
CHAPITRE 10

Régulateur RST

OBJECTIFS
• Définir le régulateur à deux degrés de liberté RST.
• Développer une méthode de synthèse algébrique du régulateur RST.
• Offrir quelques commentaires sur les effets d’un intégrateur et

les amplitudes de la grandeur de commande.
• Présenter des variantes du régulateur RST.

10.1 Introduction

Ce chapitre est entièrement dévolu au régulateur RST, nom provenant des
trois polynômes qu’il fait intervenir. Sa synthèse est à classer dans les filières 4 et
6 de la figure 8.1.

Les régulateurs numériques standard examinés tout au long des chapitres pré-
cédents peuvent dans une certaine mesure être considérés comme des traductions
discrètes de fonctions relativement rudimentaires d’essence analogique. L’im-
mense potentiel numérique offert par une commande par ordinateur est de la sorte
peu valorisé. Le régulateur RST, quant à lui, est un algorithme plus sophistiqué ti-
rant bénéfice des ressources numériques disponibles. Cette sophistication permet
d’imposer, en plus des pôles en boucle fermée, certains zéros en boucle fermée.
Le second degré de liberté ainsi introduit autorise la poursuite, sans écart per-
manent, de consignes pratiquement quelconques. De surcroît, les pôles en boucle
fermée peuvent tous être positionnés n’importe où dans le cercle unité. Une solu-
tion unique et à degré minimal existe ; elle s’obtient en suivant une voie algébrique
transparente et rigoureuse, évitant l’aspect itératif et quelque peu empirique des
approches traditionnelles ; ceci est particulièrement attractif quand plusieurs cor-
rections de nature avance-retard de phase seraient nécessaires pour tenter de sa-
tisfaire de sévères spécifications. Le concept de commande a priori, incluant un
filtre adoucissant le signal de consigne, devient limpide dans la structure RST.
Finalement, certaines contraintes inhérentes à l’architecture classique peuvent
être assouplies.

Le régulateur RST est défini dans la section 10.2. Une méthode de synthèse
du régulateur RST est détaillée dans la section 10.3. Les fondements sont tout
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d’abord posés dans le paragraphe 10.3.1. L’imposition d’un modèle à poursuivre
est ensuite explorée dans le paragraphe 10.3.2 avant de passer, dans le paragraphe
10.3.3, à l’équation diophantine permettant un dimensionnement systématique
du régulateur. Les conditions d’existence et d’unicité d’une solution réalisable à
degré minimal sont regroupées dans le paragraphe 10.3.4. Le paragraphe 10.3.5
fournit d’utiles renseignements sur le choix du modèle à poursuivre. Plusieurs
algorithmes de synthèse sont détaillés dans le paragraphe 10.3.6 et illustrés par
des exemples. La section 10.4 offre quelques compléments d’information sur l’in-
fluence d’un intégrateur (§ 10.4.1) et sur les amplitudes de la grandeur de com-
mande (§ 10.4.2). D’intéressantes variantes du régulateur RST sont proposées
dans la section 10.5 : mise en évidence de la commande a priori (§ 10.5.1), simpli-
fication de pôles et de zéros (§ 10.5.2), poursuite et régulation à objectifs différents
(§ 10.5.3) et enfin synthèse par calibrage fréquentiel (§ 10.5.4).

10.2 Définitions

Reprenons l’architecture classique d’un système automatique en poursuite, tel
que représenté dans la figure 5.13 et répété dans la figure 10.1 par commodité.

Yc(z)
+

−

E(z) U(z) Y (z)
K(z) H(z)

Fig. 10.1 Schéma fonctionnel du montage en asservissement avec un régulateur classique.

Yc(z), U(z) et Y (z) dénotent les grandeurs de consigne, de commande et à
commander, respectivement ; K(z) est la fonction de transfert du régulateur, de
type PID par exemple ; H(z) désigne la fonction de transfert échantillonnée du
processus à commander, donnée par la formule H(z)=(1−z−1)Z

{
L−1

(
G(s)/s

)}
,

où G(s) est la fonction de transfert analogique du système que l’on désire com-
mander ; K(z) est une fonction rationnelle propre :

K(z) =
S(z)
R(z)

Les polynômes R(z) et S(z) possèdent des degrés adéquats ; H(z) est une fonction
rationnelle strictement propre (§ 5.2.1) :

H(z) =
B(z)
A(z)

Comme toujours, A(z) est monique ; nous supposons finalement que A(z) et B(z)
n’ont aucun facteur commun (autre que numérique). L’algorithme de commande
est décrit par l’équation polynomiale :

R(z)U(z) = S(z)Yc(z)− S(z)Y (z) (10.1)
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Et la fonction de transfert en boucle fermée est fournie par :

Y (z)
Yc(z)

=
B(z)S(z)

A(z)R(z) + B(z)S(z)
(10.2)

Le régulateur RST généralise cette structure classique ; à la place du seul po-
lynôme S(z) apparaissant en facteur dans les deux termes constituant le membre
de droite de l’égalité (10.1), on introduit deux polynômes S(z) et T (z) distincts :

R(z)U(z) = T (z)Yc(z)− S(z)Y (z) (10.3)

Il n’y a donc plus de comparaison directe entre Yc(z) et Y (z), générant l’écart
E(z) = Yc(z) − Y (z) ; le schéma fonctionnel de la figure 10.1 est remplacé par
celui de la figure 10.2.

Yc(z) U(z) Y (z)
RST H(z)

Fig. 10.2 Schéma fonctionnel du montage en asservissement avec un régulateur RST.

L’équation (10.3) du régulateur RST s’écrit :

U(z) =
T (z)
R(z)

Yc(z)− S(z)
R(z)

Y (z) (10.4)

L’égalité Y (z) = H(z)U(z) implique :

Y (z) = H(z)
(

T (z)
R(z)

Yc(z)− S(z)
R(z)

Y (z)
)

Il en découle, après avoir remplacé H(z) par B(z)/A(z), la fonction de transfert
en boucle fermée :

Y (z)
Yc(z)

=
B(z)T (z)

A(z)R(z) + B(z)S(z)
(10.5)

Une comparaison entre (10.2) et (10.5) fait ressortir une différence cruciale :
au numérateur de (10.2) apparaît S(z), polynôme également mis en jeu dans le
dénominateur de cette expression ; par contre, le numérateur de la fonction de
transfert (10.5) contient le polynôme T (z) qui est absent de son dénominateur.
Les polynômes R(z) et S(z) aux dénominateurs de (10.2) et (10.5) sont souvent
ajustés afin de positionner les pôles en boucle fermée (sect. 9.7). Dans l’architec-
ture classique, les zéros en boucle fermée sont dès lors fixés, puisqu’égaux aux
zéros de B(z) (zéros du processus à commander) et de S(z). Par contre, dans une
commande RST, il est possible de placer des zéros en boucle fermée au moyen du
polynôme additionnel T (z). Un degré de liberté supplémentaire est de la sorte in-
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troduit. L’imposition de zéros en boucle fermée se révèle particulièrement attractif
pour les asservissements à hautes performances, comme cela sera démontré dans
le paragraphe 10.3.5. Le régulateur RST est dit à deux degrés de liberté pour re-
fléter ce potentiel étendu.

L’appellation ci-dessus se justifie aussi par le fait, résultant de (10.4) et illustré
dans la figure 10.3, que la consigne Yc(z) et la rétroaction de la grandeur à com-
mander Y (z) sont filtrées par deux fonctions de transfert T (z)/R(z) et S(z)/R(z)
distinctes.

Yc(z)
T (z)

R(z)

+

−
U(z)

S(z)

R(z)
Y (z)

Fig. 10.3 Régulateur RST sous la forme d’un schéma fonctionnel dit à trois branches.

Dans la structure classique, la somme des fonction de sensibilité S(z) et de
sensibilité complémentaire T (z) sont liées par :

S(z) + T (z) =
1

1 + K(z)H(z)
+

K(z)H(z)
1 + K(z)H(z)

= 1 (10.6)

Cette contrainte algébrique impose de sévères restrictions évoquées entre autres
dans la section 9.6 ; par exemple, il n’est pas possible d’exiger simultanément de
bonnes performances (module de S(e jωh) petit) et de rejeter des bruits de mesure
(module de T (e jωh) petit). Dans une commande RST, les écarts permanents d’as-
servissement ne s’évaluent plus via la fonction de sensibilité, si bien que certaines
limitations imposées par l’égalité (10.6) peuvent être assouplies. Une fois encore, il
s’agit d’une conséquence du degré de liberté additionnel intrinsèque au régulateur
RST.

Le polynôme R(z) est monique de degré δR :

R(z) = zδR + r1z
δR−1 + · · · + rδR

Dénotons δS le degré du polynôme S(z) :

S(z) = s0z
δS + s1z

δS−1 + · · · + sδS

Et soit δT le degré du polynôme T (z) :

T (z) = t0z
δT + t1z

δT−1 + · · · + tδT

La causalité de la fonction de transfert T (z)/R(z) liant Yc(z) à U(z) requiert
un surplus de pôles δR − δT ≥ 0 ; et la causalité de la fonction de transfert
−S(z)/R(z) entre Y (z) et U(z) exige δR − δS ≥ 0. Dans le but d’utiliser sans
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retard la consigne, comme dans la section 5.3 (implantation standard), on sélec-
tionne souvent δR = δT ; de même, δR = δS pour employer au plus vite la gran-
deur à commander ; ceci n’est réalisable que si le temps de calcul et de conversion
est négligeable vis-à-vis de la période d’échantillonnage. Alors :

δR = δS = δT (10.7)

Dans ce cas, (10.4) devient :

U(z) =
t0zδR + t1zδR−1 + · · · + tδR

zδR + r1zδR−1 + · · · + rδR
Yc(z)− s0zδR + s1zδR−1 + · · · + sδR

zδR + r1zδR−1 + · · · + rδR
Y (z)

En puissances négatives de z et après avoir multiplié les deux membres de cette
égalité par R(z) :

(
1 + r1z

−1 + · · · + rδRz−δR
)
U(z) =

(
t0 + t1z

−1 + · · · + tδRz−δR
)
Yc(z)

−
(
s0 + s1z

−1 + · · · + sδRz−δR
)
Y (z)

Dans le domaine temporel, en introduisant l’opérateur retard q−1 :
(
1 + r1q

−1 + · · · + rδRq−δR
)
u(k) =

(
t0 + t1q

−1 + · · · + tδRq−δR
)
yc(k)

−
(
s0 + s1q

−1 + · · · + sδRq−δR
)
y(k)

D’où, finalement :

u(k) = −r1u(k − 1)− · · ·− rδRu(k − δR)
+ t0yc(k) + t1yc(k − 1) + · · · + tδRyc(k − δR)
− s0y(k)− s1y(k − 1)− · · ·− sδRy(k − δR)

Le code réalisant le régulateur RST se fonde directement sur cette équation. Une
faute à éviter est d’implanter le régulateur directement selon la formule (10.4),
en calculant puis en soustrayant les signaux T (z)

R(z) Yc(z) et S(z)
R(z) Y (z), comme cela

apparaît dans la figure 10.3. En effet, les fonctions de transfert T (z)/R(z) et
S(z)/R(z) ne jouissent pas forcément de la propriété de stabilité BIBO. Le lec-
teur est renvoyé à la section 5.3 pour de plus amples informations ayant trait à la
réalisation d’un régulateur.

Quand le temps de calcul et de conversion est égal à la période d’échantillon-
nage h, ou encore lorsqu’il est souhaitable que le retard découlant de l’exécution
de l’algorithme et des conversions soit fixe (et égal à h), un surplus de pôles valant
1 est délibérément placé dans les fonctions de transfert liant Yc(z) à U(z) et Y (z)
à U(z) ; par conséquent, il faut remplacer (10.7) par :

δR− 1 = δS = δT

L’équation (10.4) s’écrit alors :

U(z) =
t0zδR−1 + t1zδR−2 + · · · + tδR−1

zδR + r1zδR−1 + · · · + rδR
Yc(z)

− s0zδR−1 + s1zδR−2 + · · · + sδR−1

zδR + r1zδR−1 + · · · + rδR
Y (z)
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D’où :

U(z) =
t0 + t1z−1 + · · · + tδR−1z−δR+1

z + r1 + · · · + rδRz−δR+1
Yc(z)

− s0 + s1z−1 + · · · + sδR−1z−δR+1

z + r1 + · · · + rδRz−δR+1
Y (z)

Dans le domaine temporel :
(
q + r1 + · · · + rδRq−δR+1

)
u(k) =

(
t0 + t1q

−1 + · · · + tδR−1q
−δR+1

)
yc(k)

−
(
s0 + s1q

−1 + · · · + sδR−1q
−δR+1

)
y(k)

Finalement :

u(k + 1) = −r1u(k)− · · ·− rδRu(k − δR + 1)
+ t0yc(k) + t1yc(k − 1) + · · · + tδR−1yc(k − δR + 1)
− s0y(k)− s1y(k − 1)− · · ·− sδR−1y(k − δR + 1)

Là encore, le code du régulateur RST se base sur cette égalité.
Considérons maintenant le montage en régulation, dans lequel la consigne

yc(k) est nulle tandis qu’une perturbation analogique w(t) agit de manière addi-
tive en amont du processus à commander (fig. 10.4).

Yc(z) = 0
RST

U(z)
D-A

W (s)

+

+

G(s) A-D
Y (z)

Fig. 10.4 Schéma fonctionnel du montage en régulation avec un régulateur RST.

Les transformations successives effectuées dans le paragraphe 5.4.2 et résu-
mées dans les figures 5.17 à 5.20 ne mettent pas en jeu l’algorithme de commande
et sont donc toujours valides ; elles conduisent à la figure 10.5.

Yc(z) = 0
RST

U(z)
H(z)

+

+

Z
˘
L−1`

G(s)W (s)
´¯

Y (z)

Fig. 10.5 Schéma fonctionnel du montage en régulation avec un régulateur RST, après
calcul de H(z).
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On en déduit l’influence de la perturbation sur la grandeur à commander :

Y (z) = Z
{
L−1

(
G(s)W (s)

)}
+ H(z)

(
−S(z)

R(z)
Y (z)

)

D’où, en posant K(z) = S(z)/R(z) :

Y (z) =
Z
{
L−1

(
G(s)W (s)

)}

1 + K(z)H(z)

Cette formule est identique à (5.13). Ainsi, en régulation, l’algorithme RST se
comporte comme l’architecture classique. Les résultats du paragraphe 5.4.2 de-
meurent valables, de même que ceux du paragraphe 7.6.2 et de la fin de la section
7.7 relatifs aux écarts permanents. Le principe du modèle interne s’applique en-
core en régulation RST. Soulignons la nécessité, pour rejeter parfaitement des
perturbations, de ℓ effets intégrateurs, obtenus en posant dans tous les développe-
ments précédents et à venir :

R(z) = (z − 1)ℓR′(z)

Le polynôme R(z) inclut le facteur préspécifié (z − 1)ℓ ; R(z) étant monique, il
en est de même pour R′(z). La fonction de transfert K(z) = S(z)/R(z) s’écrit
alors :

K(z) =
S(z)

(z − 1)ℓR′(z)

Et la fonction de transfert T (z)/R(z) devient :

T (z)
(z − 1)ℓR′(z)

Les conditions de causalité imposent maintenant δR′ + ℓ− δS ≥ 0 et δR′ +
ℓ − δT ≥ 0. Ces intégrateurs se rencontrent parfois sous le nom de compensateur
de perturbation ; ℓ est son type ou sa classe.

Dans un cadre plus général, la partie fixée PR(z) du polynôme R(z), pas for-
cément égale à (z − 1)ℓ, doit avoir pour zéros les pôles de la perturbation afin
d’être cohérent avec le principe du modèle interne ; R(z) est dans ce cas contraint
à exhiber la structure suivante :

R(z) = PR(z)R′(z)

Le polynôme PR(z) dépend bien sûr de la pertubation à rejeter. Les atouts de
parties préspécifiées dans les polynômes R(z) et S(z) seront discutés dans le pa-
ragraphe 10.5.4.
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10.3 Synthèse algébrique du régulateur RST

10.3.1 Principe de la synthèse

La fonction de transfert du montage en asservissement est :

Y (z)
Yc(z)

=
B(z)T (z)

A(z)R(z) + B(z)S(z)

Les polynômes R(z), S(z) et T (z) du régulateur RST vont être dimensionnés afin
que cette fonction de transfert en boucle fermée soit égale à la fonction de trans-
fert Hm(z) d’un modèle à poursuivre, ou modèle de référence, donné par l’utilisa-
teur :

Hm(z) =
Bm(z)
Am(z)

Hm(z) est une fonction rationnelle strictement propre ; en outre, le polynôme
Am(z) est monique et ses zéros sont tous à l’intérieur du cercle unité. Des in-
dications sur un choix correct de Hm(z) seront offertes au fil des pages suivantes.
La figure 10.6 illustre cette philosophie, qui n’est pas sans rappeler celle du para-
graphe 1.7.6.

Yc(z)
RST

U(z)
H(z)

Y (z)

Yc(z) Hm(z) Y (z)

=

Fig. 10.6 Principe de la synthèse algébrique du régulateur RST.

Lors de la synthèse dans le lieu des pôles d’un régulateur classique, examinée
dans la section 9.7, les pôles du système en boucle fermée sont positionnés dans
des endroits permettant de satisfaire des spécifications sur l’amortissement du ré-
gime transitoire. De par la simplicité de la structure classique, ce positionnement
est limité à certaines régions du plan complexe et les spécifications ne peuvent pas
toujours être vérifiées. L’approche est itérative et semée d’embûches ; son aspect
empirique la rend impossible à transcrire sous une forme algébrique. Le dimen-
sionnement du régulateur RST qui va être présenté généralise considérablement
la synthèse dans le lieu des pôles. On désire toujours placer les pôles du système
en boucle fermée dans le but de maîtriser le régime transitoire. Toutefois, il est
possible de distribuer ces pôles arbitrairement dans le cercle unité. De surcroît,
le degré de Am(z) n’est pas forcément égal à celui du polynôme caractéristique
en boucle fermée A(z)R(z) + B(z)S(z) ; en fait, un modèle à poursuivre simple,
avec un polynôme Am(z) de degré inférieur à celui de A(z)R(z)+B(z)S(z), peut
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être sélectionné. Vu que le régulateur RST est à deux degrés de liberté (sect. 10.2),
les zéros en boucle fermée peuvent aussi, du moins dans une certaine mesure, être
positionnés à volonté dans le plan complexe. Plutôt que d’une synthèse par place-
ment des pôles, il s’agit véritablement d’une synthèse par imposition d’un modèle
complet, incluant les pôles et des zéros. Finalement, la synthèse du régulateur
RST est d’essence algébrique et se prête admirablement à être codée ; elle peut
entre autres être mise en œuvre dans un schéma de commande adaptative, comme
nous le verrons dans le chapitre 12.

Les spécifications courantes sont toujours celles passées en revue dans les sec-
tions 9.2 à 9.6. Elles sont rappelées ci-dessous.

Il résulte du principe même de la synthèse du régulateur RST que, en asser-
vissement, l’amortissement du régime transitoire dépend étroitement des pôles du
modèle à poursuivre Hm(z) = Bm(z)/Am(z). Afin de satisfaire des conditions
absolue et relative d’amortissement, les zéros du polynôme Am(z) appartiendront
donc à une région telle que celle en tramé dans la figure 9.7.

En ce qui concerne les performances en régime permanent, le modèle à pour-
suivre Hm(z) doit être choisi de telle sorte que la différence yc(k)− y(k) entre son
entrée yc(k) et sa sortie y(k) tende vers l’écart permanent d’asservissement spé-
cifié. En effet, comme la synthèse provoque l’égalité Hm(z) = B(z)T (z)

A(z)R(z)+B(z)S(z) ,
toute différence limk→∞

(
yc(k) − y(k)

)
au niveau de Hm(z) se répercute sur le

système en boucle fermée comme écart permanent. Ceci est même vrai en pré-
sence d’un intégrateur, obtenu en posant dans les lignes précédentes R(z) = (z −
1)ℓR′(z). Par contre, un écart permanent de régulation s’élimine en insérant un
intégrateur (sect. 10.2).

EXEMPLE 10.1
Les spécifications ne tolèrent aucun statisme d’asservissement ; la transformée

en z de la consigne, en forme de saut unité, vaut z
z−1 et il faut que :

0 = lim
k→∞

(
yc(k)− y(k)

)
= lim

z→1
(z − 1)

(
Yc(z)− Y (z)

)

= lim
z→1

(z − 1)
(
1−Hm(z)

)
Yc(z)

= lim
z→1

(z − 1)
(
1−Hm(z)

) z

z − 1

D’où :

Hm(1) = 1

Il existe un statisme d’asservissement si cette égalité n’est pas respectée, même
en présence d’un intégrateur puisque la synthèse astreint Hm(z) à la fonction de
transfert en boucle fermée. !

La fonction de transfert harmonique en boucle fermée est égale à Hm(e jωh),
laquelle sera soigneusement choisie selon les spécifications, notamment en ce qui
concerne la bande passante.
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Avec H(z) = B(z)/A(z) et K(z) = S(z)/R(z), la fonction de transfert en
boucle fermée s’écrit :

B(z)T (z)
A(z)R(z) + B(z)S(z)

=
H(z)

T (z)
R(z)

1 + K(z)H(z)

La sensibilité de cette expression à la fonction de transfert échantillonnée H(z) du
processus à commander, considérée ici comme variable, se calcule facilement ; on
trouve :

S(z) =
1

1 + K(z)H(z)

Comme dans la section 9.5, il faut que le module de K(e jωh)H(e jωh) soit suffi-
samment élevé à basse fréquence pour amoindrir la sensibilité dans cette plage.
Avec un intégrateur, K(z) = S(z)

R(z) = S(z)
(z−1)ℓR′(z) et cette condition est naturelle-

ment remplie.

Finalement, quelle est la robustesse de la stabilité, mesurée au moyen de mar-
ges ? Les pôles de la fonction de transfert en boucle fermée sont les zéros du poly-
nôme caractéristique A(z)R(z) + B(z)S(z), autrement dit les zéros de :

1 +
S(z)
R(z)

· B(z)
A(z)

= 1 + K(z)H(z)

Cette expression ne fait pas intervenir le polynôme T (z), extérieur à la boucle de
rétroaction ; on l’a déjà rencontrée tout au long de la section 7.4 ; les résultats
des sections 7.4 et 7.5 demeurent ainsi valides. Il est alors possible, dès qu’un
régulateur RST est dimensionné, d’en analyser la stabilité, puis sa robustesse par
un calcul de marges. Quant à la synthèse d’un régulateur RST robuste, entre autres
par calibrage fréquentiel, c’est un problème complexe dont la solution générale
sort du cadre du présent ouvrage ; une approche itérative simple sera brièvement
décrite dans le paragraphe 10.5.4.

10.3.2 Imposition du modèle à poursuivre

La synthèse d’un régulateur RST consiste à déterminer les polynômes R(z),
S(z) et T (z) afin que :

B(z)T (z)
A(z)R(z) + B(z)S(z)

=
Bm(z)
Am(z)

(10.8)

Les degrés des polynômes R(z), S(z) et T (z) sont soumis aux contraintes exa-
minées dans la section 10.2 ; de surcroît, R(z) est monique et un intégrateur peut
être requis.
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EXEMPLE 10.2
Fixons :

R(z) =
1
b0

B(z)Am(z)

S(z) = 0

T (z) =
1
b0

A(z)Bm(z)

Le nombre b0 est le coefficient mis en jeu dans le terme de degré le plus élevé dans
le polynôme B(z) ; sa présence rend R(z) monique. Les conditions de causalité de
l’algorithme RST sont satisfaites pour autant que :

δR− δT = δB + δAm − (δA + δBm)
= δAm − δBm − (δA− δB) ≥ 0

δR − δS = δB + δAm ≥ 0

D’où :

δAm − δBm ≥ δA− δB

Le surplus de pôles du modèle à poursuivre Hm(z) = Bm(z)/Am(z) doit être
plus grand ou égal à celui du processus à commander H(z) = B(z)/A(z).

La fonction de transfert en boucle fermée est, avec ce choix, bien égale au
modèle à poursuivre :

B(z)T (z)
A(z)R(z) + B(z)S(z)

=
B(z)

1
b0

A(z)Bm(z)

A(z)
1
b0

B(z)Am(z)
=

Bm(z)
Am(z)

(10.9)

Comme S(z) = 0, aucune rétroaction de la grandeur à commander n’existe ; c’est
une solution en boucle ouverte dans laquelle les pôles et les zéros du système à
commander se simplifient selon (10.9). Cette solution est manifestement équiva-
lente à la commande a priori apparaissant dans la figure 9.66, bien sûr sans la
rétroaction en place dans ce schéma fonctionnel. En plus des inconvénients in-
trinsèques à une commande en boucle ouverte, par exemple un mauvais rejet des
perturbations, une telle approche peut dans la réalité se révéler inacceptable. En
effet, le modèle H(z) = B(z)/A(z) du processus à commander est toujours, à
cause de fluctuations et d’erreurs de modélisation, distinct de la fonction de trans-
fert H0(z) = B0(z)/A0(z) du système réel. Le régulateur RST dimensionné sur
la base du modèle H(z), mais appliqué au processus physique H0(z), conduit à
la fonction de transfert en boucle fermée réelle :

B0(z)T (z)
A0(z)R(z) + B0(z)S(z)

=
B0(z)

1
b0

A(z)Bm(z)

A0(z)
1
b0

B(z)Am(z)
=

B0(z)A(z)Bm(z)
A0(z)B(z)Am(z)
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On remarque immédiatement que le régime transitoire renferme des modes non
bornés dès que le système à commander est instable (zéros de A0(z) sur ou à
l’extérieur du cercle unité) ou à non-minimum de phase (zéros de B(z) sur ou à
l’extérieur du cercle unité).

EXEMPLE 10.3
Soit la sélection :

R(z) =
1
b0

B(z)
(
Am(z)− Bm(z)

)

S(z) = T (z) =
1
b0

A(z)Bm(z)

Le nombre b0 est le coefficient apparaissant dans le terme de degré le plus grand
dans le polynôme B(z). Là encore, la causalité du régulateur RST est assurée
quand le surplus de pôles du modèle à poursuivre Hm(z) = Bm(z)/Am(z) est
plus grand ou égal à celui du processus à commander H(z) = B(z)/A(z).

La fonction de transfert en boucle fermée est donnée par :

B(z)T (z)
A(z)R(z) + B(z)S(z)

=
B(z)

1
b0

A(z)Bm(z)

A(z)
1
b0

B(z)
(
Am(z)−Bm(z)

)
+ B(z)

1
b0

A(z)Bm(z)

=
Bm(z)
Am(z)

Vu que S(z) = T (z), la configuration du régulateur est ici classique, décrite par
l’équation (10.1). Bien qu’une rétroaction de la grandeur à commander soit réali-
sée, le régime transitoire peut en réalité contenir des modes indésirables. Il n’est au
surplus pas possible, avec le choix du polynôme R(z), d’y inclure un intégrateur.

!

Ces deux exemples illustrent des choix très simples, mais qui se révèlent in-
adaptés. Une approche permettant d’incorporer aisément un intégrateur, entre
autres, est maintenant élaborée.

Comme cela est mentionné dans le paragraphe 10.3.1, le modèle à poursuivre
Bm(z)/Am(z) peut être d’ordre inférieur à celui du système en boucle fermée

B(z)T (z)
A(z)R(z)+B(z)S(z) . Afin de vérifier l’égalité (10.8), il doit exister, dans l’expression

B(z)T (z)
A(z)R(z)+B(z)S(z) , des simplifications de zéros avec des pôles. Nous allons par
conséquent dimensionner les polynômes R(z), S(z) et T (z) de manière à provo-
quer ces simplifications.

Le polynôme B(z) est factorisé en un facteur B+(z), qui sera également un
facteur du polynôme caractéristique en boucle fermée A(z)R(z)+B(z)S(z) pour
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obtenir des simplifications dans B(z)T (z)
A(z)R(z)+B(z)S(z) , et un facteur B−(z), dont au-

cun zéro n’est zéro de A(z)R(z) + B(z)S(z) :

B(z) = B+(z)B−(z) (10.10)

Le membre de droite de cette égalité est appelé une factorisation spectrale de B(z).
Des informations sur la sélection de B+(z) seront fournies à la fin du présent
paragraphe ; signalons néanmoins ici que B+(z) est monique dans le but d’avoir
une factorisation (10.10) unique. L’égalité suivante est donc désirée :

B+(z)B−(z)T (z)
A(z)R(z) + B(z)S(z)

=
Bm(z)
Am(z)

(10.11)

Ou, de façon équivalente :

B+(z)B−(z)T (z)Am(z) =
(
A(z)R(z) + B(z)S(z)

)
Bm(z)

Etant donné qu’aucun zéro de B−(z) n’est zéro de A(z)R(z)+B(z)S(z), tous les
zéros de B−(z) doivent être des zéros de Bm(z) ; le polynôme B−(z) est ainsi un
facteur de Bm(z), qui prend la forme :

Bm(z) = B−(z)B′
m(z) (10.12)

B+(z) est un facteur de A(z)R(z)+B(z)S(z). Tous les zéros de B+(z) sont alors
des zéros de A(z)R(z)+B(z)S(z) et, vu que A(z)R(z)+B(z)S(z) = A(z)R(z)+
B+(z)B−(z)S(z), ce sont des zéros de A(z)R(z). Aucun zéro de B+(z) ne peut
être zéro de A(z) car A(z) et B(z) = B+(z)B−(z) n’ont par hypothèse aucun
facteur commun. Tous les zéros de B+(z) sont par conséquent des zéros de R(z) ;
on en conclut que B+(z) est un facteur de R(z), ce qui se traduit par :

R(z) = B+(z)R(z) (10.13)

Les polynômes R(z) et B+(z) étant tous deux moniques, il en est de même du po-
lynôme R(z). La relation (10.11) devient, après substitution de (10.12) et (10.13) :

B+(z)B−(z)T (z)
B+(z)

(
A(z)R(z) + B−(z)S(z)

) =
B−(z)B′

m(z)
Am(z)

En simplifiant :

T (z)
A(z)R(z) + B−(z)S(z)

=
B′

m(z)
Am(z)

Afin de vérifier cette égalité, le polynôme T (z) est pris égal au polynôme B′
m(z), à

un polynôme monique A0(z) en facteur près, et A(z)R(z)+B−(z)S(z) est choisi
égal à Am(z), au même facteur A0(z) près :

T (z) = B′
m(z)A0(z) (10.14)

A(z)R(z) + B−(z)S(z) = Am(z)A0(z) (10.15)

Le facteur A0(z) est fréquemment rencontré sous le nom de polynôme observa-
teur.
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En résumé, les polynômes B(z)T (z) et A(z)R(z)+B(z)S(z) sont en quelque
sorte façonnés pour qu’ils contiennent tous deux en facteurs les polynômes A0(z)
et B+(z). La fonction de transfert en boucle fermée B(z)T (z)

A(z)R(z)+B(z)S(z) se simplifie
mathématiquement par les polynômes A0(z) et B+(z) pour aboutir au modèle à
poursuivre Bm(z)/Am(z) :

B(z)T (z)
A(z)R(z) + B(z)S(z)

=
B+(z)B−(z)T (z)

B+(z)
(
A(z)R(z) + B−(z)S(z)

)

=
B+(z)B−(z)B′

m(z)A0(z)
B+(z)Am(z)A0(z)

=
A0(z)B+(z)Bm(z)
A0(z)B+(z)Am(z)

=
Bm(z)
Am(z)

Lorsqu’un intégrateur est inclus, R(z) = (z − 1)ℓR′(z). Ainsi, l’égalité (10.8)
devient :

B(z)T (z)
A(z)(z − 1)ℓR′(z) + B(z)S(z)

=
Bm(z)
Am(z)

La démarche précédente, avec (z − 1)ℓR′(z) en lieu et place de R(z), demeure
valide. En particulier, les zéros de B+(z) doivent être des zéros de (z − 1)ℓR′(z) ;
aucun zéro de B+(z) ne pouvant être égal à 1 pour des motifs qui seront éclaircis
ci-dessous, les zéros de B+(z) sont des zéros de R′(z) et B+(z) est un facteur de
R′(z) :

R′(z) = B+(z)R′(z)

R′(z) est monique car R′(z) et B+(z) sont moniques ; en outre, il est évident que
R(z) = (z − 1)ℓR′(z). L’équation (10.15) prend maintenant la forme :

A(z)(z − 1)ℓR′(z) + B−(z)S(z) = Am(z)A0(z) (10.16)

Quelques commentaires relatifs au choix des polynômes B+(z) et A0(z) sont
maintenant proposés.

Par le principe même de la synthèse du régulateur RST, les pôles du système
en boucle fermée sont, pour le montage en asservissement, mathématiquement
les pôles du modèle à poursuivre Hm(z) = Bm(z)/Am(z), à savoir les zéros de
Am(z). En réalité, le modèle du processus à commander H(z) = B(z)/A(z),
sur lequel se fonde la synthèse, est distinct du système à commander H0(z) =
B0(z)/A0(z) physique, ceci étant dû à des fluctuations et à des erreurs de modéli-
sation. Le processus en boucle fermée est donc décrit par la fonction de transfert

B0(z)T (z)
A0(z)R(z)+B0(z)S(z) , qui ne se simplifie nullement et dont les pôles sont les zéros
du polynôme caractéristique en boucle fermée A0(z)R(z)+B0(z)S(z). Ces zéros
peuvent être plus nombreux que les zéros de Am(z) et, le plus souvent, il n’existe
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même aucun zéro commun ! Toutefois, quand les fonctions de transfert H(z) et
H0(z) sont voisines, suite à une modélisation suffisamment fine, les polynômes
caractéristiques A(z)R(z) + B(z)S(z) et A0(z)R(z) + B0(z)S(z) diffèrent peu ;
vu que les zéros de tout polynôme varient continûment avec leurs coefficients, les
zéros de ces polynômes sont proches. En multipliant les deux membres de (10.15)
(ou (10.16)) par B+(z), nous avons A(z)R(z) + B(z)S(z) = Am(z)A0(z)B+(z) ;
par conséquent, les zéros de A0(z)R(z) + B0(z)S(z) sont environ les zéros de
Am(z), de A0(z) et de B+(z) : les pôles du système en boucle fermée réel sont ap-
proximativement les zéros de Am(z), auxquels s’ajoutent les zéros du polynôme
observateur A0(z) et les zéros de B+(z). Les pôles engendrent des modes, comme
on l’a montré dans le paragraphe 4.5.2 ; il est vital d’enrayer l’influence des modes
parasites découlant des zéros de A0(z) et de B+(z), modes superposés à ceux
réellement désirés, lesquels sont issus des zéros de Am(z).

Il importe de se souvenir que, si un pôle p d’une fonction de transfert est
proche, tout en étant différent, de l’un de ses zéros b, il n’y a pas de simplification
mathématique des facteurs z − p et z − b. Un signal c pk subsiste à la sortie. Le
coefficient c, proportionnel à l’écart p − b (§ 4.5.2), est d’autant plus faible que
le pôle est près du zéro. Toutefois, le mode pk peut prendre une importance pré-
pondérante suivant la valeur de p, notamment si |p| > 1. Dans le contexte de la
synthèse du régulateur RST, une simplification par les polynômes A0(z) et B+(z)
est recherchée. L’emplacement des zéros de ces polynômes est dès lors vitale pour
garantir une décroissance acceptable des modes parasites.

Le polynôme observateur A0(z) est fixé par l’utilisateur. Au vu de la discus-
sion précédente, ses zéros doivent nécessairement être à l’intérieur du cercle unité ;
toutefois, cette condition n’est généralement pas suffisante. Les modes parasites
dus à A0(z) sont en pratique soumis à de sévères conditions absolue et relative
d’amortissement afin que leur décroissance temporelle soit plus rapide que celle
des modes effectivement souhaités (sect. 9.4). Typiquement, les zéros de A0(z)
sont choisis dans une région comme celle en tramé de la figure 10.7.

Im

1

1
Re

Fig. 10.7 Région dans laquelle doivent se situer les zéros des polynômes A0(z) et B+(z).
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Un polynôme à réponse pile, caractérisé par A0(z) = zδA0 , est parfois sélec-
tionné ; δA0 dénote le degré de A0(z). Il découle du paragraphe 4.4.1 que le signal
parasite provenant du polynôme observateur est alors simplement une somme
pondérée et finie d’impulsions unité apparaissant aux instants 0, h, . . . , δA0h.
Plus souvent, la dynamique associée au polynôme observateur est prise deux à
trois fois plus rapide que la dynamique principale du modèle à poursuivre ; en
d’autres termes, les zéros du polynôme observateur sont, en module, choisis deux
à trois fois plus petits que le ou les pôles dominants de Hm(z). Les modes gé-
nérés avec cette option s’amortissent plus en douceur que dans une réponse pile,
exigeant un effort de commande modéré.

Les zéros du polynôme B+(z) doivent pour les mêmes raisons être à l’in-
térieur du cercle unité. Une restriction supplémentaire consiste à imposer des
conditions absolue et relative d’amortissement. Dans ce cas, les zéros de B+(z)
appartiennent à la région en tramé de la figure 10.7. Rappelons que des processus
à commander à non-minimum de phase possèdent des zéros sur ou à l’extérieur
du cercle unité. L’incorporation de ces zéros dans l’ensemble des zéros de B+(z)
est à bannir, puisqu’ils conduisent à l’instabilité. Ils doivent impérativement être
des zéros de B−(z) et, comme Bm(z) = B−(z)B′

m(z), ils doivent également être
des zéros du modèle à poursuivre.

Les polynômes R0(z), S0(z) et T 0(z) réellement implantés sont distincts des
polynômes R(z), S(z) et T (z) calculés, principalement à cause de la quantifica-
tion sur les coefficients de ces polynômes. De telles erreurs sont beaucoup plus
faibles que celles intervenant sur le système à commander et peuvent par consé-
quent être négligées.

Jusqu’à maintenant, l’accent a été mis sur le montage en asservissement. Qu’en
est-il du montage en régulation et, plus généralement, d’autres fonctions de trans-
fert ? Il ressort de la section 10.2 et du paragraphe 5.4.2 que, pour une perturba-
tion constante (ou lente), la fonction de transfert en régulation est :

H(z)
1 + K(z)H(z)

=
B(z)R(z)

A(z)R(z) + B(z)S(z)

En tenant compte de la factorisation spectrale (10.10) et vu que la synthèse assure
l’égalité A(z)R(z) + B(z)S(z) = Am(z)A0(z)B+(z) :

B(z)R(z)
A(z)R(z) + B(z)S(z)

=
B+(z)B−(z)R(z)
Am(z)A0(z)B+(z)

=
B+(z)B−(z)R(z)
B+(z)Am(z)A0(z)

=
B−(z)R(z)
Am(z)A0(z)

Ainsi, la réponse en régulation contient les mêmes modes qu’en asservissement,
provenant des zéros de Am(z), auxquels se superposent des modes parasites issus
des zéros de A0(z). Ces modes parasites sont présents même dans le cas mathé-
matique idéal, puisque le polynôme A0(z) n’est ici plus simplifié. Si des zéros de
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A0(z) se trouvent à l’extérieur du cercle unité, la stabilité BIBO est ruinée. Quand
les variations de la perturbation sont significatives, les zéros de 1 + K(z)H(z), en
d’autres termes les zéros du polynôme caractéristique A(z)R(z)+B(z)S(z), sont
les pôles de la réponse du montage en régulation (§ 5.4.2). Le polynôme B+(z)
ne se simplifie pas et on retrouve les modes désirés découlant de Am(z), auxquels
s’ajoutent les modes parasites engendrés par A0(z) et B+(z). Ces derniers ont gé-
néralement plus d’importance qu’en asservissement ; en effet, les polynômes ne se
simplifiant mathématiquement pas, les coefficients pondérant les modes parasites
ne sont pas nécessairement petits.

La fonction de transfert U(z)/Yc(z) entre la consigne et la grandeur de
commande se calcule facilement en éliminant Y (z) des égalités R(z)U(z) =
T (z)Yc(z)− S(z)Y (z) et Y (z)/U(z) = B(z)/A(z) :

U(z)
Yc(z)

=
A(z)T (z)

A(z)R(z) + B(z)S(z)

Et, comme T (z) = B′
m(z)A0(z) et A(z)R(z) + B(z)S(z) = Am(z)A0(z)B+(z) :

U(z)
Yc(z)

=
A(z)B′

m(z)A0(z)
Am(z)A0(z)B+(z)

=
A0(z)A(z)B′

m(z)
A0(z)Am(z)B+(z)

=
A(z)B′

m(z)
Am(z)B+(z)

Le polynôme B+(z) apparaît au dénominateur de cette fonction de transfert : les
modes qui en résultent sont toujours contenus dans u(k). Par exemple, un zéro
de B+(z) négatif génère assurément un mode sonnette (§ 4.5.2). Si des zéros de
B+(z) sont à l’extérieur du cercle unité, la stabilité interne (§ 7.4.1) est détruite !
Dans les conditions mathématiques idéales Y (z) = Bm(z)

Am(z)Yc(z) et le polynôme
B+(z) n’est pas un facteur de Am(z) : aucun mode parasite n’affecte y(k). Ceci
n’est toutefois correct qu’aux instants d’échantillonnage ; les modes dans le signal
u(k) générés par B+(z) influencent la grandeur à commander analogique y(k)
entre les instants d’échantillonnage.

Au vu de ces considérations, il est primordial de rappeler qu’une simplifica-
tion pôle-zéro dans une fonction de transfert en boucle fermée ne signifie aucu-
nement que cette simplification a lieu dans les autres fonctions de transfert en
boucle fermée (§ 5.4.4). Dans le contexte du présent paragraphe, il y a mathéma-
tiquement simplification par les polynômes A0(z) et B+(z) dans le montage en
asservissement, par B+(z) en régulation et par A0(z) dans la fonction de trans-
fert U(z)/Yc(z). Pour le surplus, en conditions réelles où le modèle du système
à commander diffère modérément du processus physique, il existe toujours des
modes parasites dus aux polynômes A0(z) et B+(z) ; afin de maîtriser l’amortis-
sement du régime transitoire simultanément dans toutes les situations, il faut que
les zéros de A0(z) et de B+(z) appartiennent à un domaine tel que celui apparais-
sant en tramé dans la figure 10.7.
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Finalement, que se passe-t-il avec des fonctions de transfert nominale H(z) =
B(z)/A(z) et réelle H0(z) = B0(z)/A0(z) différant substantiellement suite à une
modélisation manquant de finesse ? Dans ces circonstances, les polynômes carac-
téristiques en boucle fermée nominal A(z)R(z)+B(z)S(z) = Am(z)A0(z)B+(z)
et réel A0(z)R(z) + B0(z)S(z) ne sont plus proches ; il en est dès lors de même
pour leurs zéros. Les conséquences peuvent se révéler critiques. Par exemple, avec
des marges de robustesse inadéquates, les pôles en boucle fermée réels ne sont pas
forcément à l’intérieur du cercle unité, bien que les zéros des polynômes Am(z),
A0(z) et B+(z) le soient, anéantissant la stabilité. Le résultat général suivant
montre que, en présence d’incertitudes, la fonction de transfert réelle est égale au
modèle à poursuivre Hm(z) multiplié par un facteur distinct de l’unité, lequel fait
intervenir l’écart 1

H0(z) −
1

H(z) entre les inverses des fonctions de transfert réelle
H0(z) et nominale H(z).

Théorème 10.1

Soit un régulateur RST dimensionné sur la base du modèle H(z) = B(z)/A(z)
du système à commander. L’implantation de ce régulateur sur le processus à com-
mander réel H0(z) = B0(z)/A0(z) conduit, pour le montage en asservissement,
à la fonction de transfert suivante :

Hm(z)
1

1 + R(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)

Am(z)A0(z)

Démonstration

La fonction de transfert réelle du montage en asservissement s’écrit :

B0(z)T (z)
A0(z)R(z) + B0(z)S(z)

=
Bm(z)
Am(z)

· 1
Bm(z)
Am(z)

· R(z)
T (z)

(
A0(z)
B0(z)

+
S(z)
R(z)

)

= Hm(z)
1

Bm(z)R(z)
Am(z)T (z)

(
1

H0(z)
+

S(z)
R(z)

)

Comme Bm(z) = B−(z)B′
m(z) et T (z) = B′

m(z)A0(z), cette dernière expression
devient :

Hm(z)
1

B−(z)B′
m(z)R(z)

Am(z)B′
m(z)A0(z)

(
1

H0(z)
+

S(z)
R(z)

)

= Hm(z)
1

B−(z)R(z)
Am(z)A0(z)

(
1

H0(z)
+

S(z)
R(z)

)
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D’autre part, (10.15) implique :

S(z) =
Am(z)A0(z)−A(z)R(z)

B−(z)

=
Am(z)A0(z)B+(z)−A(z)R(z)

B(z)
D’où :

S(z)
R(z)

=
Am(z)A0(z)B+(z)

B(z)R(z)
− A(z)

B(z)

=
Am(z)A0(z)B+(z)

B(z)R(z)
− 1

H(z)
En portant cette égalité dans la fonction de transfert en boucle fermée :

Hm(z)
1

B−(z)R(z)
Am(z)A0(z)

(
1

H0(z)
+

S(z)
R(z)

)

= Hm(z)
1

B−(z)R(z)
Am(z)A0(z)

(
1

H0(z)
+

Am(z)A0(z)B+(z)
B(z)R(z)

− 1
H(z)

)

= Hm(z)
1

1 + R(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)

Am(z)A0(z)

10.3.3 Equation de Diophante

Soient des polynômes A(z), B(z) et C(z) donnés et des polynômes R(z) et
S(z) inconnus. Dans ce paragraphe consacré à la théorie générale, les polynômes
A(z) et R(z) ne sont pas forcément moniques, afin de se conformer à l’usage en
vigueur en mathématiques. De surcroît, les polynômes A(z) et B(z) peuvent pos-
séder des facteurs communs et, sans perte de généralité, δA ≥ δB. L’égalité poly-
nomiale suivante est appelée équation de Diophante, équation diophantine, identité
d’Aryabhatta ou encore identité de Bezout :

A(z)R(z) + B(z)S(z) = C(z) (10.17)

Les relations (10.15) et (10.16), dans lesquelles il faut déterminer les polynômes
R(z) ou R′(z) et S(z), sont des équations de Diophante. La question de l’exis-
tence d’une solution fait l’objet du théorème suivant. Mais avant de passer à son
énoncé et à sa démonstration, il est utile de rappeler la définition du plus grand
commun diviseur de deux polynômes A(z) et B(z), dont l’un au moins est dif-
férent du polynôme nul. Un diviseur commun de A(z) et B(z) est un polynôme
qui divise à la fois A(z) et B(z). Le plus grand commun diviseur de A(z) et B(z)
est un polynôme D(z) tel que D(z) soit un diviseur commun de A(z) et B(z), et
que D(z) soit divisible par tout diviseur commun de A(z) et B(z). Le plus grand
commun diviseur de A(z) et B(z) est dénoté (A, B). Il est unique à un facteur
numérique non nul près.
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Théorème 10.2

Soient A(z), B(z) et C(z) des polynômes dont les coefficients sont des nombres
réels. Alors l’équation de Diophante (10.17) possède une solution R(z) et S(z)
si et seulement si le plus grand commun diviseur de A(z) et B(z) est un facteur
de C(z).

Démonstration
Afin de simplifier l’écriture, l’argument z des polynômes est omis tout au long

de cette démonstration. Posons A0 = A et A1 = B. Soit Q1 le quotient de la
division de A0 par A1 et A2 son reste :

A0 = Q1A1 + A2 δA2 < δA1

Tout polynôme divise A0 et A1 si et seulement s’il divise A1 et A2 ; par conséquent,
le plus grand commun diviseur de A0 est A1 est identique au plus grand commun
diviseur de A1 et A2 :

(A, B) = (A0, A1) = (A1, A2)

En divisant A1 par A2, si le polynôme A2 n’est pas nul :

A1 = Q2A2 + A3 δA3 < δA2

Et :

(A1, A2) = (A2, A3)

En continuant de la sorte et en rassemblant les résultats :

A0 = Q1A1 + A2 δA2 < δA1

A1 = Q2A2 + A3 δA3 < δA2

...
An−3 = Qn−2An−2 + An−1 δAn−1 < δAn−2 (10.18)
An−2 = Qn−1An−1 + An δAn < δAn−1 (10.19)

(A, B) = (A0, A1) = (A1, A2) = . . . = (An−1, An) (10.20)

On relève que δB = δA1 > δA2 > δA3 > . . . > δAn−1 > δAn : les restes des
divisions possèdent des degrés de plus en plus petits si bien que le procédé doit
nécessairement s’arrêter en un nombre fini d’étapes avec une division sans reste.
En dénotant n l’entier tel que le reste An+1 est nul :

An−1 = QnAn + 0
(An−1, An) = (An, 0) (10.21)

Le plus grand commun diviseur du polynôme non nul An et du polynôme nul 0
est bien évidemment An ; (10.20) et (10.21) impliquent que le plus grand commun
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diviseur des polynômes A et B est le dernier reste non nul des divisions polyno-
miales :

(A, B) = An

Il s’agit d’une méthode de calcul du plus grand commun diviseur de deux poly-
nômes appelée algorithme d’Euclide.

Soit R et S une solution de l’équation diophantine (10.17) . Les polynômes
A et B sont maintenant écrits en faisant apparaître en facteur leur plus grand
commun diviseur An :

A = AnA′

B = AnB′

Alors :

AR + BS = An(A′R + B′S) = C

Nous en concluons que le plus grand commun diviseur de A et B est un facteur
de C.

Réciproquement, si le plus grand commun diviseur de A et B est un facteur
de C, il s’agit de prouver qu’il existe une solution à l’équation diophantine. Pour
ce faire, l’algorithme d’Euclide est exploité à rebours ; (10.19) fournit :

An = An−2 −Qn−1An−1 (10.22)

Ainsi, (A, B) = An s’exprime comme une combinaison linéaire des polynômes
An−2 et An−1. L’étape précédente (10.18) de l’algorithme d’Euclide donne :

An−1 = An−3 −Qn−2An−2

Par substitution dans (10.22) :

An = An−2 −Qn−1(An−3 −Qn−2An−2)
= −Qn−1An−3 + (1 + Qn−1Qn−2)An−2

An est maintenant une combinaison linéaire des polynômes An−3 et An−2. En
poursuivant ces substitutions, on en déduit que An est une combinaison linéaire
des polynômes A0 = A et A1 = B :

An = R′A + S′B (10.23)

Comme An est par hypothèse un facteur du polynôme C :

C = AnC′

D’où, en multipliant les deux membres de (10.23) par C′ :

A(R′C′) + B(S′C′) = C

Une solution R = R′C′ et S = S′C′ a donc été construite. !



24 Synthèse algébrique du régulateur RST

Dénotons R0(z) et S0(z) une solution de l’équation diophantine :

A(z)R0(z) + B(z)S0(z) = C(z)

Dans ce cas, R(z) = R0(z) + Q(z)B(z) et S(z) = S0(z)−Q(z)A(z), où Q(z) est
un polynôme quelconque, constitue aussi une solution :

A(z)
(
R0(z) + Q(z)B(z)

)
+B(z)

(
S0(z)−Q(z)A(z)

)

= A(z)R0(z) + B(z)S0(z) = C(z)

En d’autres termes, s’il existe une solution R0(z) et S0(z), une infinité d’autres
solutions peuvent être trouvées en lui additionnant et soustrayant des multiples
de B(z) et A(z). Parmi toutes ces solutions, il est toujours possible d’en trouver
une, dite à degré minimal, telle que le degré δS de S(z) soit inférieur au degré δA
de A(z) :

δS < δA (10.24)

En effet, si δS0 ≥ δA, divisons S0(z) par A(z) :

S0(z) = Q(z)A(z) + S(z) (10.25)

Q(z) est le quotient de cette division et S(z) son reste, qui satisfait δS < δA.
L’égalité (10.25) fournit :

S(z) = S0(z)−Q(z)A(z) (10.26)

On définit :

R(z) = R0(z) + Q(z)B(z) (10.27)

Les polynômes R(z) et S(z) constituent une solution de l’équation diophantine
vérifiant δS < δA. Les égalités (10.26) et (10.27) forment une paramétrisation de
Youla de la solution.

En suivant la même démarche, il est facile de constater que, dans l’ensemble
des solutions, l’une d’entre elles vérifie δR < δB. Toutefois, δS ne satisfait géné-
ralement plus (10.24).

Dès que les degrés des polynômes R(z) et S(z) ont été sélectionnés, une façon
de résoudre l’équation diophantine consiste à égaler les coefficients des termes de
même degré des polynômes A(z)R(z)+B(z)S(z) et C(z). Il en résulte un système
d’équations algébriques linéaires donnant les coefficients inconnus des polynômes
R(z) et S(z).

EXEMPLE 10.4
Soient les polynômes :

A(z) = a0z
3 + a1z

2 + a2z + a3

B(z) = b0z + b1

C(z) = c0z
5 + c1z

4 + c2z
3 + c3z

2 + c4z + c5
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Une solution à degré minimal caractérisée par δS < δA est recherchée. En fait,
sous certaines conditions détaillées dans le paragraphe 10.3.4, une et une seule
solution vérifiant δR = δS = δA− 1 existe :

R(z) = r0z
2 + r1z + r2

S(z) = s0z
2 + s1z + s2

A(z), B(z) et C(z) sont connus ; il faut trouver R(z) et S(z) solution de l’équation
de Diophante :

(a0z
3 + a1z

2 + a2z + a3)(r0z
2 + r1z + r2) + (b0z + b1)(s0z

2 + s1z + s2)

= c0z
5 + c1z

4 + c2z
3 + c3z

2 + c4z + c5

En regroupant les termes de même degré :

a0r0z
5 + (a0r1 + a1r0)z4 + (a0r2 + a1r1 + a2r0 + b0s0)z3

+ (a1r2 + a2r1 + a3r0 + b0s1 + b1s0)z2

+ (a2r2 + a3r1 + b0s2 + b1s1)z + a3r2 + b1s2

= c0z
5 + c1z

4 + c2z
3 + c3z

2 + c4z + c5

D’où, en égalant les coefficients des termes de degré identique :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0r0 = c0

a1r0 + a0r1 = c1

a2r0 + a1r1 + a0r2 + b0s0 = c2

a3r0 + a2r1 + a1r2 + b1s0 + b0s1 = c3

a3r1 + a2r2 + b1s1 + b0s2 = c4

a3r2 + b1s2 = c5

!

Dans les applications relativement simples, le système d’équations algébriques
linéaires issu de l’équation de Diophante peut être résolu symboliquement. Cette
approche est facilitée quand les termes du membre de gauche de l’équation ont
une forme factorisée, comme cela sera ultérieurement illustré dans des exemples.
Une mise sous forme matricielle met en lumière une structure intéressante.

EXEMPLE 10.5
Pour l’exemple précédent :
⎡

⎢⎢⎢⎢⎢⎢⎣

a0 0 0 0 0 0
a1 a0 0 0 0 0
a2 a1 a0 b0 0 0
a3 a2 a1 b1 b0 0
0 a3 a2 0 b1 b0

0 0 a3 0 0 b1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

r0

r1

r2

s0

s1

s2

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

c3

c4

c5

⎤

⎥⎥⎥⎥⎥⎥⎦
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Nous remarquons dans la matrice ci-dessus que la première colonne inclut les
coefficients du polynôme A(z) ; la deuxième s’obtient à partir de la première par
décalage d’un cran vers le bas ; la troisième découle de la deuxième à nouveau par
décalage d’un cran. Les autres colonnes sont construites de la même manière avec
les coefficients du polynôme B(z). !

Soient :

A(z) = a0z
δA + a1z

δA−1 + · · · + aδA

B(z) = b0z
δB + b1z

δB−1 + · · · + bδB

C(z) = c0z
δR+δS+1 + c1z

δR+δS + · · · + cδR+δS+1

R(z) = r0z
δR + r1z

δR−1 + · · · + rδR

S(z) = s0z
δS + s1z

δS−1 + · · · + sδS

Le système linéaire associé à l’équation diophantine présente la struture générale
suivante :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 . . . 0 0 0 . . . 0

a1 a0
. . .

...
...

...
. . .

...

a2 a1
. . . 0 b0 0

. . . 0
... a2

. . . a0 b1 b0
. . .

...
...

...
. . . a1 b2 b1

. . . 0
...

...
. . . a2

... b2
. . . b0

aδA

...
. . .

... bδB

...
. . . b1

0 aδA
. . .

... 0 bδB
. . . b2

...
...

. . .
...

...
...

. . .
...

0 0 . . . aδA 0 0 . . . bδB

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0

r1
...
...

rδR

s0

s1
...
...

sδS

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1
...
...

cδR

cδR+1
...
...
...

cδR+δS+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
δR+1 colonnes

︸ ︷︷ ︸
δS+1 colonnes

(10.28)

La matrice carrée d’ordre δR + δS + 2 de ce système est dite matrice de Sylvester.
La sélection des degrés des polynômes R(z) et S(z), vitale pour fixer complè-
tement la matrice de Sylvester, sera explorée avec un grand soin dans les para-
graphes suivants. La résolution de (10.28) peut s’effectuer par élimination gaus-
sienne ou via une factorisation standard de la matrice de Sylvester.

Une alternative séduisante, conceptuellement fort différente des précédentes,
consiste à tirer parti de la démonstration constructive du théorème 10.2, dans
laquelle une solution de l’équation diophantine est élaborée en mettant à profit
l’algorithme d’Euclide.
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EXEMPLE 10.6
Une solution de l’équation de Diophante (10.17) est recherchée, avec :

A(z) = z3 − 2z2 − z + 2

B(z) = z2 − 2z

C(z) = z5 − 4z4 + 4z3 + z − 2

L’algorithme d’Euclide débute par la division polynomiale de A0(z) = A(z) par
A1(z) = B(z) :

A0(z) = z3 − 2z2 − z + 2 A1(z) = z2 − 2z

z3 − 2z2 z = Q1(z)

− z + 2 = A2(z)

Puis de A1(z) par A2(z) :

A1(z) = z2 − 2z A2(z) = −z + 2

z2 − 2z −z = Q2(z)

0 = A3(z)

Nous en concluons que (A, B) = A2(z) = −z + 2. L’algorithme d’Euclide est
maintenant considéré à rebours :

A2(z) = A0(z)−Q1(z)A1(z)
= A(z)−Q1(z)B(z)
= A(z)− zB(z)

(A, B) = A2(z) s’exprime bien comme une combinaison linéaire R′(z)A(z) +
S′(z)B(z) des polynômes A(z) et B(z), avec :

R′(z) = 1 S′(z) = −z

Il s’agit encore de déterminer le facteur C′(z) inclus dans le polynôme C(z) ; pour
ce faire, C(z) est divisé par A2(z) :

C(z) = z5 − 4z4 + 4z3 + z − 2 A2(z) = −z + 2

z5 − 2z4 −z4 + 2z3 − 1 = C′(z)

− 2z4 + 4z3 + z − 2
− 2z4 + 4z3

z − 2
z − 2

0
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Le reste de la division est nul ; le plus grand commun diviseur de A(z) et B(z) est
un facteur de C(z), garantissant l’existence d’une solution à l’équation diophan-
tine. Une solution est :

R0(z) = R′(z)C′(z) = −z4 + 2z3 − 1

S0(z) = S′(z)C′(z) = z5 − 2z4 + z

Elle vérifie δS0 ≥ δA et n’est de ce fait pas à degré minimal. Une solution à degré
minimal s’obtient simplement en divisant S0(z) par A(z) :

S0(z) = z5 − 2z4 + z A(z) = z3 − 2z2 − z + 2

z5 − 2z4 − z3 + 2z2 z2 + 1 = Q(z)

z3 − 2z2 + z

z3 − 2z2 − z + 2

2z − 2 = S(z)
Soit :

R(z) = R0(z) + Q(z)B(z)

= −z4 + 2z3 − 1 + (z2 + 1)(z2 − 2z)

= z2 − 2z − 1

La solution R(z) = z2 − 2z − 1 et S(z) = 2z − 2 est à degré minimal. !

Les opérations entrant en jeu dans la méthode fondée sur l’algorithme d’Eu-
clide, dont un exemple vient d’être présenté, peuvent être rassemblées sous une
forme matricielle, conduisant à l’algorithme d’Euclide étendu ; pour le surplus, cet
algorithme génère une solution à degré minimal. Il est particulièrement rapide,
car tirant pleinement bénéfice de la nature polynomiale du problème, et jouit d’un
bon conditionnement numérique.

10.3.4 Existence et unicité d’un régulateur RST causal à degré minimal

Le polynôme T (z) d’un régulateur RST découle de (10.14) ; les polynômes
R(z) et S(z) sont fournis par l’équation (10.15) de type diophantine, et R(z) =
B+(z)R(z). Les polynômes Am(z), A0(z), A(z) et B+(z) sont choisis moniques.
En outre, δA > δB. Les polynômes A(z) et B(z) sont supposés n’avoir aucun
facteur commun (autre que numérique) ; il en est donc de même pour A(z) et
B−(z) : le plus grand commun diviseur de A(z) et B−(z) est un nombre et le
théorème 10.2 permet d’affirmer qu’une solution R(z) et S(z) existe. En pré-
sence d’un intégrateur, les polynômes R′(z) et S(z) sont une solution de (10.16)
et R(z) = (z − 1)ℓR′(z) = (z − 1)ℓB+(z)R′(z). Il va de soi que, dans ce cas, les
inconnues sont R′(z) et S(z), tandis que les polynômes connus sont A(z)(z − 1)ℓ

et B−(z), de même que le second membre Am(z)A0(z). Par ailleurs, on présume
que B−(z) ne renferme pas de zéro z = 1 afin qu’il n’y ait pas de facteur com-
mun à A(z)(z − 1)ℓ et B−(z). Cette hypothèse est pratiquement toujours vérifiée
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car nous savons (ex. 4.28) qu’un zéro z = 1 reflète un comportement dérivateur
rarissime dans les processus à commander.

Afin de ne pas se restreindre à des situations particulières, les polynômes
Am(z) et A0(z) constituant le second membre de l’équation de Diophante peuvent
être quelconques (sauf que, comme déjà mentionné, ils sont moniques et leurs zé-
ros sont tous à l’intérieur du cercle unité).

On sait qu’il existe une infinité de solutions et que, pour l’une d’entre elles,
δS < δA ou δS < δ

(
A(z − 1)ℓ

)
= δA + ℓ en présence d’un intégrateur. Le

théorème suivant révèle que cette solution particulière, à degré minimal, permet
de construire un régulateur RST remplissant les conditions de causalité exprimées
dans la section 10.2.

Théorème 10.3

Il existe un régulateur RST, à degré minimal, tel que δR ≥ δT et δR ≥ δS si les
inégalités suivantes sont respectées :

δAm − δBm ≥ δA− δB (10.29)

δA0 ≥ 2 δA− δAm − δB+ − 1 (10.30)

Lorsqu’un intégrateur est inséré, il existe un régulateur RST, à degré minimal,
tel que δR ≥ δT et δR ≥ δS si l’inégalité (10.29) et l’inégalité suivante sont
satisfaites :

δA0 ≥ 2 δA− δAm − δB+ + ℓ− 1 (10.31)

Démonstration
En multipliant les deux membres de (10.15) par B+(z), nous obtenons :

A(z)R(z) + B(z)S(z) = Am(z)A0(z)B+(z) (10.32)

Ainsi :

δ(AR + BS) = δ(AmA0B
+) = δAm + δA0 + δB+ (10.33)

L’inégalité (10.30) est par hypothèse vérifiée, conduisant à :

δAm + δA0 + δB+ ≥ 2 δA− 1 (10.34)

En combinant (10.33) et (10.34) :

δ(AR + BS) ≥ 2 δA− 1 (10.35)

La solution retenue remplit la condition δS < δA, équivalente à δS ≤ δA− 1 ; de
surcroît, δB < δA ou δB ≤ δA− 1 car la fonction rationnelle H(z) = B(z)/A(z)
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est strictement propre ; donc δ(BS) = δB + δS ≤ 2δA − 2 et, pour respecter
l’inégalité (10.35) :

δ(AR) > δ(BS)

Alors :

δ(AR + BS) = δ(AR) (10.36)

Les égalités (10.33) et (10.36) fournissent :

δ(AR) = δA + δR = δAm + δA0 + δB+

On en déduit :

δR = δAm + δA0 + δB+ − δA (10.37)

Par ailleurs, vu que T (z) = B′
m(z)A0(z) :

δT = δB′
m + δA0 (10.38)

Partons maintenant de (10.29) ; en tenant compte de Bm(z) = B−(z)B′
m(z) et

B(z) = B+(z)B−(z), (10.29) peut s’écrire :

δAm − (δB− + δB′
m) ≥ δA− (δB+ + δB−)

Ou encore, en ajoutant δA0 aux deux membres de cette inégalité et après réorga-
nisation :

δAm + δA0 + δB+ − δA ≥ δB′
m + δA0 (10.39)

La première condition de causalité δR ≥ δT découle de (10.37), (10.38) et (10.39).
En vertu de (10.35) et (10.36) :

δ(AR) = δA + δR ≥ 2 δA− 1

Ou, de façon équivalente :

δR ≥ δA− 1 (10.40)

Comme δS ≤ δA− 1, il découle de (10.40) que la condition de causalité δR ≥ δS
est satisfaite.

La première partie du théorème est ainsi démontrée. Quant à la seconde, trai-
tant la situation où un intégrateur est incorporé, elle se démontre de la même
manière. Les détails sont laissés aux soins du lecteur. !

La condition (10.29), déjà rencontrée dans l’exemple 10.2, est particulière-
ment facile à interpréter physiquement : le surplus de pôles, autrement dit le re-
tard, du modèle à poursuivre doit être supérieur ou égal au retard du système
à commander ; par conséquent, un régulateur RST causal ne peut pas compen-
ser un retard dans le processus à commander, ce qui est en parfait accord avec
l’intuition.
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Il a toujours été admis que le polynôme R(z) pouvait être choisi monique.
Un examen de la démonstration du théorème 10.3 révèle que c’est effectivement
le cas. En effet, le membre de droite de (10.32) est un polynôme monique puisque
Am(z), A0(z) et B+(z) sont moniques. Comme δ(AR + BS) = δ(AR) (équation
(10.36)) et vu que A(z) est monique, le polynôme R(z) est lui aussi monique.

Il résulte du paragraphe 10.3.3 que, outre la solution à degré minimal vérifiant
δS < δA, une autre solution potentiellement intéressante est celle satisfaisant
δR < δB−, inégalité équivalente à δR < δB. Sous les hypothèses du théorème
10.3, cette solution est néanmoins à rejeter car conduisant à un régulateur RST
non causal. Pour le prouver, supposons δR < δB :

δA > δB > δR

L’inégalité (10.35) conduit à :

δ(AR + BS) ≥ 2δA− 1 > δA + δR− 1

Ou :

δ(AR + BS) ≥ δA + δR

Ceci n’est possible que si :

δ(BS) ≥ δ(AR)

Or, comme δB < δA, cette dernière inégalité ne peut être satisfaite que lorsque
δS > δR, excluant la causalité du régulateur.

La démonstration du théorème 10.3 fixe le degré du polynôme R(z) selon la
formule (10.37) ; vu que R(z) = B+(z)R(z), on a δR = δB+ + δR et :

δR = δR− δB+ = δAm + δA0 − δA

En présence d’un intégrateur, nous avons R(z) = (z−1)ℓB+(z)R′(z) ; donc δR =
δB+ + δR′(z) + ℓ et :

δR′ = δR − δB+ − ℓ = δAm + δA0 − δA− ℓ

La solution retenue, à degré minimal, vérifie δS ≤ δA − 1 ; ainsi, le degré de
S(z) est dans l’intervalle [ 0 , δA − 1 ]. Toutefois, le théorème suivant montre que
δS = δA− 1 ; de surcroît, les polynômes R(z) et S(z) sont uniques.

Théorème 10.4

Le degré du polynôme S(z) vaut δA − 1 ; en outre, les polynômes R(z) et S(z)
sont uniques. En présence d’un intégrateur, δS = δA+ ℓ− 1 ; R′(z) et S(z) sont
uniques.

Démonstration
Le régulateur RST est causal, impliquant δR ≥ δS ; de plus, δA > δB car

la fonction de transfert H(z) est strictement propre. D’où δ(AR) > δ(BS) et
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δ(AR) > δ(B−S). Le système linéaire (10.28), que nous écrivons sous la forme
compacte Mx = c, comprend dès lors δA + δR + 1 équations. Les inconnues,
regroupées dans le vecteur x, sont les coefficients des polynômes R(z) et S(z),
au nombre de δR + 1 plus δS + 1. Supposons qu’il y ait plus d’équations que
d’inconnues :

δA + δR + 1 > δR + 1 + δS + 1 = δR + δS + 2

Comme l’équation diophantine possède au moins une solution (théorème 10.1),
cette hypothèse est absurde ; en effet, le second membre c étant quelconque puisque
Am(z) et A0(z) peuvent être sélectionnés librement, le rang de la matrice M ne
pourrait pas être égal au rang de la matrice augmentée [ M c ] (sect. IV.1). Alors
δA + δR + 1 ≤ δR + δS + 2, ou δS ≥ δA − 1. Vu que δS ∈ [ 0 , δA− 1 ], on en
conclut :

δS = δA− 1 (10.41)

Par ailleurs, l’égalité (10.41) est équivalente à δA + δR + 1 = δR + δS + 2 : le
système d’équations Mx = c comprend le même nombre d’équations et d’incon-
nues ; la matrice M est donc carrée. L’existence d’au moins une solution garantit
que le rang de la matrice M soit égal à celui de [ M c ]. Le vecteur c étant quel-
conque, le rang de M vaut δR+ δS +2, égal au nombre d’inconnues, démontrant
l’unicité de la solution de Mx = c.

En présence d’un intégrateur, nous avons δS ≤ δA + ℓ− 1 ; de la même façon
que ci-dessus, il est facile de constater qu’en fait :

δS = δA + ℓ− 1

Les polynômes R′(z) et S(z) sont en outre uniques. !

Le système linéaire (10.28) ou, sous la forme compacte Mx = c adoptée
dans la démonstration ci-dessus, exhibe une structure quelque peu particulière.
Le polynôme A(z) est monique, se traduisant par a0 = 1, de même que le second
membre Am(z)A0(z) de l’équation diophantine (10.15), de sorte que c0 = 1. La
première équation du système (10.28) produit toujours r0 = 1 et le polynôme
R(z) est monique comme il se doit.

Comme cela est expliqué dans la section 10.2, il existe essentiellement deux
techniques de réalisation du régulateur RST. Dans la première (implantation stan-
dard), le temps de calcul et de conversion est négligeable vis-à-vis de la période
d’échantillonnage et δR = δS = δT . On impose ce cas en échangeant, dans
l’énoncé du théorème 10.3, les inégalités (10.29) et (10.30) avec des égalités. En
effet, il suffit de reprendre point par point la démonstration de ce théorème pour
constater que la première condition de causalité δR ≥ δT se transforme en δR =
δT . La démarche donne aussi δR = δA − 1 ; comme le degré du polynôme S(z)
vérifie (10.41), la seconde condition de causalité δR ≥ δS devient δR = δS. La
modification supplémentaire à apporter en présence d’un intégrateur est évidente :
il faut remplacer l’inégalité (10.31) par une égalité.
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La seconde alternative est adoptée quand le temps de calcul et de conversion
est égal à la période d’échantillonnage, se reflétant par δR − 1 = δS = δT ou
δR′ + ℓ − 1 = δS = δT avec un intégrateur. Un raisonnement identique à celui
des lignes précédentes fait ressortir que, pour se placer dans cette situation, les
inégalités (10.29), (10.30) et (10.31) doivent respectivement être échangées avec
les égalités :

δAm − δBm = δA− δB + 1

δA0 = 2 δA− δAm − δB+

δA0 = 2 δA− δAm − δB+ + ℓ

10.3.5 Choix du modèle à poursuivre

Le modèle à poursuivre Hm(z) est généralement simple, garantissant glo-
balement les caractéristiques souhaitées en boucle fermée. Le paragraphe 10.3
contient déjà quelques informations à ce sujet. La sélection précise dépend de
l’application, raison pour laquelle nous ne détaillons ici que quelques exemples
parmi d’autres. Toutefois, le numérateur Bm(z) du modèle à poursuivre vérifie
Bm(z) = B−(z)B′

m(z), indiquant qu’il doit toujours contenir les zéros du sys-
tème à commander qui ne sont pas simplifiés. Typiquement, les zéros de B−(z)
sont les zéros de B(z) à l’extérieur de la région en tramé de la figure 10.7. Il est
certainement utile de rappeler l’absolue nécessité que tous les zéros de B(z) sur
ou à l’extérieur du cercle unité soient des zéros de B−(z) afin d’éviter l’instabilité.

Un choix rudimentaire est le suivant :

Hm(z) =
B−(z)

P (1)
B−(1)

zdP (z)

Dans ce cas :

Bm(z) = B−(z)
P (1)

B−(1)
B′

m(z) =
P (1)

B−(1)
∈ R Am(z) = zdP (z)

Le facteur zd dans Am(z), dit polynôme auxiliaire, est souvent requis afin
de respecter (10.29) ; il introduit d pôles nuls, dits pôles auxiliaires. Le nom-
bre P (1)/B−(1) assure Hm(1) = 1, éliminant tout statisme d’asservissement
(ex. 10.1). Le polynôme P (z) fixe les modes principaux en boucle fermée ; il est
monique et de degré 1 ou 2 selon que des oscillations de la grandeur à commander
sont bannies ou tolérées, respectivement :

P (z) = z + c

P (z) = z2 + c1z + c2

Dans ces expressions, les coefficients c ou c1 et c2 sont sélectionnés de manière
à ce que des conditions absolue et relative d’amortissement soient remplies, ou
encore afin d’obtenir une bande passante et un gain à la résonance fixés. Les zé-
ros de P (z) sont appelés pôles dominants en boucle fermée. Typiquement, −c ∈
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[ 0,5 , 0,9 ] (§ 9.4.2) ; les coefficients c1 et c2 sont choisis de telle sorte que les zéros
de z2 + c1z + c2 soient à l’intersection du cercle centré à l’origine dont le rayon est
entre 0,5 et 0,9, et des spirales logarithmiques associées à une condition relative
d’amortissement d’un facteur a = 535 en N = 1 oscillation (§ 9.4.3). Un exemple
apparaît dans la figure 10.9.

EXEMPLE 10.7
Soit le processus à commander :

H(z) =
b

zd(z + a)

Dans cet exemple :

A(z) = zd(z + a) B(z) = b B+(z) = 1 B−(z) = b

Un polynôme P (z) de premier degré est choisi :

P (z) = z + c

Le numérateur du modèle à poursuivre s’écrit :

Bm(z) = B−(z)
P (1)

B−(1)
= 1 + c

Et :

B′
m(z) =

P (1)
B−(1)

=
1 + c

b

Une implantation standard est souhaitée, imposant δAm − δBm = δA − δB =
d + 1 ; d’où δAm = d + 1 et, comme δP = 1, il faut insérer un facteur zd dans le
polynôme Am(z), lequel prend la forme Am(z) = zd(z + c). Finalement :

Hm(z) =
1 + c

zd(z + c)

Avec |c| < |a|, la dynamique en boucle fermée sera plus rapide que celle en boucle
ouverte. Le degré du polynôme observateur est fixé par (10.30), où l’inégalité est
remplacée par une égalité (implantation standard) :

δA0 = 2δA− δAm − 1 = 2(d + 1)− (d + 1)− 1 = d

Un polynôme observateur à réponse pile est sélectionné :

A0(z) = zd

Les degrés des polynômes R(z) (= R(z) puisque B+(z) = 1) et S(z) se calculent
aisément :

δR = δAm + δA0 − δA = d + 1 + d− (d + 1) = d

δS = δA− 1 = d + 1− 1 = d
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D’où :

R(z) = r0z
d + r1z

d−1 + · · · + rd

S(z) = s0z
d + s1z

d−1 + · · · + sd

L’équation de Diophante s’écrit :

zd(z + a)(r0z
d + r1z

d−1 + · · · + rd) + b(s0z
d + s1z

d−1 + · · · + sd)

= zd(z + c)zd

Ou, en regroupant les termes de même degré :

r0z
2d+1 + (ar0 + r1)z2d + (ar1 + r2)z2d−1 + · · ·

+ (ard−1 + rd)zd+1 + (ard + bs0)zd + bs1z
d−1 + · · · + bsd

= z2d+1 + cz2d

Les coefficients des termes de degré identique peuvent être égalés :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0 = 1
ar0 + r1 = c

ar1 + r2 = 0
...

ard−1 + rd = 0
ard + bs0 = 0
bs1 = 0

...
bsd = 0

Il est facile de résoudre ce système d’équations :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0 = 1
r1 = c− a

r2 = −a(c− a)
...

rd = (−a)d−1(c− a)

s0 = −a

b
(−a)d−1(c− a) =

1
b

(−a)d(c− a)

s1 = 0
...

sd = 0

La synthèse du régulateur RST s’achève avec le calcul du polynôme T (z) :

T (z) = B′
m(z)A0(z) =

1 + c

b
zd
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Dans le cas particulier des exemples 9.3 et 9.9, où a = −0,985, b = 0,015
et d = 3, et avec c = −0,8, ces résultats produisent les polynômes R(z) = z3 +
0,185 z2 + 0,182 z + 0,179, S(z) = 11,787 z3 et T (z) = 13,333 z3. !

Plûtot que d’imposer d pôles à l’origine, par le biais du polynôme auxiliaire zd

incorporé dans Am(z), il est généralement préférable d’introduire des pôles auxi-
liaires non nuls engendrant des modes s’amortissant plus en douceur et exigeant
de plus faibles amplitudes du signal de commande ; ces pôles sont les zéros du
polynôme auxiliaire monique PA(z), placé au dénominateur du modèle à pour-
suivre, qui prend la forme :

Hm(z) =
B−(z)

PA(1)P (1)
B−(1)

PA(z)P (z)

Et :

Bm(z) = B−(z)
PA(1)P (1)

B−(1)
B′

m(z) =
PA(1)P (1)

B−(1)
∈ R

Am(z) = PA(z)P (z)

Le degré de PA(z) est déterminé à l’aide de (10.29). Typiquement, les modules des
zéros de PA(z) sont deux à trois trois fois plus petits que ceux de P (z). Au surplus,
le polynôme auxiliaire PA(z) autorise, en y introduisant à la fois des zéros nuls et
non nuls, une fusion des deux philosophies ci-dessus. Les zéros non nuls peuvent
être les pôles en boucle ouverte rapidement amortis, par exemple les pôles du filtre
de garde.

Certaines applications exigent des modifications dans les modèles à pour-
suivre qui viennent d’être proposés. Par exemple, dans les systèmes mécatroniques
à hautes performances, il importe d’annuler non seulement le statisme, mais aussi
la traînée. On montre, dans les prochaines lignes, que le modèle à poursuivre doit
contenir des zéros positionnés convenablement dans le plan complexe. Le poten-
tiel de placement des zéros intrinsèque au régulateur RST est ici pleinement ex-
ploité.

La fonction de transfert Hm(z) du modèle à poursuivre est mise sous la forme
factorisée suivante, mettant en évidence ses zéros zj, j = 1, 2, . . . , m, et ses pôles
pi, i = 1, 2, . . . , n :

Hm(z) =
b0zm + b1zm−1 + · · · + bm

zn + a1zn−1 + · · · + an
=

b0

m∏

j=1

(z − zj)

n∏

i=1

(z − pi)

Le statisme doit être nul, impliquant Hm(1) = 1 (ex. 10.1). L’écart Yc(z) − Y (z)
entre la consigne Yc(z) et la sortie Y (z) du modèle à poursuivre est, pour une
consigne en forme de rampe :
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Yc(z)− Y (z) = Yc(z)−Hm(z)Yc(z)

= Yc(z)
(
1−Hm(z)

)
=

hz

(z − 1)2
(
1−Hm(z)

)

D’où, en faisant appel à la règle de Bernoulli-L’Hospital :

lim
k→∞

(
yc(k)− y(k)

)
= lim

z→1
(z − 1)

(
Yc(z)− Y (z)

)

= lim
z→1

(z − 1)
hz

(z − 1)2
(
1−Hm(z)

)

= h lim
z→1

1−Hm(z)
z − 1

= h lim
z→1

d
dz

(
1−Hm(z)

)

d
dz

(z − 1)

= −h lim
z→1

dHm(z)
dz

Notons que :

d
dz

ln Hm(z) =
1

Hm(z)
· dHm(z)

dz

D’où, en tenant compte de Hm(1) = 1 :

lim
k→∞

(
yc(k)− y(k)

)
= −h lim

z→1
Hm(z)

d
dz

ln Hm(z)

= −h lim
z→1

d
dz

ln Hm(z)

= −h lim
z→1

d
dz

ln

b0

m∏

j=1

(z − zj)

n∏

i=1

(z − pi)

= −h lim
z→1

d
dz

⎛

⎝ln b0 +
m∑

j=1

ln(z − zj)−
n∑

i=1

ln(z − pi)

⎞

⎠

= −h lim
z→1

⎛

⎝
m∑

j=1

1
z − zj

−
n∑

i=1

1
z − pi

⎞

⎠

= h

⎛

⎝
n∑

i=1

1
1− pi

−
m∑

j=1

1
1− zj

⎞

⎠

La condition limk→∞
(
yc(k)− y(k)

)
= 0 est équivalente à :

n∑

i=1

1
1− pi

=
m∑

j=1

1
1− zj

(10.42)
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Les zéros zj , j = 1, 2, · · · , m, du modèle à poursuivre Hm(z) doivent être sélec-
tionnés selon cette égalité si aucune traînée n’est tolérée ; la contrainte Hm(1) = 1
doit bien sûr elle aussi être vérifiée.

La relation (10.42) est très pratique pour déterminer un seul zéro de B′
m(z).

Soit, sans perte de généralité, z1 ce zéro et zj , j = 2, 3, . . . , m, les autres zéros de
Bm(z) ; (10.42) s’écrit :

n∑

i=1

1
1− pi

=
1

1− z1
+

m∑

j=2

1
1− zj

D’où

z1 = 1− 1
n∑

i=1

1
1− pi

−
m∑

j=2

1
1− zj

(10.43)

EXEMPLE 10.8
L’exemple 10.7 est repris avec la spécification supplémentaire d’une traînée

nulle. Un zéro z1 est inclus dans le polynôme B′
m(z), qui n’est dès lors plus un

nombre. Le modèle à poursuivre est maintenant :

Hm(z) =
(z − z1)

1 + c

1− z1

zd+1(z + c)

Ici :

Bm(z) = (z−z1)
1 + c

1− z1
B′

m(z) = (z−z1)
1 + c

b(1− z1)
Am(z) = zd+1(z+c)

La contrainte Hm(1) = 1 est respectée ; afin d’annuler la traînée, le zéro z1 est
déterminé à l’aide de (10.43) :

z1 = 1− 1

(d + 1)
1
1

+
1

1 + c

=
d +

1
1 + c

1 + d +
1

1 + c

L’implantation est standard puisque δAm − δBm = δA − δB = d + 1. Le degré
du polynôme observateur vaut :

δA0 = 2δA− δAm − 1 = 2(d + 1)− (d + 2)− 1 = d− 1

D’où le polynôme observateur à réponse pile :

A0(z) = zd−1

Il est facile de vérifier que les polynômes R(z) et S(z) obtenus dans l’exemple 10.7
ne sont pas modifiés. Par contre, le polynôme T (z) devient :

T (z) = B′
m(z)A0(z) = zd−1(z − z1)

1 + c

b(1 − z1)
!
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Ces résultats peuvent être généralisés à des consignes quelconques, mais
connues à l’avance. En fait, le théorème suivant révèle que le polynôme B′

m(z)
fixant, en sus de l’incontournable polynôme B−(z), les zéros du modèle à pour-
suivre peut être calculé en résolvant une seconde équation diophantine.

Théorème 10.5

Soit Yc(z) = Bc(z)/Ac(z) la transformée en z rationnelle propre d’une consigne
connue. Son dénominateur est factorisé sous la forme Ac(z) = A+

c (z)A−
c (z), où

A+
c (z) est un polynôme monique dont les zéros sont à l’intérieur du cercle unité

et A−
c (z) un polynôme dont les zéros sont sur ou à l’extérieur du cercle unité.

Les polynômes Ac(z) et Bc(z) n’ont aucun facteur commun (autre que numé-
rique), de même que les polynômes A−

c (z) et B−(z). Soit B′
m(z) un polynôme

satisfaisant l’équation diophantine :

A−
c (z)X(z) + B−(z)B′

m(z) = Am(z) (10.44)

Sous ces hypothèses :

lim
k→∞

(
yc(k)− y(k)

)
= 0

Démonstration
En tenant compte de Y (z)/Yc(z) = Bm(z)/Am(z) :

Yc(z)− Y (z) =
(

1− Bm(z)
Am(z)

)
Yc(z)

=
Am(z)−Bm(z)

Am(z)
· Bc(z)
Ac(z)

=
(
Am(z)−Bm(z)

)
Bc(z)

Am(z)A+
c (z)A−

c (z)

Afin de mettre à profit le théorème 4.7 sur la valeur finale, il faut s’assurer que
les pôles de cette expression possèdent des modules strictement plus petits que 1
(à l’éventuelle exception d’un pôle simple égal à 1). Tous les zéros de Am(z) et de
A+

c (z) sont à l’intérieur du cercle unité. Comme tous les zéros de A−
c (z) sont sur

ou à l’extérieur du cercle unité, ces zéros doivent être des zéros de Am(z)−Bm(z)
pour disparaître (Ac(z) et Bc(z), et par là A−

c (z) et Bc(z), n’ont aucun fac-
teur commun ; par ailleurs, un éventuel zéro simple z = 1 dans A−

c (z) n’est
pas conservé car cela impliquerait limk→∞

(
yc(k) − y(k)

)
̸= 0). Autrement dit,

Am(z) − Bm(z) doit être égal à un polynôme A−
c (z)X(z). Vu que Bm(z) =

B−(z)B′
m(z) :

Am(z)−B−(z)B′
m(z) = A−

c (z)X(z)

Ou, les polynômes X(z) et B′
m(z) jouant le rôle des inconnues :

A−
c (z)X(z) + B−(z)B′

m(z) = Am(z)
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Afin d’assurer une solution à cette équation diophantine, le plus grand commun
diviseur de A−

c (z) et B−(z) doit être un facteur de Am(z) (théorème 10.1), condi-
tion vérifiée puisque A−

c (z) et B−(z) n’ont aucun facteur commun autre que nu-
mérique.

Le théorème 4.7 conduit à :

lim
k→∞

(
yc(k)− y(k)

)
= lim

z→1
(z − 1)

(
Am(z)−Bm(z)

)
Bc(z)

Am(z)A+
c (z)A−

c (z)

= lim
z→1

(z − 1)
A−

c (z)X(z)Bc(z)
Am(z)A+

c (z)A−
c (z)

= lim
z→1

(z − 1)
X(z)Bc(z)

Am(z)A+
c (z)

= 0 !

Parmi toutes les solutions de l’équation diophantine (10.44), il en est une, à
degré minimal, vérifiant δB′

m < δA−
c (§ 10.3.3). C’est la solution retenue par la

suite. Le théorème suivant constitue alors une condition suffisante permettant de
respecter l’inégalité (10.29). Les inégalités (10.30) et (10.31) du théorème 10.3 ne
mettent pas en jeu Bm(z) et ne requièrent de ce fait aucune retouche ; mais elles
doivent bien sûr aussi être satisfaites afin de garantir la causalité du régulateur
RST.

Théorème 10.6

Si δAm ≥ δA − δB+ + δA−
c − 1, alors le polynôme de degré minimal B′

m(z)
solution de l’équation diophantine (10.44) est tel que δAm − δBm ≥ δA − δB,
assurant la causalité du régulateur RST.

Démonstration
La solution adoptée obéit à δB′

m < δA−
c , ou δB′

m ≤ δA−
c − 1. En tirant parti

de cette inégalité, l’hypothèse du théorème peut s’écrire :

δAm ≥ δA− δB+ + δA−
c − 1

≥ δA− δB+ + δB′
m

= δA− (δB+ + δB−) + δB′
m + δB−

Comme B(z) = B+(z)B−(z) et Bm(z) = B−(z)B′
m(z) :

δAm ≥ δA− δB + δBm

Ou :

δAm − δBm ≥ δA− δB !

La solution à degré minimal vérifie δB′
m ≤ δA−

c − 1. Le théorème ci-après
fournit des informations plus précises.
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Théorème 10.7

Le polynôme B′
m(z) est de degré δA−

c − 1 et unique.

Démonstration
La seconde équation diophantine (10.44) implique, en tenant compte de

B−(z)B′
m(z) = Bm(z) :

δ(A−
c X + Bm) = δAm (10.45)

En outre, comme δAm − δBm ≥ δA − δB (théorème 10.6) et δA > δB
(H(z) = B(z)/A(z) est strictement propre) :

δAm > δBm

L’égalité (10.45) ne peut être satisfaite que si :

δ(A−
c X) > δBm (10.46)

Le système linéaire (10.28), écrit sous la forme compacte Mx = c, comprend dès
lors δA−

c + δX + 1 équations. Les inconnues, rassemblées dans le vecteur x, sont
les coefficients des polynômes X(z) et B′

m(z), au nombre de δX +1 plus δB′
m +1.

Supposons qu’il y ait plus d’équations que d’inconnues :

δA−
c + δX + 1 > δX + 1 + δB′

m + 1 = δX + δB′
m + 2

Comme la seconde équation diophantine possède au moins une solution (théo-
rème 10.1), cette hypothèse est absurde ; en effet, le second membre c étant quel-
conque puisque Am(z) peut être sélectionné librement, le rang de la matrice M ne
pourrait pas être égal au rang de la matrice augmentée [ M c ] (sect. IV.1). Donc
δA−

c +δX +1 ≤ δX +δB′
m +2, ou δB′

m ≥ δA−
c −1. Vu que δB′

m ∈ [ 0 , δA−
c −1 ],

on en conclut :

δB′
m = δA−

c − 1 (10.47)

Par ailleurs, l’égalité (10.47) est équivalente à δA−
c + δX + 1 = δX + δB′

m

+ 2 : le système d’équations Mx = c comprend le même nombre d’équations et
d’inconnues ; la matrice M est ainsi carrée. L’existence d’au moins une solution
garantit que le rang de la matrice M soit égal à celui de [ M c ]. Le vecteur c
étant quelconque, le rang de M vaut δX + δB′

m +2, égal au nombre d’inconnues,
démontrant l’unicité de la solution de Mx = c. !

Les relations (10.45) et (10.46) donnent δ(A−
c X + Bm) = δ(A−

c X) = δAm,
d’où δA−

c + δX = δAm et, finalement :

δX = δAm − δA−
c (10.48)

Lorsqu’une implantation standard du régulateur RST est souhaitée, il suffit
de remplacer l’inégalité formant l’hypothèse du théorème 10.6 par une égalité :

δAm = δA− δB+ + δA−
c − 1
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En effet, en reprenant la démonstration du théorème 10.6, tout en sachant que
δB′

m = δA−
c − 1, nous aboutissons à δAm − δBm = δA − δB. Par contre, afin

de se placer dans la situation où l’intégralité de la période d’échantillonnage est
consacrée aux calculs et aux conversions, il s’agit, dans le théorème 10.6, d’échan-
ger son hypothèse avec l’égalité :

δAm = δA− δB+ + δA−
c

Ce choix produit l’égalité désirée δAm − δBm = δA− δB + 1 (§ 10.3.4).

EXEMPLE 10.9
Soit une consigne en forme de saut unité :

Yc(z) =
z

z − 1
Ac(z) = A−

c (z) = z − 1 Bc(z) = z

Le polynôme B′
m(z) est de degré δA−

c − 1 = 1 − 1 = 0 ; c’est par conséquent un
nombre, solution de l’équation de Diophante :

(z − 1)X(z) + B−(z)B′
m = Am(z)

Avec z = 1, cette égalité fournit :

B′
m =

Am(1)
B−(1)

∈ R

Comme B−(1)B′
m = Bm(1), on a Bm(1)/Am(1) = Hm(1) = 1, résultat déjà

trouvé dans l’exemple 10.1 et exploité à plusieurs reprises depuis lors.

EXEMPLE 10.10
Examinons à nouveau l’exemple 10.8, dans lequel :

Yc(z) =
hz

(z − 1)2
Ac(z) = A−

c (z) = (z − 1)2 Bc(z) = hz

Une implantation standard est recherchée, si bien que :

δAm = δA− δB+ + δA−
c − 1 = d + 1− 0 + 2− 1 = d + 2

Le polynôme Am(z) de l’exemple 10.8 est retenu :

Am(z) = zd+1(z + c)

Les degrés des polynômes X(z) et B′
m(z) sont fixés par (10.48) et (10.47), respec-

tivement :

δX = δAm − δA−
c = d + 2− 2 = d

δB′
m = δA−

c − 1 = 2− 1 = 1

D’où :

X(z) = x0z
d + x1z

d−1 + · · · + xd

B′
m(z) = bm0z + bm1
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La seconde équation diophantine s’écrit, en se rappellant que B−(z) = b :

(z − 1)2X(z) + b(bm0z + bm1) = zd+1(z + c)

Quand z = 1, cette égalité polynomiale donne :

b(bm0 + bm1) = 1 + c (10.49)

De surcroît, en dérivant ses deux membres :

2(z − 1)X(z) + (z − 1)2
dX

dz
(z) + bbm0 = (d + 1)zd(z + c) + zd+1

En posant à nouveau z = 1 :

bbm0 = (d + 1)(1 + c) + 1

D’où :

bm0 =
(1 + c)(1 + d) + 1

b

Par substitution dans (10.49) :

bm1 =
1 + c− bbm0

b
=

1 + c− (1 + c)(1 + d)− 1
b

= −d(1 + c) + 1
b

Finalement :

B′
m(z) =

(1 + c)(1 + d) + 1
b

z − d(1 + c) + 1
b

Un rapide examen révèle qu’il s’agit du polynôme B′
m(z) obtenu dans l’exemple

10.8 ; le régulateur RST déjà dimensionné n’est pas altéré. !

Notons que le polynôme T (z) = B′
m(z)A0(z) dépend de la consigne puisque

B′
m(z) est solution de l’équation diophantine (10.44), laquelle met en jeu le poly-

nôme A−
c (z) au dénominateur de ce signal. Un changement de consigne requiert

une adaptation du polynôme T (z). Ce problème sera repris dans la section 12.4
consacrée aux régulateurs à gains programmés.

Une application relativement sophistiquée a été mentionnée dans l’exemple
1.41. C’est le moment de signaler que les résultats reportés dans la partie droite
de la figure 1.85 ont été obtenus avec des régulateurs RST mettant à profit les
méthodologies du présent paragraphe.

Quelques informations sur un régulateur très particulier concluent le para-
graphe. Avant d’en parler, il est certainement utile de rappeler que les pôles en
boucle fermée sont les zéros du polynôme caractéristique A(z)R(z)+B(z)S(z) =
Am(z)A0(z)B+(z). Dans la fonction de transfert Y (z)/Yc(z) en asservissement
et après simplification par les polynômes A0(z) et B+(z), ces pôles sont les zé-
ros de Am(z) ; en rejet de perturbation, il y a simplification de la fonction de
transfert Y (z)/W (z) par B+(z) et les pôles en boucle fermée sont les zéros de
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Am(z)A0(z) ; quant à la fonction de transfert U(z)/Yc(z) entre la consigne et la
commande, son dénominateur vaut, après simplification par A0(z), Am(z)B+(z)
(§ 10.3.2). Afin d’assurer un amortissement du régime transitoire le plus rapide
possible, ceci non seulement dans les trois fonctions de transfert qui viennent
d’être rappelées, mais dans toutes les fonctions de transfert en boucle fermée, il
peut venir à l’esprit de sélectionner des polynômes Am(z), A0(z) et B+(z) dont
les zéros sont tous nuls. Le plus souvent, B+(z) = 1 car des zéros nuls dans le pro-
cessus à commander ne se rencontrent que rarement. En asservissement, le régime
transitoire de la grandeur commandée y(kh) est alors une somme pondérée et finie
d’impulsions unités apparaissant aux instants d’échantillonnage 0, h, . . . , δAmh
(§ 4.4.1) ; en rejet de perturbation, ces impulsions se manifestent jusqu’à (δAm +
δA0)h et, dans le signal de commande u(kh), jusqu’à (δAm + δB+)h. Un ré-
gulateur RST caractérisé par A(z)R(z) + B(z)S(z) = Am(z)A0(z)B+(z) =
zδAm+δA0+δB+

est appelé régulateur RST à réponse pile. Signalons au passage
qu’un tel comportement ne peut pas exister en analogique puisque les modes, qui
sont des exponentielles, ne sont pas nuls après un temps fini. Par ailleurs, une si-
tuation spéciale se produit avec une consigne en forme de saut unité (δA−

c = 1)
et sans simplification de zéros du système à commander (δB+ = 0) ; le théorème
10.6 fournit, pour une implantation standard :

δAm = δA− δB+ + δA−
c − 1 = δA− 0 + 1− 1 = δA

En asservissement, les modes dans y(kh) sont donc nuls après l’instant δAh, au-
trement dit après un nombre de coups d’horloge égal à l’ordre du processus à
commander ! Ceci n’est pas le cas en rejet de perturbation, entre autres, car le po-
lynôme observateur A0(z), de degré δA0 = δA + ℓ − 1 selon le théorème 10.3,
n’est pas simplifié dans la fonction de transfert Y (z)/W (z). Pour en terminer
avec les régulateurs à réponse pile, il est clair que les amplitudes de la grandeur
de commande sont potentiellement très élevées étant donné que les modes sont
violemment amortis. Dans cette situation, il est tentant d’augmenter la période
d’échantillonnage h afin d’étendre les temps d’amortissement ; toutefois, le théo-
rème de Shannon peut ne plus être respecté, provoquant lors de mesures bruitées
de la grandeur à commander un repliement spectral (sect. 6.3). Au surplus, des
perturbations analogiques affectant le système à commander sont mal rejetées
car leur effet n’est plus observé entre deux coups d’horloge. Finalement, les ré-
gulateurs à réponse pile souffrent d’une mauvaise robustesse. Leur déploiement
est dès lors envisageable quand d’importantes amplitudes de la commande sont
tolérées, ou sans être soumis à des perturbations, et en disposant d’une fine modé-
lisation du processus à commander. Ces circonstances se rencontrent notamment
dans certains entraînements électriques.

10.3.6 Algorithmes de synthèse du régulateur RST

Un objectif du présent paragraphe est de résumer les résultats précédents sous
la forme de tableaux, tout en les enrichissant d’exemples illustratifs. Ces tableaux
montrent que la synthèse d’un régulateur RST peut être scindée en deux étapes
principales : calcul des polynômes R(z) et S(z) intervenant dans la boucle de
rétroaction, puis du polynôme T (z) extérieur à celle-ci.



Régulateur RST 45

On examine, pour commencer, le cas le plus simple où aucun zéro du proces-
sus à commander n’est simplifié et sans effet intégrateur. Par conséquent :

B+(z) = 1 B−(z) = B(z)

B(z) est donc un facteur de Bm(z) :

Bm(z) = B(z)B′
m(z)

En outre :

R(z) = R(z)

L’équation de Diophante s’écrit alors :

A(z)R(z) + B(z)S(z) = Am(z)A0(z)

Le dimensionnement du régulateur RST est consigné dans le tableau 10.1.

Tableau 10.1 Synthèse du régulateur RST sans intégrateur et sans simplification de zéros
du système à commander.

Données
A(z) et B(z)

Spécifications
Am(z), Bm(z) et A0(z)

Conditions
A(z) et B(z) n’ont aucun facteur commun

B+(z) = 1

Bm(z) = B(z)B′
m(z)

δAm − δBm ≥ δA − δB

δA0 ≥ 2 δA − δAm − 1

δR = δAm + δA0 − δA

δS = δA − 1

Etape 1
Résoudre A(z)R(z) + B(z)S(z) = Am(z)A0(z)

Etape 2
Calculer T (z) = B′

m(z)A0(z)

Dans ce tableau, et également dans les suivants, les degrés des polynômes
Am(z), Bm(z) et A0(z) dépendent des inégalités figurant dans la liste des condi-
tions ; par spécifications, il faut comprendre la structure de ces polynômes. En
guise d’exemple, c’est au stade des spécifications qu’un polynôme observateur
A0(z) à réponse pile peut être considéré. Au surplus, par souci de simplicité, le
calcul du polynôme B′

m(z) à l’aide d’une seconde équation diophantine n’appa-
raît pas explicitement.
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EXEMPLE 10.11
Revenons à la commande en vitesse d’un entraînement déjà abordé à plusieurs

reprises. Avec h = 0,025 s comme dans l’exemple 9.8, le processus à commander
est représenté par la fonction de transfert échantillonnée :

H(z) =
0,0975

z − 0,95

Il s’agit de dimensionner un régulateur RST, pour le moment sans intégrateur, et
bien sûr sans simplification de zéro du système à commander puisque ce dernier
n’en possède point.

On a :

A(z) = z − 0,95 B(z) = 0,0975 B+(z) = 1 B−(z) = 0,0975

La fonction de transfert H(z) contient le pôle z = 0,95 relativement proche de 1.
En boucle ouverte, l’amortissement du régime transitoire est par conséquent de
qualité moyenne.

Sélectionnons un modèle à poursuivre selon les directives les plus simples du
paragraphe 10.3.5. Le polynôme P (z) est de degré 1 :

P (z) = z + c

Une condition absolue d’amortissement d’un facteur a = 15 en ka = 5 coups
d’horloge est imposée (ex. 9.8) ; le zéro z = −c de P (z) doit ainsi être égal à :

e−
ln 15

5 = 0,58

Le numérateur du modèle à poursuivre est donc :

Bm(z) = B−(z)
P (1)

B−(1)
= 0,0975

1− 0,58
0,0975

= 0,42

Et :

B′
m(z) =

P (1)
B−(1)

= 4,31

On souhaite une implantation standard ; alors δAm− δBm = δA− δB = 1, four-
nissant δAm = 1 ; vu que δP = 1, il n’est pas nécessaire d’insérer un polynôme
auxiliaire dans le modèle à poursuivre. Par conséquent, Am(z) = z − 0,58 et :

Hm(z) =
0,42

z − 0,58

Qui plus est, avec ce type d’implantation :

δA0 = 2δA− δAm − 1 = 2− 1− 1 = 0
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D’où :

A0(z) = 1

Nous avons :

δR = δAm + δA0 − δA = 1 + 0− 1 = 0
δS = δA− 1 = 1− 1 = 0

Ainsi :

R(z) = 1 S(z) = s0

Il en découle l’équation diophantine :

(z − 0,95) · 1 + 0,0975 s0 = (z − 0,58) · 1

Donc :

0,0975 s0 − 0,95 = −0,58

Et :

s0 = 3,79

On calcule finalement T (z) :

T (z) = B′
m(z)A0(z) = 4,31 · 1

L’équation du régulateur RST, prête à être codée, s’écrit alors :

u(k) = 4,31 yc(k)− 3,79 y(k)

Le système en boucle fermée est par conséquent décrit par le schéma fonctionnel
à trois branches de la figure 10.8.

Yc(z) 4,31
+

−

U(z) 0,0975

z − 0,95

3,79

Y (z)

Fig. 10.8 Commande RST de vitesse d’un entraînement.

Notons que la fonction de transfert en boucle fermée est :

Y (z)
Yc(z)

= 4,31

0,0975
z − 0,95

1 + 3,79
0,0975

z − 0,95

=
0,42

z − 0,58

Cette expression est égale à Hm(z), comme il se doit.



48 Synthèse algébrique du régulateur RST

EXEMPLE 10.12
L’entraînement de l’exemple précédent est maintenant commandé en posi-

tion. Avec h = 0,025 s, sa fonction de transfert échantillonnée est (ex. 5.1) :

H(z) =
10−3(1,23 z + 1,21)
z2 − 1,95 z + 0,95

=
1,23 · 10−3(z + 0,98)

(z − 1)(z − 0,95)

Un régulateur RST sans intégrateur est synthétisé. Le zéro du système à comman-
der vaut z = −0,98 ; bien qu’à l’intérieur du cercle unité, il est trop proche de −1
pour être simplifié.

Vu l’importance pratique de cet exemple, nous le traitons symboliquement en
posant :

H(z) =
b0(z + b)

(z − 1)(z − p)

Le pôle p et le zéro −b vérifient 0 < p < 1 et −1 < −b < 0, respectivement ; en
outre, b0 > 0. On a :

A(z) = (z − 1)(z − p) B(z) = b0(z + b)

Aucune simplification de zéro n’est souhaitable ; ainsi :

B+(z) = 1 B−(z) = b0(z + b)

Le modèle à poursuivre le plus simple du paragraphe 10.3.5 est tout d’abord
choisi, avec un polynôme P (z) de degré 2 :

P (z) = z2 + c1z + c2

Le numérateur du modèle à poursuivre s’écrit :

Bm(z) = B−(z)
P (1)

B−(1)
= b0(z + b)

1 + c1 + c2

b0(1 + b)
=

1 + c1 + c2

1 + b
(z + b)

Et :

B′
m(z) =

P (1)
B−(1)

=
1 + c1 + c2

b0(1 + b)

Une implantation standard est spécifiée ; donc δAm− δBm = δA− δB = 1, don-
nant δAm = 2 ; comme δP = 2, il n’est pas nécessaire d’incorporer un polynôme
auxiliaire dans le modèle à poursuivre. Alors Am(z) = z2 + c1z + c2 et :

Hm(z) =
1 + c1 + c2

1 + b
· z + b

z2 + c1z + c2

Avec cette façon de réaliser le régulateur :

δA0 = 2 δA− δAm − 1 = 4− 2− 1 = 1
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Un polynôme observateur pas forcément à réponse pile est considéré :

A0(z) = z + a

De surcroît :

δR = δAm + δA0 − δA = 2 + 1− 2 = 1
δS = δA− 1 = 2− 1 = 1

Par conséquent :

R(z) = z + r1 S(z) = s0z + s1

D’où l’équation diophantine :

(z − 1)(z − p)(z + r1) + b0(z + b)(s0z + s1) = (z2 + c1z + c2)(z + a)

Ou :
(
z2 − (1 + p)z + p

)
(z + r1) + (b0z + bb0)(s0z + s1)

= z3 + (a + c1)z2 + (ac1 + c2)z + ac2

La matrice de Sylvester associée à cette équation est d’ordre δR + δS + 2 =
1 + 1 + 2 = 4 :

⎡

⎢⎢⎣

1 0 0 0
−(1 + p) 1 b0 0

p −(1 + p) bb0 b0

0 p 0 bb0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

r0

r1

s0

s1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1
a + c1

ac1 + c2

ac2

⎤

⎥⎥⎦ (10.50)

La première équation fournit r0 = 1, comme il se doit (§ 10.3.4). Finalement :

T (z) = B′
m(z)A0(z) =

1 + c1 + c2

b0(1 + b)
(z + a)

En posant t0 = 1+c1+c2
b0(1+b) et t1 = t0a, on a l’équation du régulateur RST :

(z + r1)U(z) = (t0z + t1)Yc(z)− (s0z + s1)Y (z)

D’où :

(1 + r1q
−1)u(k) = (t0 + t1q

−1)yc(k)− (s0 + s1q
−1)y(k)

Il en résulte la relation suivante, prête à être codée :

u(k) = −r1u(k − 1) + t0yc(k) + t1yc(k − 1)− s0y(k)− s1y(k − 1)

Traitons l’application numérique p = 0,95, b0 = 1,23 · 10−3 et b = 0,98. Par
ailleurs, a = −0,5 (fig. 10.9) : le polynôme observateur n’est pas à réponse pile.
Tout en imposant une condition relative d’amortissement d’un facteur 535 en une
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Fig. 10.9 Zéros des polynômes Am(z) et A0(z).

oscillation, le module des zéros de Am(z) est pris égal à 0,9 ; cela conduit aux
zéros (pôles en boucle fermée) 0,89 ± j 0,09 (fig. 10.9).

La résolution de (10.50) débouche sur le polynôme R(z) = z−0,38 : dans cet
exemple, les fonctions de transfert S(z)/R(z) et T (z)/R(z) jouissent de la pro-
priété de stabilité. La réponse indicielle en boucle fermée, ainsi que la grandeur de
commande, sont reportées dans la figure 10.10. Une rapide analyse de la robus-
tesse (§ 10.3.1) mène à la marge de gain 22,1 dB et à la marge de phase 58◦.

Comme il ressort de la partie supérieure de la figure 10.11, le régulateur RST
dimensionné dans les lignes précédentes ne parvient pas à éliminer la traînée. Le
polynôme T (z) est maintenant modifié afin de corriger ce défaut.

La grandeur de consigne est :

Yc(z) =
hz

(z − 1)2
Ac(z) = A−

c (z) = (z − 1)2 Bc(z) = hz

L’implantation est standard, de sorte que :

δAm = δA− δB+ + δA−
c − 1 = 2− 0 + 2− 1 = 3

Le polynôme Am(z) est constitué du polynôme z2 + c1z + c2, comme ci-dessus,
auquel est adjoint le polynôme auxiliaire z + c :

Am(z) = (z + c)(z2 + c1z + c2)
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Fig. 10.10 Grandeur de commande et réponse indicielle en boucle fermée d’un entraîne-
ment commandé par un régulateur RST sans simplification du zéro du processus à com-
mander.

Les degrés des polynômes X(z) et B′
m(z) découlent de (10.48) et (10.47), respec-

tivement :

δX = δAm − δA−
c = 3− 2 = 1

δB′
m = δA−

c − 1 = 2− 1 = 1

D’où :

X(z) = x0z + x1

B′
m(z) = bm0z + bm1



52 Synthèse algébrique du régulateur RST

La seconde équation diophantine s’écrit :

(z − 1)2(x0z + x1) + b0(z + b)(bm0z + bm1) = (z + c)(z2 + c1z + c2)

Ou :

(z2 − 2z + 1)(x0z + x1) + (b0z + bb0)(bm0z + bm1)

= z3 + (c + c1)z2 + (cc1 + c2)z + cc2

La matrice de Sylvester liée à cette équation est d’ordre δX + δB′
m + 2 =

1 + 1 + 2 = 4 :

⎡

⎢⎢⎣

1 0 0 0
−2 1 b0 0
1 −2 bb0 b0

0 1 0 bb0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x0

x1

bm0

bm1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1
c + c1

cc1 + c2

cc2

⎤

⎥⎥⎦ (10.51)

Le degré du polynôme observateur passe à zéro :

δA0 = 2δA− δAm − 1 = 4− 3− 1 = 0

Et :

A0(z) = 1

Les polynômes R(z) et S(z) déjà obtenus demeurent les mêmes, pour autant que
le polynôme auxiliaire z + c soit égal à l’ancien polynôme observateur z + a,
autrement dit si a = c. Quant au polynôme T (z), il devient :

T (z) = B′
m(z)A0(z) = B′

m(z) = bm0z + bm1

Soit le cas concret dejà considéré dans la première partie de l’exemple. Le zéro
supplémentaire incorporé dans le modèle à poursuivre, découlant de (10.51) (ou
de la formule (10.43)), vaut −bm1/bm0 = 0,919, si bien que :

Hm(z) =
0,062 (z + 0,98)(z − 0,919)

(z − 0,5)(z − 0,89− j 0,09)(z − 0,89 + j 0,09)

=
0,062 (z + 0,98)(z − 0,919)
(z − 0,5)(z2 − 1,78 z + 0,8)

La partie inférieure de la figure 10.11 montre clairement que l’ajout de ce zéro
annule la traînée. !
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Fig. 10.11 Réponses à une rampe en boucle fermée d’un entraînement commandé par un
régulateur RST sans et avec zéro supplémentaire dans le modèle à poursuivre.

Examinons maintenant la situation, toujours sans intégrateur, où il s’agit de
provoquer une simplification de zéros du processus à commander, zéros appar-
tenant à la région en tramé de la figure 10.7. C’est alors le polynôme R(z) qui
doit être déterminé à l’aide de l’équation de Diophante, et non pas R(z) comme
dans l’algorithme précédent. Vu que R(z) = B+(z)R(z), le degré de R(z) vaut
δR − δB+ : il est inférieur à celui de R et le nombre de coefficients à déterminer
passe à δR + δS + 2, inférieur à δR + δS + 2. La résolution de l’équation de Dio-
phante est de la sorte moins gourmande en temps de calcul, ce qui est appréciable
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notamment lors de la mise en œuvre en temps réel de la synthèse du régulateur
dans un schéma de commande adaptative (chap. 12). Au surplus, il est possible
de déterminer, en fonction de la position des zéros en boucle fermée, des bornes
sur le nombre d’extrema de la grandeur commandée. Ces bornes peuvent dans
certains cas être mises à profit pour garantir l’absence de dépassement de la va-
leur de consigne. Un moyen potentiel d’aboutir aux bornes souhaitées consiste à
éliminer les zéros gênants en les incorporant dans le polynôme B+(z).

Le dimensionnement du régulateur RST avec simplification de zéros, sans in-
tégrateur, est résumé dans le tableau 10.2.

Tableau 10.2 Synthèse du régulateur RST sans intégrateur dans le cas où il y a
simplification de zéros du système à commander.

Données
A(z) et B(z)

Spécifications
Am(z), Bm(z) et A0(z)

Conditions
A(z) et B(z) n’ont aucun facteur commun

Les zéros de B+(z) appartiennent à la région
en tramé de la figure 10.7
Bm(z) = B−(z)B′

m(z)

δAm − δBm ≥ δA − δB

δA0 ≥ 2 δA − δAm − δB+ − 1

δR = δAm + δA0 − δA

δS = δA − 1

Etape 1
Effectuer la factorisation B(z) = B+(z)B−(z)

Etape 2
Résoudre A(z)R(z) + B−(z)S(z) = Am(z)A0(z)

Etape 3
Calculer R(z) = B+(z)R(z) et T (z) = B′

m(z)A0(z)

EXEMPLE 10.13
On reprend ici l’entraînement de l’exemple précédent, mais en commettant la

maladresse de simplifier le zéro z = −b = −0,98 proche de −1, maladresse qui
n’est pas fatale en soi puisque ce zéro est à l’intérieur du cercle unité. Maintenant :

B+(z) = z + b B−(z) = b0
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Le modèle à poursuivre est sélectionné selon les directives du paragraphe
10.3.5, avec un polynôme P (z) de degré 1 :

P (z) = z + c

D’où le numérateur du modèle à poursuivre :

Bm(z) = B−(z)
P (1)

B−(1)
= b0

1 + c

b0
= 1 + c

Et :

B′
m(z) =

P (1)
B−(1)

=
1 + c

b0

Dans une implantation standard, nous avons δAm − δBm = δA − δB = 1, d’où
δAm = 1 ; avec δP = 1, il ne faut pas insérer un polynôme auxiliaire dans le
modèle à poursuivre. Par conséquent, Am(z) = z + c et :

Hm(z) =
1 + c

z + c

Avec cette manière d’implanter le régulateur :

δA0 = 2 δA− δAm − δB+ − 1 = 4− 1− 1− 1 = 1

Soit le polynôme observateur :

A0(z) = z + a

En outre :

δR = δAm + δA0 − δA = 1 + 1− 2 = 0
δS = δA− 1 = 2− 1 = 1

Ainsi :

R(z) = 1 S(z) = s0z + s1

L’équation diophantine s’écrit :

(z − 1)(z − p) · 1 + b0(s0z + s1) = (z + c)(z + a) (10.52)

Cette équation donne, en posant successivement z = 1 et z = p :
{

b0(s0 + s1) = (1 + c)(1 + a)

b0(s0p + s1) = (p + c)(p + a)

On en déduit facilement :

s0 =
1 + a + c + p

b0
s1 =

ac− p

b0
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Finalement :

R(z) = B+(z)R(z) = z + b

T (z) = B′
m(z)A0(z) =

1 + c

b0
(z + a)

Avec t0 = 1+c
b0

et t1 = t0a, nous aboutissons au régulateur RST :

(z + b)U(z) = (t0z + t1)Yc(z)− (s0z + s1)Y (z)

Alors :

(1 + b q−1)u(k) = (t0 + t1q
−1)yc(k)− (s0 + s1q

−1)y(k)

u(t) [V]
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Fig. 10.12 Grandeur de commande et réponse indicielle en boucle fermée d’un entraîne-
ment commandé par un régulateur RST avec simplification du zéro du processus à com-
mander.
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L’équation à coder est donc :

u(k) = −bu(k − 1) + t0yc(k) + t1yc(k − 1)− s0y(k)− s1y(k − 1)

La réponse indicielle en boucle fermée et la grandeur de commande sont tra-
cées dans la figure 10.12, dans le cas p = 0,95, b0 = 1,23 · 10−3, b = 0,98,
a = −0,5 et c = −0,9. Comme cela est précisé dans le paragraphe 10.3.2, le
polynôme B+(z) = z + 0,98 se retrouve intact au dénominateur de la fonction de
transfert U(z)/Yc(z) : le mode sonnette (−0,98)k, k ≥ 0, qui en résulte provoque
une forte agitation de la grandeur de commande ; qui plus est, ce mode sonnette
est mal amorti puisque −0,98 est proche de −1 ; après filtrage par le processus à
commander, l’agitation due au mode sonnette se retrouve sous la forme de légères
oscillations affectant la grandeur commandée entre les instants d’échantillonnage
(§ 10.3.2). !

Un cas extrême de l’algorithme précédent se produit quand tous les zéros du
système à commander sont simplifiés. Ceci n’est possible qu’à la condition ex-
presse qu’ils soient à l’intérieur du cercle unité, ou mieux qu’ils appartiennent à la
région en tramé de la figure 10.7. Donc :

B+(z) =
1
b0

B(z) B−(z) = b0

Le nombre b0 est le coefficient dans le terme de plus grand degré dans le polynôme
B(z). Par conséquent :

Bm(z) = b0B
′
m(z)

L’équation de Diophante à résoudre est ainsi :

A(z)R(z) + b0S(z) = Am(z)A0(z)

Comme δB− = 0, nous constatons que la matrice de Sylvester du système d’équa-
tions algébriques linéaires (10.28) est triangulaire :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 . . . 0 0 0 . . . 0

a1 a0
. . .

...
...

...
. . .

...

a2 a1
. . . 0

...
...

. . .
...

... a2
. . . a0 0 0

. . . 0

aδA

...
. . . a1 b0 0

. . . 0

0 aδA
. . . a2 0 b0

. . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . aδA 0 0 . . . b0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

La solution de l’équation diophantine est alors immédiate. Cette situation est
consignée dans le tableau 10.3.
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Tableau 10.3 Synthèse du régulateur RST sans intégrateur dans le cas où tous les zéros
du système à commander sont simplifiés.

Données
A(z) et B(z)

Spécifications
Am(z), Bm(z) et A0(z)

Conditions
A(z) et B(z) n’ont aucun facteur commun
Les zéros de B(z) appartiennent à la région
en tramé de la figure 10.7
Bm(z) = b0B′

m(z)

δAm − δBm ≥ δA − δB

δA0 ≥ 2 δA − δAm − δB − 1

δR = δAm + δA0 − δA

δS = δA − 1

Etape 1
Résoudre A(z)R(z) + b0S(z) = Am(z)A0(z)

Etape 2

Calculer R(z) =
1
b0

B(z)R(z) et T (z) = B′
m(z)A0(z)

EXEMPLE 10.14
Dans l’exemple précédent, le seul zéro du système à commander est simplifié.

L’équation diophantine (10.52) peut être mise sous la forme suivante :

(
z2 − (1 + p)z + p

)
+ b0(s0z + s1) = z2 + (a + c)z + ac

La matrice de Sylvester qui lui est attachée est triangulaire et d’ordre δR+δS+2 =
0 + 1 + 2 = 3 :

⎡

⎣
1 0 0

−(1 + p) b0 0
p 0 b0

⎤

⎦

⎡

⎣
r0

s0

s1

⎤

⎦ =

⎡

⎣
1

a + c
ac

⎤

⎦

La première équation fournit évidemment r0 = 1 ; les deux dernières donnent :

s0 =
1 + a + c + p

b0
s1 =

ac− p

b0
!
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On traite finalement le cas où un intégrateur est incorporé dans le régulateur
RST ; une simplification de zéros du processus à commander est admise, couvrant
de la sorte les situations extrêmes où il n’y a aucune simplification et où tous ces
zéros sont simplifiés. Le dimensionnement est résumé dans le tableau 10.4.

Tableau 10.4 Synthèse du régulateur RST avec intégrateur dans le cas où il y a
simplification de zéros du système à commander.

Données
A(z) et B(z)

Spécifications
Am(z), Bm(z) et A0(z)

Conditions
A(z) et B(z) n’ont aucun facteur commun

Les zéros de B+(z) appartiennent à la région
en tramé de la figure 10.7
Bm(z) = B−(z)B′

m(z)

δAm − δBm ≥ δA − δB

δA0 ≥ 2 δA − δAm − δB+ + ℓ − 1

δR′ = δAm + δA0 − δA − ℓ

δS = δA + ℓ − 1

Etape 1
Effectuer la factorisation B(z) = B+(z)B−(z)

Etape 2
Résoudre A(z)(z − 1)ℓR′(z) + B−(z)S(z) = Am(z)A0(z)

Etape 3
Calculer R(z) = (z − 1)ℓB+(z)R′(z) et T (z) = B′

m(z)A0(z)

EXEMPLE 10.15
Revenons à la commande de la vitesse d’un entraînement (ex. 10.11), perturbé

maintenant par un couple résistant constant. Cette perturbation agit de façon ad-
ditive en amont du système à commander, comme cela est représenté dans figure
10.4 (voir aussi à ce sujet l’exemple 7.18). Afin de la rejeter, on insère un intégra-
teur de type ℓ = 1. Donc :

δA0 = 2 δA− δAm + ℓ− 1 = 2− 1 + 1− 1 = 1

Avec un polynôme observateur à réponse pile :

A0(z) = z
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Par ailleurs, en tenant compte du fait qu’ici R′(z) = R′(z) puisque B+(z) = 1 :

δR′ = δAm + δA0 − δA− ℓ = 1 + 1− 1− 1 = 0
δS = δA + ℓ− 1 = 1 + 1− 1 = 1

Par conséquent :

R′(z) = 1 S(z) = s0z + s1

L’équation diophantine s’écrit :

(z − 0,95)(z − 1) · 1 + 0,0975(s0z + s1) = (z − 0,58)z

Ainsi :

z2 + (−1− 0,95 + 0,0975 s0)z + 0,95 + 0,0975 s1 = z2 − 0,58 z

Ou :
{

0,0975 s0 = −0,58− (−1,95)
0,0975 s1 = −0,95

Alors :

s0 = 14,05 s1 = −9,74

Et :

T (z) = B′
m(z)A0(z) = 4,31 z

Il en résulte l’équation du régulateur RST :

(z − 1) · 1 · U(z) = 4,31 zYc(z)− (14,05 z − 9,74)Y (z)

Donc :

(1− q−1)u(k) = 4,31 yc(k)− (14,05− 9,74 q−1)y(k)

Le code se fonde directement sur l’équation :

u(k) = u(k − 1) + 4,31 yc(k)− 14,05 y(k) + 9,74 y(k− 1)

10.4 Commentaires

10.4.1 Influence d’un intégrateur

Comme nous l’avons vu dans la section 10.2, l’effet majeur d’un intégrateur
est de rejeter des perturbations ; la sensibilité à basse fréquence est de surcroît
amoindrie (§ 10.3.1).
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Il existe deux différences importantes entre un intégrateur incorporé dans un
régulateur RST et le terme intégral placé dans une architecture classique, par
exemple un régulateur PID numérique.

La première réside dans le fait qu’un intégrateur dans un régulateur RST n’éli-
mine pas forcément des écarts permanents d’asservissement. En effet, si le modèle
à poursuivre n’est pas choisi de sorte que limk→∞

(
yc(k) − y(k)

)
= 0, cet écart

permanent se transmet tel quel sur le système en boucle fermée, comme on l’a
relevé dans le paragraphe 10.3.1.

En outre, l’introduction d’un terme intégral dans un régulateur classique af-
fecte généralement le montage en asservissement. Ce n’est théoriquement pas le
cas en insérant un intégrateur dans un régulateur RST puisque seul le modèle à
poursuivre fige le comportement en asservissement.

EXEMPLE 10.16
L’introduction, dans l’exemple 10.15, d’un intégrateur dans le régulateur RST

de l’exemple 10.11 ne modifie théoriquement pas le comportement en asservisse-
ment, complètement fixé par le modèle à poursuivre Hm(z) = 0,42

z−0,58 . !

Toutefois, il découle du critère de Nyquist que les marges de stabilité s’ame-
nuisent avec l’ajout d’intégrateurs. Par ailleurs, quand le modèle nominal H(z) =
B(z)/A(z) du processus à commander employé dans la synthèse du régulateur
RST diffère du système à commander réel H0(z) = B0(z)/A0(z), le théorème
10.1 montre que, avec R(z) = (z − 1)ℓR′(z), la fonction de transfert en boucle
fermée s’écrit :

Hm(z)
1

1 + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)

Am(z)A0(z)

Il est clair que, si ℓ > 0, la différence 1
H0(z) −

1
H(z) provenant des erreurs de modé-

lisation est en quelque sorte gommée quand z tend vers 1 : le facteur multipliant
le modèle à poursuivre Hm(z) devient égal à l’unité. Ce résultat est couramment
mis à profit pour éliminer de petits écarts permanents dus aux erreurs de modéli-
sation. Nous en concluons que des effets intégrateurs peuvent agir favorablement
sur le montage en asservissement.

Dans le détail, lorsque H0(z) ̸= H(z), un calcul de l’écart entre la consigne
Yc(z) = Bc(z)/Ac(z) et la grandeur à commander Y (z) fournit (voir à ce sujet le
théorème 10.5 et sa démonstration) :

Yc(z)− Y (z)

=

⎛

⎜⎜⎝1− Bm(z)
Am(z)

· 1

1 + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)

Am(z)A0(z)

⎞

⎟⎟⎠Yc(z)
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=
Am(z)−Bm(z) + (z − 1)ℓR′(z)

(
1

H0(z)
− 1

H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

· Bc(z)
Ac(z)

En tirant parti du théorème 10.5, on sait que le polynôme Bm(z) est tel que
Am(z) − Bm(z) est égal à un polynôme A−

c (z)X(z), où A−
c (z) apparaît dans

la factorisation spectrale Ac(z) = A+
c (z)A−

c (z) :

Yc(z)− Y (z)

=
A−

c (z)X(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

· Bc(z)
A+

c (z)A−
c (z)

D’où :

lim
k→∞

(
yc(k)− y(k)

)

= lim
z→1

(z − 1)
A−

c (z)X(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

· Bc(z)
A+

c (z)A−
c (z)

EXEMPLE 10.17
Soit une consigne en forme de saut unité :

Yc(z) =
z

z − 1
Ac(z) = A−

c (z) = z − 1 Bc(z) = z

Alors :

lim
k→∞

(
yc(k)− y(k)

)

= lim
z→1

(z − 1)
(z − 1)X(z) + (z − 1)ℓR′(z)

(
1

H0(z)
− 1

H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

· z

z − 1

= lim
z→1

(z − 1)X(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)
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Si le processus à commander renferme un intégrateur, mais que le régulateur RST
n’en possède point (ℓ = 0), cette limite est manifestement nulle. Par contre, si le
système à commander ne contient aucun intégrateur, il est nécessaire d’avoir ℓ ≥ 1
afin d’éliminer le statisme d’asservissement.

EXEMPLE 10.18
Considérons maintenant une consigne en forme de rampe discrète :

Yc(z) =
hz

(z − 1)2
Ac(z) = A−

c (z) = (z − 1)2 Bc(z) = hz

Par conséquent :

lim
k→∞

(
yc(k)− y(k)

)

= lim
z→1

(z − 1)
(z − 1)2X(z) + (z − 1)ℓR′(z)

(
1

H0(z)
− 1

H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

· hz

(z − 1)2

= lim
z→1

(z − 1)2X(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

Am(z) + (z − 1)ℓR′(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)
A0(z)

· h

z − 1

Un rapide examen de cette expression fait ressortir qu’une traînée existe quand
la boucle n’inclut qu’un intégrateur, à savoir un intégrateur dans le processus à
commander et ℓ = 0 ou aucun intégrateur dans le système à commander et ℓ = 1.
On note aussi que la traînée disparaît avec deux intégrateurs dans la boucle. !

Le problème de l’emballement discuté dans le contexte de l’algorithme PID
est toujours d’actualité lorsque le régulateur RST inclut un ou plusieurs intégra-
teurs (ℓ > 0). Des mesures drastiques s’imposent pour en atténuer les consé-
quences. Pous ce faire, nous pouvons nous inspirer des techniques développées
dans le paragraphe 8.3.5. Seule la mesure anti-emballement illustrée sous forme
de schéma fonctionnel dans la figure 8.22 est maintenant reprise.

Pour une meilleure lisibilité, on considère un régulateur RST incluant ℓ =
1 effet intégrateur et dont ses polynômes sont exprimés en puissances négatives
de z :

(1− z−1)R′(z)U(z) = T (z)Yc(z)− S(z)Y (z)

Ou :

U(z) =
T (z)

(1 − z−1)R′(z)
Yc(z)− S(z)

(1− z−1)R′(z)
Y (z)

Posons :

U ′(z) =
T (z)
R′(z)

Yc(z)− S(z)
R′(z)

Y (z)
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Donc :

U(z) =
1

1− z−1
U ′(z)

Comme cela est mis en évidence dans la figure 10.13, un élément non linéaire de
type saturation délivre la grandeur de commande effective ue(kh) au processus à
commander H(z).

Yc(z) T (z)

R′(z)

+

−

U ′(z)

+
+

1

1 − z−1

U(z) µ

−µ

Ue(z)
H(z)

Y (z)

KARW

−
+

Ue(z) − U(z)

S(z)

R′(z)

Fig. 10.13 Mesure anti-emballement du régulateur RST.

Le degré d’incursion dans la saturation est quantifié par le signal µ− u(kh) si
u(kh) > µ et −µ − u(kh) si u(kh) < −µ ; ce signal, amplifié par le gain KARW ,
est adjoint à l’entrée de l’intégrateur afin, en quelque sorte, de le « vider » quand
il y a saturation. Tout se passe alors comme si une consigne ±µ constante était
assignée à u(kh) (fig. 10.14).

±µ
z

z − 1

+

−

KARW
+

+

U ′(z)

1

1 − z−1
U(z)

Fig. 10.14 Mesure anti-emballement vue comme un montage à rétroaction.

La fonction de transfert en boucle fermée (asservissement) est :
KARW z

z(1 + KARW )− 1

Son pôle vaut :
1

1 + KARW
∈ ] 0 , 1 [

On peut aisément régler ce pôle à l’aide du paramètre KARW .

U(z)
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Le code du régulateur RST équipé de la mesure anti-emballement consiste
à évaluer u′(kh) sur la base de l’équation R′(z)U ′(z) = T (z)Yc(z) − S(z)Y (z),
puis, comme (1 − z−1)U(z) = U ′(z), à calculer u(kh) = u(kh − h) + u′(kh) ;
ensuite, avant la conversion digital-analogique, il s’agit d’insérer les instructions
suivantes recalculant un nouvel échantillon u(kh) s’il y a saturation :

u(kh) =

{
u(kh− h) + u′(kh) + KARW

(
µ− u(kh)

)
si u(kh) > µ

u(kh− h) + u′(kh) + KARW

(
−µ− u(kh)

)
si u(kh) < −µ

La valeur µ de la saturation doit être connue, contrairement au signal ue(kh).

10.4.2 Amplitudes de la grandeur de commande

L’intuition suggère que les amplitudes de la grandeur de commande sont
d’autant plus importantes que la bande passante en boucle fermée est grande.
Une analyse quantitative s’effectue en relevant que :

Y (z)
Yc(z)

= Hm(z)

Qui plus est :

Y (z)
U(z)

= H(z)

L’élimination de Y (z) conduit à :

U(z)
Yc(z)

=
Hm(z)
H(z)

La fonction de transfert liant la consigne Yc(z) à la grandeur de commande U(z)
est ainsi Hm(z)/H(z). Posons z = e jωh pour se placer en régime harmonique. Le
module

∣∣Hm(e jωh)/H(e jωh)
∣∣ est égal au quotient des amplitudes de la grandeur

de commande et de la grandeur de consigne. Ce quotient est particulièrement
bien mis en évidence dans un diagramme de Bode, comme cela est illustré dans la
figure 10.15.

Soit ωb la pulsation de coupure en boucle fermée, qui fixe la bande passante
[ 0 , ωb ]. Pour des consignes dont la pulsation se rapproche de ωb, l’amplifica-
tion

∣∣Hm(e jωh)/H(e jωh)
∣∣ peut être significative, provoquant de larges amplitudes

de la grandeur de commande. Cette amplification augmente nettement avec la
pulsation de coupure ωb.
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[dB]

−3

ωb ωN

ω

˛̨
˛̨ Hm(e jωh)

H(e jωh)

˛̨
˛̨ < 1

˛̨
˛̨ Hm(e jωh)

H(e jωh)

˛̨
˛̨ > 1

˛̨
H(e jωh)

˛̨

˛̨
Hm(e jωh)

˛̨

Fig. 10.15 Fonctions de transfert harmoniques
˛̨
H(e jωh)

˛̨
du processus à commander et

du modèle à poursuivre
˛̨
Hm(e jωh)

˛̨
; en décibels, le quotient

˛̨
Hm(e jωh)/H(e jωh)

˛̨
est la

différence entre
˛̨
Hm(e jωh)

˛̨
et

˛̨
H(e jωh)

˛̨
.

10.5 Variantes du régulateur RST

10.5.1 Mise en évidence de la commande a priori

Le régulateur RST peut être mis sous une forme intéressante mettant claire-
ment en évidence une commande a priori. Pour ce faire, on démontre le résultat
suivant.

Théorème 10.8

Soit Ym(z) = Bm(z)
Am(z) Yc(z) la sortie du modèle à poursuivre. La grandeur de

commande délivrée par un régulateur RST s’écrit alors :

U(z) =
A(z)
B(z)

Ym(z) +
S(z)
R(z)

(
Ym(z)− Y (z)

)

Démonstration
En exploitant (10.10), (10.12), (10.13), (10.14) et (10.15) :

T (z)
R(z)

=
B′

m(z)A0(z)
B+(z)R(z)

=
Am(z)A0(z)B′

m(z)
Am(z)B+(z)R(z)

=
(
A(z)R(z) + B−(z)S(z)

)
B′

m(z)
Am(z)B+(z)R(z)
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=
A(z)B′

m(z)
B+(z)Am(z)

+
S(z)B−(z)B′

m(z)
B+(z)R(z)Am(z)

=
A(z)B−(z)B′

m(z)
B+(z)B−(z)Am(z)

+
S(z)B−(z)B′

m(z)
B+(z)R(z)Am(z)

=
A(z)Bm(z)
B(z)Am(z)

+
S(z)Bm(z)
R(z)Am(z)

La grandeur de commande (10.4) générée par le régulateur RST devient donc :

U(z) =
T (z)
R(z)

Yc(z)− S(z)
R(z)

Y (z)

=
A(z)
B(z)

· Bm(z)
Am(z)

Yc(z) +
S(z)
R(z)

(
Bm(z)
Am(z)

Yc(z)− Y (z)
)

Vu que Ym(z) = Bm(z)
Am(z) Yc(z), le théorème est démontré. !

Avec un intégrateur, il s’agit de poser R(z) = (z − 1)ℓR′(z). Le résultat est
illustré dans la figure 10.16.

Yc(z)

A(z)

B(z)

Bm(z)

Am(z)
Ym(z)

+

−

S(z)

R(z) +

+

U(z)

B(z)

A(z)

Y (z)

Fig. 10.16 Régulateur RST faisant ressortir la commande a priori A(z)
B(z) Ym(z).

Le régulateur RST renferme par conséquent une commande a priori telle que
définie dans la section 9.10 (voir entre autres la figure 9.65). Le filtre Hm(z) a
maintenant une signification limpide : c’est le modèle à poursuivre. La sélection
de Hm(z), par exemple ses zéros, est dictée par les développements du paragraphe
10.3.5. Afin d’assurer d’une part la causalité et d’autre part la stabilité BIBO de
la fonction de transfert engendrant la commande a priori, le schéma fonctionnel
de la figure 10.16 est bien évidemment mis sous la forme équivalente apparaissant
dans la figure 10.17 (sect. 9.10).

Le régulateur RST peut être codé suivant la variante illustrée dans la figure
10.17, plutôt que directement à partir de l’équation R(z)U(z) = T (z)Yc(z) −
S(z)Y (z) (sect. 10.2). Il est clair que, dans cette dernière équation, la commande a
priori existe, mais n’apparaît pas sous une forme explicite. Au surplus, la fonction
de transfert fournissant la commande a priori peut être exprimée en fonction du
polynôme T (z) ; en effet, comme T (z) = B′

m(z)A0(z) :

B′
m(z)A(z)

Am(z)B+(z)
=

T (z)A(z)
Am(z)A0(z)B+(z)
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Yc(z)

B′
m(z)A(z)

Am(z)B+(z)

Bm(z)

Am(z) Ym(z)

+

−

S(z)

R(z) +

+

U(z)

B(z)

A(z)

Y (z)

Fig. 10.17 Régulateur RST réalisable faisant ressortir la commande a priori
B′

m(z)A(z)

Am(z)B+(z)
Yc(z).

10.5.2 Simplification de pôles et de zéros

Dans le paragraphe 10.3.2 consacré à l’imposition d’un modèle à poursuivre,
le polynôme B(z) constituant le numérateur du système à commander H(z) =
B(z)/A(z) est factorisé sous la forme B(z) = B+(z)B−(z) ; le polynôme B+(z)
est un facteur du polynôme caractéristique en boucle fermée A(z)R(z)+B(z)S(z)
afin de se simplifier. En sus, il est parfois souhaitable d’éliminer des zéros inclus
dans le dénominateur A(z), autrement dit des pôles de H(z). Pour ce faire, le
polynôme A(z) est lui aussi soumis à une factorisation spectrale :

A(z) = A+(z)A−(z)

Le polynôme A+(z) est monique et ses zéros sont impérativement à l’intérieur
du cercle unité, ou mieux dans une région telle que celle en tramé dans la figure
10.7. Reprenons sur cette base le raisonnement du paragraphe 10.3.2, en partant
de l’équation (10.11) :

B+(z)B−(z)T (z)
A+(z)A−(z)R(z) + B(z)S(z)

=
Bm(z)
Am(z)

(10.53)

Les zéros de A+(z) doivent tous être des zéros de A+(z)A−(z)R(z) + B(z)S(z)
afin de provoquer la simplification désirée. Comme aucun zéro de A+(z) n’est zéro
de B(z) puisque A(z) = A+(z)A−(z) et B(z) n’ont pas de facteur commun, tous
les zéros de A+(z) sont des zéros de S(z). Le polynôme A+(z) est alors un facteur
de S(z) :

S(z) = A+(z)S(z) (10.54)

Par ailleurs, tous les zéros de A+(z) doivent également être des zéros du numéra-
teur B+(z)B−(z)T (z), à nouveau dans le but de réaliser la simplification voulue.
Pour la même raison qu’avant, il faut que A+(z) soit un facteur de T (z) :

T (z) = A+(z)T (z) (10.55)

La relation (10.53) devient, après substitution de (10.12), (10.13), (10.54) et (10.55) :

B+(z)B−(z)A+(z)T (z)

B+(z)A+(z)
(
A−(z)R(z) + B−(z)S(z)

) =
B−(z)B′

m(z)
Am(z)
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En simplifiant :

T (z)
A−(z)R(z) + B−(z)S(z)

=
B′

m(z)
Am(z)

D’où, en introduisant un polynôme observateur A0(z) monique :

T (z) = B′
m(z)A0(z)

A−(z)R(z) + B−(z)S(z) = Am(z)A0(z) (10.56)

En présence d’un intégrateur, l’équation diophantine (10.56) prend la forme :

A−(z)(z − 1)ℓR′(z) + B−(z)S(z) = Am(z)A0(z)

D’autre part, le polynôme caractéristique en boucle fermée comprend maintenant
les pôles simplifiés :

A(z)R(z) + B(z)S(z) = Am(z)A0(z)A+(z)B+(z)

Les résultats des sections 10.3 à 10.4 s’étendent facilement à la nouvelle situa-
tion. Par exemple, la fonction de transfert du montage en régulation s’écrit :

B(z)R(z)
A(z)R(z) + B(z)S(z)

=
B−(z)R(z)

Am(z)A0(z)A+(z)

Quant à la fonction de transfert U(z)/Yc(z), elle n’est pas modifiée. Les théo-
rèmes 10.1, 10.3 et 10.4 subissent de légères retouches détaillées ci-dessous. Les
démonstrations sont identiques à celles déjà présentées, raison pour laquelle elles
sont laissées aux soins du lecteur intéressé.

Théorème 10.9

Soit un régulateur RST dimensionné sur la base du modèle H(z) = B(z)/A(z)
du système à commander. L’implantation de ce régulateur sur le processus à com-
mander réel H0(z) = B0(z)/A0(z) conduit, pour le montage en asservissement,
à la fonction de transfert suivante :

Hm(z)
1

1 + R(z)
(

1
H0(z)

− 1
H(z)

)
B−(z)

Am(z)A0(z)A+(z)
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Théorème 10.10

Il existe un régulateur RST à degré minimal tel que δR ≥ δT et δR ≥ δS si les
inégalités suivantes sont respectées :

δAm − δBm ≥ δA− δB

δA0 ≥ 2 δA− δAm − δA+ − δB+ − 1
(10.57)

Lorsqu’un intégrateur est inséré, il existe un régulateur RST à degré minimal
tel que δR ≥ δT et δR ≥ δS si l’inégalité (10.57) et l’inégalité suivante sont
satisfaites :

δA0 ≥ 2 δA− δAm − δA+ − δB+ + ℓ− 1

La démonstration de ce théorème fixe le degré du polynôme R(z) :

δR = δAm + δA0 + δB+ − δA−

Vu que R(z) = B+(z)R(z), on a δR = δB+ + δR et :

δR = δR− δB+ = δAm + δA0 − δA−

Avec un intégrateur, nous avons R(z) = (z − 1)ℓB+(z)R′(z) ; donc δR =
δB+ + δR′ + ℓ et :

δR′ = δR − δB+ − ℓ = δAm + δA0 − δA− − ℓ

Théorème 10.11

Le degré du polynôme S(z) vaut δA− − 1 ; en outre, les polynômes R(z) et S(z)
sont uniques. En présence d’un intégrateur, δS = δA− + ℓ − 1 ; R′(z) et S(z)
sont uniques.

10.5.3 Poursuite et régulation à objectifs différents

Dans certaines applications, on requiert que le comportement en poursuite
soit indépendant de celui en régulation, par exemple quand le temps dépensé lors
d’un changement de consigne peut être sensiblement supérieur à celui pris pour
rejeter une perturbation (ou vice versa). Les modes, par conséquent les pôles, pour
les montages en asservissement et en régulation doivent alors être différents. L’ob-
jectif du présent paragraphe est de montrer qu’il est facile d’exaucer ce vœu.

Rappelons que la fonction de transfert en régulation vaut (§ 10.3.2) :

B(z)R(z)
A(z)R(z) + B(z)S(z)

=
B−(z)R(z)
Am(z)A0(z)

(10.58)
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Après avoir sélectionné les polynômes Am(z) et A0(z) fixant les pôles en régu-
lation, un régulateur RST est dimensionné en suivant pas à pas la démarche dé-
taillée dans les sections précédentes. Il n’est pas nécessaire à ce stade de calculer le
polynôme T (z), lequel n’intervient pas dans la fonction de transfert en régulation
(10.58). Bien évidemment, seuls les pôles en régulation sont de la sorte assignés
à volonté. La relation (10.58) révèle que les zéros, quant à eux, sont des zéros
du processus à commander auxquels s’adjoignent les zéros du polynôme R(z), en
d’autres termes les pôles du régulateur. Ainsi, en régulation, la synthèse ne permet
structurellement pas d’imposer un modèle complet ; uniquement son dénomina-
teur peut l’être.

On passe maintenant au montage en asservissement. La consigne Yc(z) n’est
pas injectée telle quelle, mais passe au préalable dans un filtre de fonction de trans-
fert Am(z)/A∗

m(z) (fig. 10.18).

Yc(z)
Am(z)

A∗
m(z) RST

U(z) B(z)

A(z)
Y (z)

B(z)T (z)

A(z)R(z) + B(z)S(z)
=

Bm(z)

Am(z)

Bm(z)

A∗
m(z)

Fig. 10.18 Poursuite et régulation à objectifs différents.

La fonction de transfert globale en asservissement vaut donc :

Y (z)
Yc(z)

=
Bm(z)
Am(z)

· Am(z)
A∗

m(z)
=

Bm(z)
A∗

m(z)
(10.59)

Le polynôme Am(z) disparaît par simplification et les pôles en asservissement (zé-
ros de A∗

m(z)) sont distincts des pôles en régulation (zéros de Am(z) et de A0(z)),
réalisant par conséquent le découplage des modes des deux montages. A noter
que le découplage des dynamiques les caractérisant n’est pas parfait : le polynôme
B−(z), inclus dans Bm(z), est présent dans les numérateurs des deux fonctions de
transfert (10.58) et (10.59).

Le polynôme A∗
m(z) est monique ; ses zéros sont à l’intérieur du cercle unité

et son degré est pris égal à celui de Am(z) :

δA∗
m = δAm
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Lors du choix du modèle à poursuivre pour le montage en asservissement
(§ 10.3.5), il importe, afin de remplir scrupuleusement le cahier des charges ayant
trait au suivi de la consigne, de faire jouer à A∗

m(z) le rôle de Am(z). Entre autres,
la seconde équation diophantine (10.44) produisant B′

m(z) est maintenant :

A−
c (z)X(z) + B−(z)B′

m(z) = A∗
m(z)

De surcroît, pour autant que δA∗
m ≥ δA− δB+ + δA−

c −1, la causalité et l’unicité
du régulateur RST, avec δB′

m = δA−
c − 1, sont assurées (théorèmes 10.6 et 10.7).

Le polynôme T (z) = B′
m(z)A0(z) met en œuvre le polynôme B′

m(z) dimensionné
sur cette base.

L’équation fournissant la grandeur de commande U(z), remplaçant l’égalité
(10.4), s’écrit :

U(z) =
T (z)
R(z)

· Am(z)
A∗

m(z)
Yc(z)− S(z)

R(z)
Y (z)

Comme δAm = δA∗
m, les contraintes de réalisation de la fonction de transfert

T (z)
R(z) ·

Am(z)
A∗

m(z) , par exemple lors d’une implantation standard, sont celles régissant
la fonction de transfert T (z)/R(z). Le code de cette variante du régulateur RST
se base sur l’égalité suivante, dans laquelle les polynômes sont exprimés en puis-
sances négatives de z (sect. 10.2) :

R(z)A∗
m(z)U(z) = T (z)Am(z)Yc(z)− S(z)A∗

m(z)Y (z)

10.5.4 Synthèse par calibrage fréquentiel

L’objectif d’une synthèse par calibrage fréquentiel est de façonner dans le do-
maine fréquentiel la fonction de transfert en boucle ouverte ou les fonctions de
sensibilité, ou encore d’autres fonctions de transfert, dans le but d’imposer des
marges de robustesse, de rejeter des perturbations, de filtrer des bruits de me-
sure, etc. Le lecteur peut, à ce sujet, se référer à l’approche classique de la section
9.8. Dans le cas général, le problème se résout par une optimisation fondée sur
le concept de norme H∞. Nous nous contentons, dans ce paragraphe, d’une ap-
proche itérative, intuitive et facile à mettre en œuvre.

Les polynômes R(z) et S(z) sont contraints à inclure des parties préspécifiées
PR(z) et PS(z), respectivement :

R(z) = PR(z)R′(z) S(z) = PS(z)S′(z)

En sus des pôles de la perturbation à rejeter (principe du modèle interne), le poly-
nôme PR(z) contient des zéros utiles au calibrage. Le polynôme PS(z) incorporé
dans S(z) est lui aussi un outil de calibrage. Comme dans le paragraphe 10.3.2,
le polynôme B+(z) est un facteur de R′(z), si bien que R′(z) = B+(z)R′(z).
L’équation de Diophante à résoudre, au cœur de la synthèse du régulateur RST,
est alors :

A(z)PR(z)R′(z) + B−(z)PS(z)S′(z) = Am(z)A0(z) (10.60)
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Il est certainement approprié de rappeler que le polynôme Am(z) comprend sou-
vent, en plus du polynôme P (z) fixant les modes dominants en boucle fermée, un
polynôme auxiliaire PA(z) (§ 10.3.5) :

Am(z) = PA(z)P (z)

Quelques retouches ayant trait aux degrés de certains polynômes sont requises
dans le présent contexte. Pour les justifier, il suffit de reprendre les démonstra-
tions des théorèmes 10.3 et 10.4 ; ces développements, laissés aux soins du lecteur,
révèlent que, dans le théorème 10.3, l’inégalité (10.31) doit être remplacée par :

δA0 ≥ 2 δA− δAm − δB+ + δPR + δPS − 1 (10.61)

Quant au degré du polynôme R
′
, il vaut :

δR
′ = δAm + δA0 − δA− δPR

Finalement, en ce qui concerne le théorème 10.4, la solution à degré minimal
vérifie :

δS′ = δA + δPR − 1

La synthèse du régulateur RST est effectuée itérativement comme suit. Avec un
choix initial des polynômes PR(z), PS(z), PA(z) et A0(z), l’équation diophan-
tine (10.60) est résolue pour donner les polynômes R′(z) et S′(z). Une analyse
dans le domaine fréquentiel, basée sur la fonction de transfert en boucle ouverte,
les fonctions de sensibilité ou d’autres fonctions de transfert en boucle fermée,
permet ensuite de vérifier si les spécifications sont remplies. Si tel n’est pas le
cas, les polynômes PR(z) et PS(z), de même que le polynôme PA(z), voire le
polynôme observateur A0(z), sont altérés afin d’obtenir les calibres désirés. Par
altération, on entend modification de coefficients ou ajout de zéros. Avec les po-
lynômes PR(z), PS(z), PA(z) et A0(z) ainsi mis à jour, l’équation diophantine
(10.60) est à nouveau résolue et le processus répété. Cette approche revêt claire-
ment un aspect intuitif : les révisions successives des polynômes PR(z), PS(z),
PA(z) et A0(z) requièrent un riche savoir-faire. Au surplus, aucun résultat solide
assurant la convergence des itérations n’est disponible. L’expérience montre néan-
moins qu’elle est rapide : trois à quatre itérations fournissent souvent une solution
tout à fait convenable.

La partie préspécifiée PS(z) du polynôme S(z) inclut souvent un zéro z = −1,
en d’autres termes le facteur z + 1. Afin de justifier cette pratique, rappelons que
la fonction de transfert liant le bruit de mesure V (z) à la grandeur de commande
U(z) s’écrit (§ 5.4.4) :

U(z)
V (z)

= − K(z)
1 + K(z)H(z)

= − A(z)S(z)
A(z)R(z) + B(z)S(z)

En régime harmonique, cette fonction de transfert devient :

− A(e jωh)S(e jωh)
A(e jωh)R(e jωh) + B(e jωh)S(e jωh)

= − A(e jωh)PS(e jωh)S′(e jωh)
A(e jωh)R(e jωh) + B(e jωh)PS(e jωh)S′(e jωh)
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Le spectre du bruit de mesure se situe à l’extérieur de la bande passante en boucle
fermée, avec des pulsations se rapprochant de la pulsation de Nyquist ωN ; or :

lim
ω→ωN

e jωh = e jωN h = e j π
h h = −1

Par conséquent, si le polynôme PS(e jωh) comprend le facteur e jωh + 1 :

lim
ω→ωN

PS(e jωh) = 0

Donc :

lim
ω→ωN

(
− A(e jωh)S(e jωh)

A(e jωh)R(e jωh) + B(e jωh)S(e jωh)

)
= 0

Le bruit de mesure ne provoque ainsi pas une forte agitation du signal de com-
mande.

Il découle du théorème 10.6 que le degré du polynôme Am(z) augmente avec
celui de A−

c (z). Sans parties préspécifiées PR(z) et PS(z), l’inégalité (10.61) (ou
10.30) peut dès lors ne plus pouvoir être vérifiée. Dans ces circonstances, en plus
d’être un outil de calibrage fréquentiel, des parties préspécifiées permettent de
résoudre le problème.

10.6 Problèmes

10.6.1 En présence de variations du processus à commander H(z), démontrer
que la sensibilité de la fonction de transfert en boucle fermée avec un régulateur
RST est :

S(z) =
1

1 + K(z)H(z)

10.6.2 Dans l’exemple 10.3, prouver que la causalité du régulateur RST est ga-
rantie quand le surplus de pôles de Hm(z) est plus grand ou égal à celui de H(z).

10.6.3 En admettant que le modèle H(z) = B(z)/A(z) du système à comman-
der est distinct de la fonction de transfert H0(z) = B0(z)/A0(z) du processus
réel, calculer, dans l’exemple 10.3, la fonction de transfert en boucle fermée réelle.

10.6.4 Détailler la démarche du paragraphe 10.3.2 en présence d’un intégrateur
de type ℓ, aboutissant à l’équation diophantine (10.16).

10.6.5 Parmi toutes les solutions de l’équation diophantine, démontrer qu’il est
toujours possible d’en trouver une telle que le degré δR de R(z) soit inférieur au
degré δB de B(z) :

δR < δB
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10.6.6 Développer une méthode de synthèse du régulateur RST sans intégra-
teur dans laquelle aucune simplification de zéros avec des pôles de la fonction de
transfert en boucle fermée n’est provoquée. Comme dans la section 10.3, l’égalité
suivante est recherchée :

B(z)T (z)
A(z)R(z) + B(z)S(z)

=
Bm(z)
Am(z)

Mais, ici, δA0 = δB+ = 0. Modifier en conséquence le tableau 10.1. Est-ce-
que le suivi parfait, quand le temps tend vers l’infini, d’une consigne quelconque
Yc(z) = Bc(z)/Ac(z) est possible dans ces conditions ?

10.6.7 Démontrer le théorème 10.3 dans le cas où un intégrateur de type ℓ est
implanté.

10.6.8 En présence d’un intégrateur, prouver que l’égalité (10.41) doit être rem-
placée par :

δS = δA + ℓ− 1

10.6.9 Quand le temps de calcul et de conversion est négligeable vis-à-vis de
la période d’échantillonnage, démontrer que les inégalités (10.29) et (10.30) du
théorème 10.3 deviennent des égalités. Modifier ce résultat en présence d’un inté-
grateur.

10.6.10 Modifier les résultats du problème 10.6.9 lorsque le temps de calcul et
de conversion est égal à la période d’échantillonnage.

10.6.11 Répéter l’exemple 10.12 dans le cas où le temps de calcul et de conver-
sion est égal à la période d’échantillonnage. Ecrire un pseudo-code du régulateur
RST.

10.6.12 Répéter l’exemple 10.12 en implantant dans le régulateur un intégrateur
de type 1. Ecrire un pseudo-code du régulateur RST.

10.6.13 Répéter l’exemple 10.12 en prenant P (z) = z + c.

10.6.14 Répéter l’exemple 10.13 en sélectionnant le modèle à poursuivre :

Hm(z) =
(1 + c1 + c2)z
z2 + c1z + c2

Ecrire un pseudo-code du régulateur RST.

10.6.15 A l’aide d’un logiciel de simulation et de conception, reproduire les ré-
sultats de l’exemple 10.12 (fig. 10.10). Avec le polynôme P (z) du problème 10.6.13,
déterminer ensuite la grandeur de commande et la réponse indicielle en boucle fer-
mée dans les cas c = 0,8, 0,6, 0,4, 0,2, 0 (régulateur à réponse pile), −0,2, −0,4,
−0,6, −0,8. Reproduire ensuite les résultats de l’exemple 10.13 (fig. 10.12) ; dans
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cette situation, tracer sur le même graphique la réponse indicielle en boucle fer-
mée analogique y(t) et sa version échantillonnée

{
y(k)

}
; interpréter les résultats

obtenus. Un couple parasite constant Mr s’exerce maintenant sur la charge, se
traduisant par une perturbation w = − R

KΦMr ; dans les conditions de l’exemple
10.12 et avec w = −5, déterminer la grandeur de commande et la réponse indi-
cielle en boucle fermée ; éliminer le statisme en incorporant dans le régulateur un
intégrateur de type 1 (problème 10.6.12).

10.6.16 Soit un entraînement électrique de position par moteur brushless com-
mandé en courant :

G(s) =
γ

s2
γ = 1

Echantillonner ce processus avec une période d’échantillonnage h = 0,025 s. Soit
le modèle à poursuivre :

Hm(z) =
0,25(z + 1)
z(z − 0,5)

Est-ce que ce modèle est raisonnable ? Synthétiser un régulateur RST sans inté-
grateur. Ecrire un pseudo-code réalisant le régulateur obtenu.

10.6.17 La cuve de mélange de l’exemple 5.2, avec a = 0,015 s−1 et T = 1 s, est
commandée par un régulateur RST. La période d’échantillonnage vaut h = 1 s.
Trouver la fonction de transfert échantillonnée H(z). Concevoir un régulateur
RST sans intégrateur, avec le modèle à poursuivre :

Hm(z) =
0,5

z(z − 0,5)

Est-ce que ce modèle à poursuivre est raisonnable ? Ecrire un pseudo-code réali-
sant le régulateur obtenu.

10.6.18 Soit l’installation thermique du problème 5.5.7. Une condition absolue
d’amortissement d’un facteur a = 20 en ka = 5 coups d’horloge est imposée.
Après avoir sélectionné un modèle à poursuivre convenable, dimensionner un ré-
gulateur RST sans intégrateur.

10.6.19 L’objectif du présent problème est de démontrer que le prédicteur de
Smith examiné dans la section 9.9 est un cas particulier du régulateur RST. En
adoptant les notations de la section 9.9, la relation (9.37) montre que, avec un
prédicteur de Smith, la fonction de transfert en boucle fermée est :

z−d K(z)H ′(z)
1 + K(z)H ′(z)

En prenant pour modèle à poursuivre cette fonction de transfert, prouver que le
régulateur RST de l’exemple 10.3 est identique au prédicteur de Smith (9.36).

10.6.20 Soit un entraînement électrique en position par moteur brushless com-
mandé en courant :

G(s) =
γ

s2
γ = 1
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La période d’échantillonnage h vaut 0,1 s et on considère le modèle à poursuivre :

Hm(z) =
Bm(z)

zd(z − 0,5)

Le temps dépensé pour l’exécution de l’algorithme de commande et les conver-
sions est négligeable vis-à-vis de la période d’échantillonnage. Le régulateur RST
qu’il s’agit de dimensionner ne comprend pas d’intégrateur. Le statisme et la traî-
née d’asservissement doivent être nuls. Fixer le modèle à poursuivre Hm(z) en
choisissant Bm(z) et d. Synthétiser ensuite un régulateur RST. Ecrire un pseudo-
code réalisant le régulateur ainsi obtenu.

10.6.21 Vérifier que les polynômes B′
m(z) obtenus dans les exemples 10.8 et

10.10 sont bien les mêmes.

10.6.22 Démontrer que, dans le paragraphe 10.3.2, on recherche des simplifica-
tions de zéros du système à commander B(z)/A(z) avec des pôles de la fonction
de transfert S(z)/R(z). Interpréter ces simplifications à l’aide du lieu des pôles
(§ 9.7.2).

10.6.23 Dans l’exemple 10.12, calculer le zéro additionnel z = 0,919 à l’aide de
la formule (10.43).

10.6.24 Parmi les solutions de l’équation diophantine (10.44), il en est une
vérifiant δX < δB− (§ 10.3.5). Démontrer que cette solution n’est pas intéres-
sante car conduisant à δAm = δBm alors que la fonction de transfert Hm(z) =
Bm(z)/Am(z) doit être strictement propre.

10.6.25 Démontrer le théorème 10.9.

10.6.26 Démontrer le théorème 10.10.

10.6.27 Démontrer le théorème 10.11.

10.6.28 A l’aide du tableau 10.1, vérifier que, pour l’équation de Diophante de
l’exemple 10.4, il est possible de poser δR = δS = δA− 1.

10.6.29 A l’aide d’un logiciel de simulation et de conception, traiter l’exemple
10.7 dans le cas particulier a = −0,985, b = 0,015 et d = 3 (ex. 9.3 et ex. 9.9).
Avec c = −0,8, tracer la grandeur de commande et la réponse indicielle en boucle
fermée, et évaluer les marges de gain et de phase. Répéter le problème avec d’autres
valeurs de c, en particulier c = 0 et c = 0,5. Expliquer en détail les comportements
ainsi obtenus.

10.6.30 Dans l’exemple 10.7, un polynôme observateur qui n’est pas à réponse
pile est sélectionné :

A0(z) = (z + α)d α ̸= 0

Proposer un choix pour α. Démontrer ensuite que les coefficients si, i = 1, 2,
. . . , d, du polynôme S(z) sont nuls.
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10.6.31 Dans le cas d’une consigne sinusoïdale yc(kh) = sin(ωkh), donner le
polynôme A−

c (z) et le degré du polynôme B′
m(z) intervenant dans l’équation dio-

phantine (10.44).

10.6.32 Dans l’exemple 10.12, avec une consigne en forme de saut unité, poser
a = c1 = c2 = 0 afin d’obtenir un régulateur à réponse pile. Déterminer le temps
nécessaire pour amortir complètement le régime transitoire de la grandeur à com-
mander y(kh) en asservissement, puis en régulation et finalement de la grandeur
de commande u(kh). Valider ces résultats à l’aide d’un logiciel de simulation et de
conception.

10.6.33 Dans l’exemple 10.12, avec une consigne en forme de rampe, poser c =
c1 = c2 = 0 afin d’obtenir un régulateur à réponse pile. Déterminer le temps
nécessaire pour amortir complètement le régime transitoire de la grandeur à com-
mander y(kh) en asservissement, puis en régulation et finalement de la grandeur
de commande u(kh). Calculer le zéro permettant un suivi asymptotique de la
consigne. Valider ces résultats à l’aide d’un logiciel de simulation et de concep-
tion.

10.6.34 Soit le processus à commander suivant, échantillonné avec la période
d’échantillonnage h = 1 s :

H(z) =
0,015

z2(z − 0,985)

Concevoir un régulateur RST sans intégrateur, avec le modèle à poursuivre :

Hm(z) =
1
z3

Est-ce que ce modèle à poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.35 Soit le processus à commander :

H(z) =
0,015

z(z − 0,985)

Concevoir un régulateur RST sans intégrateur, avec le modèle à poursuivre :

Hm(z) =
0,4

(z − 0,2)(z − 0,5)

Est-ce que ce modèle à poursuivre est raisonnable ?

10.6.36 Soit le processus à commander suivant, échantillonné avec la période
d’échantillonnage h = 0,025 s :

H(z) =
1,23 · 10−3(z + 0,98)

(z − 1)(z − 0,95)
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Ecrire, sous forme matricielle, le système d’équations algébriques fournissant un
régulateur RST sans intégrateur, avec le modèle à poursuivre :

Hm(z) =
z + 0,98
1,98 z2

Est-ce que ce modèle à poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.37 Soit le processus à commander suivant, échantillonné avec la période
d’échantillonnage h = 1 s :

H(z) =
0,015

z(z − 0,985)

Concevoir un régulateur RST sans intégrateur, avec le modèle à poursuivre :

Hm(z) =
1
z2

Est-ce que ce modèle à poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.38 Soit le processus à commander suivant, qu’il s’agit d’échantillonner avec
la période d’échantillonnage h = 0,025 s :

G(s) =
1
s2

Ecrire, sous forme matricielle, le système d’équations algébriques fournissant un
régulateur RST sans intégrateur, avec le modèle à poursuivre :

Hm(z) =
0,5 (z + 1)

z2

Est-ce que ce modèle à poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.39 Lorsque les polynômes R(z) et S(z) incluent des parties préspécifiées
PR(z) et PS(z) (§ 10.5.4), prouver, en reprenant les démonstrations des théorèmes
10.3 et 10.4, que :

δA0 ≥ 2 δA− δAm − δB+ + δPR + δPS − 1

δR
′ = δAm + δA0 − δA− δPR

δS′ = δA + δPR − 1





CHAPITRE 11

Identification

OBJECTIFS
• Définir la notion de régression linéaire.
• Structurer le problème de l’identification des systèmes

dynamiques en une régression linéaire.
• Développer les algorithmes des moindres carrés simples,

pondérés, récurrents et pondérés récurrents.

11.1 Introduction

Le concept de modèle mathématique d’un processus est vital dans les disci-
plines scientifiques et techniques. C’est une abstraction résumant l’information
disponible. Par exemple, dans les chapitres précédents, le système à commander
est supposé être décrit par une fonction de transfert. Un seul et unique modèle
ne permet qu’exceptionnellement de résoudre tous les problèmes, allant de la
conception du processus à sa commande, en passant par la simulation. En fait,
une hiérarchie de modèles doit généralement être élaborée. Un modèle détaillé,
non linéaire, d’ordre important et faisant intervenir des variables d’état internes
est requis pour simuler un système dynamique, afin d’en extraire les finesses et
de reproduire un comportement fidèle à la réalité. Un tel modèle de simulation
est notamment exploité pour analyser les performances du processus en boucle
fermée (§ 1.4.4). Un modèle de commande nettement plus grossier, linéarisé au-
tour d’un point ou d’une trajectoire de fonctionnement, d’ordre réduit et souvent
externe, s’impose par contre pour la synthèse du régulateur.

Une façon de construire un modèle, qu’il soit de simulation ou de commande,
consiste à se servir des lois physiques qui gouvernent le système. Cette approche
donne un modèle de connaissance ou modèle physique. Les lois physiques régis-
sant le comportement d’un processus sont parfois trop complexes pour en tirer
pleinement bénéfice, ou même carrément inconnues. Certains paramètres du sys-
tème peuvent s’altérer lentement au cours du temps et doivent alors être rafraîchis.
Dans de telles circonstances, plutôt qu’une modélisation de connaissance, il appa-
raît souhaitable de créer et, si nécessaire, de mettre à jour un modèle du système
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en profitant de mesures récoltées in situ. Il en découle un modèle de représenta-
tion ou modèle expérimental. La détermination d’un modèle de représentation est
appelée identification.

Nous distinguons deux sortes de modèles de représentation. Tout d’abord,
les modèles de représentation non paramétriques sont constitués de courbes (par
exemple la réponse impulsionnelle ou la fonction de transfert harmonique dans
des diagrammes de Bode) ne pouvant pas être décrites par un ensemble fini de
nombres. Les modèles de représentation paramétriques, quant à eux, peuvent être
caractérisés par un ensemble fini de nombres (par exemple les coefficients des po-
lynômes au dénominateur et au numérateur d’une fonction de transfert).

Le présent chapitre constitue une introduction à l’identification. Ce domaine
est riche et vaste, exigeant beaucoup de savoir-faire et de nombreuses compé-
tences ; d’excellents ouvrages lui sont totalement dédiés. Souhaitant conserver le
niveau élémentaire adopté dans ce texte, l’approche retenue est résolument dé-
terministe (à l’exception d’une digression dans la section 11.4). D’importants as-
pects, qui ne peuvent être mis en évidence qu’au moyen d’outils stochastiques
sophistiqués, sont donc laissés de côté. Au surplus, on se restreint à l’approche
par moindres carrés pour établir prioritairement des modèles de représentation
paramétriques.

Le chapitre débute par la définition, directement dans un format matriciel
offrant une interprétation géométrique naturelle, d’une régression linéaire
(sect. 11.2). Le problème de l’identification des processus dynamiques est ensuite
structuré en une régression linéaire (sect. 11.3). La section 11.4 est dévolue à la
version de base de l’algorithme des moindres carrés, qui est par essence une pro-
jection orthogonale. La méthode des moindres carrés pondérés est présentée dans
la section 11.5, qui se termine par l’importante notion de facteur d’oubli. Des
formes récurrentes, cruciales pour une mise en œuvre en temps réel, sont finale-
ment étudiées, tout d’abord pour la version de base (sect. 11.6), puis pour celle
avec pondération (sect. 11.7).

11.2 Régression linéaire

De nombreux problèmes d’estimation peuvent être mis sous la forme de l’équa-
tion suivante, portant le nom de régression linéaire :

y(k) = Φ(k)ϑ + ε(k) (11.1)

Dans ce modèle, y(k) ∈ RN est le vecteur de mesures, ϑ ∈ Rp le vecteur de para-
mètres et ε(k) ∈ RN le vecteur d’erreurs ; Φ(k) ∈ RN×p est la matrice d’observa-
tions. Par convention, l’entier k apparaissant dans y(k), Φ(k) et ε(k) souligne le
fait que le dernier instant d’échantillonnage entrant en jeu dans la construction de
ces grandeurs est tk = kh ; le vecteur y(k) et parfois la matrice Φ(k) contiennent
des mesures. Le problème est de déterminer le vecteur inconnu ϑ de manière à
minimiser, dans un sens à préciser, le vecteur d’erreurs ε(k).
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Il est instructif de faire ressortir les lignes et les colonnes de la matrice d’obser-
vations Φ(k). Les N lignes sont dénotées φT

1 (k), φT
2 (k), . . . , φT

N (k), avec φ1(k),
φ2(k), . . . , φN (k) ∈ Rp, et les p colonnes φ1(k), φ2(k), . . . , φp(k) ∈ RN :

Φ(k) =

⎡

⎢⎢⎢⎢⎣

φT
1 (k)

φT
2 (k)
...

φT
N (k)

⎤

⎥⎥⎥⎥⎦
=
[

φ1(k) φ2(k) . . . φp(k)
]

Ici encore, l’argument k indique que le dernier instant d’échantillonnage inter-
venant dans φT

i (k), i = 1, 2, . . . , N , et φj(k), j = 1, 2, . . . , p, est tk = kh ;
le symbole T signifie la transposition d’un vecteur ou, plus généralement, d’une
matrice.

La régression linéaire (11.1) peut être écrite comme suit :

y(k) = ϑ1φ
1(k) + ϑ2φ

2(k) + · · · + ϑpφ
p(k) + ε(k)

Ainsi, au vecteur d’erreurs ε(k) près, y(k) est une combinaison linéaire des co-
lonnes φ1(k), φ2(k), . . . , φp(k) de la matrice Φ(k), les coefficients de cette com-
binaison linéaire étant les composantes ϑ1, ϑ2, . . . , ϑp du vecteur de paramètres.
La figure 11.1 illustre géométriquement la situation pour N = 3 et p = 2.

y(k)

φ2(k)

ε(k)

ϑ2φ2(k)

φ1(k)
ϑ1φ1(k)

Φ(k)ϑ = ϑ1φ1(k) + ϑ2φ2(k)

Sous-espace vectoriel engendré par
les colonnes φ1(k) et φ2(k) de Φ(k)

Fig. 11.1 Interprétation géométrique d’une régression linéaire dans le cas N = 3 et p = 2.

La fourchette des probèmes d’estimation pouvant être structurés comme une
régression linéaire est extrêmement vaste. Les quelques exemples introduits dans
les lignes suivantes ne constituent que des amuse-bouches. En outre, l’une des
approches permettant d’identifier une fonction de transfert discrète fera l’objet
d’une section séparée, vu le rôle central qu’elle joue actuellement en automatique.

EXEMPLE 11.1
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Nous avons tous été une fois ou l’autre confrontés au problème de tracer une
droite de pente a et d’ordonnée à l’origine b passant au mieux par des échantillons
y(0), y(h), . . . , y(kh) obtenus expérimentalement à des instants 0, h, . . . , kh.
Les paramètres à identifier sont les nombres a et b. Il s’agit par exemple d’esti-
mer une vitesse au moyen de mesures de position prises à des temps différents,
ou encore d’évaluer un débit via des échantillons de poids, de volume ou de ni-
veau. Comme cela est illustré dans la figure 11.2, on pourrait se contenter de deux
échantillons à des temps distincts, par exemple 0 et h :

{
y(0) = b

y(h) = ah + b

b

y(0)

y(h)

a

y(t) = at + b

h

t

Fig. 11.2 Identification des paramètres a et b à partir des deux échantillons y(0) et y(h).

Sous forme matricielle :
[

y(0)
y(h)

]

︸ ︷︷ ︸
y(1)

=
[

0 1
h 1

]

︸ ︷︷ ︸
Φ(1)

[
a
b

]

︸ ︷︷ ︸
ϑ

La régression linéaire est donc :

y(1) = Φ(1)ϑ (11.2)

Ici, N = p = 2, ε(1) = 0 et, géométriquement, le vecteur de mesures y(1) ap-
partient au sous-espace vectoriel engendré par les colonnes linéairement indépen-
dantes de la matrice Φ(1) (fig. 11.3).

La solution est évidente ; il suffit de résoudre le système d’équations algé-
briques linéaires (11.2) :

b = y(0)

a =
y(h)− y(0)

h

Cette approche n’est pas recommandée, car elle manque de fiabilité. En effet, les
échantillons y(0) et y(h) sont entachés d’erreurs de mesure ; qui plus est, il existe
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des erreurs de modélisation dans le sens que, en réalité, l’hypothèse d’une droite
passant par les échantillons n’est pas forcément correcte. Toutes ces erreurs se

φ2(1)

ϑ2φ2(1)

φ1(1)

ϑ1φ1(1)

y(1) = ϑ1φ1(1) + ϑ2φ2(1)

Sous-espace vectoriel engendré par
les colonnes φ1(1) et φ2(1) de Φ(1)

Fig. 11.3 Interprétation géométrique d’une régression linéaire dans le cas N = p = 2.

répercutent alors sur les paramètres calculés. Afin de filtrer les erreurs, une re-
dondance est introduite en fondant l’estimation de a et de b sur un nombre N
d’échantillons plus grand que le nombre p = 2 de ces paramètres. Dès que N > p,
les échantillons y(0), y(h), . . . , y(kh) ne sont généralement plus alignés sur la
droite at + b, à cause des erreurs de mesure et de modélisation (fig. 11.4).

b

ε(0)
y(0)

y(h)

ε(h)

y(2h)

y(3h) y(4h)

y(5h)

ε(kh)

a

at + b

y(kh) = akh + b + ε(kh)

h kh

t

Fig. 11.4 Identification des paramètres a et b à partir de N = k + 1 > p = 2 échantillons
y(0), y(h), . . . , y(kh).

Maintenant :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y(0) = b + ε(0)
y(h) = ah + b + ε(h)

...
y(kh) = akh + b + ε(kh)
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Ou :
⎡

⎢⎢⎢⎣

y(0)
y(h)

...
y(kh)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
y(k)

=

⎡

⎢⎢⎢⎣

0 1
h 1
...

...
kh 1

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(k)

[
a
b

]

︸ ︷︷ ︸
ϑ

+

⎡

⎢⎢⎢⎣

ε(0)
ε(h)

...
ε(kh)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ε(k)

La régression linéaire est par conséquent :

y(k) = Φ(k)ϑ + ε(k)

On a N = k + 1 > p = 2. Géométriquement, le vecteur de mesures y(k) n’ap-
partient pas au sous-espace vectoriel engendré par les colonnes linéairement in-
dépendantes de la matrice Φ(k) (fig. 11.1).

En guise d’application, considérons l’identification, à partir de la réponse im-
pulsionnelle, du gain statique γ et de la constante de temps τ d’une fonction de
transfert analogique du premier ordre (voir à ce sujet l’exemple 1.14) :

G(s) =
γ

τs + 1

Pour une entrée en forme d’impulsion de Dirac, la sortie de ce modèle vaut
(fig. 11.5) :

L−1
(
G(s)

)
=

γ

τ
e−

t
τ

On a :

ln
(γ

τ
e−

t
τ

)
= − t

τ
+ ln

γ

τ

γ

τ

y(0) y(h)

γ

τ
e−

t
τ

y(2h)

y(3h)
y(kh)

h kh

t

Fig. 11.5 Réponse impulsionnelle d’un système du premier ordre.
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Grâce à cette propriété, il suffit de prendre le logarithme naturel des grandeurs en
ordonnée dans la figure 11.5 pour aboutir à une forme linéaire, représentée dans
la figure 11.6.

ln
γ

τ

ln y(0)
ε(0)

ln y(h)

ε(h)

ln y(2h)

ln y(3h)

−
1

τ ε(kh)

h

kh
t

ln y(kh) = −
kh

τ
+ ln

γ

τ
+ ε(kh)

−
t

τ
+ ln

γ

τ

Fig. 11.6 Identification de a = −1/τ et b = ln γ
τ à partir des échantillons ln y(0),

ln y(h), . . . , ln y(kh).

Le problème à résoudre est maintenant un cas particulier de celui traité dans
les lignes précédentes avec a = −1/τ , b = ln γ

τ et les nombres ln y(0), ln y(h),
. . . , ln y(kh) obtenus à partir des mesures brutes y(0), y(h), . . . , y(kh) de la ré-
ponse impulsionnelle. Après estimation des paramètres a et b, γ et τ s’obtiennent
directement :

τ = −1
a

γ = −1
a

eb

Un essai consistant à injecter une impulsion de Dirac pour récolter la réponse
impulsionnelle est délicat à mettre en œuvre. En effet, une entrée aussi violente
peut être interdite ; qui plus est, des incursions dans le domaine non linéaire sont
hautement probables, faussant les prévisions.

EXEMPLE 11.2
L’approche présentée dans l’exemple précédent s’étend aisément au cas où

il s’agit de faire passer au plus près d’échantillons mesurés une fonction qui est
elle-même une somme pondérée de fonctions de base spécifiées, par exemple des
polynômes orthogonaux, des fonctions trigonométriques ou encore des splines.
Soient fi : R → R, i = 1, 2, . . . , p, ces fonctions de base. Le problème est
d’estimer les coefficients ci, i = 1, 2, . . . , p, de manière à ce que la fonction
c1f1+c2f2+· · ·+cpfp passe au mieux par les mesures y(0), y(h), y(kh). Alors, en
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admettant qu’il y ait plus d’échantillons que de fonctions de base afin de disposer
d’une certaine redondance :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = c1f1(0) + c2f2(0) + · · · + cpfp(0) + ε(0)
y(h) = c1f1(h) + c2f2(h) + · · · + cpfp(h) + ε(h)

...
y(ph) = c1f1(ph) + c2f2(ph) + · · · + cpfp(ph) + ε(ph)

...
y(kh) = c1f1(kh) + c2f2(kh) + · · · + cpfp(kh) + ε(kh)

Ou :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0)
y(h)

...
y(ph)

...
y(kh)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y(k)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(0) f2(0) . . . fp(0)
f1(h) f2(h) . . . fp(h)

...
...

...
f1(ph) f2(ph) . . . fp(ph)

...
...

...
f1(kh) f2(kh) . . . fp(kh)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(k)

⎡

⎢⎢⎢⎣

c1

c2
...
cp

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ϑ

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(0)
ε(h)

...
ε(ph)

...
ε(kh)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ε(k)

La régression linéaire s’écrit, avec N = k + 1 > p :

y(k) = Φ(k)ϑ + ε(k)

Comme application, revenons au problème de la détermination expérimen-
tale de la fonction de transfert harmonique G(e jωh) d’un processus BIBO stable
(§ 6.2.1). Avec une excitation sinusoïdale sin(ωkh), k ≥ 0, et après amortissement
du régime transitoire, sa réponse est une sinusoïde de pulsation ω atténuée et dé-
phasée, par rapport à l’entrée, par

∣∣G(e jωh)
∣∣ et de Arg G(e jωh), respectivement.

En tirant bénéfice d’une identité trigonométrique élémentaire, cette réponse prend
la forme :
∣∣G(e jωh)

∣∣ sin
(
ωkh + Arg G(e jωh)

)

=
∣∣G(e jωh)

∣∣ cos
(
Arg G(e jωh)

)
sin(ωkh) +

∣∣G(e jωh)
∣∣ sin

(
Arg G(e jωh)

)
cos(ωkh)

Ou, avec c1 =
∣∣G(e jωh)

∣∣ cos
(
Arg G(e jωh)

)
et c2 =

∣∣G(e jωh)
∣∣ sin

(
Arg G(e jωh)

)
:

∣∣G(e jωh)
∣∣ sin

(
ωkh + Arg G(e jωh)

)
= c1 sin(ωkh) + c2 cos(ωkh)

On a les deux fonctions de base sin(ωkh) et cos(ωkh) et il faut estimer les coef-
ficients c1 et c2 à partir d’échantillons y(0), y(h), y(2h), . . . , y(kh) récoltés à la
sortie du système. Finalement, les quantités

∣∣G(e jωh)
∣∣ et Arg G(e jωh) sont éva-

luées en notant que :
∣∣G(e jωh)

∣∣ =
√

c2
1 + c2

2

Arg G(e jωh) = Arctg
c2

c1
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EXEMPLE 11.3
La sortie y(k) d’un processus discret au repos, linéaire, causal et stationnaire

est fournie par le produit de convolution entre l’entrée u(k) qui lui est appliquée
et sa réponse impulsionnelle g(k) (théorème 3.1) :

y(k) =
k∑

ℓ=0

u(ℓ)g(k − ℓ) (11.3)

Ce produit de convolution est commutatif (théorème 3.2) :

y(k) =
k∑

ℓ=0

g(ℓ)u(k − ℓ) (11.4)

Nous désirons ici identifier la réponse impulsionnelle g(k) à partir de mesures,
recueillies à différents instants d’échantillonnage, de l’entrée u(k) et de la sortie
y(k). C’est typiquement un problème d’identification d’un modèle de représenta-
tion non paramétrique. Il s’agit en quelque sorte de défaire la convolution, d’où
l’appellation, pour cette opération inverse, de déconvolution numérique. En met-
tant à profit l’équation (11.3) à différents coups d’horloge :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = u(0)g(0)
y(1) = u(0)g(1) + u(1)g(0)
y(2) = u(0)g(2) + u(1)g(1) + u(2)g(0)

...

y(k) = u(0)g(k) + u(1)g(k − 1) + · · · + u(k)g(0)

Ou, sous forme matricielle :

⎡

⎢⎢⎢⎢⎢⎢⎣

y(0)
y(1)
y(2)

...
y(k)

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y(k)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

u(0) 0 0 . . . 0
u(1) u(0) 0 . . . 0
u(2) u(1) u(0) . . . 0

...
...

...
...

u(k) u(k − 1) u(k − 2) . . . u(0)

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(k)

⎡

⎢⎢⎢⎢⎢⎢⎣

g(0)
g(1)
g(2)

...
g(k)

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ϑ

C’est une régression linéaire avec N = k + 1 = p :

y(k) = Φ(k)ϑ (11.5)

La matrice Φ(k) étant triangulaire, sa résolution est immédiate ; en admettant que
u(0) ̸= 0, on obtient la récurrence :
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g(0) =
1

u(0)
y(0)

g(1) =
1

u(0)
(
y(1)− g(0)u(1)

)

g(2) =
1

u(0)
(
y(2)− g(0)u(2)− g(1)u(1)

)

...

g(k) =
1

u(0)

(
y(k)−

k−1∑

ℓ=0

g(ℓ)u(k − ℓ)

)

L’évaluation de la réponse impulsionnelle est particulièrement simple si l’entrée
est le saut unité {. . . , 0, 1, 1, 1, . . .} :

g(k) = y(k)−
k−1∑

ℓ=0

g(ℓ) (11.6)

Par ailleurs, (11.4) donne :

y(k − 1) =
k−1∑

ℓ=0

g(ℓ) (11.7)

D’où, en combinant (11.6) et (11.7) :

g(k) = y(k)− y(k − 1) (11.8)

Ainsi, la réponse impulsionnelle est la différence des échantillons, pris à deux ins-
tants d’échantillonnage successifs, constituant la réponse indicielle. Ce résultat
découle aussi d’un calcul par la transformée en z. En effet, pour une entrée en
forme de saut unité, U(z) = z

z−1 et la réponse indicielle est :

Y (z) = G(z)
z

z − 1

D’où la transformée en z de la réponse impulsionnelle :

G(z) =
z − 1

z
Y (z) = (1− z−1)Y (z)

C’est, dans le domaine temporel, l’équation (11.8).
La régression linéaire (11.5) n’offre aucune redondance puisque le nombre N

de mesures est égal au nombre p de paramètres. Admettons que le système soit à
réponse impulsionnelle finie, c’est-à-dire qu’il existe un entier K tel que g(k) = 0
si k > K. Pour un processus BIBO stable, la série

∑∞
k=0

∣∣g(k)
∣∣ est convergente

(théorème 7.1) et, nécessairement, limk→∞ g(k) = 0. En pratique, les échantillons
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composant la réponse impulsionnelle peuvent être considérés comme nuls après
amortissement du régime transitoire. Dès que k > K, on doit introduire dans la
régression linéaire un vecteur d’erreurs de mesure et de modélisation :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0)
y(1)
y(2)

...
y(K)

...
y(k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y(k)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0) 0 0 . . . 0
u(1) u(0) 0 . . . 0
u(2) u(1) u(0) . . . 0

...
...

...
...

u(K) u(K − 1) u(K − 2) . . . u(0)
...

...
...

...
u(k) u(k − 1) u(k − 2) . . . u(k −K)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(k)

⎡

⎢⎢⎢⎣

g(0)
g(1)

...
g(K)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ϑ

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(0)
ε(1)
ε(2)

...
ε(K)

...
ε(k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ε(k)

Nous sommes en présence d’une régression linéaire avec N = k + 1 > p = K +1.
Comment calculer les coefficients du dénominateur et du numérateur d’une

fonction de transfert G(z) à partir de la réponse impulsionnelle g(k) ? Ce pro-
blème d’identification paramétrique peut lui aussi être modélisé à l’aide du
concept de régression linéaire. On considère la fonction de transfert suivante, dans
laquelle, sans perte de généralité (§ 4.4.3), le degré du dénominateur est égal à celui
du numérateur :

G(z) =
b0zn + b1zn−1 + · · · + bn

zn + a1zn−1 + · · · + an

Le théorème 4.12 fournit, avec ai = bi = 0 lorsque i > n :

g(k) = bk −
k−1∑

ℓ=0

g(ℓ)ak−ℓ k ≥ 0

Ou :

bk =
k−1∑

ℓ=0

g(ℓ)ak−ℓ + g(k) (11.9)

Donc, en posant k = 0, 1, . . . , n :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b0 = g(0)
b1 = g(0)a1 + g(1)
...

bn = g(0)an + g(1)an−1 + · · · + g(n− 1)a1 + g(n)

Sous forme matricielle :
⎡

⎢⎢⎢⎣

b0

b1
...

bn

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1 0 . . . 0
a1 1 . . . 0
...

...
...

an an−1 . . . 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

g(0)
g(1)

...
g(n)

⎤

⎥⎥⎥⎦
(11.10)
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Avec k = n + 1, n + 2, . . . , 2n, la relation (11.9) donne, en tenant compte du fait
que ai = bi = 0 dès que i > n :

0 = g(1)an + g(2)an−1 + · · · + g(n)a1 + g(n + 1)
0 = g(2)an + g(3)an−1 + · · · + g(n + 1)a1 + g(n + 2)

...
0 = g(n)an + g(n + 1)an−1 + · · · + g(2n− 1)a1 + g(2n)

De façon équivalente :
⎡

⎢⎢⎢⎣

−g(n + 1)
−g(n + 2)

...
−g(2n)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
y(2n)

=

⎡

⎢⎢⎢⎣

g(n) g(n− 1) . . . g(1)
g(n + 1) g(n) . . . g(2)

...
...

...
g(2n− 1) g(2n− 2) . . . g(n)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(2n− 1)

⎡

⎢⎢⎢⎣

a1

a2
...

an

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ϑ

C’est une régression linéaire sans redondance, avec N = n = p, autrement dit un
système de n équations algébriques linéaires renfermant les n inconnues a1, a2,
. . . , an, lequel peut être résolu pour autant que le rang de la matrice d’observa-
tions Φ(2n−1) soit égal à n. Un filtrage est judicieusement introduit en adjoignant
des échantillons supplémentaires et un vecteur d’erreurs :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g(n + 1)
−g(n + 2)

...
−g(2n)

...
−g(k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y(k)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(n) g(n− 1) . . . g(1)
g(n + 1) g(n) . . . g(2)

...
...

...
g(2n− 1) g(2n− 2) . . . g(n)

...
...

...
g(k − 1) g(k − 2) . . . g(k − n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(k − 1)

⎡

⎢⎢⎢⎣

a1

a2
...

an

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ϑ

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(n + 1)
ε(n + 2)

...
ε(2n)

...
ε(k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ε(k)

Il s’agit à nouveau d’une régression linéaire, avec N = k − n > p = n :

y(k) = Φ(k − 1)ϑ + ε(k)

Après l’avoir résolue (sect. 11.4), les coefficients ai, i = 1, 2, . . . , n, sont dispo-
nibles pour calculer les coefficients bj, j = 0, 1, . . . , n, à l’aide de la transforma-
tion linéaire (11.10).

EXEMPLE 11.4
Cet exemple est dévolu à l’identification paramétrique d’une fonction de trans-

fert harmonique. Considérons, par souci de transparence, le cas d’un système ana-
logique du second ordre :

b0 jω + b1

( jω)2 + a1 jω + a2
(11.11)
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L’approche décrite dans les lignes qui suivent, dite méthode de Levy, s’étend sans
autre à des fonctions de transfert analogiques et discrètes d’ordre quelconque. On
suppose que des essais harmoniques analogiques effectués aux pulsations ωi ont
fourni des mesures xi + jyi ∈ C, i = 1, 2, . . . , K, de cette fonction de transfert.
Il s’agit alors de caler, en ajustant les coefficients a1, a2, b0 et b1, le modèle (11.11)
sur les mesures expérimentales xi + jyi ; autrement dit, en supposant qu’il y ait
redondance :

xi + jyi =
b0 jωi + b1

( jωi)2 + a1 jωi + a2
+ ei i = 1, 2, . . . , K (11.12)

Les paramètres à estimer apparaissent ici de manière non linéaire. Afin de contour-
ner le problème, l’équation (11.12) est écrite comme suit :

(xi + jyi)
(
( jωi)2 + a1 jωi + a2

)

= b0 jωi + b1 + ei

(
( jωi)2 + a1 jωi + a2

)
(11.13)

Posons :

ei

(
( jωi)2 + a1 jωi + a2

)
= εi = ui + jvi ∈ C (11.14)

(11.13) devient :

(xi + jyi)
(
( jωi)2 + a1 jωi + a2

)
= b0 jωi + b1 + εi

Ou, en égalant les parties réelles entre elles et en faisant de même pour les parties
imaginaires :

{
−ω2

i xi = ωiyia1 − xia2 + b1 + ui

−ω2
i yi = −ωixia1 − yia2 + ωib0 + vi

Chaque mesure de la fonction de transfert harmonique conduit à deux équations.
En admettant que le nombre K de mesures soit supérieur à deux afin d’être re-
dondant, on aboutit à la régression linéaire :

⎡

⎢⎢⎢⎢⎢⎢⎣

−ω2
1x1

−ω2
1y1

...
−ω2

KxK

−ω2
KyK

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y(K)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

ω1y1 −x1 0 1
−ω1x1 −y1 ω1 0

...
...

...
...

ωKyK −xK 0 1
−ωKxK −yK ωK 0

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(K)

⎡

⎢⎢⎣

a1

a2

b0

b1

⎤

⎥⎥⎦

︸ ︷︷ ︸
ϑ

+

⎡

⎢⎢⎢⎢⎢⎢⎣

u1

v1

...
uK

vK

⎤

⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ε(K)

(11.15)

Dans cet exemple, N = 2K > p = 4.
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Nous reviendrons sur la méthode de Levy, en particulier sur un inconvénient
de la formulation qui vient d’être présentée, dans l’exemple 11.11. Par ailleurs,
cette méthode ne peut pas directement être mise à profit en présence d’un retard
pur, vu le caractère non linéaire qu’il introduit. !

C’est principalement la situation N > p, c’est-à-dire quand le nombre de
mesures excède celui des paramètres, provoquant un filtrage des erreurs, que nous
détaillerons par la suite.

11.3 Application à l’identification des systèmes dynamiques

Les lois physiques étant le plus souvent de nature différentielle, un modèle de
connaisance, le cas échéant après linéarisation autour d’un point (ou d’une tra-
jectoire) de fonctionnement et introduction de variables écarts, consiste en une
fonction de transfert analogique G(s). Son échantillonnage par la formule
H(z) = (1 − z−1)Z

{
L−1

(
G(s)/s

)}
conduit à la fonction de transfert discrète

H(z) (fig. 11.7).

Paramètres
de H(z)

U(z)

Identification

D-A G(s) A-D Y (z)

H(z) = (1 − z−1)Z
ȷ
L−1

„
G(s)

s

«ff

Fig. 11.7 Modélisations de connaissance et de représentation ; la ligne double indique la
présence de plusieurs quantités, à savoir les coefficients du dénominateur et du numérateur
de H(z).

Afin d’établir un modèle de représentation, un algorithme d’identification
analyse les signaux d’entrée

{
u(k)

}
et de sortie

{
y(k)

}
pour estimer, puis mettre à

jour si nécessaire, les paramètres de H(z) ; ces paramètres sont les coefficients des
polynômes au dénominateur et au numérateur de l’expression rationnelle H(z).

On peut remarquer que l’identification conduit directement à la fonction de
transfert H(z) du système échantillonné. Une alternative est de construire un mo-
dèle de représentation du processus analogique G(s), en analysant son entrée et sa
sortie analogiques, comme dans l’exemple 11.4. Cette approche offre l’avantage
de conserver une signification physique aux paramètres à identifier, lesquels ne
dépendent bien entendu pas de la période d’échantillonnage. Elle n’est cependant
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pas poursuivie ici parce que, visant des implantations numériques, nous souhai-
tons franchir la frontière séparant le monde analogique du monde discret le plus
tôt possible (sect. 8.1).

Il découle du paragraphe 5.2.1 que H(z) est une fonction de transfert, à ce
titre indépendante de l’entrée, rationnelle et strictement propre :

H(z) =
Y (z)
U(z)

=
b0zm + b1zm−1 + · · · + bm

zn + a1zn−1 + · · · + an
n > m

Il n’y a aucune perte de généralité en prenant un surplus de pôles d = n−m = 1 :

H(z) =
Y (z)
U(z)

=
b0zn−1 + b1zn−2 + · · · + bn−1

zn + a1zn−1 + · · · + an

En effet, si l’on sait que le surplus de pôles réels d est strictement plus grand que 1,
physiquement que le retard est supérieur à une période d’échantillonnage, il suffit
de poser bi = 0, i = 0, 1, . . . , d − 2, dans les développements qui suivent. En
puissances négatives de z :

H(z) =
Y (z)
U(z)

=
b0z−1 + b1z−2 + · · · + bn−1z−n

1 + a1z−1 + · · · + anz−n

Dans le domaine temporel :

(1 + a1q
−1 + · · · + anq−n)y(k) = (b0q

−1 + b1q
−2 + · · · + bn−1q

−n)u(k)

Et, finalement :

y(k) + a1y(k − 1) + · · · + any(k − n)
= b0u(k − 1) + b1u(k − 2) + · · · + bn−1u(k − n)

(11.16)

En admettant que l’ordre n du système soit connu, la procédure d’identi-
fication doit fournir une estimation des coefficients ai, i = 1, 2, . . . , n, et bj ,
j = 0, 1, . . . , n−1, à partir des échantillons u(0), u(1), . . . , u(k−1) et y(0), y(1),
. . . , y(k) récoltés aux instants d’échantillonnage 0, h, . . . , kh. Comment trans-
poser ce problème sous la forme d’une régression linéaire ? Ecrivons l’équation
aux différences (11.16) de la manière suivante :

y(k) = −a1y(k − 1)− a2y(k − 2)− · · ·− any(k − n)
+ b0u(k − 1) + b1u(k − 2) + · · · + bn−1u(k − n)

Ou :

y(k) =
[
−y(k − 1) −y(k − 2) . . . −y(k − n) u(k − 1) u(k − 2) . . . u(k − n)

]

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

an

b0

b1
...

bn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.17)
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Pour k = 1, 2, . . . , 2n et avec des nombres u(−1), u(−2), . . . , u(−n) et des
conditions initiales y(−1), y(−2), . . . , y(−n) tous nuls, cette équation donne,
sous forme matricielle :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)
y(2)

...
y(n)

...
y(2n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y(2n)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y(0) 0 . . . 0 u(0) 0 . . . 0
−y(1) −y(0) . . . 0 u(1) u(0) . . . 0

...
...

...
...

...
...

−y(n− 1) −y(n− 2) . . . −y(0) u(n− 1) u(n− 2) . . . u(0)
...

...
...

...
...

...
−y(2n− 1) −y(2n− 2) . . . −y(n) u(2n− 1) u(2n− 2) . . . u(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(2n− 1)

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

an

b0

b1
...

bn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ϑ

D’où la régression linéaire :

y(2n) = Φ(2n− 1)ϑ

C’est un système de N = 2n équations algébriques linéaires renfermant les p =
2n inconnues a1, a2, . . . , an, b0, b1, . . . , bn−1. Si le rang de la matrice carrée
Φ(2n− 1) vaut 2n, il possède une solution unique. Géométriquement, le vecteur
de mesures y(2n) appartient au sous-espace vectoriel engendré par les colonnes
linéairement indépendantes de la matrice Φ(2n− 1).

Cette approche souffre d’un manque de fiabilité. Les échantillons u(0), u(1),
. . . , u(2n−1) et y(0), y(1), . . . , y(2n) sont entachés d’erreurs de mesure : pertur-
bations pénétrant dans le processus, bruits de mesure sur la grandeur de sortie,
etc. Il existe en outre des erreurs de modélisation, par exemple des modes négligés
(l’ordre réel du système est alors supérieur à n) ou des non-linéarités pas prises
en compte. Un filtrage de ces erreurs est mis en place avec un nombre N d’échan-
tillons plus élevé. Dès que N > p, les échantillons ne peuvent généralement plus,
à cause des erreurs de mesure et de modélisation, satisfaire l’égalité (11.17). En
rassemblant toutes les erreurs dans ε(k), (11.17) devient :
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y(k) =
[
−y(k − 1) −y(k − 2) . . . −y(k − n) u(k − 1) u(k − 2) . . . u(k − n)

]

·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...

an

b0

b1
...

bn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ε(k) (11.18)

D’où, toujours avec des nombres u(−1), u(−2), . . . , u(−n) et des conditions ini-
tiales y(−1), y(−2), . . . , y(−n) nuls :

2

66666666666666664

y(1)

y(2)
...

y(n)
...

y(2n)
...

y(k)

3

77777777777777775

| {z }
y(k)

=

2

66666666666666664

−y(0) 0 . . . 0 u(0) 0 . . . 0

−y(1) −y(0) . . . 0 u(1) u(0) . . . 0
...

...
...

...
...

...
−y(n − 1) −y(n − 2) . . . −y(0) u(n − 1) u(n − 2) . . . u(0)

...
...

...
...

...
...

−y(2n − 1) −y(2n − 2) . . . −y(n) u(2n − 1) u(2n − 2) . . . u(n)
...

...
...

...
...

...
−y(k − 1) −y(k − 2) . . . −y(k − n) u(k − 1) u(k − 2) . . . u(k − n)

3

77777777777777775

| {z }
Φ(k − 1)

·

2

66666666666664

a1

a2

...
an

b0

b1

...
bn−1

3

77777777777775

| {z }
ϑ

+

2

666666666666664

ε(1)
ε(2)

...
ε(n)

...
ε(2n)

...
ε(k)

3

777777777777775

| {z }
ε(k)

Il en résulte la régression linéaire :

y(k) = Φ(k − 1)ϑ + ε(k) (11.19)

Nous avons maintenant N = k > p = 2n. Géométriquement, le vecteur de
mesures y(k) n’appartient pas au sous-espace vectoriel engendré par les colonnes
de la matrice Φ(k−1). Il importe de noter qu’ici la matrice d’observations Φ(k−1)
renferme des mesures.
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EXEMPLE 11.5
Soit l’entraînement en vitesse déjà traité au moyen du modèle de connaissance

suivant, où la période d’échantillonnage h vaut 0,025 s :

H(z) =
0,0975

z − 0,95

Une modélisation de représentation est maintenant effectuée ; il s’agit d’iden-
tifier, en partant des échantillons u(0), u(1), . . . , u(k−1) et y(0), y(1), . . . , y(k)
obtenus aux instants d’échantillonnage 0, h, . . . , kh, les paramètres a et b de l’ex-
pression :

H(z) =
Y (z)
U(z)

=
b

z + a
(11.20)

En puissances négatives de z :

Y (z)
U(z)

=
bz−1

1 + az−1

Dans le domaine temporel :

(1 + aq−1)y(k) = bq−1u(k)

D’où l’équation aux différences :

y(k) + ay(k − 1) = bu(k − 1)

Ainsi, en incorporant l’erreur ε(k) :

y(k) =
[
−y(k − 1) u(k − 1)

] [ a
b

]
+ ε(k)

On en déduit la régression linéaire :
⎡

⎢⎢⎢⎣

y(1)
y(2)

...
y(k)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

−y(0) u(0)
−y(1) u(1)

...
...

−y(k − 1) u(k − 1)

⎤

⎥⎥⎥⎦

[
a
b

]
+

⎡

⎢⎢⎢⎣

ε(1)
ε(2)

...
ε(k)

⎤

⎥⎥⎥⎦

Généralement, à partir de la fonction de transfert échantillonnée H(z), il n’est pas
possible de calculer directement les paramètres physiques du modèle analogique
G(s). Cela est néanmoins faisable dans le présent exemple.

En effet, pour un entraînement en vitesse (ex. 1.14) :

G(s) =
γ

τs + 1
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γ désigne le gain statique et τ la constante de temps. Sa fonction de transfert
échantillonnée est :

H(z) = (1 − z−1)Z
{
L−1

( γ

s(τs + 1)

)}
=

γ(1− e−h
τ )

z − e−h
τ

(11.21)

En comparant (11.20) et (11.21) :

b = γ
(
1− e−

h
τ

)

a = −e−
h
τ

D’où, finalement :

γ =
b

1 + a

τ = − h

ln(−a)

Dès lors, après avoir estimé les paramètres a et b, il est facile d’évaluer γ et τ ,
constituant une alternative aux approches des exemples 1.14 et 11.1, de même
qu’à la méthode de Levy. !

Il est très utile d’exploiter d’éventuelles connaissances a priori dans l’identifi-
cation d’un processus dynamique. Ceci permet de diminuer appréciablement l’er-
reur d’estimation. L’approche fusionnant modélisation de connaissance et mo-
délisation de représentation est malheureusement fort complexe, parce qu’elle
conduit généralement à un problème intrinsèquement non linéaire. Quelques si-
tuations simples sont néanmoins recensées ; les plus importantes sont abordées
dans les lignes qui suivent.

La fonction de transfert H(z) à identifier possède un surplus de pôles égal
à 1, comme cela est mentionné au début de la présente section. Si le surplus de
pôles d est connu et strictement plus grand que 1, on peut directement inclure
cette connaissance a priori en construisant la régression linéaire avec bi = 0, i =
0, 1, . . . , d−2. La même approche permet de traiter le cas où certains coefficients
du numérateur et du dénominateur de H(z) sont nuls (ou connus).

Il arrive que H(z) possède l’allure suivante :

H(z) =
Y (z)
U(z)

=
B′(z)B(z)
A′(z)A(z)

(11.22)

Les polynômes A′(z) et B′(z) sont connus, contrairement aux polynômes A(z) et
B(z). Tous ces polynômes sont exprimés en puissances négatives de z. La relation
(11.22) fournit :

A′(z)Y (z)
B′(z)U(z)

=
B(z)
A(z)
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Définissons la sortie et l’entrée artificielles :

Y ′(z) = A′(z)Y (z)
U ′(z) = B′(z)U(z)

Par conséquent :

Y ′(z)
U ′(z)

=
B(z)
A(z)

La méthode du paragraphe précédent est tout simplement appliquée à la fonction
de transfert B(z)/A(z), qui décrit la partie inconnue de la fonction de transfert
complète (11.22). Les signaux mis en jeux dans cette phase sont Y ′(z) et U ′(z),
égaux aux signaux réels Y (z) et U(z) filtrés par les polynômes A′(z) et B′(z),
respectivement. Cette approche, rencontrée sous le nom de méthode de Clary, est
illustrée dans la figure 11.8.

Coefficients de
A(z) et B(z)

U(z)

U ′(z)

Identification

B′(z) A′(z)

Y ′(z)

H(z) =
B′(z)B(z)

A′(z)A(z)
Y (z)

Fig. 11.8 Méthode de Clary.

Un cas abondamment rencontré dans les systèmes mécatroniques et relevant
de ce formalisme est un effet intégrateur :

H(z) =
Y (z)
U(z)

=
B(z)

(1− z−1)A(z)

On a alors A′(z) = 1 − z−1 et B′(z) = 1. L’identification portera sur la fonction
de transfert ci-après, où Y ′(z) = (1−z−1)Y (z) est le signal Y (z) filtré par 1−z−1 :

Y ′(z)
U(z)

=
B(z)
A(z)
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EXEMPLE 11.6
Un entraînement en position a déjà été, dans ce texte, examiné à maintes re-

prises. Son modèle de connaissance est, avec une période d’échantillonnage h =
0,025 s :

H(z) =
1,23 · 10−3 z + 1,21 · 10−3

(z − 1)(z − 0,95)

Il existe un effet intégrateur reflétant le passage d’une vitesse à une position.
Conscients de l’existence de cette intégration, nous élaborons maintenant une

modélisation de représentation. A l’aide des mesures u(0), u(1), . . . , u(k − 1)
et y(0), y(1), . . . , y(k), l’identification porte sur les paramètres a, b0 et b1 de la
fonction de transfert :

H(z) =
Y (z)
U(z)

=
b0z + b1

(z − 1)(z + a)

En puissances négatives de z :

Y (z)
U(z)

=
b0z−1 + b1z−2

(1− z−1)(1 + az−1)

Soit :

Y ′(z) = (1− z−1)Y (z)

Donc :

Y ′(z)
U(z)

=
b0z−1 + b1z−2

1 + az−1

Dans le domaine temporel, ces deux dernières équations donnent :

y′(k) = (1− q−1)y(k)

(1 + aq−1)y′(k) = (b0q
−1 + b1q

−2)u(k)

D’où :

y′(k) = y(k)− y(k − 1)
y′(k) + ay′(k − 1) = b0u(k − 1) + b1u(k − 2)

La seconde égalité devient, après introduction de l’erreur ε(k) :

y′(k) =
[
−y′(k − 1) u(k − 1) u(k − 2)

]
⎡

⎣
a
b0

b1

⎤

⎦+ ε(k)

On en déduit la régression linéaire :
⎡

⎢⎢⎢⎣

y′(1)
y′(2)

...
y′(k)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

−y′(0) u(0) 0
−y′(1) u(1) u(0)

...
...

...
−y′(k − 1) u(k − 1) u(k − 2)

⎤

⎥⎥⎥⎦

⎡

⎣
a
b0

b1

⎤

⎦+

⎡

⎢⎢⎢⎣

ε(1)
ε(2)

...
ε(k)

⎤

⎥⎥⎥⎦
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Les nombres y′(0), y′(1), . . . , y′(k) sont déterminés à partir des échantillons réels
y(0), y(1), . . . , y(k) comme suit :

⎡

⎢⎢⎢⎣

y′(0)
y′(1)

...
y′(k)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

0
y(1)− y(0)

...
y(k)− y(k − 1)

⎤

⎥⎥⎥⎦
!

Revenons un instant à l’équation (11.18) :

y(k) = −a1y(k − 1)− a2y(k − 2)− · · ·− any(k − n)
+ b0u(k − 1) + b1u(k − 2) + · · · + bn−1u(k − n) + ε(k) (11.23)

Par définition :

ŷ(k) = −a1y(k − 1)− a2y(k − 2)− · · ·− any(k − n)
+ b0u(k − 1) + b1u(k − 2) + · · · + bn−1u(k − n)

Cette expression peut être interprétée comme la prédiction de la sortie y(k) au
temps kh obtenue à partir de (11.23) en négligeant l’erreur inconnue ε(k), mais en
disposant du modèle, à savoir les coefficients ai, i = 1, 2, . . . , n, et bj , j =
0, 1, . . . , n − 1, et des entrées et sorties mesurées u(k − 1), . . . , u(k − n) et
y(k − 1), . . . , y(k − n). Tout naturellement, la quantité ε(k) = y(k) − ŷ(k) est
appelée erreur de prédiction. En théorie de l’estimation, ce signal se rencontre plu-
tôt sous le nom d’innovations puisque, dans y(k) = ŷ(k) + ε(k), ε(k) renferme
l’information nécessaire pour passer de la prédiction ŷ(k) à la valeur mesurée
y(k). Le vecteur ε(k) ∈ RN dans la régression linéaire (11.19) est le vecteur d’er-
reurs de prédiction. Dans le contexte de l’équation (11.23), ε(k) est aussi une erreur
d’équation, car c’est elle qui quantifie le degré de transgression de l’équation aux
différences originale (11.16) ; ε(k) est par conséquent un vecteur d’erreurs d’équa-
tion.

Il est instructif de représenter (11.23) à l’aide d’un schéma fonctionnel. En
suivant à rebours, erreur d’équation incluse, la démarche ayant permis d’aboutir
à (11.16) :

(1 + a1q
−1 + · · ·+ anq−n)y(k) = (b0q

−1 + b1q
−2 + · · ·+ bn−1q

−n)u(k)+ ε(k)

D’où, avec 1+a1z−1+· · ·+anz−n = A(z), b0z−1+b1z−2+· · ·+bn−1z−n = B(z)
et E(z) = Z

{
ε(k)

}
:

Y (z) =
B(z)
A(z)

U(z) +
1

A(z)
E(z)

Il en découle le schéma fonctionnel de la figure 11.9, dit modèle auto-régressif avec
entrée exogène ou, plus simplement, modèle ARX .
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E(z)

1

A(z)

U(z)
B(z)

A(z) +

bY (z) +

Y (z)

Fig. 11.9 Modèle ARX.

Il importe de bien noter qu’ici U(z) et Y (z) sont les transformées en z des
signaux mesurés à l’entrée et à la sortie du processus réel. Le modèle B(z)/A(z),
excité par U(z), n’est capable de reproduire Y (z) qu’en commettant l’erreur
E(z)/A(z). Une autre façon de voir le problème est de se remémorer l’image
géométrique de la figure 11.1 parce que, fondamentalement, le modèle ARX est
équivalent à la régression linéaire (11.19).

Le schéma fonctionnel de la figure 11.9 révèle que la structure ARX est quel-
que peu artificielle d’un point de vue physique car l’erreur d’équation ε(k) est
filtrée par la fonction de transfert 1/A(z) impliquant le dénominateur du modèle
B(z)/A(z). Il semble plus raisonnable de considérer la structure représentée dans
la figure 11.10 où l’erreur perturbant la sortie du modèle B(z)/A(z) est indépen-
dante de ce dernier.

Es(z)

U(z)
B(z)

A(z)

bY (z)

+

+

Y (z)

Fig. 11.10 Modèle avec erreur de sortie.

Le signal Es(z) est l’écart entre la sortie mesurée sur le processus réel et la
sortie Ŷ (z) = B(z)

A(z)U(z) du modèle, justifiant pour εs(k) = Z−1
(
Es(z)

)
la déno-

mination erreur de sortie. Cette sortie n’étant pas accessible à la mesure, une idée
consiste à la calculer en faisant entrer en jeu l’entrée connue U(z) et les paramètres
du modèle B(z)/A(z) qu’il s’agit d’estimer. Cela nous conduit malheureusement
à une difficulté de taille : les calculs font intervenir les paramètres de façon non
linéaire, excluant toute structuration du problème dans le format d’une régression
linéaire. Pour s’en convaincre, il suffit d’examiner un exemple très simple.
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EXEMPLE 11.7
Par souci de transparence, on traite le cas d’une fonction de transfert B(z)/A(z)

du premier ordre :

Ŷ (z)
U(z)

=
bz−1

1 + az−1

D’où l’équation aux différences :

ŷ(k) = −aŷ(k − 1) + bu(k − 1)

Par récurrence, en supposant comme d’habitude que ŷ(−1) = u(−1) = 0 :

ŷ(0) = 0
ŷ(1) = −aŷ(0) + bu(0) = bu(0)
ŷ(2) = −aŷ(1) + bu(1) = −abu(0) + bu(1)

ŷ(3) = −aŷ(2) + bu(2) = a2bu(0)− abu(1) + bu(2)
...

ŷ(k) =
k∑

i=1

(−a)k−ibu(i− 1)

Et, comme y(k) = ŷ(k) + εs(k) :

y(k) =
k∑

i=1

(−a)k−ibu(i− 1) + εs(k)

Les paramètres a et b n’apparaissent pas linéairement dans le second membre de
cette égalité, excluant la construction d’une régression linéaire. !

D’autres structures sont documentées dans les textes dévolus à l’identifica-
tion. On peut citer le modèle auto-régressif à moyenne ajustée avec entrée exogène,
ou modèle ARMAX (fig. 11.11), et le modèle de Box-Jenkins (fig. 11.12), condui-
sant eux aussi à des régressions non linéaires.

E(z)

U(z)
B(z)

A(z)

bY (z)

+

+

C(z)

A(z)

Y (z)

Fig. 11.11 Modèle ARMAX.
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E(z)

U(z)
B(z)

A(z)

bY (z)

+

+

C(z)

D(z)

Y (z)

Fig. 11.12 Modèle de Box-Jenkins.

11.4 Méthode des moindres carrés

Retournons à la régression linéaire générale (11.1). Le vecteur de paramètres
est maintenant déterminé de manière à minimiser le vecteur d’erreurs ε(k). Quel
critère adopter pour procéder à cette minimisation ? La méthode des moindres car-
rés consiste à minimiser le carré de la norme euclidienne du vecteur d’erreurs. La
fonction J : Rp → R à minimiser est ainsi :

J(ϑ) =
∥∥ε(k)

∥∥2 = εT (k) ε(k) =
(
y(k)−Φ(k)ϑ

)T (
y(k)−Φ(k)ϑ

)
(11.24)

Le vecteur de paramètres qui minimise le critère J(ϑ), dénoté ϑ̂(k), est appelé
vecteur de paramètres estimé ; l’entier k indique que le dernier instant d’échan-
tillonnage pris en compte est tk = kh. La solution est résumée dans le théorème
suivant.

Théorème 11.1

En supposant que la matrice d’observations Φ(k) soit de rang p, le vecteur de
paramètres estimé est unique et donné par :

ϑ̂(k) =
(
ΦT (k)Φ(k)

)−1ΦT (k)y(k) (11.25)

Démonstration
Tout au long de cette démonstration, l’argument k est omis pour simplifier

l’écriture. On a :

J(ϑ) =
(
y −Φϑ

)T (
y −Φϑ

)

= yT y − yT Φϑ− ϑT ΦT y + ϑT ΦT Φϑ (11.26)

Le rang de la matrice d’observations Φ est égal à p par hypothèse ; l’algèbre li-
néaire, comme cela est rappelé dans la section IV.2, nous enseigne que le rang de
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la matrice carrée ΦT Φ d’ordre p vaut aussi p ; elle est par conséquent inversible.
L’égalité (11.26) peut être écrite comme suit :

J(ϑ) =
(
ϑ−

(
ΦT Φ

)−1ΦT y
)T

ΦT Φ
(
ϑ−

(
ΦT Φ

)−1ΦT y
)

+ yT y − yT Φ
(
ΦT Φ

)−1ΦT y

Seul le premier terme de J(ϑ), qui peut être mis sous la forme suivante, dépend
de ϑ :

(
Φ
(
ϑ−
(
ΦT Φ

)−1ΦT y
))T (

Φ
(
ϑ−
(
ΦT Φ

)−1ΦT y
))

Ce terme est toujours strictement plus grand que 0, sauf quand
Φ
(
ϑ −

(
ΦT Φ

)−1ΦT y
)

= 0 ; il est alors nul et la fonction J(ϑ) atteint son
minimum. Le rang de Φ étant p, le système d’équations algébriques linéaires
Φ
(
ϑ−

(
ΦT Φ

)−1ΦT y
)

= 0 possède une et une seule solution nulle :

ϑ̂−
(
ΦT Φ

)−1ΦT y = 0

D’où :

ϑ̂ =
(
ΦT Φ

)−1ΦT y !

Les lignes de la matrice d’observation Φ(k) sont dénotées φT
1 (k), φT

2 , . . .,
φT

N (k), avec φ1(k), φ2(k), . . . , φN (k) ∈ Rp. L’équation (11.25) peut donc être
écrite :

ϑ̂(k) =

(
N∑

i=1

φi(k)φT
i (k)

)−1( N∑

i=1

φi(k)yi(k)

)
(11.27)

Les formules (11.25) et (11.27) peuvent être interprétées comme un filtre qui,
à partir du vecteur de mesure y(k), élabore une estimation optimale ϑ̂(k) du vec-
teur de paramètres ϑ. Ces formules ne sont correctes que si le rang de la ma-
trice Φ(k) vaut p. En d’autres termes, les p colonnes de Φ(k) doivent être li-
néairement indépendantes. Dans le contexte de l’identification des processus dy-
namiques (sect. 11.3), il est intuitivement évident que l’excitation doit être suffi-
samment riche ou persistante pour influencer convenablement tous les modes. Les
échantillons de l’entrée et de la sortie, disposés dans la matrice d’observations,
sont dès lors suffisamment différents les uns des autres, se traduisant mathémati-
quement par des colonnes linéairement indépendantes.

La relation (11.25) peut être mise sous la forme suivante, rencontrée sous le
nom d’équation normale :

(
ΦT (k)Φ(k)

)
ϑ̂(k) = ΦT (k)y(k) (11.28)

Il s’agit d’un système d’équations algébriques linéaires, pouvant être résolu par
une élimination gaussienne ou une factorisation standard de la matrice ΦT (k)Φ(k).



Identification 107

Ces approches se révèlent parfois périlleuses. En effet, si la matrice Φ(k) renferme
de petits et de grands nombres, le calcul du produit ΦT (k)Φ(k) accentue encore
la dispersion ; des manipulations sur ΦT (k)Φ(k) dont le bon conditionnement
numérique n’est pas garanti, par exemple une élimination gaussienne, deviennent
délicates. Il existe des algorithmes d’algèbre linéaire numérique permettant d’évi-
ter efficacement ces embûches.

L’équation normale (11.28) est équivalente à :

ΦT (k)
(
y(k)−Φ(k)ϑ̂(k)

)
= 0

Ou, en faisant intervenir les colonnes φ1(k), φ2(k), . . . , φp(k) ∈ RN de Φ(k) :
⎡

⎢⎢⎢⎢⎣

φ1 T (k)
φ2 T (k)

...

φp T (k)

⎤

⎥⎥⎥⎥⎦

(
y(k)−Φ(k)ϑ̂(k)

)
= 0

Donc :

φi T (k)
(
y(k)−Φ(k)ϑ̂(k)

)
= 0 i = 1, 2, . . . , p

Ainsi, les colonnes de la matrice Φ(k) sont toutes orthogonales au vecteur y(k)−
Φ(k)ϑ̂(k) : ce vecteur est orthogonal au sous-espace vectoriel engendré par les
colonnes de la matrice Φ(k). Le vecteur Φ(k)ϑ̂(k) est par conséquent la projection
orthogonale de y(k) sur ce sous-espace (fig. 11.13).

y(k) ey(k)

φ2(k)

bϑ2φ2(k)

φ1(k)
bϑ1φ1(k)

by(k) = Φ(k)bϑ(k)

= bϑ1φ1(k) + bϑ2φ2(k)

Sous-espace vectoriel engendré par
les colonnes φ1(k) et φ2(k) de Φ(k)

Fig. 11.13 Interprétation géométrique de la méthode des moindres carrés dans le cas N =
3 et p = 2.

On retrouve un résultat bien connu en algèbre linéaire, qui se généralise aux
espaces de Hilbert et joue un rôle central dans une large palette de problèmes
d’approximation.
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La différence ϑ̃(k) = ϑ − ϑ̂(k) ∈ Rp entre le vecteur de paramètres et son
estimation est dite erreur d’estimation. La projection orthogonale Φ(k)ϑ̂(k) de
y(k) est dénotée ŷ(k). Le vecteur ỹ(k) = y(k) − ŷ(k) est le vecteur d’erreurs qui
minimise le critère J(ϑ). Notons que :

ỹ(k) = y(k)− ŷ(k) = Φ(k)ϑ + ε(k)−Φ(k)ϑ̂(k)

= Φ(k)
(
ϑ− ϑ̂(k)

)
+ ε(k) = Φ(k)ϑ̃(k) + ε(k)

En tenant compte de (11.25), le vecteur ŷ(k) = Φ(k)ϑ̂(k) devient :

ŷ(k) = Φ(k)
(
ΦT (k)Φ(k)

)−1ΦT (k)y(k)

Pour des raisons géométriques évidentes, la matrice Φ(k)
(
ΦT (k)Φ(k)

)−1ΦT (k)
est appelée matrice de projection ; il est facile de vérifier qu’elle est idempotente,
c’est-à-dire que son carré est égal à elle-même, traduisant le fait que la projection
de ŷ(k) sur le sous-espace vectoriel engendré par les colonnes de la matrice Φ(k)
est ŷ(k).

EXEMPLE 11.8
Supposons que N mesures dénotées y(1), y(2), . . . , y(N) d’une quantité

constante ϑ soient disponibles. Comment estimer ϑ ? C’est une situation spéciale
de l’exemple 11.1, avec a = 0 et b = ϑ. Les échantillons récoltés satisfont :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(1) = ϑ + ε(1)
y(2) = ϑ + ε(2)

...
y(N) = ϑ + ε(N)

Ou :
⎡

⎢⎢⎢⎣

y(1)
y(2)

...
y(N)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
y(N)

=

⎡

⎢⎢⎢⎣

1
1
...
1

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
Φ

ϑ +

⎡

⎢⎢⎢⎣

ε(1)
ε(2)

...
ε(N)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ε(N)

La régression linéaire s’écrit :

y(N) = Φϑ + ε(N)

Le paramètre estimé ϑ̂(N) est fourni par (11.25) :

ϑ̂(N) =

⎛

⎜⎜⎜⎝
[

1 1 . . . 1
]

⎡

⎢⎢⎢⎣

1
1
...
1

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠

−1

[
1 1 . . . 1

]

⎡

⎢⎢⎢⎣

y(1)
y(2)

...
y(N)

⎤

⎥⎥⎥⎦
=

1
N

N∑

k=1

y(k)
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ϑ̂(N) est simplement la valeur moyenne des mesures, ce qui est intuitivement
correct. !

Dans le contexte de l’identification des processus dynamiques (sect. 11.3), le
vecteur de mesures y(k) est structuré comme suit :

y(k) =

⎡

⎢⎢⎢⎣

y(1)
y(2)

...
y(k)

⎤

⎥⎥⎥⎦
∈ RN N = k > p = 2n

En calculant ϑ̂(k) selon l’équation (11.25), on note que tous les échantillons
amassés aux instants d’échantillonnage h, 2h, . . . , kh (et au temps 0 puisque les
nombres y(0) et u(0) entrent en jeu dans la matrice d’observations) sont exploités.
Quand k augmente, il en est de même pour N . Comme les mesures du passé sont
dans leur intégralité prises en compte, on dit que l’estimateur (11.25) générant
ϑ̂(k) constitue un filtre à mémoire croissante. Lorsque le système à identifier est
légèrement non stationnaire, il apparaît raisonnable de rejeter les anciens échan-
tillons ayant perdu leur fraîcheur. Il est bien évident que l’approche par fonction
de transfert ne conserve un sens que si les paramètres varient beaucoup plus len-
tement que les autres variables. Dans cette situation, N peut être gardé constant
et le vecteur de mesures est une fenêtre fixe de N > p mesures :

y(k) =

⎡

⎢⎢⎢⎣

y(k −N + 1)
y(k −N + 2)

...
y(k)

⎤

⎥⎥⎥⎦
∈ RN N > p = 2n

L’estimateur (11.25) est alors appelé filtre à mémoire fixe ou filtre à mémoire li-
mitée. Une alternative plus douce, élaborée dans la prochaine section, consiste à
placer un poids plus important sur les mesures les plus actuelles.

Le présent chapitre privilégie une vision déterministe des moindres carrés,
comme cela a été mentionné dans l’introduction (sect. 11.1). Une entorse à cette
philosophie est maintenant perpétrée, constituant une digression exigeant a priori
certaines connaissances en variables aléatoires. Son omission ne nuit pas à la com-
préhension de l’ensemble.

Dans ce qui suit, les vecteurs de mesures y(k) et d’erreurs ε(k) sont des pro-
cessus stochastiques vectoriels à temps discret. Les éléments de la matrice d’ob-
servation Φ(k) sont eux aussi des processus stochastiques. Par contre, le vecteur
de paramètres ϑ est déterministe. Le vecteur de paramètres estimé ϑ̂(k), donné
par l’estimateur (11.25), est mathématiquement une fonction y(k) &→ ϑ̂(k) du
vecteur de mesures ; c’est donc un processus stochastique. Une étude approfondie
du vecteur aléatoire ϑ̂(k) exigerait la connaissance de sa densité de probabilité, ce
qui relève dans le cas général d’une mission impossible. Une question moins am-
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bitieuse est de savoir si, stochastiquement, le vecteur de paramètres estimé ϑ̂(k) est
égal au vecteur de paramètres ϑ. Une définition précise est proposée ci-dessous,
dans laquelle E dénote l’espérance mathématique.

Définition 11.1

Un estimateur ϑ̂(k) est un estimateur non biaisé du vecteur de paramètre ϑ si,
quel que soit k :

E
{
ϑ̂(k)

}
= ϑ

Le biais d’un estimateur est la valeur moyenne de l’erreur d’estimation :

E
{
ϑ̃(k)

}
= E

{
ϑ− ϑ̂(k)

}
= ϑ− E

{
ϑ̂(k)

}

Le résultat suivant se démontre aisément.

Théorème 11.2

L’estimation ϑ̂(k) par moindres carrés est non biaisée si la valeur moyenne du
processus stochastique ε(k) est nulle et si ε(k) et Φ(k) sont stochastiquement
indépendants.

Démonstration
En combinant (11.1) et (11.25), tout en omettant l’argument k pour plus de

clarté :

ϑ̂ =
(
ΦT Φ

)−1ΦT
(
Φϑ + ε

)

= ϑ +
(
ΦT Φ

)−1ΦT ε

Et :

E{ϑ̂} = ϑ + E
{(

ΦT Φ
)−1ΦT ε

}
(11.29)

Les grandeurs ε et Φ sont stochastiquement indépendantes. Nous savons que des
fonctions de ces quantités sont elles aussi indépendantes, de sorte que :

E{ϑ̂} = ϑ + E
{(

ΦT Φ
)−1ΦT

}
E{ε}

Comme ε est un processus stochastique à valeur moyenne nulle, E{ε} = 0 et :

E{ϑ̂} = ϑ !

Le théorème 11.2 fournit des conditions suffisantes pour que l’estimation par
moindres carrés soit non biaisée. Si ces conditions ne sont pas satisfaites, aucune
conclusion ne peut en être tirée.
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Dans le problème de l’identification des systèmes dynamiques, les quantités
Φ(k) et ε(k) ne sont pas stochastiquement indépendantes et le théorème se ré-
vèle a priori inutile. Un simple exemple va illustrer ces difficultés et révéler que,
dans les faits, l’estimation par moindres carrés est biaisée. Les résultats déduits ici
s’étendent sans autre au cas général.

EXEMPLE 11.9
On considère une situation très particulière de (11.18) dans laquelle il n’y a

qu’un paramètre a à identifier :

y(k) = −ay(k − 1) + ε(k) (11.30)

La régression linéaire s’écrit :

⎡

⎢⎢⎢⎣

y(1)
y(2)

...
y(k)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
y(k)

=

⎡

⎢⎢⎢⎣

−y(0)
−y(1)

...
−y(k − 1)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
Φ(k − 1)

a︸︷︷︸
ϑ

+

⎡

⎢⎢⎢⎣

ε(1)
ε(2)

...
ε(k)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ε(k)

L’équation (11.30) donne, par récurrence :

y(1) = −ay(0) + ε(1)

y(2) = −ay(1) + ε(2) = a2y(0)− aε(1) + ε(2)
...

y(k − 1) = −ay(k − 2) + ε(k − 1) = (−a)k−1y(0) +
k−1∑

i=1

(−a)k−1−iε(i)

(11.31)

Ainsi, la matrice d’observations est :

Φ(k − 1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y(0)
ay(0)− ε(1)

−a2y(0) + aε(1)− ε(2)
...

−(−a)k−1y(0)−
k−1∑

i=1

(−a)k−1−iε(i)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Elle dépend du vecteur aléatoire ε(k) : Φ(k − 1) et ε(k) ne sont pas stochasti-
quement indépendants. A ce stade, le théorème 11.2 ne permet pas d’affirmer que
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l’estimation par moindre carrés est biaisée ou non. Toutefois, la relation (11.29)
établie dans la démonstration du théorème prend ici la forme :

E
{
ϑ̂(k)

}
= ϑ− E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k−1∑

i=0

y(i)ε(i + 1)

k−1∑

j=0

y2(j)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= ϑ−
k−1∑

i=0

E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(i)ε(i + 1)
k−1∑

j=0

y2(j)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11.32)

La somme constituant le second terme du membre de droite de cette égalité n’est
généralement pas nulle, de sorte que E

{
ϑ̂(k)

}
̸= ϑ. Cependant, quand les erreurs

d’équation ε(k) sont faibles vis-à-vis des échantillons y(k), autrement dit lorsque
le rapport signal sur bruit est favorable, nous remarquons que les termes de la
somme sont petits, atténuant ainsi le biais.

On admet souvent que le processus stochastique ε(k) est blanc : sa valeur
moyenne est nulle et les variables aléatoires obtenues en considérant le processus
stochastique à deux instants différents sont indépendantes. De surcroît, ce pro-
cessus stochastique est supposé être indépendant de y(0). Dans un tel contexte,
le dernier terme dans la somme du second membre de (11.32) est nul. En effet, il
s’écrit :

E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(k − 1)ε(k)
k−1∑

j=0

y2(j)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11.33)

Il découle de (11.31) que y(k − 1) dépend de y(0), ε(1), ε(2), . . . , ε(k − 1) ; en
outre

∑k−1
j=0 y2(j) est pour les mêmes raisons aussi une fonction de y(0), ε(1),

ε(2), . . . , ε(k− 1). Les variables aléatoires y(k− 1)/
∑k−1

j=0 y2(j) et ε(k) sont par
conséquent indépendantes et (11.33) devient :

E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(k − 1)ε(k)
k−1∑

j=0

y2(j)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(k − 1)
k−1∑

j=0

y2(j)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

E
{
ε(k)

}
= 0

Malheureusement, les k − 1 autres termes de la somme sont en général différents
de zéro et là encore E

{
ϑ̂(k)

}
̸= ϑ. !
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Dans certaines applications, le biais associé à la méthode des moindres car-
rés est tolérable. Par exemple, un régulateur dimensionné sur la base d’un modèle
identifié biaisé peut être acceptable pour autant qu’il jouisse de marges de robus-
tesse capables d’absorber les erreurs de modélisation. Dans d’autres situations, ce
biais est rédhibitoire. Il est possible de modifier la méthode des moindres carrés
(variables instrumentales où l’équation normale (11.28) est remaniée, modélisa-
tion affinée du vecteur d’erreurs) de telle sorte que l’estimateur soit consistent :
le vecteur de paramètres estimé ϑ̂(k) tend vers le vecteur de paramètres ϑ quand
le nombre N de mesures tend vers l’infini. Toutefois, la notion de limite est ici
mathématiquement délicate : il s’agit d’une convergence stochastique dont la des-
cription sort du cadre du présent texte.

11.5 Méthode des moindres carrés pondérés

Il est fréquemment souhaitable d’attribuer des pondérations différentes aux
mesures accumulées. Par exemple, des mesures de piètre qualité doivent intervenir
plus légèrement dans les calculs que celles qui sont très précises. Dans l’identifica-
tion d’un processus dynamique, dont les caractéristiques s’altèrent lentement au
cours du temps, les échantillons récents doivent clairement bénéficier d’un poids
plus important que les anciens, porteurs d’informations périmées. En quelque
sorte, il ne faut pas que le lointain passé sature le présent. Une première pos-
sibilité est un filtre à mémoire fixe ; une action plus douce découle d’une habile
pondération.

Comment traduire mathématiquement ces desiderata ? Plutôt que le critère
(11.24), il suffit de minimiser la fonction J : Rp → R suivante :

J(ϑ) =
∥∥ε(k)

∥∥2

W(k)

= εT (k)W(k)ε(k)

=
(
y(k)−Φ(k)ϑ

)T W(k)
(
y(k)−Φ(k)ϑ

)
(11.34)

La matrice de pondération W(k) ∈ RN×N est symétrique (sans perte de géné-
ralité) et définie positive. Elle est souvent diagonale et ses éléments diagonaux
attribuent des poids distincts aux composantes du vecteur d’erreurs ε(k). L’en-
tier k dans la matrice W(k) souligne le fait qu’elle fixe la pondération à l’instant
d’échantillonnage tk = kh. Ainsi, J(ϑ) n’est plus le carré de la norme euclidienne
du vecteur d’erreurs, comme dans la section précédente, mais le carré de la norme
induite par la matrice W(k). Cela revient à remplacer la norme euclidienne de
RN par une norme fixée par la matrice de pondération. Le théorème 11.1 doit
être modifié comme suit.
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Théorème 11.3

En supposant que la matrice d’observations Φ(k) soit de rang p et que la matrice
de pondération W(k) soit symétrique et définie positive, le vecteur de paramètres
estimé qui minimise (11.34) est unique et donné par :

ϑ̂(k) =
(
ΦT (k)W(k)Φ(k)

)−1ΦT (k)W(k)y(k) (11.35)

Démonstration
La démonstration est identique à celle du théorème 11.1.

EXEMPLE 11.10
Reprenons le problème de l’estimation d’une constante (ex. 11.8), mais en ad-

mettant que cette constante se modifie lentement avec le temps. Il faut par consé-
quent imposer un poids plus grand aux récentes mesures qu’aux anciennes. Le
critère ci-après est choisi pour refléter ce souhait :

J(ϑ) = λN−1ε2(1) + λN−2ε2(2) + · · · + λε2(N − 1) + ε2(N)

= εT (N)

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λN−1

λN−2 0
.. .

0 λ
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
W(N)

ε(N) 0 < λ < 1

Vu que 0 < λ < 1, les mesures récentes jouissent d’une pondération plus lourde
que les anciennes : on réalise un oubli progressif, de type exponentiel, des échan-
tillons périmés plutôt qu’un rejet pur et simple comme dans un filtre à mémoire
fixe. La solution se détermine aisément via (11.35) :

ϑ̂(N) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
1 1 . . . 1

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λN−1

λN−2 0
.. .

0 λ
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

...

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

·
[

1 1 . . . 1
]

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λN−1

λN−2 0
.. .

0 λ
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

y(1)

y(2)

...

y(N)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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=
λN−1y(1) + λN−2y(2) + · · · + λy(N − 1) + y(N)

λN−1 + λN−2 + · · · + λ + 1

EXEMPLE 11.11
L’objectif de cet exemple est de mettre en lumière une déficience de la méthode

de Levy (ex. 11.4), puis de la corriger.

La méthode de Levy standard exploite les moindres carrés non pondérés de
la section précédente. Les paramètres a1, a2, b0 et b1 de la fonction de transfert
(11.11) sont donc calculés de façon à minimiser le carré de la norme euclidienne
du vecteur d’erreurs ε(K) ; ce carré s’écrit, en tenant compte de la définition de
ε(K) dans (11.15) :

∥∥ε(K)
∥∥2 =

K∑

i=1

(u2
i + v2

i )

Ou, à l’aide de (11.14) :

∥∥ε(K)
∥∥2 =

K∑

i=1

∣∣εi

∣∣2

=
K∑

i=1

∣∣ei

∣∣2∣∣( jωi)2 + a1 jωi + a2

∣∣2

Les erreurs ei seront d’autant plus faibles en module que les pulsations ωi seront
élevées, i = 1, 2, . . . , K ; en effet, une importance accrue leur est alors octroyée
dans

∥∥ε(K)
∥∥2 au travers du facteur

∣∣( jωi)2 + a1 jωi + a2

∣∣2. Si les pulsations ωi

s’étendent sur une large plage, typiquement plusieurs décades, il découle de (11.12)
que la méthode de Levy conduit à une mauvaise identification de la fonction de
transfert aux basses pulsations. Cette approche n’est intéressante que pour une
identification dans une plage fréquentielle restreinte.

Lorsque les mesures sont disponibles dans une large bande, il est possible de
modifier la méthode de Levy en plaçant une pondération contrecarrant l’influence
du polynôme ( jωi)2 + a1 jωi + a2 formant le dénominateur de la fonction de
transfert à identifier. La matrice de pondération choisie est :

W(K) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
∣∣( jω1)2 + a1 jω1 + a2

∣∣2
0

1
∣∣( jω2)2 + a1 jω2 + a2

∣∣2

. . .

0 1
∣∣( jωK)2 + a1 jωK + a2

∣∣2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.36)
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La fonction à minimiser est ainsi :

∥∥ε(K)
∥∥2

W(K)
=

K∑

i=1

∣∣εi

∣∣2
∣∣( jωi)2 + a1 jωi + a2

∣∣2

=
K∑

i=1

∣∣ei

∣∣2

La même influence est par conséquent attribuée aux erreurs ei, i = 1, 2, . . . , K.
Il subsiste un problème de taille : la matrice W(K) n’est pas connue puisqu’elle
fait intervenir les coefficients a1 et a2 à estimer ! Une approche itérative est adop-
tée dans la pratique. Initialement, la matrice W(K) est prise égal à la matrice
identité, ce qui revient à la méthode de Levy standard. Après calcul d’un premier
jeu de paramètres, W(K) est actualisé selon (11.36) et les moindres carrés pon-
dérés livrent de nouveaux paramètres. Cette procédure est ensuite répétée jusqu’à
convergence. !

La philosophie de l’exemple 11.10 est adoptée pour l’identification des sys-
tèmes dynamiques légèrement non stationnaires, de préférence à un filtre à mé-
moire fixe. Les variations paramétriques doivent évidemment être beaucoup plus
lentes que celles des autres variables entrant en jeu afin que l’approche par fonc-
tion de transfert conserve son sens. La matrice de pondération sélectionnée est :

W(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λk−1

λk−2 0
.. .

0 λ
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

0 < λ < 1

Le critère à minimiser prend la forme :

J(ϑ) = εT (k)W(k)ε(k)

= λk−1ε2(1) + λk−2ε2(2) + · · · + λε2(k − 1) + ε2(k)

Grâce au nombre λ ∈ ] 0 , 1 [ , rencontré sous le nom de facteur d’oubli, les me-
sures récentes ont une plus grande influence que les anciennes. Ce rejet exponen-
tiel des échantillons est ajusté par le biais de λ : plus λ diminue, plus l’oubli est
précoce ; toutefois, une valeur trop faible de λ détruit la propriété de redondance
inhérente aux moindres carrés. Le facteur λ est, dans la pratique, pris dans l’inter-
valle [ 0,95 , 0,995 ]. Il existe de nombreuses autres politiques de gestion de l’oubli,
qui sont documentées dans les ouvrages dévolus aux méthodes d’identification.

11.6 Méthode des moindres carrés récurrents

Le vecteur de mesures y(k) regroupe N échantillons et l’équation (11.25)
fournissant le vecteur de paramètres estimé manipule en bloc tous ces échantillons.
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Dans la pratique, les mesures arrivent souvent séquentiellement en temps réel, par
exemple à chaque coup d’horloge, plutôt que simultanément. Malheureusement,
quand une nouvelle mesure est disponible, il faut pour en tirer profit recommencer
intégralement tous les calculs selon la formule (11.25). Cette manière de procéder
apparaît d’emblée comme du gaspillage. En particulier, le volume de calcul et la
taille mémoire augmentent au fur et à mesure que les échantillons s’accumulent.
Est-il possible d’organiser l’algorithme de telle sorte que les résultats obtenus sur
la base de N observations puissent être explicitement utilisés pour en déduire le
vecteur de paramètres estimé au moyen de N +1 observations ? Plutôt que de trai-
ter en bloc toutes les mesures à chaque instant d’échantillonnage, nous désirons
donc développer un algorithme de mise à jour incorporant l’information qu’il est
possible d’extraire d’un nouvel échantillon. Cet algorithme devra bien sûr être
doté d’une initialisation appropriée.

Soit la régression linéaire (11.1) ; le vecteur de paramètres estimé ϑ̂(k) découle
du filtre (11.25). On admet pour simplifier que la nouvelle observation y(k + 1) ∈
R est disponible à l’instant d’échantillonnage tk+1 = (k+1)h. Avec cette nouvelle
mesure, la régression linéaire devient :

y(k + 1) = Φ(k + 1)ϑ + ε(k + 1) (11.37)

Le vecteur de paramètres estimé ϑ̂(k + 1), qui minimise J(ϑ) =
∥∥ε(k + 1)

∥∥2,
s’écrit :

ϑ̂(k + 1) =
(
ΦT (k + 1)Φ(k + 1)

)−1ΦT (k + 1)y(k + 1) (11.38)

Plutôt que d’employer (11.38), qui met en jeu toutes les composantes de y(k +
1), exploitons le fait que ϑ̂(k) soit disponible. Les quantités apparaissant dans
(11.37) sont supposées être organisées de la manière suivante, où φ(k+1) ∈ Rp et
ε(k + 1) ∈ R :

y(k + 1) =
[

y(k)
y(k + 1)

]
∈ RN+1

Φ(k + 1) =
[

Φ(k)
φT (k + 1)

]
∈ R(N+1)×p

ε(k + 1) =
[

ε(k)
ε(k + 1)

]
∈ RN+1

L’idée-force sur laquelle se fonde la mise au point de l’algorithme récurrent est de
conserver scrupuleusement cette partition tout au long des développements. On
démontre tout d’abord le théorème suivant, appelé lemme d’inversion matricielle ;
ce résultat joue un rôle central en théorie de l’estimation.
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Théorème 11.4

Soient A, C et C−1 + DA−1B des matrices inversibles. Alors la matrice A +
BCD est inversible et :

(
A + BCD

)−1 = A−1 −A−1B
(
C−1 + DA−1B

)−1DA−1

Démonstration
Effectuons la multiplication :

(A + BCD)
(
A−1 −A−1B

(
C−1 + DA−1B

)−1DA−1
)

= I−B
(
C−1 + DA−1B

)−1DA−1 + BCDA−1

−BCDA−1B
(
C−1 + DA−1B

)−1DA−1

= I + BCDA−1 −
(
B + BCDA−1B

)(
C−1 + DA−1B

)−1DA−1

= I + BCDA−1 −BC
(
C−1 + DA−1B

)(
C−1 + DA−1B

)−1DA−1

= I + BCDA−1 −BCDA−1

= I

De la même façon, il est facile de prouver que :
(
A−1 −A−1B

(
C−1 + DA−1B

)−1DA−1
) (

A + BCD
)

= I

Théorème 11.5

En supposant que la matrice d’observations Φ(k) soit de rang p, le vecteur de
paramètres estimé vérifie l’équation récurrente :

ϑ̂(k + 1) = ϑ̂(k) + K(k + 1)
(
y(k + 1)− φT (k + 1)ϑ̂(k)

)
(11.39)

Avec :

K(k + 1) =
P(k)φ(k + 1)

1 + φT (k + 1)P(k)φ(k + 1)
∈ Rp (11.40)

P(k + 1) =
(
I−K(k + 1)φT (k + 1)

)
P(k) ∈ Rp×p (11.41)

Démonstration
La matrice Φ(k) ∈ RN×p est de rang p d’après l’hypothèse ; la matrice

Φ(k + 1) ∈ R(N+1)×p, obtenue à partir de Φ(k) en lui adjoignant la ligne φT (k +
1), est par conséquent elle aussi de rang p. Le théorème 11.1 peut donc être utilisé
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pour évaluer ϑ̂(k + 1). Pour alléger l’écriture, l’argument k de y(k) et de Φ(k),
de même que l’argument k + 1 de φT (k + 1), sont omis :

ϑ̂(k + 1) =

([
Φ
φT

]T [ Φ
φT

])−1 [
Φ
φT

]T [
y

y(k + 1)

]

=
([

ΦT φ
] [ Φ

φT

])−1 [
ΦT φ

] [ y
y(k + 1)

]

=
(
ΦT Φ + φφT )−1(ΦT y + φy(k + 1)

)

=
(
ΦT Φ + φφT )−1ΦT y +

(
ΦT Φ + φφT )−1

φy(k + 1)

=
(
ΦT Φ

)−1ΦT y +
(
ΦT Φ + φφT )−1

φy(k + 1)

+
((

ΦT Φ + φφT )−1 −
(
ΦT Φ

)−1
)

ΦT y

En tenant compte de l’équation (11.25) :

ϑ̂(k + 1) = ϑ̂(k) +
(
ΦT Φ + φφT

)−1
φy(k + 1)

+
((

ΦT Φ + φφT )−1 −
(
ΦT Φ

)−1
)

ΦT y
(11.42)

Par ailleurs :

((
ΦT Φ + φφT )−1 −

(
ΦT Φ

)−1
)
ΦT y

=
(
ΦT Φ + φφT

)−1
(
I−

(
ΦT Φ + φφT

)(
ΦT Φ

)−1
)

ΦT y

=
(
ΦT Φ + φφT )−1

(
I− I− φφT (ΦT Φ

)−1
)

ΦT y

= −
(
ΦT Φ + φφT )−1

φφT (ΦT Φ
)−1ΦT y

= −
(
ΦT Φ + φφT )−1

φφT ϑ̂(k) (11.43)

Par définition :

K(k + 1) =
(
ΦT Φ + φφT )−1

φ ∈ Rp (11.44)

D’où, en combinant (11.42), (11.43) et (11.44) :

ϑ̂(k + 1) = ϑ̂(k) + K(k + 1)y(k + 1)−K(k + 1)φT ϑ̂(k)

= ϑ̂(k) + K(k + 1)
(
y(k + 1)− φT ϑ̂(k)

)

La première égalité du théorème est démontrée.
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On pose :

P(k) =
(
ΦT Φ

)−1 ∈ Rp×p (11.45)

Alors :

P(k + 1) =
(
ΦT (k + 1)Φ(k + 1)

)−1 =

([
Φ
φT

]T [ Φ
φT

])−1

=
(
ΦT Φ + φφT )−1 (11.46)

Avec A = ΦT Φ, B = φ, C = 1 et D = φT , le lemme d’inversion matricielle
permet de transformer l’inversion matricielle (11.46) en une division scalaire :

(
ΦT Φ + φφT )−1

=
(
ΦT Φ

)−1 −
(
ΦT Φ

)−1
φ

1

1 + φT
(
ΦT Φ

)−1
φ

φT (ΦT Φ
)−1 (11.47)

Le nombre 1+ φT (ΦT Φ
)−1

φ est évidemment plus grand ou égal à 1 ; par consé-
quent, son inverse existe. En portant (11.45) dans (11.47) et le résultat dans (11.46) :

P(k + 1) = P(k)− P(k)φ
1 + φT P(k)φ

φT P(k) (11.48)

La définition (11.44) de K(k + 1) et (11.46) impliquent :

K(k + 1) = P(k + 1)φ (11.49)

En insérant (11.48) dans (11.49) :

K(k + 1) =
(
P(k)− P(k)φ

1 + φT P(k)φ
φT P(k)

)
φ

= P(k)φ− P(k)φ
1 + φT P(k)φ

φT P(k)φ

= P(k)φ

(
1− φT P(k)φ

1 + φT P(k)φ

)

=
P(k)φ

1 + φT P(k)φ

(
1 + φT P(k)φ− φT P(k)φ

)

=
P(k)φ

1 + φT P(k)φ
(11.50)

C’est la relation (11.40). Finalement, substituons (11.50) dans (11.48) pour abou-
tir à (11.41) :

P(k + 1) = P(k)−K(k + 1)φT P(k) =
(
I−K(k + 1)φT )P(k) !
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L’algorithme des moindres carrés récurrents, selon le théorème 11.5, n’est va-
lide que si le rang de la matrice d’observations Φ(k) vaut p. Au démarrage, Φ(k)
ne possède même pas p lignes, violant ipso facto cette hypothèse. Soit k0 un entier
tel que le rang de Φ(k0) est p. Alors, d’après (11.45) et le théorème 11.1 :

P(k0) =
(
ΦT (k0)Φ(k0)

)−1 (11.51)

ϑ̂(k0) = P(k0)ΦT (k0)y(k0) (11.52)

Muni de ces conditions initiales, l’algorithme récurrent peut être employé avec
k = k0, k0 + 1, . . .

EXEMPLE 11.12
On considère la régression linéaire :

y(3) = Φ(3)ϑ + ε(3)

Où :

y(3) =

⎡

⎣
1
4
2

⎤

⎦ Φ(3) =

⎡

⎣
0 1
1 2
1 1

⎤

⎦

y(2) =
[

1
4

]
y(3) = 2 Φ(2) =

[
0 1
1 2

]
φT (3) =

[
1 1

]

La matrice Φ(2) est de rang 2. Calculons l’initialisation du filtre récurrent qui
livrera ϑ̂(3) par mise à jour de ϑ̂(2) :

P(2) =
(
ΦT (2)Φ(2)

)−1 =
([

0 1
1 2

] [
0 1
1 2

])−1

=
[

5 −2
−2 1

]

ϑ̂(2) = P(2)ΦT (2)y(2) =
[

5 −2
−2 1

] [
0 1
1 2

] [
1
4

]
=
[

2
1

]

Les équations (11.39) et (11.40) donnent :

ϑ̂(3) = ϑ̂(2) + K(3)
(
y(3)− φT (3)ϑ̂(2)

)

=
[

2
1

]
+ K(3)

(
2−

[
1 1

] [ 2
1

])

K(3) =
P(2)φ(3)

1 + φT (3)P(2)φ(3)

=

[
5 −2
−2 1

] [
1
1

]

1 +
[

1 1
] [ 5 −2
−2 1

] [
1
1

] =

[
1

−1
3

]
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On en déduit :

ϑ̂(3) =
[

2
1

]
+

[
1

−1
3

](
2−

[
1 1

] [ 2
1

])
=

[
1
4
3

]

Cette valeur est corroborée par la formule non récurrente :

ϑ̂(3) =
(
ΦT (3)Φ(3)

)−1ΦT (3)y(3)

=

⎛

⎝
[

0 1 1
1 2 1

]⎡

⎣
0 1
1 2
1 1

⎤

⎦

⎞

⎠
−1 [

0 1 1
1 2 1

]⎡

⎣
1
4
2

⎤

⎦ =

[
1
4
3

]
!

Les initialisations (11.51) et (11.52) du filtre récurrent sont fournies par l’algo-
rithme non récurrent. Cette manière de procéder est malcommode, car elle exige
la commutation d’une structure de l’estimateur à une autre. Le théorème suivant
permet, au prix d’une erreur parfaitement maîtrisée, de lancer d’emblée l’algo-
rithme récurrent. Sans perte de généralité, nous supposons que le premier échan-
tillon placé dans le vecteur de mesures est pris à l’instant d’échantillonnage h, les
suivants étant obtenus aux temps 2h, 3h, . . . , kh, kh + h.

Théorème 11.6

Soit P(0) une matrice symétrique définie positive. Avec les conditions initiales
ϑ̂(0) et P(0), l’algorithme des moindres carrés récurrents (11.39), (11.40) et
(11.41) utilisé aux instants d’échantillonnage 0, h, 2h, . . . , kh génère le vecteur
de paramètres estimé :

ϑ̂(k + 1) =
(
P−1(0) + ΦT (k + 1)Φ(k + 1)

)−1

·
(
P−1(0)ϑ̂(0) + ΦT (k + 1)y(k + 1)

)

Démonstration
Avant de s’attaquer à la démonstration proprement dite, quelques équations

établies précédemment sont remaniées sous l’hypothèse habituelle que la matrice
Φ(k) est de rang p.

L’équation (11.46) s’écrit :

P(k + 1) =
(
ΦT (k)Φ(k) + φ(k + 1)φT (k + 1)

)−1

Ou :

P−1(k + 1) = ΦT (k)Φ(k) + φ(k + 1)φT (k + 1) (11.53)

En employant (11.45) :

P−1(k + 1) = P−1(k) + φ(k + 1)φT (k + 1) (11.54)
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Par ailleurs, définissons :

x(k + 1) = P−1(k + 1)ϑ̂(k + 1) ∈ Rp (11.55)

Ou :

ϑ̂(k + 1) = P(k + 1)x(k + 1) (11.56)

En portant (11.39) dans (11.55) :

x(k + 1) = P−1(k + 1)
(
ϑ̂(k) + K(k + 1)

(
y(k + 1)− φT (k + 1)ϑ̂(k)

))

= P−1(k + 1)ϑ̂(k)

+ P−1(k + 1)K(k + 1)
(
y(k + 1)− φT (k + 1)ϑ̂(k)

)
(11.57)

L’égalité (11.49) montre que K(k + 1) = P(k + 1)φ(k + 1), équivalente à
P−1(k + 1)K(k + 1) = φ(k + 1) ; (11.57) devient ainsi :

x(k + 1) = P−1(k + 1)ϑ̂(k) + φ(k + 1)
(
y(k + 1)− φT (k + 1)ϑ̂(k)

)

D’où, en exploitant (11.53) :

x(k + 1) =
(
ΦT (k)Φ(k) + φ(k + 1)φT (k + 1)

)
ϑ̂(k)

+ φ(k + 1)
(
y(k + 1)− φT (k + 1)ϑ̂(k)

)

= ΦT (k)Φ(k)ϑ̂(k) + φ(k + 1)y(k + 1)

En vertu des définitions (11.45) et (11.55) :

x(k + 1) = P−1(k)ϑ̂(k) + φ(k + 1)y(k + 1)
= x(k) + φ(k + 1)y(k + 1)

(11.58)

Afin de démontrer le théorème, les relations (11.54) et (11.58) sont mises à
profit formellement avec k = 0, 1, . . . ; comme le rang de la matrice Φ(k) ne peut
pas être égal à p dans les premiers instants d’échantillonnage, en tout cas pas pour
k < p, il importe de vérifier avec grand soin que toutes les expressions entrant en
jeu sont parfaitement définies.

Avec k = 0, (11.54) s’écrit :

P−1(1) = P−1(0) + φ(1)φT (1) (11.59)

La matrice P(0) est définie positive par hypothèse, donc inversible, si bien que le
membre de droite de (11.59) a un sens. De surcroît, P−1(0) est définie positive, de
sorte que P−1(0) + φ(1)φT (1) est définie positive, par conséquent inversible. En
d’autres termes, P−1(1) est définie positive et inversible. (On signale au passage
que les lignes de la matrice Φ(k + 1) sont maintenant dénotées φT (1), φT (2), . . .,
φT (k + 1) et non pas φT

1 (k + 1), φT
2 (k + 1), . . ., φT

N+1(k + 1) comme dans la
section 11.2.) Avec k = 1, (11.54) donne :

P−1(2) = P−1(1) + φ(2)φT (2) (11.60)



124 Méthode des moindres carrés récurrents

Pour les mêmes raisons que ci-dessus, P−1(2) est définie positive et inversible. En
substituant (11.59) dans (11.60) :

P−1(2) = P−1(0) + φ(1)φT (1) + φ(2)φT (2)

= P−1(0) +
[

φ(1) φ(2)
] [ φT (1)

φT (2)

]

= P−1(0) +
[

φT (1)
φT (2)

]T [
φT (1)
φT (2)

]

= P−1(0) + ΦT (2)Φ(2)

En poursuivant de la sorte :

P−1(k + 1) = P−1(0) + ΦT (k + 1)Φ(k + 1) (11.61)

D’autre part, en utilisant formellement (11.58) avec k = 0 et la condition
initiale x(0) = P−1(0)ϑ̂(0) :

x(1) = x(0) + φ(1)y(1)

Et avec k = 1 :

x(2) = x(1) + φ(2)y(2) = x(0) + φ(1)y(1) + φ(2)y(2)

= x(0) +
[

φ(1) φ(2)
] [ y(1)

y(2)

]
= x(0) +

[
φT (1)
φT (2)

]T [
y(1)
y(2)

]

= x(0) + ΦT (2)y(2)

En continuant :

x(k + 1) = x(0) + ΦT (k + 1)y(k + 1)

= P−1(0)ϑ̂(0) + ΦT (k + 1)y(k + 1) (11.62)

Incorporons finalement (11.61) et (11.62) dans (11.56) :

ϑ̂(k + 1) =
(
P−1(0) + ΦT (k + 1)Φ(k + 1)

)−1

·
(
P−1(0)ϑ̂(0) + ΦT (k + 1)y(k + 1)

)

Le théorème est démontré. !

Le vecteur de paramètres estimé exact est, selon le théorème 11.1 :

ϑ̂(k + 1) =
(
ΦT (k + 1)Φ(k + 1)

)−1ΦT (k + 1)y(k + 1)

Le vecteur de paramètres estimé d’après le théorème 11.6 peut être rendu aussi
proche que désiré de la valeur exacte en sélectionnant ϑ̂(0) = 0 et une matrice
P−1(0) suffisamment petite. En pratique, on choisit P(0) = αI, où α ∈ R est
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beaucoup plus grand que 1, par exemple α = 104. Alors, doté de l’initialisation
ϑ̂(0) = 0 et P(0) = αI, l’algorithme constitué des équations (11.39), (11.40) et
(11.41) peut être employé aux coups d’horloge k = 0, 1, 2, . . . Il est illustré dans
la figure 11.14.

bϑ(0) = 0

y(1)

y(2)

y(3)

bϑ(1)

bϑ(2)

bϑ(3)

(11.39)
k = 0

(11.39)
k = 1

(11.39)
k = 2

P(0) = αI α ≫ 1

P(1)

P(2)

P(3)

K(1)

K(2)

K(3)

(11.40)
k = 0

(11.41)
k = 0

(11.40)
k = 1

(11.41)
k = 1

(11.40)
k = 2

(11.41)
k = 2

Fig. 11.14 Algorithme des moindres carrés récurrents ; les numéros entre parenthèses se
réfèrent aux équations du théorème 11.5 ; la sortie de l’estimateur est la suite des vecteurs
de paramètres estimés bϑ(1), bϑ(2), bϑ(3), . . .

Nous remarquons dans la figure 11.14 que les mesures y(1), y(2), y(3), . . . ne
franchissent pas la frontière en traitillé ; elles n’interviennent donc pas dans l’éva-
luation de K(1), P(1), K(2), P(2), K(3), P(3), . . . Il est ainsi possible de calculer
ces quantités, et de mémoriser K(1), K(2), K(3), . . ., avant le démarrage de l’al-
gorithme, réduisant considérablement la charge en temps réel (par contre, la taille
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mémoire est augmentée). Cette façon de procéder est exclue dans l’identification
des processus dynamiques, où les lignes de la matrice d’observations renferment
des échantillons récoltés en temps réel.

La mise à jour (11.39) mérite d’être interprétée physiquement. Pour ce faire,
on écrit la dernière ligne de la régression linéaire (11.37) :

y(k + 1) = φT (k + 1)ϑ + ε(k + 1) (11.63)

Au vu de (11.63), le terme φT (k + 1)ϑ̂(k) entrant en jeu dans (11.39) peut être
considéré comme la prévision à l’instant d’échantillonnage kh + h , en se fon-
dant sur l’estimation ϑ̂(k) au temps kh, de la mesure réelle y(k + 1). L’estimation
ϑ̂(k + 1) à l’instant kh + h s’obtient à partir de ϑ̂(k) par ajout de la correc-
tion K(k + 1)

(
y(k + 1) − φT (k + 1)ϑ̂(k)

)
; cette correction est proportionnelle

à l’écart y(k + 1) − φT (k + 1)ϑ̂(k) entre l’échantillon réel y(k + 1) et sa pré-
vision φT (k + 1)ϑ̂(k). Cet écart quantifie l’information apportée à la prévision
φT (k + 1)ϑ̂(k) pour générer la nouvelle mesure y(k + 1) ; il est pour cette raison
appelé innovations (sect. 11.3).

La mise à jour (11.39) peut aussi être regardée comme un filtre numérique qui,
excité par la mesure y(k + 1), génère le vecteur de paramètres estimé ϑ̂(k + 1).
Ce filtre est non stationnaire ; il est même non linéaire quand la matrice d’obser-
vations inclut des mesures, comme dans l’identification des systèmes dynamiques
(fig. 11.15).

y(k + 1)
+

−
K(k + 1)

+

+

bϑ(k + 1)

φT (k + 1)bϑ(k)
φT (k + 1) q−1

bϑ(k)

Filtre numérique non stationnaire

Fig. 11.15 Algorithme des moindres carrés récurrents vu comme un filtre numérique non
stationnaire ; les lignes doubles désignent des signaux vectoriels ; les flèches obliques traver-
sant K(k+1) et φT (k+1) soulignent le fait que ces quantités évoluent au cours du temps,
provoquant la non-stationnarité du filtre ; finalement, l’opérateur retard vectoriel q−1 est
défini par q−1

˘bϑ(k + 1)
¯

=
˘bϑ(k)

¯
.
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EXEMPLE 11.13
Développons la forme récurrente du filtre élaborant l’estimation d’un para-

mètre constant (ex. 11.8). La régression linéaire s’écrit :
⎡

⎢⎢⎢⎢⎢⎣

y(1)
y(2)

...
y(k)

y(k + 1)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1
1
...
1
1

⎤

⎥⎥⎥⎥⎥⎦
ϑ +

⎡

⎢⎢⎢⎢⎢⎣

ε(1)
ε(2)

...
ε(k)

ε(k + 1)

⎤

⎥⎥⎥⎥⎥⎦

Vu l’extrême simplicité de cette application, il est possible d’évaluer P (k + 1) ∈ R
directement selon sa définition (11.45), plutôt que d’après (11.41) :

P (k + 1) =

⎛

⎜⎜⎜⎜⎜⎝

[
1 1 . . . 1 1

]

⎡

⎢⎢⎢⎢⎢⎣

1
1
...
1
1

⎤

⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎠

−1

=
1

k + 1

D’où, à l’aide de (11.49) :

K(k + 1) =
1

k + 1
(11.64)

En portant ces résultats dans (11.39) :

ϑ̂(k + 1) = ϑ̂(k) +
1

k + 1
(
y(k + 1)− ϑ̂(k)

)

Et, finalement :

ϑ̂(k + 1) =
k

k + 1
ϑ̂(k) +

1
k + 1

y(k + 1) (11.65)

Il s’agit d’un filtre numérique non stationnaire, initialisé avec ϑ̂(1) = y(1) (le
rang de la matrice d’observations vaut toujours 1) et exploité avec k = 1, 2, . . .
On peut aussi l’utiliser avec la condition initiale ϑ̂(k) = 0 et k = 0, 1, . . . Une
comparaison avec l’estimateur de l’exemple 11.8 révèle parfaitement le caractère
récurrent, la mise à jour de l’information, intrinsèque à (11.65).

La formule (11.64) montre que :

lim
k→∞

K(k + 1) = 0

Le gain multipliant les innovations y(k+1)−ϑ̂(k) tend vers zéro quand le nombre
de mesures tend vers l’infini. Dans les faits, les mesures fraîches ne sont plus prises
en compte à partir d’un certain moment : le passé sature le présent. Un moyen
d’éviter ce problème consiste à pondérer les mesures, par exemple via un oubli
exponentiel de celles-ci.
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11.7 Méthode des moindres carrés pondérés récurrents

La version récurrente de la méthode des moindres carrés pondérés, étudiée
dans la section 11.5, fait l’objet du théorème suivant. La matrice de pondération
W(k + 1), intervenant dans la fonction J(ϑ) =

∥∥ε(k + 1)
∥∥2

W(k+1)
à minimi-

ser, est supposée diagonale et définie positive ; elle est structurée comme suit, où
w(k + 1) ∈ R :

W(k + 1) =

[
W(k) 0

0T w(k + 1)

]
∈ R(N+1)×(N+1)

Théorème 11.7

En supposant que la matrice d’observations Φ(k) soit de rang p et que la ma-
trice de pondération W(k + 1) soit diagonale et définie positive, le vecteur de
paramètres estimé vérifie l’équation récurrente (11.39), avec :

K(k + 1) =
P(k)φ(k + 1)

1
w(k + 1)

+ φT (k + 1)P(k)φ(k + 1)
∈ Rp (11.66)

La matrice P(k) est fournie par (11.41).

Démonstration
La démonstration est identique à celle du théorème 11.5. !

En appelant k0 un entier tel que le rang de la matrice Φ(k0) est p, l’algorithme
récurrent (11.39), (11.66) et (11.41) peut être employé successivement avec k =
k0, k0 + 1, . . . en partant des conditions initiales :

P(k0) =
(
ΦT (k0)W(k0)Φ(k0)

)−1

ϑ̂(k0) = P(k0)ΦT (k0)W(k0)y(k0)

Comme dans la section 11.6, il est possible d’utiliser d’emblée, aux coups
d’horloge k = 0, 1, 2, . . ., l’algorithme du théorème 11.7 en l’équipant des condi-
tions initiales ϑ̂(0) = 0 et P(0) = αI, où le nombre α est beaucoup plus grand
que 1.

Dans le contexte de l’identification des processus dynamiques, la matrice de
pondération W(k) est donnée par :

W(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λk−1

λk−2 0
.. .

0 λ
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×N 0 < λ < 1
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Et la matrice de pondération W(k + 1) à l’instant d’échantillonnage tk+1 =
(k + 1)h s’écrit :

W(k + 1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λk

λk−1 0
.. .

λ2

0 λ
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(N+1)×(N+1)

Afin de faire ressortir W(k) dans W(k + 1), cette dernière matrice est mise sous
la forme suivante :

W(k + 1) = λ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λk−1

λk−2 0
.. .

λ

0 1
1
λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡

⎣
W(k) 0

0T 1
λ

⎤

⎦ (11.67)

L’algorithme des moindres carrés pondérés récurrents avec facteur d’oubli est ré-
sumé dans le théorème suivant.

Théorème 11.8

En supposant que la matrice d’observations Φ(k) soit de rang p et que la matrice
de pondération W(k + 1) soit fournie par (11.67), le vecteur de paramètres
estimé vérifie l’équation récurrente (11.39), avec :

K(k + 1) =
P(k)φ(k + 1)

λ + φT (k + 1)P(k)φ(k + 1)
∈ Rp

P(k + 1) =
(
I−K(k + 1)φT (k + 1)

)P(k)
λ
∈ Rp×p

Démonstration
Il suffit de reprendre point par point la démonstration du théorème 11.5 avec

la matrice de pondération (11.67) pour aboutir au résultat désiré.

EXEMPLE 11.14
Soit l’entraînement en vitesse de l’exemple 11.5 :

H(z) =
b

z + a
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Le paramètre a est sujet à de légères mais brusques fluctuations dans l’intervalle
[−1 , −0,9 ] et b dans [ 0,095 , 0,1 ]. La figure 11.16 montre la tension électrique
u(k) injectée et la vitesse de rotation y(k) qui en résulte. Le vecteur de paramètres
ϑ et son estimation ϑ̂(k) s’écrivent, respectivement :

ϑ =
[

a
b

]
ϑ̂(k) =

[
â(k)
b̂(k)

]

Ils apparaissent tous deux dans la figure 11.16, dans les cas λ = 1 (il n’y a pas
d’oubli des anciennes mesures), λ = 0,95 et λ = 0,85. Nous remarquons que l’ou-
bli exponentiel des anciennes mesures permet de traquer des paramètres évoluant
dans le temps.

11.8 Problèmes

11.8.1 Soit un moteur à courant continu et à excitation séparée entraînant une
charge. La résistance R du circuit d’induit est connue. Le courant d’induit i(t),
la tension d’alimentation u(t) et la vitesse de rotation ω(t) sont mesurés. Imagi-
ner une méthode d’identification de la constante KΦ du moteur. Est-il possible
d’estimer le couple résistant à partir de KΦ ?

11.8.2 Soit un moteur à courant continu et à excitation séparée entraînant une
charge. Le courant d’induit i(t), la tension d’alimentation u(t) et la vitesse de
rotation ω(t) sont mesurés. Imaginer une méthode d’identification de la constante
KΦ du moteur et de la résistance R du circuit d’induit du moteur.

11.8.3 Soit un entraînement électrique en vitesse (ex. 1.14) :

G(s) =
γ

τs + 1

Ce processus est soumis à un saut unité ; on mesure la sortie à un temps donné t0
et la vitesse permanente limt→∞ y(t). Calculer γ et τ à partir de ces deux mesures.
Appliquer les résultats obtenus dans le cas y(2) = 30 rad/s et limt→∞ y(t) = 70
rad/s. Comment améliorer l’estimation des paramètres γ et τ ?

11.8.4 Soit un processus à identifier échantillonné comportant une double inté-
gration. Comment tirer profit de cette connaissance a priori ?

11.8.5 Un entraînement électrique de position par moteur brushless commandé
en courant se comporte approximativement comme un double intégrateur analo-
gique :

G(s) =
γ

s2
γ > 0

Déterminer sa fonction de transfert échantillonnée. Exploiter les connaissances a
priori afin d’identifier la constante γ.
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11.8.6 Soit un système caractérisé par l’équation aux différences :

y(k) + a1y(k − 1) + · · · + any(k − n)
= b0u(k − 1) + b1u(k − 2) + · · · + bn−1u(k − n) + u

Etablir une régression linéaire permettant d’identifier ai, i = 1, 2, . . . , n, et bj ,
j = 0, 1, . . . , n − 1, dans le cas où le nombre u est connu. Répéter le problème
quand u doit lui aussi être identifié.

11.8.7 Soit la fonction de transfert discrète :

H(z) =
z − b

z − p
· B(z)
A(z)

Les polynômes A(z) et B(z) sont de degrés appropriés. Pourquoi l’identification
des coefficients des polynômes A(z) et B(z), du zéro b et du pôle p devient-elle
délicate lorsque le pôle p se rapproche du zéro b ?

11.8.8 Au sens des moindres carrés, tracer une droite passant par les échantillons
de la figure 11.17.

10

9

8

7

6

5

4

3

2

1

1 2 3 4

t

Fig. 11.17 Echantillons d’une régression linéaire.

Calculer la norme euclidienne minimum J
(
ϑ̂(4)

)
. Evaluer cette norme avec

la droite 2t + 1,5.

11.8.9 Résoudre, au sens des moindres carrés, le système d’équations algébriques
linéaires :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + 2y + z = 1
3x− y = 2
2x + y − z = 2
x + 2y + 2z = 1
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11.8.10 Avec des conditions initiales nulles, un objet est lâché dans le vide et sa
position mesurée à divers instants (tab. 11.1).

Tableau 11.1 Mesures de la position d’un objet lâché dans le vide.

Temps [s] Position [m]

0,1 0,05

0,2 0,2

0,3 0,4

0,4 0,8

Estimer l’accélération terrestre g par la méthode des moindres carrés.

11.8.11 Un objet est lâché dans le vide avec une vitesse et une position initiales
non nulles ; sa position est mesurée à différents instants. Ecrire une régression
linéaire permettant d’estimer l’accélération terrestre.

11.8.12 La position d’un objet se déplaçant en ligne droite avec une accélération
constante est mesurée par un radar (tab. 11.2).

Tableau 11.2 Mesures de la position d’un objet se déplaçant en ligne droite avec une
accélération constante.

Temps [s] Position [m]

0 3

0,2 59

0,4 98

0,6 151

0,8 218

1 264

Identifier par la méthode des moindres carrés la position et la vitesse initiales,
de même que l’accélération. Prévoir la position de l’objet au temps 1,4 s.

11.8.13 Les nombres de Nusselt et de Reynolds, dénotés respectivement Nu et
Re, sont liés par l’équation :

Nu = a Reb

Des mesures expérimentales sont reportées dans le tableau 11.3.
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Tableau 11.3 Mesures des nombres de Reynolds et de Nusselt.

Re Nu

104 32

2 · 104 60

4 · 104 90

5 · 104 119

Identifier par la méthode des moindres carrés les paramètres a et b.

11.8.14 Soit la régression linéaire :

⎡

⎣
2
3
2

⎤

⎦ =

⎡

⎣
1 1
1 1
1 1 + γ

⎤

⎦ϑ + ε

Déterminer ϑ̂. Le nombre γ est beaucoup plus petit que 1 de sorte que, sur un
ordinateur d’un certain type, a + γ2 est arrondi au nombre a ̸= 0, tandis que
a + γ est évalué correctement. Calculer ϑ̂ en commettant cette erreur numérique
et interpréter le résultat obtenu.

11.8.15 Soit l’entraînement en vitesse de l’exemple 11.5. Déterminer pour cette
installation la matrice ΦT (k − 1)Φ(k − 1) et le vecteur ΦT (k − 1)y(k).

11.8.16 Soit le processus non linéaire gouverné par l’équation :

y(k) + ay(k − 1) = b0u(k − 1) + b1u
2(k − 1)

Etablir une régression linéaire permettant d’identifier a, b0 et b1.

11.8.17 Démontrer que la matrice de projection est idempotente, c’est-à-dire que
son carré est égal à elle-même.

11.8.18 Prouver que, pour la méthode des moindres carrés non pondérés :

J
(
ϑ̂(k)

)
= yT (k)y(k)− yT (k)Φ(k)

(
ΦT (k)Φ(k)

)−1ΦT (k)y(k)

11.8.19 Que devient la formule (11.25) quand la matrice d’observations Φ(k) est
carrée ?

11.8.20 Démontrer le théorème 11.3.
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11.8.21 Dans le contexte du théorème 11.4, prouver l’égalité :
(
A−1 −A−1B

(
C−1 + DA−1B

)−1DA−1
) (

A + BCD
)

= I

11.8.22 Démontrer que le nombre 1 + φT (ΦT Φ
)−1

φ intervenant dans la dé-
monstration du théorème 11.5 est plus grand ou égal à 1.

11.8.23 Déduire l’équation (11.65) à partir du résultat trouvé dans l’exemple
11.8.

11.8.24 Détailler la démonstration du théorème 11.7 en reprenant point par
point la démonstration du théorème 11.5.

11.8.25 Détailler la démonstration du théorème 11.8.

11.8.26 Soit le circuit électrique de la figure 11.18.

i(t) R

u(t) L

Fig. 11.18 Circuit électrique.

La tension u(t) et le courant i(t) sont mesurés aux instants 0, h, 2h, . . . , kh.
Soit l’approximation :

di

dt
(kh) ≃ i(kh)− i(kh− h)

h

Etablir une régression linéaire permettant d’identifier les paramètres R et L à par-
tir des mesures.

11.8.27 Appliquer la méthode de Levy à la fonction de transfert b
s+a . Explici-

ter les dimensions des vecteurs et de la matrice associés à la régression linéaire
obtenue.

11.8.28 Un entraînement par moteur brushless et son alimentation peuvent être
modélisés par la fonction de transfert :

e−sT b

s2
b , T > 0

Des essais harmoniques analogiques effectués aux pulsations ωi ont fourni des
mesures ri e jθi ∈ C, i = 1, 2, . . . , K, de cette fonction de transfert. Etablir deux
régressions linéaires permettant d’identifier les paramètres b et T à partir de ces
mesures. En déduire une estimation de ces paramètres.
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11.8.29 Déterminer par la méthode des moindres carrés le polynôme du deuxième
degré qui passe au mieux, au sens des moindres carrés, par les cinq points :

(0,1 , −0,18) (0,2 , 0,31) (0,3 , 1,03) (0,4 , 2,48) (0,5 , 3,73)

Reporter les résultats sur un graphique.

11.8.30 Soit l’expérience représentée dans la figure 11.19. Des résultats expéri-
mentaux sont reportés dans le tableau 11.4.

Longueur x [cm]

Force y [g]

Fig. 11.19 Force appliquée à un ressort.

Tableau 11.4 Mesures de la force appliquée à un ressort et de sa longueur.

Force y [g] Longueur x [cm]

0 6,1

20 7,6

40 8,7

60 10,4

Estimer par la méthode des moindres carrés la constante du ressort.

11.8.31 Soit un gaz à température constante contenu dans le volume V à pres-
sion p :

pV γ = c

Ecrire une régression linéaire permettant d’identifier les paramètres c et γ à partir
de mesures de volume et de pression.
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11.8.32 On considère l’équation différentielle suivante :

ÿ(t)− 3ẏ(t) + 2y(t) = 0

Des mesures de y(t) étant données à plusieurs instants, établir une régression li-
néaire permettant d’estimer les conditions initiales y(0) et ẏ(0).

11.8.33 Soit M(k) = Φ(k)
(
ΦT (k)Φ(k)

)−1ΦT (k) la matrice de projection. Avec
P⊥(k) =

(
I−P(k)

)
, démontrer que ỹ(k) = P⊥(k)y(k) et que la matrice P⊥(k)

est idempotente. Prouver ensuite que P(k)P⊥(k) = P⊥(k)P(k) = 0 et interpré-
ter les résultats.

11.8.34 Afin d’identifier le paramètre ωx de la fonction de transfert ωx/s, on
souhaite mettre à profit la méthode de Levy. Pour cela, des essais harmoniques
analogiques effectués aux pulsations ωi ont fourni les mesures xi + jyi, i =
1, 2, . . . , K, de cette fonction de transfert. Etablir la régression linéaire corres-
pondante, en explicitant les dimensions des vecteurs et de la matrice qui lui sont
associés. Calculer ω̂x(K).



CHAPITRE 12

Commande adaptative

OBJECTIFS
• Combiner un régulateur RST et une procédure d’identification

pour aboutir à un schéma de commande adaptative
par imposition d’un modèle.

• Présenter l’auto-ajustement des régulateurs RST et PID.
• Décrire le régulateur à gains programmés.

12.1 Introduction

La synthèse d’un régulateur RST se présente naturellement sous la forme d’un
algorithme. Par ailleurs, une modélisation du processus à commander par identi-
fication peut, elle aussi, être décrite par une suite d’opérations numériques. Il est
alors possible d’automatiser intégralement la sixième filière de la figure 8.1, consti-
tuée d’une identification paramétrique suivie d’une synthèse directe : l’ajustement
du régulateur est effectué par un algorithme. Cet auto-ajustement peut être éla-
boré en temps réel, conduisant à un schéma de commande adaptative, dans lequel
le régulateur détermine lui-même et met continuellement à jour ses paramètres.

Le volume de calcul requis par une commande adaptative est nettement plus
conséquent que celui mis en jeu dans un régulateur à paramètres fixes. Toutefois,
des réalisations basées sur microprocesseurs sont actuellement possibles.

Un schéma adaptatif constitue intrinsèquement un système non linéaire. Il est
très difficile, voire impossible, de l’analyser complètement. Qui plus est, son im-
plantation industrielle est délicate et exige un vaste savoir-faire. Elle porte en elle
les germes de défaillances majeures. C’est par conséquent une solution à n’envisa-
ger dans certaines applications exigeantes qu’après s’être assuré qu’un régulateur
à paramètres fixes ou programmés, le cas échéant équipé d’une touche d’auto-
ajustement, ne peut pas remplir les spécifications.

Le présent chapitre est une introduction aux méthodes de commande adap-
tative. Seuls des aspects déterministes sont explorés. L’approche par modèle de
référence n’est pas abordée ; en fait, les différences entre celle-ci et l’architecture
détaillée dans les sections qui suivent se révèlent mineures.
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La section 12.2 décrit une commande adaptative par imposition d’un mo-
dèle ; le schéma indirect est traité dans le paragraphe 12.2.1 et le schéma direct
dans le paragraphe 12.2.2. L’auto-ajustement d’un régulateur à paramètres fixes
jouit d’une importance pratique considérable. Le cas du régulateur RST est rapi-
dement étudié au début de la section 12.3 ; des approches conceptuellement fort
différentes, en particulier les méthodes dites du relais, sont offertes pour l’auto-
ajustement du régulateur PID. Finalement, le régulateur à gains programmés est
développé dans la section 12.4.

12.2 Commande adaptative par imposition d’un modèle

12.2.1 Schéma indirect

Nous avons noté dans le chapitre 10 que la synthèse d’un régulateur RST se
présente comme un algorithme directement programmable : étant donné les poly-
nômes A(z) et B(z) de la fonction de transfert H(z) = B(z)/A(z) du système à
commander échantillonné (et des spécifications), les paramètres du régulateur, à
savoir les coefficients des polynômes R(z), S(z) et T (z) qu’il fait intervenir, sont
déterminés par une suite d’opérations numériques, dont le cœur est la résolution
d’une équation diophantine et résumées dans les tableaux 10.1 à 10.4. La figure
12.1 illustre la démarche par un schéma fonctionnel. Selon les conventions ha-
bituelles, Yc(z), U(z) et Y (z) dénotent les grandeurs de consigne, de commande
et à commander, respectivement ; G(s) est la fonction de transfert analogique du
processus à commander.

Yc(z) U(z) Y (z)

Coefficients de
R(z), S(z) et T (z)

Coefficients de
A(z) et B(z)Synthèse

RST D-A G(s) A-D

H(z) =
B(z)

A(z)

Fig. 12.1 Schéma fonctionnel du montage en asservissement avec un régulateur RST muni
de sa synthèse ; les spécifications intervenant dans la synthèse ne sont pas représentées.
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Par ailleurs, l’élaboration d’un modèle externe de représentation par identi-
fication a été explorée dans le chapitre 11. Sa version récurrente est bien adap-
tée à une implantation en temps réel. Lorsque des paramètres de l’installation à
commander s’altèrent lentement au cours du temps, ce qui est admis ici, il est in-
dispensable d’incorporer un facteur d’oubli. Les variations paramétriques doivent
évidemment être beaucoup plus lentes que celles des autres variables entrant en jeu
afin que l’approche par fonction de transfert conserve tout son sens. L’algorithme
est résumé dans le théorème 11.8 et par le schéma fonctionnel de la figure 12.2.

Coefficients de
A(z) et B(z) Identification

U(z) D-A G(s) A-D Y (z)

H(z) =
B(z)

A(z)

Fig. 12.2 Modélisation de représentation du système à commander.

Il apparaît logique de combiner les figures 12.1 et 12.2, puis d’effectuer conti-
nuellement, dans l’ordre et à chaque coup d’horloge, l’identification du processus
à commander et la synthèse du régulateur RST. On aboutit ainsi à un schéma de
commande adaptative (fig. 12.3), dans lequel la modélisation du système à com-
mander et la synthèse du régulateur sont automatisées en temps réel. L’appellation
adaptative provient de la caractéristique inhérente du montage de s’ajuster auto-
matiquement et en permanence au processus à commander, même quand celui-ci
est légèrement non stationnaire.

Synthèse

Coefficients de
A(z) et B(z)

Identification

Coefficients de
R(z), S(z) et T (z)

Yc(z) U(z)
Y (z)RST D-A G(s) A-D

H(z) =
B(z)

A(z)

Fig. 12.3 Schéma de commande adaptative indirect.
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Réorganisons légèrement le schéma fonctionnel de la figure 12.3 pour se pla-
cer dans le format standard de la figure 1.79, faisant ressortir l’horloge délivrant
les instants d’échantillonnage (fig. 12.4). La réalisation logicielle est esquissée dans
la figure 12.5.

A l’instant d’échantillonnage tk = kh délivré par l’horloge, la conversion
analogique-digital fournit le nombre y(k) par échantillonnage de la grandeur à
commander analogique mesurée. L’algorithme manipule ensuite cet échantillon,
en exploitant encore d’autres nombres mémorisés. Il peut être scindé en une phase
d’identification récurrente, qui met à jour l’estimation des coefficients des poly-
nômes A(z) et B(z) ; en se basant sur cette estimation, un régulateur RST est
synthétisé et, finalement, la grandeur de commande u(k) (ou u(k + 1) si le temps
de calcul et de conversion vaut h) est calculée selon l’équation aux différences dé-
crivant le régulateur. Le nombre u(k) (ou u(k + 1)) est alors maintenu constant,
par le convertisseur digital-analogique, pendant une période d’échantillonnage
complète. Toutes ces opérations sont répétées au coup d’horloge suivant.

Pour l’indentification qui nous concerne ici, la matrice d’observations
Φ(k − 1) à l’instant d’échantillonnage kh ne renferme des échantillons que jus-
qu’au temps kh−h compris ; le nombre u(k) n’intervient pas ; la notation Φ(k−1)
souligne d’ailleurs cette situation, laquelle est en fait fort heureuse car l’évaluation
de u(k) n’est activée qu’après la procédure d’identification ; u(k) est une quantité
non définie lors de l’identification.

Le dimensionnement du régulateur ne se fonde pas sur le modèle complet
et exact du processus à commander ; en fait, à chaque coup d’horloge, un mo-
dèle de commande simplifié, linéaire et stationnaire, estimé avec diverses erreurs
par l’algorithme d’identification, est employé comme si c’était le modèle exact. En
terminologie anglaise, une telle approche s’appelle certainty equivalence principle,
que l’on peut traduire par principe de l’équivalence certaine.

Le qualitatif indirect ou explicite attaché au schéma de la figure 12.3 provient
du fait que les paramètres du système à commander doivent être estimés avant
de servir à la synthèse du régulateur. Le prochain paragraphe est dévolu à un
schéma direct ou implicite , dans lequel ce sont les paramètres du régulateur qui
sont d’emblée identifiés.

Le découplage des tâches d’identification et de synthèse, intrinsèque à l’ap-
proche indirecte, offre d’intéressants atouts. Tout d’abord, d’éventuelles connais-
sances a priori sur l’installation à commander peuvent être prises en compte par
l’identification. Ensuite, il est possible de sélectionner indépendamment une
méthode d’identification, parmi un choix très riche, et un régulateur, là aussi dans
une large palette. Par exemple, plutôt qu’une approche polynomiale RST, un ré-
gulateur PID est possible, bien que sa synthèse se prête généralement mal à être
directement transcrite en algorithme. Nous constatons donc que le schéma fonc-
tionnel de la figure 12.3 est extrêmement flexible et constitue un concept générique
et un cadre structurant de grande portée.

Il existe visiblement deux boucles dans un schéma de commande adaptative.
La première est une rétroaction classique de la grandeur à commander ; quant à
la seconde, plus lente, elle se compose du mécanisme d’ajustement des paramètres
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tk = kh

Horloge

Identification

Synthèse

RST

Coefficients de
A(z) et B(z)

Coefficients de
R(z), S(z) et T (z)

Yc(z)

U(z)
Y (z)

D-A G(s)A-D

Algorithme

Fig. 12.4 Schéma de commande adaptative indirect dans le format de la figure 1.79.

tk = kh
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Commande RST
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grandeur de commande
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Fig. 12.5 Réalisation logicielle d’un schéma de commande adaptative indirect.
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du régulateur. Vu ce mécanisme d’ajustement, le système en boucle fermée est
profondément non linéaire ; son analyse complète, en particulier de la stabilité et
des performances, est extrêmement ardue. Seuls des résultats partiels, valides dans
des situations idéalisées, sont connus ; leur présentation sort du cadre de ce livre.

Dans le schéma indirect de la figure 12.3, il existe un conflit potentiel entre
l’identification et la commande. Expliquons qualitativement le phénomène en pre-
nant une consigne constante. A l’enclenchement de l’algorithme de commande
adaptative, le régulateur est fréquemment médiocre parce que mal ajusté ; la gran-
deur de commande est ainsi excitante, générant une grandeur commandée agitée.
Cette situation se révèle favorable pour la procédure d’identification (sect. 11.4),
conduisant à une modélisation pertinente du processus à commander. La synthèse
affine alors substantiellement le régulateur, engendrant une grandeur de com-
mande et une grandeur à commander plus calmes qu’initialement. Les modes de
l’installation à commander sont moins influencés et la richesse de son excitation
se détériore. Au fur et à mesure que le temps s’écoule, la grandeur à commander
s’approche de la valeur de consigne, constante ; la grandeur de commande devient
elle aussi constante. L’objectif de commande est atteint. Malheureusement, les
modes du système à commander sont mal excités et les conditions de persistance
détruites, ceci se reflétant mathématiquement par une matrice d’observations de
rang insuffisant. L’identification transmet un modèle aberrant à la synthèse, qui
donne un régulateur inconsistant : il y a explosion de la grandeur de commande,
puis de la grandeur à commander. Ce comportement intempestif est appelé écla-
tement, ou burst-out en anglais. Dès son apparition, la richesse de l’excitation est
à nouveau suffisante et le cycle complet recommence.

SupervisionCoefficients de
A(z) et B(z)

Synthèse
Identification

Coefficients de
R(z), S(z) et T (z)

Yc(z)
RST

U(z)
Y (z)D-A G(s) A-D

H(z) =
B(z)

A(z)

Fig. 12.6 Schéma de commande adaptative indirect avec supervision de l’identification.
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Il importe de déconnecter l’identification dès que le modèle de commande est
jugé correct. Généralement, une gestion plus subtile de l’identification est mise en
place. Comme cela est montré dans la figure 12.6, le modèle n’est pas directement
exploité pour la synthèse du régulateur ; il passe au préalable dans un module de
supervision, pouvant également tirer profit de la consigne, de la grandeur de com-
mande et de la grandeur à commander ; ce module transmet l’information à la
procédure de synthèse uniquement quand cela est nécessaire. Il n’existe aucune
méthodologie générale de supervision de l’identification ; c’est souvent un en-
semble de règles heuristiques, dépendantes de l’application et documentées dans
la littérature spécialisée.

EXEMPLE 12.1
Le schéma de commande adaptative de la figure 12.3 est appliqué à un en-

traînement électrique commandé en vitesse. Une période d’échantillonnage h =
0,1 s est adoptée. L’identification du processus est assurée par l’algorithme des
moindres carrés récurrents du théorème 11.8, avec un facteur d’oubli λ = 0,98.
Le régulateur RST implanté n’inclut pas d’intégrateur ; le temps de calcul et de
conversion est négligeable vis-à-vis de la période d’échantillonnage ; on adopte le
modèle à poursuivre :

Hm(z) =
0,3

z − 0,7

La synthèse du régulateur est résumée dans le tableau 10.1. Des résultats décou-
lant d’un essai sur une installation réelle sont reportés dans la figure 12.7, qui met
en évidence l’ajustage du régulateur dans les premières périodes d’échantillon-
nage. Aucun phénomène d’éclatement n’est décelé dans cette application.

u(t) [V]

10

5

−5

−10

1 2 3 4 5 6 7

t [s]

Fig. 12.7 Grandeur de commande et réponse en boucle fermée d’un entraînement com-
mandé en vitesse par un régulateur RST adaptatif ; la grandeur de commande est limitée à
±10 V.
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[rad/s]

60

40
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−20

−40

−60

1 2 3 4 5 6 7

t [s]

yc(t) y(t)

Fig. 12.7 (Suite et fin.)

Le système à commander échantillonné est représenté par :

H(z) =
b

z + a

Le vecteur de paramètres est donc :

ϑ =
[

a
b

]

1,5

1

0,5

−0,5

−1

−1,5

1 2 3 4 5 6 7

t [s]

bb(t)

ba(t)

Fig. 12.8 Paramètres estimés.
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Le vecteur de paramètres estimé est écrit de la manière suivante :

ϑ̂(k) =
[

â(k)
b̂(k)

]

La figure 12.8 montre l’évolution temporelle des coefficients â(k) et b̂(k).

12.2.2 Schéma direct

L’approche indirecte, passant par l’identification explicite du processus à com-
mander, requiert un volume de calcul important. Un schéma direct ou implicite,
dans lequel ce sont les paramètres du régulateur qui sont estimés, permet de sup-
primer le bloc de synthèse de la figure 12.3, d’où un gain en temps de calcul ap-
préciable. De surcroît, l’analyse de la stabilité en boucle fermée se simplifie sub-
stantiellement. Le schéma fonctionnel du montage direct est dessiné dans la figure
12.9.

IdentificationCoefficients de
R(z), S(z) et T (z)

Yc(z)
RST

U(z)
D-A G(s) A-D Y (z)

H(z) =
B(z)

A(z)

Fig. 12.9 Schéma de commande adaptative direct.

Les deux membres de l’équation diophantine (10.15) sont multipliés par Y (z) :

A(z)R(z)Y (z) + B−(z)S(z)Y (z) = Am(z)A0(z)Y (z)

D’où, en tenant compte successivement de Y (z)/U(z) = B(z)/A(z), B(z) =
B+(z)B−(z) (factorisation spectrale (10.10)) et R(z) = B+(z)R(z) (égalité
(10.13)) :

Am(z)A0(z)Y (z) = B(z)R(z)U(z) + B−(z)S(z)Y (z)

= B+(z)B−(z)R(z)U(z) + B−(z)S(z)Y (z)

= B−(z)R(z)U(z) + B−(z)S(z)Y (z) (12.1)
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Par conséquent :

Y (z)
U(z)

=
B−(z)R(z)

Am(z)A0(z)−B−(z)S(z)
(12.2)

L’égalité (12.2) peut être considérée comme la description du système à comman-
der paramétrisé non pas avec les polynômes A(z) et B(z), mais avec les polynômes
Am(z), A0(z), B−(z), S(z) et R(z) ; Am(z) et A0(z) sont fixés par les spécifica-
tions tandis que B−(z), R(z) et S(z) sont inconnus. A l’aide des échantillons{
u(k)

}
et
{
y(k)

}
récoltés respectivement à l’entrée et à la sortie de l’installa-

tion à commander, l’identification des polynômes B−(z), R(z) et S(z) conduit
directement au régulateur RST défini par les polynômes R(z), S(z) et T (z) =
B′

m(z)A0(z). Sa synthèse explicite est de la sorte éliminée.
Malheureusement, le problème d’identification tel qu’il vient d’être posé mène

à une régression non linéaire puisque B−(z) multiplie, dans (12.2), R(z) et S(z).
Cette difficulté n’existe pas si B−(z) = 1 ou, plus généralement, si B−(z) est
une constante b0 ∈ R , en d’autres termes quand tous les zéros du processus à
commander sont simplifiés. Comme cela a été relevé dans le paragraphe 10.3.6, il
s’agit d’une restriction sévère, excluant d’emblée tous les systèmes à non-minimum
de phase et, très souvent, les systèmes dont les zéros n’appartiennent pas à une
région convenable entièrement située à l’intérieur du cercle unité (par exemple la
région en tramé de la figure 10.7). Lorsque B−(z) = b0, (12.1) devient :

Am(z)A0(z)Y (z) = b0R(z)U(z) + b0S(z)Y (z) (12.3)

L’algorithme d’identification est maintenant chargé de l’estimation des coefficients
des polynômes b0R(z) et b0S(z) qui entrent en jeu linéairement dans (12.3).

La relation δR = δAm + δA0 + δB+ − δA a été établie dans le chapitre 10
(égalité (10.37)) ; vu que B−(z) = b0, nous avons δB = δB+ et :

δR = δAm + δA0 − (δA− δB)
= δ(AmA0)− (δA− δB)

Le surplus de pôles d = δA − δB vérifie l’inégalité d > 0. En tirant profit de
δR = δ(b0R) ≥ δS = δ(b0S), traduisant la causalité du régulateur RST, on
aboutit à :

δ(AmA0) = δ(b0R) + d ≥ δ(b0S) + d (12.4)

Ainsi, le degré du polynôme Am(z)A0(z) est strictement plus grand que celui
de b0R(z), lequel est plus grand ou égal à celui de b0S(z). Multiplions les deux
membres de (12.3) par z−δ(AmA0) et passons dans le domaine temporel. Le mem-
bre de gauche est alors une somme des échantillons y(k), y(k − 1), . . .,
y
(
k − δ(AmA0)

)
, pondérée par les coefficients du polynôme donné Am(z)A0(z).

La valeur de cette somme est donc parfaitement connue à l’instant d’échantillon-
nage tk = kh. Le membre de droite est une somme d’échantillons de l’entrée{
u(k)

}
et de la sortie

{
y(k)

}
, pondérée avec les coefficients des polynômes in-

connus b0R(z) et b0S(z), qui constituent les composantes du vecteur de para-
mètres ; les relations (12.4) montrent que le dernier échantillon intervenant dans
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cette somme est récolté avant l’instant d’échantillonnage tk = kh ; par exemple,
si d = 1, les échantillons entrant en jeu sont saisis aux temps kh − h, kh − 2h,
. . ., kh− δ(AmA0)h et la matrice d’observations Φ(k− 1) associée à la régression
linéaire ne renferme des échantillons que jusqu’à l’instant kh− h compris.

Les deux membres de l’équation R(z)U(z) = T (z)Yc(z)−S(z)Y (z) du régu-
lateur RST sont multipliés par b0 pour obtenir :

b0R(z)U(z) = b0T (z)Yc(z)− b0S(z)Y (z) (12.5)

On sait que T (z) = B′
m(z)A0(z) ; par conséquent, b0T (z) = b0B′

m(z)A0(z) =
Bm(z)A0(z) et (12.5) devient :

b0R(z)U(z) = Bm(z)A0(z)Yc(z)− b0S(z)Y (z)

Le code du régulateur se fonde sur cette relation, où les coefficients des polynômes
b0R(z) et b0S(z) sont estimés par l’algorithme d’identification. La figure 12.10
complète la figure 12.9 en faisant intervenir l’horloge et la figure 12.11 illustre
l’architecture logicielle.

L’algorithme se décompose maintenant en une phase d’identification récur-
rente, chargée de la mise à jour de l’estimation des coefficients des polynômes
b0R(z) et b0S(z) ; la grandeur de commande u(k) (ou u(k + 1) si le temps de cal-
cul et de conversion vaut h) est ensuite déterminée selon l’équation aux différences
décrivant le régulateur.

tk = kh

Horloge

Identification

RST

Coefficients de
b0R(z) et b0S(z)

Yc(z)

Y (z)
U(z)

A-D D-A G(s)

Algorithme

Fig. 12.10 Schéma de commande adaptative direct dans le format de la figure 1.79.
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tk = kh
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grandeur à commander

Identification du
régulateur RST

Commande RST

Conversion D-A de la
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ith
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Fig. 12.11 Réalisation logicielle d’un schéma de commande adaptative direct.

Dans le schéma indirect du paragraphe précédent, les paramètres estimés du
processus à commander sont utilisés comme s’ils étaient les vrais paramètres tan-
dis que, dans le schéma direct du présent paragraphe, les paramètres estimés du
régulateur RST sont employés comme s’ils étaient exacts. Bien évidemment, les
résultats issus de ces deux démarches diffèrent.

Mentionnons pour conclure qu’un intégrateur peut aisément être incorporé
dans le régulateur RST d’un schéma direct.

12.3 Auto-ajustement du régulateur

Dans les schémas de commande adaptative de la section précédente, le méca-
nisme d’ajustement du régulateur est théoriquement activé à chaque coup d’hor-
loge ; dans la pratique toutefois, ce mécanisme peut être gelé par un module de su-
pervision gérant l’identification. Ces architectures sont attractives au démarrage
et pour des systèmes à commander légèrement non stationnaires. Par contre, elles
apparaissent trop lourdes et potentiellement délicates pour des processus station-
naires, où des régulateurs à paramètres figés après leur ajustement conviennent en
général parfaitement.

La détermination automatique de ces paramètres peut être effectuée en conser-
vant au démarrage les structures des figures 12.3 ou 12.9, puis en débranchant
la procédure d’ajustement quand les performances sont jugées satisfaisantes ; les
paramètres du régulateur conservent alors leurs dernières valeurs. Une telle phi-
losophie est appelée auto-ajustement ou, en anglais, auto-tuning.
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Il est aussi possible de tirer profit du mécanisme d’ajustement en boucle ou-
verte, en injectant dans le système à commander, qui doit être stable, une excita-
tion suffisamment riche pour l’identification ; le régulateur est dimensionné puis
exploité tel quel en boucle fermée. La figure 12.12 illustre l’auto-ajustement du ré-
gulateur RST dans le cas d’un schéma indirect et la figure 12.13 pour un schéma
direct. L’importance pratique d’un auto-ajustement est considérable : sur simple
demande, des régulateurs sont synthétisés automatiquement.

Synthèse

Coefficients de
A(z) et B(z)

Identification

Coefficients de
R(z), S(z) et T (z)

U(z) D-A G(s) A-D Y (z)

H(z) =
B(z)

A(z)

Fig. 12.12 Auto-ajustement en boucle ouverte d’un régulateur RST indirect.

Identification

Coefficients de
R(z), S(z) et T (z)

U(z) D-A G(s) A-D Y (z)

Fig. 12.13 Auto-ajustement en boucle ouverte d’un régulateur RST direct.

Les méthodes de synthèse du régulateur PID étudiées dans les chapitres 8 et
9 n’exhibent pas la forme algébrique de celles caractéristiques du régulateur RST.
L’auto-ajustement du régulateur RST qui vient d’être proposé n’a par conséquent
pas d’équivalent immédiat pour la commande PID. Il existe néanmoins des tech-
niques d’auto-ajustement conceptuellement différentes, bien adaptées au régula-
teur PID, dont les plus importantes sont maintenant passées en revue.

Une approche possible se fonde sur la synthèse par imposition d’un modèle à
poursuivre analogique, laquelle est traitée dans le paragraphe 1.7.6. Après identi-
fication d’un modèle de commande G(s), un régulateur PI, PD ou PID est ajusté à
l’aide des expressions algébriques développées dans ce paragraphe. Le régulateur
obtenu est numérisé selon les indications du chapitre 8, puis finalement implanté.
Cette technique s’avère mal adaptée à des processus comprenant un retard pur.
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La première méthode de Ziegler-Nichols (§ 1.7.5) peut elle aussi être exploitée
dans ce contexte. Le système à commander est tout d’abord soumis à un essai indi-
ciel. La réponse qui en résulte est ensuite analysée afin d’extraire les nombres a et
L ; dans le but d’automatiser la procédure d’ajustement, il est possible d’identifier
par moindres carrés une droite passant par la réponse indicielle échantillonnée, en
adoptant une faible pondération pour les premiers échantillons liés au retard pur
L. Le régulateur est alors dimensionné selon le tableau 1.1, puis le cas échéant re-
touché, numérisé et implanté. Cette approche se révèle sensible aux erreurs com-
mises dans l’estimation des paramètres a et L. Par ailleurs, il n’est pas possible
d’en bénéficier quand le retard L est inexistant dans la réponse indicielle.

Quant à la seconde méthode de Ziegler-Nichols, elle est difficile à automa-
tiser, ceci étant pour l’essentiel dû à la maîtrise très délicate de l’amplitude des
oscillations. Qui plus est, opérer à la limite de la stabilité en boucle fermée se

Im

−1

KpcG( jω)

Re

Fig. 12.14 Diagramme de Nyquist associé à la seconde méthode de Ziegler-Nichols.

Im

−
1

Kpc

G( jω)

Re

Fig. 12.15 Diagramme de la figure 12.14 modifié.
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révèle périlleux ou même interdit dans certaines circonstances. Afin de contour-
ner ces difficultés fort élégamment, les résultats fournis par la seconde méthode de
Ziegler-Nichols vont être créés complètement différemment à l’aide d’un régula-
teur non linéaire de type tout-ou-rien (sect. 1.6). Mais, auparavant, les conditions
qu’elle impose sont interprétées dans un diagramme de Nyquist analogique (les
lecteurs peu familiers avec ce concept trouveront d’utiles informations dans l’an-
nexe II). Il est évident que, la limite de la stabilité en boucle fermée étant atteinte,
la fonction de transfert analogique harmonique en boucle ouverte KpcG( jω)
passe par le point critique −1 (fig. 12.14).

Une division par le gain critique Kpc conduit au diagramme de la figure 12.15.

Le régulateur proportionnel de gain Kpc est maintenant remplacé par un ré-
gulateur tout-ou-rien, comme cela est montré dans la figure 12.16. La consigne
est nulle.

Yc(s) = 0
+

−

d

−d
Y (s)G(s)

Fig. 12.16 Commande tout-ou-rien.

La méthode du premier harmonique, rappelée dans l’annexe II, est mainte-
nant mise à profit. La fonction de transfert généralisée N(a) de l’élément tout-ou-
rien s’écrit :

N(a) =
4d

πa

Le nombre a dénote l’amplitude de la sinusoïde à l’entrée du dispositif tout-ou-
rien et d l’amplitude de ce dernier. On sait qu’il existe dans le système de la figure
12.16 un régime d’oscillations quand :

G( jω) = − 1
N(a)

Graphiquement, cette condition est remplie lorsque la fonction de transfert har-
monique G( jω) de l’élément linéaire coupe le lieu critique −1/N(a) (fig. 12.17).
Les valeurs ac et ωc correspondantes sont respectivement l’amplitude et la pulsa-
tion de l’oscillation à l’entrée du dispositif tout-ou-rien (ou à la sortie du processus
à commander puisque la consigne est nulle). En outre, l’oscillation est stable si, en
parcourant la courbe représentant la fonction de transfert harmonique G( jω) au
voisinage de ac et ωc dans le sens des ω croissants, nous laissons à gauche le sens
des a croissants sur le lieu critique −1/N(a). L’oscillation est instable dans la si-
tuation contraire.
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Im

ωc

ac

−
1

N(a)
= −

πa

4d

G( jω)

Re

Fig. 12.17 Existence, dans le montage de la figure 12.16, d’une auto-oscillation stable
d’amplitude ac et de pulsation ωc.

Pour autant que le système à commander agisse comme un filtre passe-bas
efficace, l’élément tout-ou-rien se comporte de la même façon qu’un régulateur
proportionnel de gain variable N(a) = 4d

πa . En régime d’oscillations, ce gain vaut
4d

πac
.
Une comparaison des figures 12.15 et 12.17 montre qu’elles sont en fait iden-

tiques. Par conséquent, les intersections de la fonction de transfert harmonique
G( jω) avec l’axe réel sont les mêmes dans les deux figures, impliquant :

− 1
Kpc

= −πac

4d

D’où :

Kpc =
4d

πac
(12.6)

Quant à la pulsation critique ωc de l’oscillation, elle est liée à la période critique
Tc par la formule :

ωc =
2π

Tc

L’auto-ajustement du régulateur est effectué comme suit. Un régulateur tout-
ou-rien est d’abord monté en boucle fermée (fig. 12.16). En admettant qu’il donne
naissance à une oscillation stable, on mesure l’amplitude ac de celle-ci à l’entrée du
régulateur (ou à la sortie du processus à commander), qui fournit directement Kpc

selon l’équation (12.6), et sa période Tc. Le régulateur est ensuite dimensionné à
l’aide du tableau 1.2, puis retouché si nécessaire, numérisé et finalement implanté
en lieu et place du régulateur tout-ou-rien. Cette manière de procéder est facile à
automatiser ; elle ne requiert pas une recherche par tâtonnement du gain critique
et, de surcroît, l’amplitude ac de l’oscillation peut être réglée au moyen de l’ampli-
tude d de l’élément tout-ou-rien. C’est le point de départ de nombreuses variantes
et extensions rencontrées sous le nom de méthodes du relais.
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EXEMPLE 12.2
Revenons à la cuve de mélange de l’exemple 5.2, avec les valeurs numériques

déjà considérées à plusieurs reprises, en particulier dans l’exemple 7.7. Un régula-
teur tout-ou-rien, pour lequel d = 10, est placé en boucle fermée comme cela est
illustré dans la figure 12.18. La sortie y(t) de la cuve est reportée dans la figure
12.19.

Yc(s) = 0
+

−

10

−10
Y (s)e−3s 0,015

s + 0,015

Fig. 12.18 Commande tout-ou-rien d’une cuve de mélange.

y(t) [ ◦ C]

0,6

0,4

0,2

−0,2

−0,4

−0,6

10 20 30 40 50

t [s]

ac = 0,44

Tc = 12

Fig. 12.19 Réponse en boucle fermée d’une cuve de mélange dans le cas d’un régulateur
tout-ou-rien.

Abstraction faite du retard pur, le système à commander est du premier ordre
et n’agit donc pas comme un filtre passe-bas vraiment efficace ; l’approche est
néanmoins exploitée telle quelle. L’amplitude de l’oscillation vaut ac = 0,44 ◦C et
sa période Tc = 12 s. On en déduit le gain critique :

Kpc =
4d

πac
= 29

D’où le régulateur PID analogique, selon la dernière ligne du tableau 1.2 :

K(s) = 17,4
(

1 +
1
6s

+ 1,5 s

)

Sa numérisation donne, dans une version non filtrée et avec une période d’échan-
tillonnage h = 1 s :

K ′(z) = 17,4
(

1 +
0,17 z

z − 1
+ 1,5

z − 1
z

)
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Ce régulateur PID numérique est finalement implanté en boucle fermée (fig. 12.20).

Yc(z)
+

−
K ′(z) D-A e−3s 0,015

s + 0,015
A-D

Y (z)

Fig. 12.20 Commande PID numérique d’une cuve de mélange.

La réponse indicielle en boucle fermée tracée en trait plein dans la figure 12.21
présente un fort dépassement, caractéristique d’une synthèse par les méthodes de
Ziegler-Nichols. Une retouche des paramètres, selon la règle des deux (§ 1.7.5),
conduit au régulateur moins agressif :

K ′(z) = 8,7
(

1 +
0,085 z

z − 1
+ 3

z − 1
z

)

La réponse indicielle qui en découle apparaît en traitillé dans la figure 12.21.

y(t) [ ◦ C]

2

1,5

yc = 1

0,5

20 40 60 80 100

t [s]

Fig. 12.21 Réponse indicielle en boucle fermée d’une cuve de mélange dans le cas de ré-
gulateurs auto-ajustés par la seconde méthode de Ziegler-Nichols.
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Connaissant ici la fonction de transfert du processus à commander, il est fa-
cile de calculer la période et le gain critiques exacts ; les valeurs obtenues sont
Tc = 11,79 s et Kpc = 35,55. Une erreur appréciable entache surtout l’estima-
tion du gain critique, justifiant une amélioration de la méthode ; cette refonte sera
présentée à la fin de la présente section. !

Comme il ressort de la figure 12.22, un régulateur tout-ou-rien en boucle fer-
mée permet d’identifier l’intersection de la fonction de transfert harmonique ana-
logique G( jω) du système à commander avec l’axe réel. La pulsation ωc est égale à
la pulsation de l’oscillation tandis que le point d’intersection−1/Kpc vaut−πac

4d ,
où ac est l’amplitude de l’oscillation et d l’amplitude du dispositif tout-ou-rien.

Im

ωc

Ψ
−

1

Kpc
G( jω)

−1
Re

e j(−π+Ψ)
ωc

Kp

„
1 +

1

jωTi
+ jωTd

«
G( jω)

= K( jω)G( jω)

Fig. 12.22 Synthèse du régulateur analogique PID de fonction de transfert K(s) afin d’im-
poser une marge de phase Ψ .

Nous désirons maintenant dimensionner un régulateur PID analogique ga-
rantissant une marge de phase Ψ spécifiée (fig. 12.22). Sa fonction de transfert
harmonique non filtrée est :

K( jω) = Kp

(
1 +

1
jωTi

+ jωTd

)

En insérant en boucle fermée un régulateur PID, il s’agit de déplacer l’intersection
de G( jω) avec l’axe réel sur le point e j(−π+Ψ). La valeur de K( jωc) doit vérifier :

K( jωc)G( jωc) = e j(−π+Ψ)
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Cette égalité impose, pour l’argument de K( jωc)G( jωc) :

Arg K( jωc)G( jωc) = Arg Kp

(
1 +

1
jωcTi

+ jωcTd

)
− π = −π + Ψ

D’où :

Arg
(

1 +
1

jωcTi
+ jωcTd

)
= Arg

(
1 + j

(
ωcTd −

1
ωcTi

))
= Ψ

Ou :

Arctg
(

ωcTd −
1

ωcTi

)
= Ψ

On en déduit :

ωcTd −
1

ωcTi
= tg Ψ (12.7)

Cette équation ne fournit pas à la fois Ti et Td. En s’inspirant des règles de Ziegler-
Nichols (dernières lignes des tableaux 1.1 et 1.2), un choix possible est :

Ti = 4 Td (12.8)

Alors, (12.7) devient :

ω2
cT 2

d − ωcTd tg Ψ − 1
4

= 0

Il en découle, en ne conservant bien sûr que la solution positive de cette équation :

Td =
tg Ψ +

√
1 + tg2 Ψ

2ωc
(12.9)

Le gain Kp du régulateur est ensuite déterminé de manière à ce que le module
de K( jωc)G( jωc) vérifie :

∣∣K( jωc)G( jωc)
∣∣ = Kp

∣∣∣∣1 +
1

jωcTi
+ jωcTd

∣∣∣∣
1

Kpc
= 1

Donc :

Kp

∣∣∣∣1 +
1

jωcTi
+ jωcTd

∣∣∣∣ = Kp

∣∣∣∣1 + j
(

ωcTd −
1

ωcTi

)∣∣∣∣ = Kpc

En tirant profit de (12.7) :

Kp |1 + j tg Ψ | = Kpc
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D’où :

Kp

√
1 + tg2 Ψ = Kpc

Par conséquent :

Kp = Kpc cosΨ (12.10)

L’auto-ajustement d’un régulateur PID avec marge de phase imposée est
conduit de la façon suivante. Un régulateur tout-ou-rien est d’abord monté en
boucle fermée (fig. 12.16). L’amplitude ac de l’oscillation est mesurée, de même
que sa période Tc ; les nombres Kpc (égalité (12.6)) et ωc = 2π/Tc sont calcu-
lés. La marge de phase Ψ étant spécifiée, le régulateur PID analogique est ensuite
dimensionné à l’aide des relations (12.9), (12.8) et (12.10), puis numérisé et finale-
ment implanté à la place du régulateur tout-ou-rien.

Seule une certaine marge de phase est garantie dans cette approche. La marge
de gain peut être trop faible. Plutôt que de déplacer, à l’aide de K( jω), l’intersec-
tion de G( jω) avec l’axe réel sur le point e j(−π+Ψ), il est plus judicieux d’opérer
un mouvement vers un point combinant des marges de phase et de gain. L’expé-
rience montre que le point 0,5 e− j 3π

4 est dans ce contexte un excellent compromis.
Les égalités fixant le régulateur PID analogique deviennent :

Td =
1 +
√

2
2ωc

Ti = 4 Td

Kp = 0,5 Kpc cos
π

4

A la place d’un transfert de G( jωc) sur le point e j(−π+Ψ), il est parfois pré-
férable de déplacer G( jωb), où ωb est la pulsation de coupure en boucle fermée
incluse dans les spécifications, sur ce point, avec Ψ proche de 90◦. La boucle ana-
logique est ainsi, dans une large mesure, calibrée selon les indications de l’annexe
II (§ II.4.3). La détermination de G( jωb) n’est pas effectuée à l’aide d’un élément
tout-ou-rien, mais via un simple essai harmonique à la pulsation ωb.

EXEMPLE 12.3
La cuve de mélange de l’exemple 12.2 est à nouveau considérée. La réponse en

boucle fermée avec un régulateur tout-ou-rien a donné Kpc = 29 et ωc = 2π/12 ;
d’où le régulateur PID analogique :

K(s) = 10,25
(

1 +
1

9,2 s
+ 2,3 s

)
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Après numérisation, avec h = 1 s :

K ′(z) = 10,25
(

1 +
0,11 z

z − 1
+ 2,3

z − 1
z

)

La réponse indicielle du système en boucle fermée est reportée dans la figure
12.23. !

y(t) [ ◦ C]

1,4

1,2

yc = 1

0,8

0,6

0,4

0,2

20 40 60 80 100

t [s]

Fig. 12.23 Réponse indicielle en boucle fermée d’une cuve de mélange dans le cas d’un
régulateur PID auto-ajusté par imposition de marges de gain et de phase.

Une hystérésis ε est maintenant introduite dans le régulateur tout-ou-rien
(fig. 12.24).

e u

u

e
ε

−ε

d

−d

Fig. 12.24 Régulateur tout-ou-rien avec hystérésis.
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Comme cela est rappelé dans l’annexe II, le lieu critique devient une demi-
droite d’ordonnée négative −πε

4d (fig. 12.25) :

− 1
N(a)

= − π

4d

√
a2 − ε2 − j

πε

4d

Im

−
πε

4d
−

1

N(a)

Re

Fig. 12.25 Lieu critique pour un élément tout-ou-rien avec hystérésis.

Il est dès lors possible d’identifier l’intersection de G( jω) avec cette demi-
droite, ce qui se révèle utile quand la courbe G( jω) ne coupe pas l’axe réel négatif.
L’ordonnée de la demi-droite est modifiée en variant l’hystérésis.

Dans le but de synthétiser un régulateur K( jω) par calibrage de la boucle
(§ II.4.3), plusieurs valeurs de G( jω) peuvent être mesurées harmoniquement au-
tour de la pulsation de coupure en boucle fermée ωb spécifiée. Les paramètres de
K( jω) sont ensuite déterminés de manière à déplacer au mieux les valeurs identi-
fiées de G( jω) sur un profil désiré pour la fonction de transfert en boucle ouverte
K( jω)G( jω). Un exemple de profil très simple est ωb/s. Il importe ici de tirer
bénéfice de la forme parallèle du régulateur PID afin que les paramètres incon-
nus apparaissent linéairement (§ 1.7.4). Leur évaluation peut être effectuée par la
méthode de Levy (ex. 11.4), réalisant une optimisation par moindres carrés. Cette
philosophie ne se restreint pas au régulateur PID parallèle ; elle peut être mise à
profit pour n’importe régulateur décrit par une fonction de transfert rationnelle,
qui plus est analogique ou discrète. De surcroît, il est possible de montrer que
des contraintes linéaires liées à la robustesse de la stabilité et des performances
peuvent être imposées. Il en résulte un problème d’optimisation convexe ; un al-
gorithme d’optimisation quadratique se révèle particulièrement bien adapté pour
en trouver la solution.

Nous avons relevé dans l’exemple 12.2 une certaine imprécision dans le calcul
de Kpc et de Tc (ou ωc), imprécision due à la nature approximative de la méthode
du premier harmonique. La dégradation des résultats est d’autant plus marquée
que le processus à commander n’agit pas comme un filtre passe-bas efficace. Il est
certes possible d’examiner plus finement la sortie de l’élément tout-ou-rien par
extraction de sa composante fondamentale. L’approche de l’exemple 11.2 ou une
analyse de Fourier se révèlent intéressantes dans ce contexte. On propose mainte-
nant une alternative particulièrement efficace, parce que produisant intrinsèque-
ment moins d’harmoniques qu’un dispositif tout-ou-rien.



162 Auto-ajustement du régulateur

Comme cela est illustré dans la figure 12.26, un élément non linéaire de type
saturation (§ 8.3.5), complété par une boucle adaptant le gain de la partie linéaire
de cette saturation, remplace le régulateur tout-ou-rien de la figure 12.16.

ε
+ −

a

K̇p(t)

1

s

Kp(t)

+ −

Yc(s) = 0

+ − E(s)

u

1

−1 1
−1

e

U(s)

G(s)
Y (s)

Fig. 12.26 Schéma fonctionnel pour la détermination du gain et de la pulsation critique.

Dans cette figure, le bloc | · | fournit une sortie égale à la valeur absolue de
l’entrée tandis que l’élément × délivre le produit de ses entrées. Par ailleurs, ε
et a sont des constantes positives, avec ε ≪ a ; Kp(t) est un gain variable dans le
temps assujetti à l’équation :

K̇p(t) = −a
∣∣e(t)− u(t)

∣∣+ ε (12.11)

Si ε = 0, alors limt→∞ Kp(t) ∈ [ 0 , Kpc ] quelle que soit la condition initiale
de l’intégrateur 1/s. En effet, supposons pour commencer que Kp(0) ∈ [ 0 , Kpc ].
Quand la saturation est inactive, les signaux e(t) et u(t) sont égaux et K̇p(t)
= 0, de sorte que Kp(t) = Kp(0) ∈ [ 0 , Kpc ], t ≥ 0. Si la saturation est activée

dans certains intervalles de temps,
∣∣e(t) − u(t)

∣∣ est positif dans ces intervalles et
K̇p(t) = −a

∣∣e(t) − u(t)
∣∣ < 0 : Kp(t) devient plus petit que Kp(0). Le gain di-

minuant, l’amplitude de e(t) se réduit et la saturation n’est plus activée lorsque
Kp(t) est suffisamment affaibli. Cela implique que Kp(t) cesse de décroître avant
de devenir négatif. On en conclut que limt→∞ Kp(t) ∈ [ 0 , Kpc ].
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Considérons maintenant la situation où Kp(0) > Kpc. Le système bouclé
est donc instable et la saturation est inéluctablement activée après un certain
temps. Par conséquent, K̇p(t) < 0 dans certains intervalles et K̇p(t) = 0 dans
d’autres. Quoiqu’il en soit, Kp(t) décroît tant que Kp(t) > Kpc ; après un temps
fini, Kp(t) ∈ [ 0 , Kpc ] et on se trouve dans la situation décrite dans les lignes
ci-dessus ; au final, limt→∞ Kp(t) ∈ [ 0 , Kpc ].

Admettons ensuite que ε > 0. Quand la saturation est inactive, K̇p(t) = ε si
bien que Kp(t) = Kp(0)+εt et Kp(t) devient plus grand que Kpc en un temps fini.
La saturation est ainsi inévitable. Alors K̇p(t) = −a

∣∣e(t) − u(t)
∣∣ + ε et, puisque

ε ≪ a, K̇p(t) devient négatif. Le gain diminue jusqu’à ce que K̇p(t) = −a
∣∣e(t) −

u(t)
∣∣+ε = 0 ou

∣∣e(t)−u(t)
∣∣ = ε/a. Comme ε≪ a, la saturation est pratiquement

désactivée et le cycle recommence.

Donc le gain Kp(t) diminue quand la saturation est active et, dans le cas
contraire, croît avec un taux égal à ε. Vu que ε ≪ a, un retour de Kp(t) dans
l’intervalle ] Kpc , ∞ [ prend plus de temps qu’un passage à Kp(t) ∈ [ 0 , Kpc ]. En
régime d’oscillation stationnaire, Kp(t) fluctue dans un voisinnage de Kpc avec
une amplitude d’autant plus faible que ε est petit vis-à-vis de a. La saturation
n’est que marginalement activée : la production d’harmoniques est minime, amé-
liorant substantiellement, par rapport à l’utilisation d’un élément tout-ou-rien, la
précision des résultats.

EXEMPLE 12.4
Dans le contexte des exemples 12.2 et 12.3, on remplace le régulateur tout-ou-

rien par l’arrangement de la figure 12.26, avec ε = 0,005, a = 0,5 et Kp(0) = 100 ;

Kp(t)

100

80

60

40

20

20 40 60 80 100

t [s]

Fig. 12.27 Signaux Kp(t), e(t), u(t) et y(t) dans le cas d’une cuve de mélange équipée du
montage de la figure 12.26 avec ε = 0,005, a = 0,5 et Kp(0) = 100.
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Fig. 12.27 (Suite et fin.)

plutôt que pour e ∈ [−1 , 1 ] et u ∈ [−1 , 1 ], l’élément saturation est linéaire pour
e ∈ [−10 , 10 ] et u ∈ [−10 , 10 ], ceci afin de générer des signaux d’amplitudes
suffisantes. La figure 12.27 montre l’évolution temporelle de Kp(t), de e(t) et u(t),
ainsi que de y(t). En régime d’oscillation stationnaire, le gain Kp(t) fluctue dans
l’intervalle [ 35,54 , 35,59 ] alors que Kpc = 35,55 (ex. 12.2) ; par ailleurs, la sa-
turation n’est pratiquement pas activée et la période des oscillations mesurée sur
la sortie y(t), laquelle n’exhibe presque pas d’harmoniques, est égale à la valeur
théorique calculée dans l’exemple 12.2. !

En mode saturation, une décroissance plus rapide de Kp(t) est obtenue en
remplaçant (12.11) par :

K̇p(t) = −a
(
e(t)− u(t)

)2 + ε
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12.4 Régulateur à gains programmés

Il arrive parfois qu’une ou plusieurs variables auxiliaires présentant une cor-
rélation marquée avec les conditions de fonctionnement du système en boucle
fermée soient disponibles. Dans une telle situation, dimensionnons et stockons
hors-ligne plusieurs régulateurs, chaque régulateur étant associé à des conditions
de fonctionnement bien distinctes. Après, en temps réel, selon ces régions saisies
par les variables auxiliaires, les paramètres du régulateur sont sélectionnés parmi
les valeurs fixes mémorisées, puis commutés d’un jeu à un autre. Les changements
des conditions de fonctionnement ont, en comparaison avec un régulateur dont
les paramètres sont figés une fois pour toutes, des séquelles fortement atténuées.
Une telle philosophie est appelée commande à gains programmés ou, en anglais,
gain scheduling. Elle est décrite dans la figure 12.28 et s’applique à des régula-
teurs quelconques, par exemple de type PID ou RST. Un soin particulier doit être
consenti lors d’une transition ; une interpolation des paramètres du régulateur se
révèle souvent nécessaire. La stabilité du montage ne peut pas toujours être ga-
rantie, même si elle est assurée indépendamment avec chaque régulateur.

Paramètres du
régulateur

Conditions de
fonctionnement

Sélection des
paramètres

Yc(z)
Régulateur

U(z) Y (z)
D-A G(s) A-D

Fig. 12.28 Régulateur à gain programmés ; G(s) dénote la fonction de transfert du pro-
cessus à commander.

EXEMPLE 12.5
Soit une bobine de papier ou autre matériau flexible qui alimente une ma-

chine imprimant et confectionnant des emballages. Un régulateur de la tension
du papier est nécessaire afin d’éviter sa rupture. L’inertie de la bobine varie consi-
dérablement suivant son état de déroulement. Il est dès lors naturel d’adopter
un régulateur à gains programmés : des régulateurs sont dimensionnés hors ligne
pour divers états, par exemple bobine 100 % pleine, 75 % pleine, 50 % pleine, 25 %
pleine. En temps réel, connaissant l’état de déroulement, un jeu de paramètres du
régulateur est choisi dans la table stockée, puis modifié lors du passage d’un état à
un autre. Les effets des variations d’inertie sont de la sorte pratiquement gommés.

!
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Comme cela a été mentionné à la fin du paragraphe 10.3.5, le polynôme T (z)
d’un régulateur RST requiert normalement une adaptation lors d’un changement
du type de consigne : il s’agit de programmer certains paramètres du régulateur
en fonction de la consigne. Par ailleurs, signalons ici que les régulateurs à gains
programmés sont abondamment exploités dans le domaine aéronautique où les
modèles aérodynamiques varient grandement avec le nombre de Mach ou la pres-
sion dynamique (dépendant de la vitesse et de la densité de l’air), lesquelles se
révèlent être des variables auxiliaires de premier choix.

Une controverse existe quant à l’appartenance ou non d’une commande à
gains programmés à la famille adaptative ; en effet, le mécanisme d’ajustement
s’effectue en boucle ouverte puisqu’il n’existe aucune rétroaction directe compen-
sant un choix erroné des paramètres du régulateur.

La mise à jour du régulateur est très rapide car ses paramètres sont fixés avant
le démarrage. Toutefois, le volume de calcul à traiter hors-ligne est important : il
s’agit de dimensionner une banque de régulateurs. Une touche d’auto-ajustement
peut être activée pour les diverses conditions de fonctionnement et constitue dans
ce contexte une aide très précieuse.

12.5 Problèmes

12.5.1 Développer un schéma de commande adaptative direct avec un régulateur
RST incorporant un intégrateur de type ℓ.

12.5.2 Soit la cuve de mélange modélisée par la fonction de transfert :

G(s) = e−3s 0,015
s + 0,015

Après avoir calculé sa réponse indicielle, synthétiser des régulateurs P, PI et PID
analogiques par la première méthode de Ziegler-Nichols. Numériser ensuite ces
résultats, avec une période d’échantillonnage h = 1 s. A l’aide d’un logiciel de
simulation, évaluer les réponses indicielles en boucle fermée avec les régulateurs
numériques ainsi obtenus.

12.5.3 Soit un régulateur RST incorporé dans un schéma adaptif direct. L’équa-
tion (12.2) fournit le système à commander paramétrisé avec les polynômes Am(z),
A0(z), B−(z), S(z) et R(z) :

Y (z)
U(z)

=
B−(z)R(z)

Am(z)A0(z)−B−(z)S(z)

Ou :

Am(z)A0(z)Y (z) = B−(z)R(z)U(z) + B−(z)S(z)Y (z)

Quand B−(z) est une fonction de z distincte de la constante b0, pourquoi n’est-
il pas possible d’identifier les polynômes B−(z)R(z) et B−(z)S(z), qui appa-
raissent pourtant linéairement dans cette équation ?



Commande adaptative 167

12.5.4 Soient le processus à commander échantillonné et le régulateur PID nu-
mérique non filtré :

H(z) =
b0z

z2 + a1z + a2

K(z) = Kp

⎛

⎜⎜⎝1 +

h

Ti
z

z − 1
+ Td

z − 1
z

⎞

⎟⎟⎠

Ecrire ce régulateur sous la forme :

K(z) =
s0z2 + s1z + s2

z(z − 1)

Dimensionner les paramètres s0, s1 et s2, puis Kp, Ti et Td du régulateur en im-
posant que les pôles du système en boucle fermée soient les zéros du polynôme
donné z(z2 + c1z + c2). En déduire une méthode d’auto-ajustement du régulateur
PID, puis imaginer un schéma de commande adaptative indirect incorporant un
régulateur PID.

12.5.5 Dans l’exemple 12.2, démontrer que l’auto-oscillation provoquée par un
régulateur tout-ou-rien est stable.

12.5.6 Dans l’exemple 12.2, calculer le gain et la période critique intervenant
dans la seconde méthode de Ziegler-Nichols.

12.5.7 Utiliser les équations (12.9), (12.8) et (12.10) pour synthétiser un régu-
lateur PID analogique pour l’exemple 12.2. Après numérisation, et à l’aide d’un
logiciel de simulation et de conception, déterminer la réponse indicielle en boucle
fermée. Expliquer le mauvais comportement obtenu en calculant la marge de gain.

12.5.8 De la même manière que dans la section 12.3, développer une méthode
d’auto-ajustement d’un régulateur proportionnel dérivé numérique par imposi-
tion de marges. Est-il possible de mettre à profit cette approche pour auto-ajuster
un régulateur proportionnel intégral ?

12.5.9 A l’aide d’un logiciel de simulation et de conception, calculer dans l’exem-
ple 12.3 les marges de gain et de phase.

12.5.10 En s’inspirant de l’approche de la section 12.3, développer une méthode
d’auto-ajustement d’un régulateur proportionnel garantissant une marge de gain.
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12.5.11 La commande tout-ou-rien d’un processus a fourni la sortie reportée
dans la figure 12.29.

y(t)

0,2

0,1

−0,1

−0,2

2 4 6 8 10

t [s]

Fig. 12.29 Réponse en boucle fermée avec un régulateur tout-ou-rien.

L’amplitude du régulateur tout-ou-rien est égale à d = 0,5. Dimensionner un
régulateur PID fondé sur la seconde méthode de Ziegler-Nichols. Dimensionner
ensuite un régulateur PID garantissant une marge de phase valant Ψ = 45◦.

12.5.12 Soit le système décrit par le schéma fonctionnel de la figure 12.30.

0
+

−

d

−d

+

−

K(s) G(s)

Fig. 12.30 Montage permettant d’estimer la marge de gain.

Démontrer que ce montage permet d’estimer la marge de gain du système
dont la fonction de transfert en boucle ouverte est K(s)G(s).
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12.5.13 Soit le système décrit par le schéma fonctionnel de la figure 12.31.

0
+

−

1

s

d

−d

+

−
K(s) G(s)

−

+
2

Fig. 12.31 Montage permettant d’estimer la marge de phase.

Prouver que le schéma fonctionnel de la figure 12.31 est équivalent à celui de
la figure 12.32.

0
+

−

d

−d

1

s
·

K(s)G(s) − 1

K(s)G(s) + 1

Fig. 12.32 Schéma fonctionnel équivalent à celui de la figure 12.31.

En mettant à profit ce schéma fonctionnel réduit, démontrer qu’il est possible
d’estimer la marge de phase du système dont la fonction de transfert en boucle
ouverte est K(s)G(s).

12.5.14 La fonction de transfert harmonique G( jω) d’un processus est mesurée
pour ω = ωb. Déterminer les paramètres Kp, Ti et Td d’un régulateur PID ga-
rantissant une marge de phase Ψ spécifiée. On imposera Ti = 4Td. Décrire une
procédure d’auto-ajustement d’un régulateur PID mettant à profit ces résultats.
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