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Problème 1 — (15 pts)

Soit le schéma donné à la figure 1.

1. Calculer la fonction de transfert discrète Y(z)
U(z) .

2. Calculer la réponse indicielle {y(kh)|k ≥ 0}.
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Figure 1: Schéma avec deux délais.

1. Fonction de transfert.
Y(z) = 8U(z) + z−1 6 Y(z)− 5 z−2Y(z)

Y(z) + 5 z−2 Y(z)− z−1 Y(z) 6 = 8 U(z)

(1− 6z−1 + 5z−2)Y(z) = 8U(z)

Y(z)
U(z)

=
8

1− 6z−1 + 5z−2 =
8z2

z2 − 6z + 5
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2. Réponse indicielle.

Y(z) =
8z2

z2 − 6z + 5
z

z− 1

= 8
z3

(z− 1)2 (z− 5)

y(k) =
1
2

(
−9 + 52+k − 4k

)
= −4.5− 12.5 · 5k − 2 k

Problème 2 — (15 pts)

Soit l’équation aux différences

y(k + 2) + y(k + 1) + 0.2 y(k) = u(k) + 0.32 u(k)

Calculer y(k) quand u(k) = (−2)−k, k ≥ 0.

z2 Y(z) + z Y(z) + 0.2 Y(z) = 1.32U(z) = 1.32
z

z + 1
2

Y(z) = 1.32
z

z + 1
2

1
(z2 + z + 0.2)

=
1.32 z

(z + 0.5)(z + 0.2764)(z + 0.7236)

z
(z + a)(z + b)(z + c)

=
1

(a− b)(a− c)
z

z + a
+

1
(b− a)(b− c)

z
z + b

+
1

(c− a)(c− b)
z

z + c

Avec a = 0.5, b = 0.2764 et c = 0.7236

y(k) =
1.32

(0.5− 0.2764)(0.5− 0.7236)
(−0.5)k +

1.32
(0.2764− 0.5)(0.2764− 0.7236)

(−0.2764)k

+
1.32

(0.7236− 0.5)(0.7236− 0.2764)
(−0.7236)k

= −26.4 (−0.5)k + 13.2 (−0.2764)k + 13.2 (−0.7236)k
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Problème 3 — (20 pts)

Soit le système analogique de fonction de transfert

G(s) =
Y(s)
U(s)

=
2

s(s + 10)
(1)

1. Discrétiser la fonction de transfert en utilisant la méthode de maintien d’ordre zéro (ZOH) avec
une fréquence d’échantillonnage de 5 [Hz].

2. Déterminer les coefficients µ et δ de l’équivalent analogique en w:

H
′
(w) =

−0.00476 w2 − 0.105 w + µ

w2 + 7.62 w + δ

3. Déterminer la graduation sur les axes du diagramme de Bode de la figure 2.
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Figure 2: Diagramme de bode de H
′
(w). La pulsation ν est représentée en échelle logarithmique.

.

4. Dessiner sur le même diagramme, le diagramme de Bode asymptotique en amplitude et en phase.

5. Déterminer le gain qui assure une pulsation de croisement de 8 [rad/s].

6. Déterminer la marge de phase associée.
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1. Discrétisation:

G(s)
s

=
2

s2(s + 1)
= − 1

50
1
s
+

1
5

1
s2 +

1
50

1
s + 10

z− 1
z
Z
(
L−1

(
G(s)

s

))
=

z− 1
z

(
− 1

50
z

z− 1
+

1
5

0.2 z
(z− 1)2 +

1
50

z
z− 0.135

)
= − 1

50
+

1/5 0.2
z− 1

+
1

50
z− 1

z− 0.135

=
− 1

50 (z− 1)(z− 0.135) + 1
5 0.2 (z− 0.135) + 1

50 (z− 1)2

(z− 1)(z− 0.135)

=
0.0227z + 0.0119

z2 − 1.135 z + 0.135

2. Coeffcient µ et δ Le plus expéditif est de constater que la structure de l’intégrateur est maintenu
par le processus de discrétisation et de l’équivalent analogique correspondant. Ceci conduit à

δ = 0

Ensuite, on peut remarquer que le gain statique doit correspondre pour avoir un modèle analogique
équivalent. Ce qui conduit à

2
10

=
µ

7.62
et donc

µ =
2 · 7.62

10
= 1.524

Ceci est confirmé en effectuant la substitution

z =
1 + w 0.1
1− w 0.1

dans H(z)

H
′
(w) =

0.0119 + 0.0277 1+w 0.1
1−w 0.1(

1+w 0.1
1−w 0.1

)2
− 1.135 1+w 0.1

1−w 0.1 + 0.135

=
0.0119(1− w 0.1)2 + 0.0227 (1 + w 0.1) (1− w 0.1)

(1 + w 0.1)2 − 1.135(1 + w 0.1)(1− w 0.1) + 0.135 (1− w 0.1)2

En effet le terme constant du dénominateur disparaı̂t (assurant δ = 0) car

δ = 1− 1.135 + 0.135 = 0

et en ne retenant que le terme constant du numérateur divisé par le terme devant w2 au dénominateur

µ =
0.0119 + 0.0227

0.01 (1 + 1.135 + 0.135)
=

0.0346
0.0227

= 1.524

ce qui est cohérent avec le calcul précédant.

3. Graduation sur le diagramme de Bode. 1 Se référer à la figure 3

4. Diagramme de Bode asymptotique

Pôles: en w = 0 et en w = −7.62

Zéros: en w = 9.98 et en w = −32

Confirmation des zéros par le calcul:

w =
0.105±

√
(−0.105)2 + 4 · 1.524 · 0.00476
−2 · 0.004776

=
0.105± 0.2
−2 · 0.00476

=

{
−32
9.98
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En basse fréquence, ν << 7.62, le système est approximé par

1.524
7.62

1
w

qui est un intégrateur et donc −20 [dB/decade] au début du diagramme et on calcul que pour
ν = 0.2 [rad/s] on a un module de 0 [dB]. On détermine ainsi la graduation sur l’axe de pulsation.

Entre les pulsations 7.62 et 9.98 on est en −40 [dB/decade].

Ensuite, entre 9.98 et 32 on est à nouveau en −20 [dB/decade].

Finalement, après 32 [rad/s], on aura une pente nulle de 0 [dB/decade].

ν 7.62 9.98 32
dB/dec -20 -40 -20 0

Pour la valeur asymptotique finale on aura

20 log10(0.00476) = −46.4 [dB]

et à la pulsation ν = 60 [rad/s] l’approximation basse fréquence 1.524
7.62

1
w passera par

20 log10

(
1.524
7.62

1
60

)
= −49.54 ≈ −50 [dB]

Ceci correspond au trait en traitillé sur la figure 3.

En ce qui concerne la phase, on a les valeurs asymptotiques suivantes

1.524
7.62 · jν → 1

jν
≡ +270 [deg.]

1.524
(jν + 7.62) jν

→ − 1
ν2 ≡ +180 [deg.]

−0.00476 · 32 · (jν− 9.98)
(jν + 7.62) · jν → − 1

jν
≡ +90[deg.]

−0.00476 · (jν− 32)(jν− 9.98)
(jν + 7.62)jν

→ − (jν)2

(jν)2 ≡ +180 [deg.]

ce qui donne le tableau suivant

ν 7.62 9.98 32
arg +270 +180 +90 +180

Ces valeurs asymptotiques sont représentée à la figure 3.

5. Gain pour avoir une pulsation de croisement de 8 [rad/s].

On lit sur le graphique lorsque ν = 8 [rad/s] sur l’échelle logarithmique, approximativement 33
[dB] ce qui donne un gain de

k = 1033/20 = 44.6

En effectuant les calculs:

1
k
=

√
(64 · 0.00476 + 1.524)2 + (8 · 0.105)2√

642 + (7.68 · 8)2
=

2.0123
88.4

= 0.02276

Le gain est donc de

k =
1

0.02276
= 43.9

ce qui correspond en dB:
20 log10 43.9 = 32.85[dB]
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Figure 3: Diagramme de Bode asymptotique.

6. Marge de phase associée.

On lit sur le graphique un rapport de 6 [mm] sur 15 [mm] avec 15 [mm] correspondant à 45 [deg.],
ce qui donne

ψ =
6

15
45 = 18 [deg.]

Calcul:

0.00476 · 64 · 1.524− 0.105 · 8 · j
−64 + 7.62 · 8 · j

en argument:

ψ = arctan
(

−0.105 · 8
0.00476 · 64 + 1.524

)
− arctan

(
7.62 · 8
−64

)
= arctan (−0.46)− arctan(−0.9525)
= −24.67 + 43.6 = 18.93 [deg.]

Problème 4 — (20 pts)

Soit la fonction de transfert en boucle ouverte discrète

H(z) =
0.0316z + 0.0143
z2 − 1.08z + 0.08
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On aimerait dimensionner un régulateur RST pour ce système.

1. Soit un modèle à poursuivre

Hm(z) =
Bm(z)
Am(z)

(2)

On aimerait avoir deux pôles en 0.5 et, si possible, la simplification du zéro de H(z). On aimerait
également que le modèle à poursuivre ait un gain statique de 1. Est-ce que ces spécifications sont
raisonnables ? Si oui proposer un modèle à poursuivre le plus simple possible qui remplissent ces
objectifs.

2. On fixe le polynôme observateur à réponse pile du troisième ordre

A0(z) = z3

3. Déterminer les polynômes R(z), S(z) de structure suivante

R(z) = z2 + r1 z + r2

S(z) = s0 z + s1

de telle sorte à satisfaire l’équation de Diophante associée. Utiliser à cette fin le lemme d’inversion
matricielle dans la table fournie.

4. Calculer le polynôme T(z).

1. Modèle à poursuivre: Le zéro est
−0.0143
0.0316

= −0.4525

comme il est bien amorti, il pourrait être simplifié. Toutefois il est près de la limite 0.5 et également
proche des pôles en boucle fermée imposés. On décide de la conserver dans le modèle à pour-
suivre. Ce dernier est pris le plus simple possible afin d’avoir deux pôles en 0.5 et aucun statisme.
Ainsi

γ · (0.0316 z + 0.0143)
(z− 0.5)2 =

γ · (0.0316 z + 0.0143)
z2 − z + 0.25

Pour garantir aucun statisme γ · (0.0316 + 0.0143) = 1− 1 + 0.25 = 0.25, et donc

γ =
0.25

0.0459
= 5.45

Bm

Am
=

5.45(0.0316 z + 0.0143)
z2 − z + 0.25

=
bm0 z + bm1

z2 + am1 z + am2

2. Polynôme observateur est donné:
A0(z) = z3

3. Déterminer les polynômes R(z) et S(z): Les données sont

A(z) = z2 − 1.08 z + 0.08 = z2 + a1 z + a2

B(z) = 0.0316 z + 0.0143 = b0 z + b1

et on a trouvé
A0 Am = z5 − z4 + 0.25 z3 = z5 + c1 z4 + c2 z3
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Avec la notation générale du cours

1 0 · · · · · · · · ·
a1 1 · · · b0 0
a2 a1 · · · b1 b0
...

... · · ·
...

...

aδA
... · · · bδA

...

0 aδA · · ·
...

...
...

... · · ·
...

...
0 0 · · · 0 bδB





r1
...

rδR
s0
...

sδS


=



c1 − a1
c2 − a2

...
cδA − aδA

cδA+1
...

cδR+δS+1



Avec les données précédantes
1 0 0 0
−1.08 1 0.0316 0
0.08 −1.08 0.0143 0.0316

0 0.08 0 0.0143




r1
r2
s0
s1

 =


−1− (−1.08)
0.25− (0.08)

0
0


ce qui conduit après inversion avec le lemme de la table

r1
r2
s0
s1




1. 0. 0. 0.
0.332726 0.264744 −0.58503 1.29279
23.6479 23.2676 18.5136 −40.9112
−1.86141 −1.48109 3.27289 62.6977




0.08
0.17

0
0

 =


0.08

0.071625
5.84732
−0.400697


ainsi en résumé

R(z) = z2 + 0.08 z + 0.071625
S(z) = 5.84732 z− 0.400697

et une petite vérification facultative donne avec

A(z) = z2 − 1.08 z + 0.08
B(z) = 0.0316 z + 0.0143

AR + BS = z3 − z2 + 0.25 z + 8.7 · 10−9

4. Déterminer le polynôme T(z): On doit avoir

B(z) T(z) = Bm(z) A0(z)
(0.0316 z + 0.143) T(z) = 5.45(0.0316 z + 0.0143) · z3

et on trouve
T(z) = 5.45 z3

On constate que ceci conduit à une réalisation non causale car le degré de T(z) est supérieur à
celui de R(z). Une solution à cette difficulté est de réduire le polynôme observateur à A0(z) = z2

et d’introduire un pôle à l’origine dans le système à régler. Ceci ne change en rien le produit
A0(z)Am(z) et donc les solutions R(z) et S(z) obtenues précédemment. Ainsi,

Bm(z)
Am(z)

=
5.45 · (0.0316 z + 0.0143)

z3 − z2 + 0.25z

et le polynôme T(z) s’écrit
T(z) = 5.45 z2

conduisant à une solution causale satisfaisante, car les pôles dominants demeurent le pôle double
en 0.5, malgré la présence du pôle à réponse pile dans le modèle à poursuivre.

Autre méthode avec simplification du zéro
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1. Modèle à poursuivre. Pour garantir le statisme nul Hm(1) = 1, et la simplification du zéro conduit
à

Hm =
Bm

Am
=

0.25
z2 − z + 0.25

(3)

afin d’avoir les deux pôles en 0.5.

2. Si on simplifie le pôle le degré de R
′

sera de un et donc

R
′
= z + r

′
1

On doit résoudre
A R

′
+ B− S = Am A0

Il faut baisser l’ordre du polynôme observateur et poser A0 = z. Autrement dit, il faut résoudre

(z2 − 1.08 z + 0.08) R
′
+ 0.0316 S = (z2 − z + 0.025) · z

3. Calcul des polynôme R et S: En factorisant

B = 0.0316 z + 0.0143 = B− · B+ = 0.0316 · (z + 0.4545)

et en utilisant le lemme d’inversion matricielle on doit calculer
1
r
′
1

s0
s1

 =


1 0 0 0
−1.08 1 0 0
0.08 −1.08 0.0316 0

0 0.08 0 0.0316


−1

1
−1
0.25

0

 =


1

0.08
8.11392
−0.202532


ce qui donne

R
′

= z + 0.08
S = 8.11392 z− 0.202532

et un vérification conduit bien à

(z2 − 1.08 z + 0.08)(z + 0.08) + 0.0316 · (8.11392 z− 0.202532) = z3 − z2 + 0.25z

En introduisant le facteur de la simplication (le zéro) on obtient le polynôme

R = B+ · R′ = (z + 0.4545) (z + 0.08)
= z2 + 0.5345 z + 0.03636

4. Calcul du polynôme T:

Avec
B = 0.0316z + 0.0413 = 0.0316 · (z + 0.4545) = B− B+

Bm = 0.25 = B− B
′
m = 0.0316 B

′
m

on a
B− T = A0 B− B

′
m

et comme

B− = 0.0316
A0 = z

B
′
m =

0.25
0.0316

= 7.911
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et donc

T B− = A0 B− B
′
m

T · 0.0316 = z · 0.0316 · 7.911
T = z · 7.911 (4)

Vérification finale:

BT
AR + BS

=
(0.0316 z + 0.0143) · z · 7.911

(z2 − 1.08z + 0.08)(z + 0.4545)(z + 0.08) + (0.0316 z + 0.0143)(8.11392 z− 0.202532)

=
z · 0.0316 · 7.911

(z2 − 1.08z + 0.08)(z + 0.08) + 0.0316 · (8.11392z− 0.202532)

=
0.25 · z

z3 − z2 + 0.25 z
=

0.25
z2 − z + 0.25
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Linéarité

Z({w1(kh)}+ {w2(kh)}) = Z({w1(kh)}) +Z({w2(kh)})
Z(a{w(kh)}) = aZ(w(kh)) a ∈ C

Décalages temporels

Z(w(kh− dh)) = z−dW(z) d ∈N

Z(w(kh + dh)) = zdW(z)−∑d−1
i=0 w(ih) zd−i d ∈N

Dérivation complexe

Z(kh w(kh)) = −hz dW
dz (z)

Changement d’échelle complexe

Z(akhw(kh)) = W
(

z
ah

)
a ∈ C a 6= 0

Valeurs initiale et finale

w(0) = limz→∞ W(z)
limk→∞ w(kh) = limz→1(z− 1)W(z) |zi| < 1

Produit de convolution

Z
(

∑k
l=0 u(lh)g(kh− lh)

)
= G(z)U(z)

Accumulation

Z
(

∑k
l=0 w(lh)

)
= z

z−1 W(z)

Différence

Z(w(kh)− w(kh− h)) = z−1
z W(z)

Table 1: Tableau de la grammaire de la transformée en Z
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No w(t) L(w(t)) w(kh) Z(w(kh))

1 δ(t) 1

2 ∆(kh) 1

3 1 1
s 1 z

z−1

4 t 1
s2 kh hz

(z−1)2

5 1
2 t2 1

s3
1
2 (kh)2 h2z(z+1)

2(z−1)3

6 1
(l−1)! t

l−1 1
sl

1
(l−1)! (kh)l−1 lima→0

(−1)l−1

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

7 e−at 1
s+a e−akh z

z−e−ah

8 t e−at 1
(s+a)2 kh e−akh he−ahz

(z−eah)2

9 1
2 t2 e−at 1

(s+a)3
1
2 (kh)2e−akh h2e−ahz(z−e−ah+2e−ah)

2(z−e−ah)3

10 1
(l−1)! t

l−1e−at 1
(s+a)l

1
(l−1)! (kh)l−1e−akh (−1)(l−1)

(l−1)! ·
∂l−1

∂al−1

(
z

z−e−ah

)

11 sin(ωt) ω
s2+ω2 sin(ωkh) sin(ωh)z

z2−2 cos(ωh)z+1

12 cos(ωh) s
s2+ω2 cos(ωkh) z(z−cos(ωh))

z2−2 cos(ωh)z+1

13 e−at sin(ωt) ω
(s+a)2+ω2 e−akh sin(ωkh) e−ah sin(ωh)z

z2−2e−ah cos(ωh)z+e−2ah

Table 2: Tableau des transformées en Z et de Laplace
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14 e−at cos(ωt) s+a
(s+a)2+ω2 e−akh cos(ωkh) z(z−e−ah cos(ωkh))

z2−2e−ah cos(ωh)z+e−2ah

15 ak z
z−a

16 k ak−1 z
(z−a)2

17 1
2 k (k− 1) ak−2 z

(z−a)3

18 1
(l−1)!

(
∏l−2

i=0(k− i)
)
(ak−l+1) z

(z−a)l

Table 3: Tableau des transformées en Z et de Laplace

Wnk
N = ej2π nk

N

x(k) = 1
N ∑

N
2 −1

n=− N
2

X(n)Wkn
N X(n) = ∑N−1

k=0 x(k)W−nk
N

y(k) = x(k)g(k) Y(n) = 1
N ∑N−1

m=0 X(m)G(n−m)

y(k) = ∑N−1
l=0 x(l)g(k− l) Y(n) = X(n)G(n) TFD avec Nx + Ng − 1 échantillons

x(k− k0) cyclique W−nk0
N X(n)

Table 4: Table transformée de Fourier discrète


1 0 0 0
x 1 a 0
y x b a
0 y 0 b


−1

=
1

a2y− abx + b2


a2y− abx + b2 0 0 0

b(ay− bx) b2 −ab a2

b
(
x2 − y

)
− axy ay− bx b −a

y(bx− ay) −by ay b− ax


Table 5: Résultat de l’inverse d’une matrice particulière
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