) et on détermine A. L'expression

jy+A
AGv+1)

a deux valeurs asymptotiques, une en v = 0 qui prend la valeur 1 et une autre en v — 400 qui prend
la valeur % et donc atténue d’un facteur A. Ainsi

20log (/1\) = —25= —20log(A)
A=10% =17.78

On cherche alors la pulsation pour laquelle le réseau normalisé déphase de - 10 degrés. Ceci se
produit pour v = 100 [rad/s]. En effet (calculatrice en mode degrés)

( j100 4 17.78

1778(]100—1-1)) = arg(j100 + 17.78) — arg(j100 + 1) =

100
arctan <1778) —90 = —10.08183221[deg]

Il reste a adapter le cas normalisé au cas demandé. Il s’agit d’utiliser le facteur b pour translater la
pulsation obtenue de 100 [rad/s] vers 0.22 [rad/s]. Ainsi
0.22

= =22 = 0.0022
b= 155 =000



ce qui donne le régulateur par retard de phase demandé

K/(w) . w+ Ab _ w+t 17.78 x 0.0022
AMw+Db)  17.78 x (w + 0.0022)
w + 0.039116
17.78 x w 4 0.039116

5. Réalisation du retard de phase par une équation aux différences:
11 faut effectuer la transformation bilinéaire inverse, autrement dit poser
2z—-1 z—1
w= - =20
hz+1 z+1

dans I'expression du régulateur K (w) pour obtenir

K(z) — 20%+4 4 0.039116
20 x 17.78 x 2 +0.039116
20 x (z—1) 4+0.039116 x (z + 1)
355.6 x (z— 1) +0.039116 x (z — 1)
20.039116 x z — 19.960884

355.639116 x z — 355.560884

20.039116 o, _ 19.960884
355.639116 355.639116
__ 355.560884

355.639116

0.056346771 x z — 0.056126796
z — 0.999780024

REMARQUE: Dans tous ces calculs, il est important d’utiliser toute la précision de la calculatrice.
C’est une particularité des systemes discrets d’étre tres sensible aux erreurs d’arrondi. On ne peut
pas utiliser les regles de I'ingénieur des chiffres significatifs dans le domaine des z. C’est ok pour
les grandeurs analogiques en s et en w toutefois. Lors de la conversion, il faut utiliser pleinement
les capacités numériques de la calculatrice. Un petit truc est de vérifier la correspondance des poles
apres calcul. On doit toujours avoir quelque chose de proche de z, = e avec zp le pole discret
et sp le pole analogique. Bien que nous n’ayons pas utiliser la fonction exponentielle dans le calcul
(que son approximation par la transformation bilinéaire) vérifions la correspondance avec le pole
analogique s, ~ w, = —17.78/0.039116 = —0.0022 et le pole discret correspondant

zp = et = ¢~ 0002X01 — 0.999780024

ce qui confirme que les calculs sont corrects en ce qui concerne le pole.
Sachant que K(z) = g((;) avec u(k) la sortie du régulateur qui est la grandeur de commande du
systeme et e(k) = y.(k) — y(k) qui est l'erreur entre la consigne et la grandeur mesurée, on arrive a

I'équation aux différences

u(k) = 0.999780024 x u(k — 1) + 0.056346771 x e(k) — 0.056126796 x e(k — 1)

Probleme 4 — (20 pts)

Soit la fonction de transfert d'un systéme discret

avec A(z) =22 +09z+ 0.8l et B(z) =z — 05

N



1. Est-ce que le systeme est BIBO stable (is the system BIBO stable) ?

2. Calculer un régulateur RST qui réalise un comportement en boucle fermée donnée par le modele
a poursuivre suivant: (Compute a RST controller that achieves a closed-loop behavior by matching the
following model:)

Bu(z)  z*—0.7z+0.01

H. = =
) = 2 e T Z-12:+036

(6)

Utiliser, si besoin est, le lemme d’inversion matriciel donné dans le formulaire. (If need be, use the
inversion formula given in the table below.) Prendre comme polyndme observateur Ag = z — 0.5.
(Choose Ay = z — 0.5 as observer polynomial.)

3. Calculer la réponse impulsionnelle en boucle fermée (d’asservissement) du systeme obtenu.
(Compute the tracking impulse response in closed-loop of the resulting system.)

Corrigé

1. Les deux poles de la fonction de tranfert sont a I'intérieur du cercle unité car 22409z +0.81 =
(z+0.9)2 et comme | — 0.9] = 0.9 < 1, le systéme est BIBO stable.
2. Il faut déterminer R,S et T de telle sorte que

BT  BuAg
AR+ BS ~ Ap Ao

I1 faut résoudre le I'équation de Diohante AR 4 BS = A, Ag avec

A = 2240924081
B = z-05
An = 22—-12z+036
Ay = z—-05

De 13, on déduit
C=AnA)=2"—1722+096z—0.18

Résolution matricielle par 'inversion de la matrice de Sylvester modifiée: On utilise le lemme
d’inversion matriciel (le deuxiéme) aveca = 0.9, b = —0.5,¢ =0.81,d =0,e = —0.5

" 1 1 o 17! 1.7 0.9
so| = | 09 —05 1 096 | —| 081 || =
51 081 0 —05 ~0.18 0

1 0.52 0.5 1 —26
0.81+045 —05 -1 0.15

2
05°+09>05+081 | o405 081 —14 | | -0.8

1 025 05 1 —2.6
= 15 126 -05 -1 0.15
’ 0405 081 -14 —0.18

T51
% (1.26 x (—2.6) — 0.5 x 0.15+ 0.18)

ﬁ (0.405 x (—2.6) +0.81 x 0.15+ 1.4 x 0.18)

A (0.25 x (—2.6) 4 0.5 x 0.15 — 0.18) —05
=| -21
—0.45

Ainsi on trouve

z—0.5
S = —-21z-045



Pour obtenir T, il faut que BT = B, Ap = z3 —1.222 + 0.36z — 0.005. 11 faut donc faire une
division polynomiale de B, Ag par B
+2° —1.222 4 0.36z — 0.06 | z— 0.5
| 22—0.7z+0.01

ce qui donne
T =2%-0.7z+0.01

et on vérifie que

BT = (z—0.5)(z% — 0.7z + 0.01) = 23 — 1.222 + 0.36z — 0.005 = B, Ag

3. La réponse impulsionnelle en boucle fermée d’asservissement:
C’est la transformée en Z inverse de Hy,(z).

_ 22 — 0.7z + 0.01 _ z 0.6z

H = 7
m(z) (z—0.6)2 Ot 06 T2z —06) @
En réduisant au dénominateur commun
co(z2 — 1224 0.36) + c12(z — 0.6) + 0.6z = oz — 1.2cz + 0.36c) + 12> — 0.6z + 0.6z
= (co+4c1)z% + (—1,2c9 — 0.6¢; + 20.6)z + 0.36¢0
z2 0.7z +0.01

ce qui conduit en identifiant les coefficients devant les puissances de z

0.01 _
= O 07
“ 0.36
0, = l4co=0972
C07+12x0027+06x0972 0083 )
o = 12X 06 _ — 0138

0.6 0.6

et en prenant la transformée en Z, on obtient le résultat demandé

0.027 {A(k)} +0.972 {0.6"} —0.138 {k 0.6"}




Linéarité

({ 1(kh)} + {wa(kh)}) = Z({wy(kh)}) + Z({wa(kh)})
{( h}) =aZ(w(kh)) acC

Décalages temporels

Z(w(kh —dh)) = z79W(z) deNN
Z(w(kh +dh)) :de(z)—Zfl Olzd i deNN

Dérivation complexe

Z(khw(kh)) = —hz 9Y(z)

Changement d’échelle complexe

Z(aw(kh)) :W(ﬂ%) ae€Ca#0

Valeurs initiale et finale

w(0) = lim; 00 W(z)
limy o w(kh) = lim,_,1(z — 1)W(2) |zi| <1

Produit de convolution

2 (Thoou(th)g(kh — 1)

N———
—
N
~—
c
—
N
~—

Accumulation

2 (Tow(in) = 2 W)

Différence

Z(w(kh) —w(kh —h)) = ZLW(z)

Table 1: Tableau de la grammaire de la transformée en 2
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N° w(t) L(w(t)) w(kh) Z(w(kh))

1 5(t) 1

2 A(kh) 1

3 1 1 1 =1

4 t 5 kh (zﬁzl)z

5 3t 5 3 (kh)? }122(,22(5;13)

O 1 ) img o GO 2 ()
- - L o—akh —

8 feot o Kl e~k —r

9o | e s 3 (ki 2e ek T
10 | ytte | iy | laytes | CUEYL 0 ()
11 sin(wt) 74 sin(wkh) %

12 cos(wh) o cos(wkh) %

13| e tsin() | pregr | e Msin(kl) | gt

Table 2: Tableau des transformées en Z et de Laplace
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14 || e " cos(wt) Gt +Z;§”+w2 e~ cos(wkh) ZLZZ(EZ__ﬂf ;;Z(CZZ()‘Z‘FL)_M
15 A s

16 ka*—1 Fn

17 7k (k—1)ak=2 (Zfa)3

18 (= (Hf-;é(k - i)) (a1 —ay

Table 3: Tableau des transformées en Z et de Laplace

—
_a X

= SO
O =
\_/
AN

|

1 !
T i
a—b*+bc c—b

b —b?
—b bc—a
—a ab

QU S -
= O

-1 1 be —d —e 1
:—d c—ae e -1
be —ae+c— ad—bc c—d b—a

Table 4: Inverses de matrices particulieres

o
(SRR
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30l L L L 1
0001 0002 0005 001 002 005 0.1 02 05 1 2 5 10

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 05 1 2 5 10

Figure 1: Diagrammes de bode en amplitude et en phase de la fonction de transfert analogique G(s)
et de I'équivalent analogique du systeme discret H'(w). L'axe horizontal donne les pulsations en
[rad/s], w pour G(s) et v pour H'(w). Les angles (associés a la phase) sont en [rad] et I'amplitude en
[dB]. (Bode diagrams — magnitude and phase — of the analog transfer function G(s) together with the analog
equivalent of the disrete-time system H'(w). The horizontal axis indicates the frequency in [rad/s]—w for
G(s) and v for H'(w). The angles, associated with the phase, are given in [rad] and the magnitude in [dB].)
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Figure 2: Equivalent analogique K’'(w) du régulateur demandé dans le probleme 3. En haut
I'amplitude et an bas la phase. Il n'y a pas d’échelle et pas de valeurs numériques. (Analog equivalent
of the controller K'(w) in problem 3. Top is the magnitude, and below, the phase. There are no scales and no
numerical values.)
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