CHAPITRE 10

Régulateur RST

OBJECTIFS

o Définir le régulateur a deux degrés de liberté RST.
* Développer une méthode de synthése algébrique du régulateur RST.
* Offrir quelques commentaires sur les effets d’un intégrateur et
les amplitudes de la grandeur de commande.
* Présenter des variantes du régulateur RST.

10.1 Introduction

Ce chapitre est entierement dévolu au régulateur RST, nom provenant des
trois polyndémes qu’il fait intervenir. Sa syntheése est a classer dans les filiéres 4 et
6 de la figure 8.1.

Les régulateurs numériques standard examinés tout au long des chapitres pré-
cédents peuvent dans une certaine mesure €tre considérés comme des traductions
discrétes de fonctions relativement rudimentaires d’essence analogique. L'im-
mense potentiel numérique offert par une commande par ordinateur est de la sorte
peu valorisé. Le régulateur RST, quant a lui, est un algorithme plus sophistiqué ti-
rant bénéfice des ressources numériques disponibles. Cette sophistication permet
d’imposer, en plus des poles en boucle fermée, certains zéros en boucle fermée.
Le second degré de liberté ainsi introduit autorise la poursuite, sans écart per-
manent, de consignes pratiquement quelconques. De surcroit, les poles en boucle
fermée peuvent tous étre positionnés n’importe ou dans le cercle unité. Une solu-
tion unique et a degré minimal existe ; elle s’obtient en suivant une voie algébrique
transparente et rigoureuse, évitant ’aspect itératif et quelque peu empirique des
approches traditionnelles ; ceci est particuliérement attractif quand plusieurs cor-
rections de nature avance-retard de phase seraient nécessaires pour tenter de sa-
tisfaire de sévéres spécifications. Le concept de commande a priori, incluant un
filtre adoucissant le signal de consigne, devient limpide dans la structure RST.
Finalement, certaines contraintes inhérentes a ’architecture classique peuvent
étre assouplies.

Le régulateur RST est défini dans la section 10.2. Une méthode de synthese
du régulateur RST est détaillée dans la section 10.3. Les fondements sont tout
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d’abord posés dans le paragraphe 10.3.1. L'imposition d’un modé¢le a poursuivre
est ensuite explorée dans le paragraphe 10.3.2 avant de passer, dans le paragraphe
10.3.3, a I’équation diophantine permettant un dimensionnement systématique
du régulateur. Les conditions d’existence et d’unicité d’une solution réalisable a
degré minimal sont regroupées dans le paragraphe 10.3.4. Le paragraphe 10.3.5
fournit d’utiles renseignements sur le choix du modéle a poursuivre. Plusieurs
algorithmes de synthése sont détaillés dans le paragraphe 10.3.6 et illustrés par
des exemples. La section 10.4 offre quelques compléments d’information sur I'in-
fluence d’un intégrateur (§ 10.4.1) et sur les amplitudes de la grandeur de com-
mande (§ 10.4.2). D’intéressantes variantes du régulateur RST sont proposées
dans la section 10.5 : mise en évidence de la commande a priori (§ 10.5.1), simpli-
fication de poles et de zéros (§ 10.5.2), poursuite et régulation a objectifs différents
(§ 10.5.3) et enfin synthése par calibrage fréquentiel (§ 10.5.4).

10.2 Définitions

Reprenons I’architecture classique d un systéme automatique en poursuite, tel
que représenté dans la figure 5.13 et répété dans la figure 10.1 par commodité.

4 E(z) U(z) Y(z)
Ye(2) K(z) H(z)

Fig. 10.1 Schéma fonctionnel du montage en asservissement avec un régulateur classique.

Y.(2), U(z) et Y(z) dénotent les grandeurs de consigne, de commande et a
commander, respectivement ; K (z) est la fonction de transfert du régulateur, de
type PID par exemple; H(z) désigne la fonction de transfert échantillonnée du
processus & commander, donnée par la formule H(z) = (1—2~ ") Z{L"1(G(s)/s)},
ou G(s) est la fonction de transfert analogique du systéme que I'on désire com-
mander ; K (z) est une fonction rationnelle propre :

S(z)
R(2)

Les polyndmes R(z) et S(z) possedent des degrés adéquats; H (=) est une fonction
rationnelle strictement propre (§ 5.2.1) :

K(z)=

Comme toujours, A(z) est monique ; nous supposons finalement que A(z) et B(z)
n’ont aucun facteur commun (autre que numérique). L’algorithme de commande
est décrit par I’équation polynomiale :

R(2)U(z) = S(2)Ye(2) — S(2)Y (2) (10.1)
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Et la fonction de transfert en boucle fermée est fournie par :

Y(z) B(2)S(z)
Y.(z)  A(2)R(z) + B(2)S() (10.2)

Le régulateur RST généralise cette structure classique ; a la place du seul po-
lynéme S(z) apparaissant en facteur dans les deux termes constituant le membre
de droite de I’égalité (10.1), on introduit deux polynémes S(z) et T'(z) distincts :

R(2)U(z) = T(2)Ye(2) — S(2)Y (2) (10.3)

Il n’y a donc plus de comparaison directe entre Y.(z) et Y (z), générant I’écart
E(z) = Y.(2) — Y(2); le schéma fonctionnel de la figure 10.1 est remplacé par
celui de la figure 10.2.

U(z) Y (2)
RST H(z)

Ye(z) ———

B

Fig. 10.2 Schéma fonctionnel du montage en asservissement avec un régulateur RST.

L’équation (10.3) du régulateur RST s’écrit :

T(2)

Ulz) = RG) Ye(z) —

S(z)
R(2)

Y (z) (10.4)

L'égalité Y (2) = H(2)U(z) implique :

V() = HE) (R0 - 53 V()

Il en découle, aprés avoir remplacé H(z) par B(z)/A(z), la fonction de transfert
en boucle fermée :

Y(z) B(2)T'(2)

Yo(z)  A(2)R(2) + B(2)S(2)

(10.5)

Une comparaison entre (10.2) et (10.5) fait ressortir une différence cruciale :
au numérateur de (10.2) apparait S(z), polynome également mis en jeu dans le
dénominateur de cette expression; par contre, le numérateur de la fonction de
transfert (10.5) contient le polynéme 7'(z) qui est absent de son dénominateur.
Les polyndmes R(z) et S(z) aux dénominateurs de (10.2) et (10.5) sont souvent
ajustés afin de positionner les pdles en boucle fermée (sect. 9.7). Dans I'architec-
ture classique, les zéros en boucle fermée sont dés lors fixés, puisqu’égaux aux
zéros de B(z) (zéros du processus a commander) et de S(z). Par contre, dans une
commande RST, il est possible de placer des zéros en boucle fermée au moyen du
polynome additionnel T'(z). Un degré de liberté supplémentaire est de la sorte in-
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troduit. L’imposition de zéros en boucle fermée se révéle particulierement attractif
pour les asservissements a hautes performances, comme cela sera démontré dans
le paragraphe 10.3.5. Le régulateur RST est dit a deux degrés de liberté pour re-
fléter ce potentiel étendu.

L’appellation ci-dessus se justifie aussi par le fait, résultant de (10.4) et illustré
dans la figure 10.3, que la consigne Y.(z) et la rétroaction de la grandeur a com-
mander Y (z) sont filtrées par deux fonctions de transfert 7'(z) / R(z) et S(z)/ R(z)
distinctes.

T(2) +
R(z)

Ye(z) ———

S(z)
R(z)

Fig. 10.3 Régulateur RST sous la forme d’un schéma fonctionnel dit a trois branches.

Dans la structure classique, la somme des fonction de sensibilité S(z) et de
sensibilité complémentaire 7 (z) sont liées par :

_ 1 K(z)H(z)
SE+TE) = T roER T 1T EOHE) (10.6)

Cette contrainte algébrique impose de séveres restrictions évoquées entre autres
dans la section 9.6 ; par exemple, il n’est pas possible d’exiger simultanément de
bonnes performances (module de S(e“") petit) et de rejeter des bruits de mesure
(module de 7 (eJ“") petit). Dans une commande RST, les écarts permanents d’as-
servissement ne s’évaluent plus via la fonction de sensibilité, si bien que certaines
limitations imposées par ’égalité (10.6) peuvent étre assouplies. Une fois encore, il
s’agit d’une conséquence du degré de liberté additionnel intrinséque au régulateur
RST.

Le polynome R(z) est monique de degré R :
R(Z) _ Z(SR _,_leéRfl + -+ rsR
Dénotons 65 le degré du polyndéme S(z) :

S(z) = 502% + 5,2°571

+ o+ 858
Et soit 07 le degré du polynéme T'(z) :
T(Z) = toZéT + tlzéT_l + -+t

La causalité de la fonction de transfert 7'(z)/R(z) liant Y.(z) a U(z) requiert
un surplus de poles R — 67" > 0; et la causalité de la fonction de transfert
—S(z)/R(z) entre Y (z) et U(z) exige R — S > 0. Dans le but d’utiliser sans
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retard la consigne, comme dans la section 5.3 (implantation standard), on sélec-
tionne souvent R = d71'; de méme, 6 R = §.S pour employer au plus vite la gran-
deur a commander ; ceci n’est réalisable que si le temps de calcul et de conversion
est négligeable vis-a-vis de la période d’échantillonnage. Alors :

OR=0S=6T (10.7)
Dans ce cas, (10.4) devient :
U(z) toz‘SR + tlz‘SR_l + -+ tsr Y.(2) soz‘sR + slz‘sR_l + -+ SsR Y(2)
z) = zZ)— z
2R 0BT 4 g © R 4 20R-1 4o g

En puissances négatives de z et aprés avoir multiplié les deux membres de cette
égalité par R(z) :

Tyt 7‘532_6R)U(z) = (to +tiz taRZ_éR)Yc(Z)

— (so +s127 4 F Sng_‘SR)Y(z)

(1 +riz-
Dans le domaine temporel, en introduisant I'opérateur retard ¢~ " :
(1 +rig et T‘équaR)U(k) = (to it A+ taquéR)yc(k)
— (so+ 517+ + ssrg )y (k)

D’ou, finalement :

u(k) = —riu(k—1) —--- —rspu(k — 0R)
+ toyc(k) + tlyc(k - 1) +-+ t&Ryc(k - 5R)
—soy(k) —s1y(k —1) — -+ — ssry(k — dR)

Le code réalisant le régulateur RST se fonde directement sur cette équation. Une
faute a éviter est d’implanter le régulateur directement selon la formule (10.4),
en calculant puis en soustrayant les signaux ggzg Y.(z) et ;Ez % Y (z), comme cela
apparait dans la figure 10.3. En effet, les fonctions de transfert 7'(z)/R(z) et
S(z)/R(z) ne jouissent pas forcément de la propriété de stabilité BIBO. Le lec-
teur est renvoyé a la section 5.3 pour de plus amples informations ayant trait a la
réalisation d’un régulateur.

Quand le temps de calcul et de conversion est égal a la période d’échantillon-
nage h, ou encore lorsqu’il est souhaitable que le retard découlant de I’exécution
de 'algorithme et des conversions soit fixe (et égal a ), un surplus de poles valant
1 est délibérément placé dans les fonctions de transfert liant Y.(z) a U(z) et Y (2)
a U(z); par conséquent, il faut remplacer (10.7) par :

R—1=465=0T
L’équation (10.4) s’écrit alors :
L C e R 2)
Z&R + T'lZ‘SR*l + - +75R

50201 4 g1 20R~2 4 4 gon |
2R 4 20B-1 oo forsp

U(z) =

Ye(z)

Y(2)
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o tortiz 4t tsp—12 OFT!
 z4ry e b rsredBTL

Ye(2)

S04 8127 4+ s5p_qz 0L

Z4 7+ rapz R

Y (2)

Dans le domaine temporel :

(q+71 4+ +rsrg T u(k) = (to +tig™" + -+ tsr—10 " F ) ye(k)
- (So +s1g7 o+ 36R—1Q_6R+1)y(k)

Finalement :
u(k+1) = —riu(k) — - —rspu(k —0R+1)
+toye(k) + t1ye(k — 1) + - - - + tsp—1Ye(k — R+ 1)
—soy(k) —s1y(k —1) — - —ssr_1y(k — R+ 1)

La encore, le code du régulateur RST se base sur cette égalité.

Considérons maintenant le montage en régulation, dans lequel la consigne
yc(k) est nulle tandis qu’une perturbation analogique w(t) agit de maniére addi-
tive en amont du processus a commander (fig. 10.4).

W (s)

U(z) + Y (2)
RST b—={ D-A | G(s) A-D

T

Ye(2)

Fig. 10.4 Schéma fonctionnel du montage en régulation avec un régulateur RST.

Les transformations successives effectu¢es dans le paragraphe 5.4.2 et résu-
mées dans les figures 5.17 a 5.20 ne mettent pas en jeu I'algorithme de commande
et sont donc toujours valides ; elles conduisent a la figure 10.5.

Z{LTHGEHW ()}

U(z) + Y(2)

Ye(2) RST - H(2)

T

Fig. 10.5 Schéma fonctionnel du montage en régulation avec un régulateur RST, aprés
calcul de H(z).
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On en déduit I'influence de la perturbation sur la grandeur a commander :

V() = 2 EOW )} + HE) (35 Y6)

D’ou, en posant K (z) = S(2)/R(2) :

z{c—l(G(s)W(s))}

Y& = i rkmEe

Cette formule est identique a (5.13). Ainsi, en régulation, I'algorithme RST se
comporte comme I’architecture classique. Les résultats du paragraphe 5.4.2 de-
meurent valables, de méme que ceux du paragraphe 7.6.2 et de la fin de la section
7.7 relatifs aux écarts permanents. Le principe du modéle interne s’applique en-
core en régulation RST. Soulignons la nécessité, pour rejeter parfaitement des
perturbations, de ¢ effets intégrateurs, obtenus en posant dans tous les développe-
ments précédents et a venir :

R(z) = (z = 1)*R/(2)

Le polyndme R(z) inclut le facteur préspécifié (2 — 1)¢; R(z) étant monique, il
en est de méme pour R/(z). La fonction de transfert K (z) = S(z)/R(z) s’écrit
alors :

___5()
B E)

Et la fonction de transfert 7'(z)/R(z) devient :

T(2)
GoDRG)

Les conditions de causalité imposent maintenant 6R’ + ¢ — 55 > 0 et 6 R’ +
¢ — 8T > 0. Ces intégrateurs se rencontrent parfois sous le nom de compensateur
de perturbation; { est son type ou sa classe.

Dans un cadre plus général, la partie fixée Pr(z) du polyndme R(z), pas for-
cément égale a (z — 1)%, doit avoir pour zéros les poles de la perturbation afin
d’étre cohérent avec le principe du modele interne ; R(z) est dans ce cas contraint
a exhiber la structure suivante :

R(z) = Pr(2)R'(2)
Le polyndme Pr(z) dépend bien slir de la pertubation a rejeter. Les atouts de

parties préspécifiées dans les polyndmes R(z) et S(z) seront discutés dans le pa-
ragraphe 10.5.4.
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10.3 Synthése algébrique du régulateur RST

10.3.1 Principe de la synthése

La fonction de transfert du montage en asservissement est :

Y(z) B(z)T(z)

Yo(2) — A(2)R(z) + B(2)S(2)

Les polyndémes R(z), S(z) et T'(z) du régulateur RST vont étre dimensionnés afin
que cette fonction de transfert en boucle fermée soit égale a la fonction de trans-
fert H,,(z) d’un modéle a poursuivre, ou modéle de référence, donné par I'utilisa-
teur :

H,,(z) est une fonction rationnelle strictement propre; en outre, le polyndme
A, (z) est monique et ses zéros sont tous a l'intérieur du cercle unité. Des in-
dications sur un choix correct de H,,(z) seront offertes au fil des pages suivantes.
La figure 10.6 illustre cette philosophie, qui n’est pas sans rappeler celle du para-
graphe 1.7.6.

U(z) Y(2)
RST = H(z)

Ye(z) ——

Ye(2) ——" Hp(2) [—= Y(2)

Fig. 10.6 Principe de la synthése algébrique du régulateur RST.

Lors de la synthése dans le lieu des poles dun régulateur classique, examinée
dans la section 9.7, les poles du systéme en boucle fermée sont positionnés dans
des endroits permettant de satisfaire des spécifications sur I'amortissement du ré-
gime transitoire. De par la simplicité de la structure classique, ce positionnement
est limité a certaines régions du plan complexe et les spécifications ne peuvent pas
toujours étre vérifiées. L’approche est itérative et semée d’embiiches ; son aspect
empirique la rend impossible a transcrire sous une forme algébrique. Le dimen-
sionnement du régulateur RST qui va étre présenté généralise considérablement
la synthése dans le lieu des poles. On désire toujours placer les poles du systéme
en boucle fermée dans le but de maitriser le régime transitoire. Toutefois, il est
possible de distribuer ces poles arbitrairement dans le cercle unité. De surcroit,
le degré de A,,(z) n’est pas forcément égal a celui du polyndme caractéristique
en boucle fermée A(z)R(z) + B(z)S(z); en fait, un modele a poursuivre simple,
avec un polynéme A,,(z) de degré inférieur a celui de A(z)R(z) + B(2)S(z), peut
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étre sélectionné. Vu que le régulateur RST est a deux degrés de liberté (sect. 10.2),
les zéros en boucle fermée peuvent aussi, du moins dans une certaine mesure, étre
positionnés a volonté dans le plan complexe. Plutot que d’une synthése par place-
ment des poles, il s’agit véritablement d’une synthese par imposition d’un modele
complet, incluant les poles ez des zéros. Finalement, la synthése du régulateur
RST est d’essence algébrique et se préte admirablement a étre codée ; elle peut
entre autres étre mise en ceuvre dans un schéma de commande adaptative, comme
nous le verrons dans le chapitre 12.

Les spécifications courantes sont toujours celles passées en revue dans les sec-
tions 9.2 a 9.6. Elles sont rappelées ci-dessous.

Il résulte du principe méme de la syntheése du régulateur RST que, en asser-
vissement, I'amortissement du régime transitoire dépend étroitement des poles du
modele a poursuivre H,,(z) = Bpn(2)/Amn(z). Afin de satisfaire des conditions
absolue et relative d’amortissement, les zéros du polynéme A,,, (z) appartiendront
donc a une région telle que celle en tramé dans la figure 9.7.

En ce qui concerne les performances en régime permanent, le modéle a pour-
suivre H,,(z) doit étre choisi de telle sorte que la différence y.(k) — y(k) entre son
entrée y.(k) et sa sortie y(k) tende vers ’écart permanent d’asservissement spé-
cifié. En effet, comme la synthése provoque I'égalité H,,(z) = %,
toute différence limy—oo (yc(k) — y(k)) au niveau de H,(z) se répercute sur le
systéme en boucle fermée comme €cart permanent. Ceci est méme vrai en pré-
sence d’un intégrateur, obtenu en posant dans les lignes précédentes R(z) = (z —
1)*R/(z). Par contre, un écart permanent de régulation s’élimine en insérant un
intégrateur (sect. 10.2).

ExempLE 10.1
Les spécifications ne tolérent aucun statisme d’asservissement ; la transformée

en z de la consigne, en forme de saut unité, vaut =5 et il faut que :

0= lim (ye(k) — y(k)) = lim(= — 1)(Va(2) ~ ¥(2))

z—1
. z
= lerll(z — 1)(1 — Hm(z)) por
D’ou:
H,(1)=1

Il existe un statisme d’asservissement si cette égalité n’est pas respectée, méme
en présence d’un intégrateur puisque la synthése astreint H,,(z) a la fonction de
transfert en boucle fermée. |

La fonction de transfert harmonique en boucle fermée est égale a H,,(el“"),
laquelle sera soigneusement choisie selon les spécifications, notamment en ce qui
concerne la bande passante.
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Avec H(z) = B(z)/A(z) et K(z) = S(z)/R(z), la fonction de transfert en
boucle fermée s’écrit :

S

(2)
B(2)T(2) _ R(z)
A(2)R(z) + B(2)S(z2) 1+ K(2)H(z)

La sensibilité de cette expression a la fonction de transfert échantillonnée H (z) du
processus a commander, considérée ici comme variable, se calcule facilement ; on
trouve :

1
Siz)=——F—
) = T RkemEe
Comme dans la section 9.5, il faut que le module de K (ei“”)H (eJ“") soit suffi-
samment élevé a basse fréquence pour amoindrir la sensibilité dans cette plage.
Avec un intégrateur, K(z) = ;Ez)) = % et cette condition est naturelle-
ment remplie.

Finalement, quelle est la robustesse de la stabilité, mesurée au moyen de mar-
ges ? Les poles de la fonction de transfert en boucle fermée sont les zéros du poly-
ndéme caractéristique A(z)R(z) + B(z)S(z), autrement dit les zéros de :

S(z) B(z)

Y Re) A

=1+ K(2)H(z)

Cette expression ne fait pas intervenir le polynéme T'(z), extérieur a la boucle de
rétroaction ; on ’a déja rencontrée tout au long de la section 7.4; les résultats
des sections 7.4 et 7.5 demeurent ainsi valides. Il est alors possible, dés qu’'un
régulateur RST est dimensionné, d’en analyser la stabilité, puis sa robustesse par
un calcul de marges. Quant a la synthése d’un régulateur RST robuste, entre autres
par calibrage fréquentiel, c’est un probléme complexe dont la solution générale
sort du cadre du présent ouvrage ; une approche itérative simple sera briévement
décrite dans le paragraphe 10.5.4.

10.3.2 Imposition du modéle a poursuivre

La synthése d’un régulateur RST consiste & déterminer les polynémes R(z),
S(z) et T(z) afin que :

B(2)T'(z)
A(2)R(z) + B(2)S(2)

_ Bn(2)
= (10.8)

Les degrés des polyndmes R(z), S(z) et T'(z) sont soumis aux contraintes exa-
minées dans la section 10.2; de surcroit, R(z) est monique et un intégrateur peut
étre requis.
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ExEmMPLE 10.2

Fixons :

R(z) = %B(Z)Am(z)
S(z)=0

T(z) = %A(Z)Bm(z)

Le nombre by est le coefficient mis en jeu dans le terme de degré le plus élevé dans
le polynéme B(z) ; sa présence rend R(z) monique. Les conditions de causalité de
I’algorithme RST sont satisfaites pour autant que :

SR— 0T = 6B+ 6A, — (5A + 6By

=0A, — 0B, — (0A—6B) >0

0R—6S=06B+0A,,>0
D’ou:

0A;, — 6By, > A — 6B

Le surplus de poles du modéle a poursuivre H,,(z) = B, (z)/An(z) doit étre
plus grand ou égal a celui du processus a commander H(z) = B(z)/A(z).

La fonction de transfert en boucle fermée est, avec ce choix, bien égale au
modele a poursuivre :

1
B()T(2) ) B(z)% A(2)B(2) _ Bn(2) (10.9)
A(2)R(z) + B(z)S(2) A(z)bi B(2) A (2) Am(2) .
0

Comme S(z) = 0, aucune rétroaction de la grandeur a commander n’existe ; c’est
une solution en boucle ouverte dans laquelle les poles et les zéros du systéme a
commander se simplifient selon (10.9). Cette solution est manifestement équiva-
lente a la commande a priori apparaissant dans la figure 9.66, bien s{r sans la
rétroaction en place dans ce schéma fonctionnel. En plus des inconvénients in-
trinséques a une commande en boucle ouverte, par exemple un mauvais rejet des
perturbations, une telle approche peut dans la réalité se révéler inacceptable. En
effet, le modéle H(z) = B(z)/A(z) du processus & commander est toujours, a
cause de fluctuations et d’erreurs de modélisation, distinct de la fonction de trans-
fert H°(z) = B%(2)/A%(z) du systéme réel. Le régulateur RST dimensionné sur
la base du modéle H(z), mais appliqué au processus physique H°(z), conduit a
la fonction de transfert en boucle fermée réelle :

BY(2)T(2)
AY%(2)R(z)+ B9%(2)S(z)
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On remarque immédiatement que le régime transitoire renferme des modes non
bornés dés que le systéme & commander est instable (zéros de A°(z) sur ou a
I’extérieur du cercle unité) ou a non-minimum de phase (zéros de B(z) sur ou a
Pextérieur du cercle unité).

ExeEmMPLE 10.3
Soit la sélection :

R(:) = 3 BE)(An(2) ~ Bu(2)
S(z) = T(z) = bi A(2)Bon(2)

Le nombre b est le coefficient apparaissant dans le terme de degré le plus grand
dans le polyndme B(z). La encore, la causalité du régulateur RST est assurée
quand le surplus de poles du modéle a poursuivre H,,(2) = By, (2)/Amn(z) est
plus grand ou égal a celui du processus a commander H(z) = B(z)/A(z).

La fonction de transfert en boucle fermée est donnée par :

B(z)% A(2)Bo(2)
A(z)% B(2) (Am(z) — Bu(2)) + B(z)—0 A(2)B(z)
_ B,.(2)
Am(z)

Vu que S(z) = T'(z), la configuration du régulateur est ici classique, décrite par
I’équation (10.1). Bien qu’une rétroaction de la grandeur a commander soit réali-
sée, le régime transitoire peut en réalité contenir des modes indésirables. Il n’est au
surplus pas possible, avec le choix du polynéme R(z), d’y inclure un intégrateur.

|

Ces deux exemples illustrent des choix trés simples, mais qui se révélent in-
adaptés. Une approche permettant d’incorporer aisément un intégrateur, entre
autres, est maintenant élaborée.

Comme cela est mentionné dans le paragraphe 10.3.1, le mode¢le a poursuivre
B, (2)/Am(z) peut étre d’ordre inférieur a celui du systéme en boucle fermée

%. Afin de vérifier I’égalité (10.8), il doit exister, dans ’expression

%, des simplifications de zéros avec des poles. Nous allons par
conséquent dimensionner les polynéomes R(z), S(z) et T'(z) de maniére a provo-

quer ces simplifications.

Le polynome B(z) est factorisé en un facteur B*(z), qui sera également un
facteur du polynome caractéristique en boucle fermée A(z)R(z)+ B(z)S(z) pour
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obtenir des simplifications dans %,

cun zéro n’est zéro de A(z)R(z) + B(2)S(2) :

et un facteur B~ (z), dont au-

B(z) = B*(2)B~(2) (10.10)

Le membre de droite de cette égalité est appelé une factorisation spectrale de B(z).
Des informations sur la sélection de B (z) seront fournies a la fin du présent
paragraphe ; signalons néanmoins ici que B*(2) est monique dans le but d’avoir
une factorisation (10.10) unique. L’égalité suivante est donc désirée :
B (2)B~(2)T(2) _ Bm(2)
A(2)R(z) + B(2)S(2)  An(2)
Ou, de fagon équivalente :

BY(2)B™ (2)T(2)Am(2) = (A(Z)R(z) + B(z)S(z))Bm(z)

(10.11)

Etant donné qu’aucun zéro de B~ (z) n’est zéro de A(z)R(z) + B(z)S(z), tous les
zéros de B~ (z) doivent étre des zéros de B,,,(z) ; le polyndme B~ (z) est ainsi un
facteur de B,,,(2), qui prend la forme :

Bn(2) = B~ (2)B,,(?) (10.12)

m

B™(2) est un facteur de A(2)R(z)+ B(2)S(2). Tous les zéros de B¥(z) sont alors
des zéros de A(z)R(z)+ B(2)S(z) et, vu que A(z)R(2)+ B(2)S(z) = A(2)R(2)+
B*t(2)B~(2)S(z), ce sont des zéros de A(z)R(z). Aucun zéro de BT (z) ne peut
étre zéro de A(z) car A(z) et B(z) = BT (2)B~(z) n’ont par hypothése aucun
facteur commun. Tous les zéros de BT (z) sont par conséquent des zéros de R(z) ;
on en conclut que BT (z) est un facteur de R(z), ce qui se traduit par :

R(z) = BT (2)R(2) (10.13)

Les polynomes R(z) et B*(2) étant tous deux moniques, il en est de méme du po-
lynéme R(z). La relation (10.11) devient, apres substitution de (10.12) et (10.13) :
B*(2)B~(2)T(2) _ B7(#)B,,(2)

m

Bt(2) (A(Z)R(Z) + B~ (z)S(z)) B A (2)

En simplifiant :
T(z) _ B,(2)
A(z)R(2)+ B (2)S(2)  Aml(2)
Afin de vérifier cette égalité, le polyndme 7'(z) est pris égal au polyndme By, (2), &
un polynéme monique Ag(z) en facteur pres, et A(z)R(z) + B~ (2)S(z) est choisi
égal a A,,(z), au méme facteur Ag(z) prés :
T(2) = By,(2)A0(2) (10.14)

A(z)R(z) + B~ (2)S(z) = Am(z)Ao(2) (10.15)

Le facteur Ag(z) est fréquemment rencontré sous le nom de polynéme observa-
teur.
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En résumé, les polyndmes B(2)T'(z) et A(z)R(z) + B(z)S(z) sont en quelque
sorte fagonnés pour qu’ils contiennent tous deux en facteurs les polynémes Ag(2)

et BT(2). La fonction de transfert en boucle fermée % se simplifie

mathématiquement par les polyndmes Ag(z) et BT (z) pour aboutir au modéle a
poursuivre B, (2)/Am(2) :

B(2)T(z) _ B*(2)B (2 ) (2)
A(2)R(z) + B(2)S(2)  B*(2)(A(2)R(2) + B~ (2)S(2))
B (2)B (2) By, (2)Ao(2)
Bt (2)Am(2)Ao(2)
Ao(2)BF(2) B (2)
Ao(2) Bt (2)Am(2)
_ B (2)
A (2)

Lorsqu’un intégrateur est inclus, R(z) = (z — 1)*R'(z). Ainsi, I'égalité (10.8)
devient :
B(z)T(z) _ Bu(z)

A(2)(z — 1)ER(2) + B(2)S(2)  Am(2)

La démarche précédente, avec (2 — 1)°R’(2) en lieu et place de R(z), demeure
valide. En particulier, les zéros de B*(z) doivent étre des zéros de (z — 1) R/(2);
aucun zéro de B¥(2) ne pouvant étre égal a 1 pour des motifs qui seront éclaircis
ci-dessous, les zéros de B (z) sont des zéros de R'(z) et BT (z) est un facteur de
R'(z):

R'(z) = BT (2)R'(2)

E’ (2) est monique car R’(z) et B*(z) sont moniques; en outre, il est évident que
R(z) = (z — 1)*R/(z). L’équation (10.15) prend maintenant la forme :

A(2)(z = 1)*R'(2) + B~ (2)S(2) = Am(2)Ao(2) (10.16)

Quelques commentaires relatifs au choix des polyndmes B (z) et Ag(z) sont
maintenant proposeés.

Par le principe méme de la synthése du régulateur RST, les poles du systéme
en boucle fermée sont, pour le montage en asservissement, mathématiquement
les poles du modele a poursuivre H,,(z) = By, (2)/Amn(z), & savoir les zéros de
A (2). En réalité, le modele du processus a commander H(z) = B(z)/A(z),
sur lequel se fonde la synthése, est distinct du systéme a commander H%(z) =
BY(z)/A°(2) physique, ceci étant dii a des fluctuations et a des erreurs de modéli-

sation. Le processus en boucle fermée est donc décrit par la fonction de transfert
B(2)T(z)
AO(2)R(2)+B%(2)S(2)?
du polyndme caractéristique en boucle fermée A°(2)R(z) + B°(2)S(z). Ces zéros
peuvent étre plus nombreux que les zéros de A,,,(z) et, le plus souvent, il n’existe

qui ne se simplifie nullement et dont les pdles sont les zéros
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méme aucun zéro commun ! Toutefois, quand les fonctions de transfert H(z) et
HO(z) sont voisines, suite & une modélisation suffisamment fine, les polynomes
caractéristiques A(z)R(z) + B(2)S(z) et A°(2)R(z) + B°(2)S(z) différent peu;
vu que les zéros de tout polynéme varient continiment avec leurs coefficients, les
zéros de ces polyndmes sont proches. En multipliant les deux membres de (10.15)
(ou (10.16)) par B*(z), nous avons A(z)R(z) + B(2)S(z) = An(2)Ao(2)BT(2);
par conséquent, les zéros de A°(z)R(z) + B°(z)S(z) sont environ les zéros de
A (2),de Ap(z) et de BT (z) : les poles du systéme en boucle fermée réel sont ap-
proximativement les zéros de A,,(z), auxquels s’ajoutent les zéros du polyndme
observateur Ag(z) et les zéros de B (z). Les poles engendrent des modes, comme
on I’a montré dans le paragraphe 4.5.2 ; il est vital d’enrayer I'influence des modes
parasites découlant des zéros de Ag(z) et de BT (z), modes superposés a ceux
réellement désirés, lesquels sont issus des zéros de A4,,(2).

Il importe de se souvenir que, si un pole p d’une fonction de transfert est
proche, tout en étant différent, de I'un de ses zéros b, il n’y a pas de simplification
mathématique des facteurs z — p et z — b. Un signal cp* subsiste a la sortie. Le
coefficient ¢, proportionnel a I’écart p — b (§ 4.5.2), est d’autant plus faible que
le pole est prés du zéro. Toutefois, le mode p* peut prendre une importance pré-
pondérante suivant la valeur de p, notamment si |p| > 1. Dans le contexte de la
synthése du régulateur RST, une simplification par les polyndmes Ag(z) et BT (z)
est recherchée. L’emplacement des zéros de ces polynomes est des lors vitale pour
garantir une décroissance acceptable des modes parasites.

Le polynome observateur Ay (z) est fixé par I'utilisateur. Au vu de la discus-
sion précédente, ses zéros doivent nécessairement étre a I'intérieur du cercle unité ;
toutefois, cette condition n’est généralement pas suffisante. Les modes parasites
dus a Ag(z) sont en pratique soumis a de séveres conditions absolue et relative
d’amortissement afin que leur décroissance temporelle soit plus rapide que celle
des modes effectivement souhaités (sect. 9.4). Typiquement, les zéros de Ay (z)
sont choisis dans une région comme celle en tramé de la figure 10.7.

Im

1

‘. Re
/-7

Fig. 10.7 Région dans laquelle doivent se situer les zéros des polyndmes Ao (z) et BT ().
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Un polynéme a réponse pile, caractérisé par Ag(z) = 2°4°, est parfois sélec-
tionné ; 6 Ay dénote le degré de Ay(z). Il découle du paragraphe 4.4.1 que le signal
parasite provenant du polynéme observateur est alors simplement une somme
pondérée et finie d’impulsions unité apparaissant aux instants 0, h, ..., dAgh.
Plus souvent, la dynamique associée au polyndme observateur est prise deux a
trois fois plus rapide que la dynamique principale du modéle a poursuivre; en
d’autres termes, les zéros du polyndme observateur sont, en module, choisis deux
a trois fois plus petits que le ou les pdles dominants de H,,(z). Les modes gé-
nérés avec cette option s’amortissent plus en douceur que dans une réponse pile,
exigeant un effort de commande modéré.

Les zéros du polyndme B7(z) doivent pour les mémes raisons étre a 'in-
térieur du cercle unité. Une restriction supplémentaire consiste a imposer des
conditions absolue et relative d’amortissement. Dans ce cas, les zéros de B1(z)
appartiennent a la région en tramé de la figure 10.7. Rappelons que des processus
a commander a non-minimum de phase possédent des zéros sur ou a ’extérieur
du cercle unité. L’incorporation de ces zéros dans ’ensemble des zéros de B*(z)
est a bannir, puisqu’ils conduisent a I'instabilité. IIs doivent impérativement étre
des zéros de B~ (z) et, comme B,,(z) = B~ (z)B,,(2), ils doivent également étre
des zéros du modgele a poursuivre.

Les polyndmes R°(2), S°(z) et T°(2) réellement implantés sont distincts des
polynomes R(z), S(z) et T'(z) calculés, principalement a cause de la quantifica-
tion sur les coefficients de ces polynomes. De telles erreurs sont beaucoup plus
faibles que celles intervenant sur le systéme a commander et peuvent par consé-
quent étre négligées.

Jusqu’a maintenant, ’accent a été mis sur le montage en asservissement. Qu’en
est-il du montage en régulation et, plus généralement, d’autres fonctions de trans-
fert ? Il ressort de la section 10.2 et du paragraphe 5.4.2 que, pour une perturba-
tion constante (ou lente), la fonction de transfert en régulation est :

H(z) B(z)R(2)

1+ K(2)H(z) A(2)R(z)+ B(2)S(2)

En tenant compte de la factorisation spectrale (10.10) et vu que la synthése assure
I’égalité A(2)R(z) 4+ B(2)S(z) = Am(2)Ao(2)BT(2) :
B(z)R(z) _ Bt (2)B~(2)R(z)
A(z)R(z) + B(2)S(2)  Am(2)Ao(2)B(2)
_ B (2)B~(2)R(:)
Bt (2)Am(2)Ao(2)
_ B~ (2)R(z)
A (2)Ao(2)

Ainsi, la réponse en régulation contient les mémes modes qu’en asservissement,
provenant des zéros de A,,(z), auxquels se superposent des modes parasites issus
des zéros de Ay(z). Ces modes parasites sont présents méme dans le cas mathé-
matique idéal, puisque le polynéme Aq(z) n’est ici plus simplifié. Si des zéros de
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Ap(z) se trouvent a I'extérieur du cercle unité, la stabilité BIBO est ruinée. Quand
les variations de la perturbation sont significatives, les zéros de 1 + K (z)H (z), en
d’autres termes les zéros du polynome caractéristique A(z)R(z) + B(z)S(z), sont
les pdles de la réponse du montage en régulation (§ 5.4.2). Le polyndme B (z)
ne se simplifie pas et on retrouve les modes désirés découlant de A4,,(z), auxquels
s’ajoutent les modes parasites engendrés par Ag(z) et BT (z). Ces derniers ont gé-
néralement plus d’'importance qu’en asservissement ; en effet, les polyndmes ne se
simplifiant mathématiquement pas, les coefficients pondérant les modes parasites
ne sont pas nécessairement petits.

La fonction de transfert U(z)/Y.(z) entre la consigne et la grandeur de
commande se calcule facilement en éliminant Y (z) des égalités R(z)U(z) =

T(2)Ye(2) = S(2)Y(2) et Y (2)/U(2) = B(2)/A(2) :
U(z) A(2)T(z)

Yo(2) — A(2)R(z) + B(2)S(2)

Et, comme T(z) = B, (2)Ao(2) et A(2)R(2) + B(2)S(2) = A (2)Ao(2)B* (2) :

U(Z) ( ) nL(z)AO Z)
)

Voz)  An(2)Ao(2) B
A0(2)A(2) By 2)
A0(2) A (2)B ()

_ A(D)B()
A,()B*(2)

I\

)

Le polynome B (z) apparait au dénominateur de cette fonction de transfert : les
modes qui en résultent sont toujours contenus dans u(k). Par exemple, un zéro
de BT (z) négatif génére assurément un mode sonnette (§ 4.5.2). Si des zéros de
B™(z) sont a I'extérieur du cercle unité, la stabilité interne (§ 7.4.1) est détruite!

Dans les conditions mathématiques idéales Y (z) = =2 ’”Ej;Y( ) et le polyndme
B*(z) n’est pas un facteur de A4,,(z) : aucun mode parasite n’affecte y(k). Ceci
n’est toutefois correct qu’aux instants d’échantillonnage ; les modes dans le signal
u(k) générés par B (z) influencent la grandeur & commander analogique y(k)

entre les instants d’échantillonnage.

Au vu de ces considérations, il est primordial de rappeler qu’une simplifica-
tion pole-zéro dans une fonction de transfert en boucle fermée ne signifie aucu-
nement que cette simplification a lieu dans les autres fonctions de transfert en
boucle fermée (§ 5.4.4). Dans le contexte du présent paragraphe, il y a mathéma-
tiquement simplification par les polyndmes Ag(z) et B¥(z) dans le montage en
asservissement, par B (z) en régulation et par Ag(z) dans la fonction de trans-
fert U(z)/Yc(z). Pour le surplus, en conditions réelles ou le modéle du systéme
a commander différe modérément du processus physique, il existe toujours des
modes parasites dus aux polyndmes Ag(z) et BT (z); afin de maitriser 'amortis-
sement du régime transitoire simultanément dans toutes les situations, il faut que
les zéros de Ag(2) et de B (z) appartiennent a un domaine tel que celui apparais-
sant en tramé dans la figure 10.7.
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Finalement, que se passe-t-il avec des fonctions de transfert nominale H(z) =
B(2)/A(z) et réelle HY(z) = B%(2)/A°(2) différant substantiellement suite & une
modélisation manquant de finesse ? Dans ces circonstances, les polyndmes carac-
téristiques en boucle fermée nominal A(z)R(z)+ B(2)S(z) = A (2)Ao(2) BT (2)
et réel A°(2)R(z) + B°(2)S(z) ne sont plus proches; il en est dés lors de méme
pour leurs zéros. Les conséquences peuvent se révéler critiques. Par exemple, avec
des marges de robustesse inadéquates, les poles en boucle fermée réels ne sont pas
forcément a l'intérieur du cercle unité, bien que les zéros des polyndémes A,,(z),
Ap(z) et BT(2) le soient, anéantissant la stabilité. Le résultat général suivant
montre que, en présence d’incertitudes, la fonction de transfert réelle est égale au
modele a poursuivre H,,(z) multiplié par un facteur distinct de I'unité, lequel fait
intervenir ’écart H+@ — ﬁ entre les inverses des fonctions de transfert réelle
H°(z) et nominale H(z).

Théoréme 10.1

Soit un régulateur RST dimensionné sur la base du modéle H(z) = B(z)/A(z)
du systeme a commander. L'implantation de ce régulateur sur le processus a com-
mander réel HY(z) = B°(2)/A%(2) conduit, pour le montage en asservissement,
a la fonction de transfert suivante :

Démonstration

La fonction de transfert réelle du montage en asservissement s’écrit :

B(2)T(z) Bn(z) 1
A%z)R(2) + B%(2)S(2)  Am(z) Bm(z) R(2) (AO(Z) n S(Z))
An(z) T(z) \B%2) R(?)
1
= Hp(2) B
m(2)R(2) S(z
An(2)T(2) (H0<z> T RE )

Comme B,,(z) = B~ (z)B.,(z) et T(z) = B}, (z)Ao(2), cette derniére expression
devient :
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D’autre part, (10.15) implique :
 An(2)Ao(z) — A(2)R(z)

S(z) = B2
_ A (2)Ao(z)BT(2) — A(2)R(2)
B(z)
D’ou
S(2) _ An(2)A0(2)B*(2)  Alz)
R(2) B(z)R(z) B(z)
_ An(2)A0(2)BF(2) 1
B(z)R(z) H(z)
En portant cette égalité dans la fonction de transfert en boucle fermée :
1
) 5= ( L S(z))
An(2)Ao(z) \H°(2) R(2)
1
= o) 5=3R 0 ( I A&AEB ) 1 )
Am(2)Ao(z) \H°(2) B(z)R(z) H(z)
= Ho(2) -

1 1 B~ (2)
) <H0<z> ) H(z)) Am(2)4o(2)

10.3.3 Equation de Diophante

Soient des polyndmes A(z), B(z) et C(z) donnés et des polynémes R(z) et
S(z) inconnus. Dans ce paragraphe consacré a la théorie générale, les polynomes
A(z) et R(z) ne sont pas forcément moniques, afin de se conformer a 1'usage en
vigueur en mathématiques. De surcroit, les polynomes A(z) et B(z) peuvent pos-
séder des facteurs communs et, sans perte de généralité, 6 A > §B. L’égalité poly-
nomiale suivante est appelée équation de Diophante, équation diophantine, identité
d’Aryabhatta ou encore identité de Bezout :

A(z)R(z) + B(2)S(z) = C(z) (10.17)

Les relations (10.15) et (10.16), dans lesquelles il faut déterminer les polyndmes
R(z) ou R'(z) et S(z), sont des équations de Diophante. La question de I’exis-
tence d’une solution fait 'objet du théoréme suivant. Mais avant de passer a son
énoncé et a sa démonstration, il est utile de rappeler la définition du plus grand
commun diviseur de deux polynémes A(z) et B(z), dont I'un au moins est dif-
férent du polynéme nul. Un diviseur commun de A(z) et B(z) est un polyndme
qui divise a la fois A(z) et B(z). Le plus grand commun diviseur de A(z) et B(z)
est un polynéome D(z) tel que D(z) soit un diviseur commun de A(z) et B(z), et
que D(z) soit divisible par tout diviseur commun de A(z) et B(z). Le plus grand
commun diviseur de A(z) et B(z) est dénoté (A, B). Il est unique a un facteur
numérique non nul pres.
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Théoréme 10.2

Soient A(z), B(z) et C(z) des polyndmes dont les coefficients sont des nombres
réels. Alors I'équation de Diophante (10.17) posséde une solution R(z) et S(z)

si et seulement si le plus grand commun diviseur de A(z) et B(z) est un facteur
de C(z).

Démonstration

Afin de simplifier I’écriture, 'argument z des polyndmes est omis tout au long
de cette démonstration. Posons Ag = A et A; = B. Soit Q); le quotient de la
division de Ay par A; et As son reste :

AO = QlAl + AQ 0As < 6A,

Tout polynome divise Ag et A; si et seulement s’il divise A; et As ; par conséquent,
le plus grand commun diviseur de Ag est A; est identique au plus grand commun
diviseur de A; et Ay :

(A, B) = (Ao, A1) = (A1, A2)

En divisant A; par A, si le polyndme A, n’est pas nul :
Al = Q242 + As 0As < 0As

Et:
(A1, A2) = (A, A3)

En continuant de la sorte et en rassemblant les résultats :

Ag = Q1A + 4y Ay < A,

Ay = QoA + Aj 0A3 < 6A,
Ap_3 = Qn72An72 +An_1 0Ap_1 <0A,_2 (1018)
A, = anlAnfl + A, 0A, < 6A,_1 (1019)
(A, B) = (Ao, A1) = (A1, As) = ... = (An_1, Ay) (10.20)

On releve que 6B = 041 > §As > dAs > ... > §A,_1 > JA, : les restes des
divisions possedent des degrés de plus en plus petits si bien que le procédé doit
nécessairement s’arréter en un nombre fini d’étapes avec une division sans reste.
En dénotant n l'entier tel que le reste A,,; est nul :

An—l = QnAn +0
(An-1,4n) = (4,,0) (10.21)

Le plus grand commun diviseur du polyndéme non nul A,, et du polynéme nul 0
est bien évidemment A,, ; (10.20) et (10.21) impliquent que le plus grand commun
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diviseur des polynomes A et B est le dernier reste non nul des divisions polyno-
miales :

(A,B) = A,
Il s’agit d’une méthode de calcul du plus grand commun diviseur de deux poly-

nomes appelée algorithme d’Euclide.

Soit R et S une solution de ’équation diophantine (10.17) . Les polyndmes
A et B sont maintenant écrits en faisant apparaitre en facteur leur plus grand
commun diviseur A4,, :

A=A,A
B=A,B
Alors :

AR+ BS = A,(A'R+ B'S) = C

Nous en concluons que le plus grand commun diviseur de A et B est un facteur
de C.

Réciproquement, si le plus grand commun diviseur de A et B est un facteur
de C, il s’agit de prouver qu’il existe une solution a ’équation diophantine. Pour
ce faire, I’algorithme d’Euclide est exploité a rebours; (10.19) fournit :

An - An72 - anlAnfl (1022)

Ainsi, (4, B) = A,, s’exprime comme une combinaison linéaire des polynomes
An_o et A,_1. Létape précédente (10.18) de ’algorithme d’Euclide donne :

An—l = An—S - Qn—QAn—Q
Par substitution dans (10.22) :

An = An—2 - Qn—l(An—B - Qn—QAn—Q)
= _Qn—lAn—S + (1 + Qn—lQn—Q)An—Q

A, est maintenant une combinaison linéaire des polynomes A, 3 et A, 2. En
poursuivant ces substitutions, on en déduit que A,, est une combinaison linéaire
des polynomes Ag = Aet A; = B :

A,=RA+ 9B (10.23)
Comme A,, est par hypothese un facteur du polynéome C':
C=A,C
D’ou, en multipliant les deux membres de (10.23) par C’ :
AR'C"Y+B(S'C")y=C

Une solution R = R'C’" et S = S’C’ a donc été construite. [ ]
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Dénotons Rg(z) et Sp(z) une solution de I’équation diophantine :
A(z)Ro(z) + B(2)S0(z) = C(z)

Dans ce cas, R(z) = Ro(z) + Q(z)B(z) et S(z) = So(2) — Q(2)A(z), ou Q(%) est
un polynome quelconque, constitue aussi une solution :
A(2) (Ro(2) + Q(2)B(2))+B(2) (S0(2) — Q(2)A(2))
= A(2)Ro(2) + B(2)S0(z) = C(2)
En d’autres termes, s’il existe une solution Ry(z) et So(z), une infinité d’autres
solutions peuvent étre trouvées en lui additionnant et soustrayant des multiples
de B(z) et A(z). Parmi toutes ces solutions, il est toujours possible d’en trouver

une, dite a@ degré minimal, telle que le degré 4.5 de S(z) soit inférieur au degré § A
de A(z) :

55 < A (10.24)
En effet, si 65y > 0 A, divisons Sy (z) par A(z) :
So(2) = Q(2)A(z) + S(2) (10.25)

Q(z) est le quotient de cette division et S(z) son reste, qui satisfait §5 < JA.
L’égalité (10.25) fournit :

5(z) = So(2) — Q(2)A(2) (10.26)
On définit :
R(z) = Ro(2) + Q(2)B(z) (10.27)

Les polynémes R(z) et S(z) constituent une solution de I’équation diophantine
vérifiant 45 < §A. Les égalités (10.26) et (10.27) forment une paramétrisation de
Youla de la solution.

En suivant la méme démarche, il est facile de constater que, dans ’ensemble
des solutions, 'une d’entre elles vérifie 0 R < §B. Toutefois, 4.5 ne satisfait géné-
ralement plus (10.24).

Dés que les degrés des polynomes R(z) et S(z) ont été sélectionnés, une fagon
de résoudre I’équation diophantine consiste a égaler les coefficients des termes de
méme degré des polyndmes A(z)R(z)+ B(z)S(z) et C(z). Il en résulte un systéme
d’équations algébriques linéaires donnant les coefficients inconnus des polynomes
R(z) et S(z).

ExempLE 10.4
Soient les polynomes :
A(2) = ap2® + a12° + asz + as
B(z) = boz + by

C(2) = coz® +c12* + c22® + c32” + ez + ¢
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Une solution a degré minimal caractérisée par §S < JA est recherchée. En fait,
sous certaines conditions détaillées dans le paragraphe 10.3.4, une et une seule
solution vérifiant 0R = §5 = J A — 1 existe :

R(2) =roz® +r1z 41

S(z) = s02° + 8512 + 52

A(z), B(z) et C(z) sont connus; il faut trouver R(z) et S(z) solution de '’équation
de Diophante :

(aoz3 +a12? + agz + az)(roz® + iz + 1) + (boz 4+ b1) (5022 + 512 + 59)

_ B 4 3 2
=cCoz” +cC1z27 + 22 +c32° +cpz + 5
En regroupant les termes de méme degré :

aoroz® + (agry + alro)z4 + (apre + a1ry + asro + boso)z3
+ (ayry + agry + asro + bosy + bysg)z>
+ (agre + asry + bos2 + b1s1)z + asra + bisa

= coz5 + clz4 + 62z3 + 632:2 “+cq2+ c5
D’ou, en égalant les coefficients des termes de degré identique :

aoprog = Co

a1rg + agry = c1

asro + air1 + agra + bosp = c2

asro + asr1 + aira + b1sg + bos1 = c3
asry + agra + b1s1 +bosy = ¢4

azra +bisy =cs

Dans les applications relativement simples, le systéme d’équations algébriques
linéaires issu de I’équation de Diophante peut étre résolu symboliquement. Cette
approche est facilitée quand les termes du membre de gauche de I’équation ont
une forme factorisée, comme cela sera ultérieurement illustré dans des exemples.
Une mise sous forme matricielle met en lumiere une structure intéressante.

ExEMPLE 10.5

Pour I'exemple précédent :

ap 0 0 0 0 0 To Co
a; Qo 0 0 0 0 1 C1
as aip Qo b() 0 0 ) _ Co
as a2 ap b1 b() 0 So - C3
0 az az 0 b1 bo S1 C4
0 0 as 0 0 b1 S92 Cs
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Nous remarquons dans la matrice ci-dessus que la premiére colonne inclut les
coefficients du polynéme A(z) ; la deuxieme s’obtient a partir de la premiére par
décalage d’un cran vers le bas ; la troisiéme découle de la deuxiéme a nouveau par
décalage d’un cran. Les autres colonnes sont construites de la méme maniére avec

les coefficients du polynéme B(z). [ |
Soient
A(z) = ap2®? + a1V + - +asa
B(z) = bo2®B + 0128 4 4 bsp

C(z) = o BTOSTL 4 ¢ SRH6S | 4 SRS+
— 2B o PR Ly s

-1
= sozés + 81265 + -+ S55

Le systéme linéaire associé a I’équation diophantine présente la struture générale
suivante :

) 0 0 0 0O ... 0 7T 7m T r Co T
a;  ay . r1 c1
a2 a1 - 0 b() 0 . 0
: a . ao b1 b() :
ap by by .0 TSR | _ C5R
as ; by - by 50 C5R+1
asA .. b(SB - b1 S1
0 asa - 0 bsg - by
L O 0 ... asa O 0 ... bsp 1 L sss L C5R+55+1 |
dR+1 colonnes 6S+1 colonnes
(10.28)

La matrice carrée d’ordre 0 R + 0.5 + 2 de ce systeme est dite matrice de Sylvester.
La sélection des degrés des polynémes R(z) et S(z), vitale pour fixer comple-
tement la matrice de Sylvester, sera explorée avec un grand soin dans les para-
graphes suivants. La résolution de (10.28) peut s’effectuer par élimination gaus-
sienne ou via une factorisation standard de la matrice de Sylvester.

Une alternative séduisante, conceptuellement fort différente des précédentes,
consiste a tirer parti de la démonstration constructive du théoréme 10.2, dans
laquelle une solution de ’équation diophantine est ¢laborée en mettant a profit
I’algorithme d’Euclide.
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ExeEMPLE 10.6

Une solution de I’équation de Diophante (10.17) est recherchée, avec :
A(z) =2 - 222 — 242

B(z) = 2*> — 22

Cz)=2"—42* +423 +2 -2

L’algorithme d’Euclide débute par la division polynomiale de Ay(z) = A(z) par
Al(z) = B(Z) .

Ag(z) = 23 =222 — 242 | A1(2) =22 -2z

23 — 222 z2=Q1(2)
—z+2= AQ(Z)

Puis de A;(z) par Ay(2) :

Aj(z) = 22 -2z | Ag(z) = —2+2

22 =2z | —2=Qa(2)
0= As(z)

Nous en concluons que (A4, B) = Aj(z) = —z + 2. L’algorithme d’Euclide est
maintenant considéré a rebours :

Az(z) = Ao(2) — Q1(2)A1(2)
= A(z) — Q1(2)B(2)
= A(z) — zB(z)

(A,B) = As(z) s’exprime bien comme une combinaison linéaire R'(z)A(z) +
S’(z)B(z) des polynomes A(z) et B(z), avec :

R(z)=1 S'(z)=—=z

Il s’agit encore de déterminer le facteur C’(z) inclus dans le polynéme C(z) ; pour
ce faire, C'(2) est divisé par Aa(2) :

C(z) = 25 —4z* 4423 +2-2| A(2)=—2+2

25 — 224 244222 -1 =0C'(2)

— 224 4+ 423 +z—2
— 224 4 423

z—2
z—2
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Le reste de la division est nul; le plus grand commun diviseur de A(z) et B(z) est
un facteur de C'(z), garantissant I’existence d’une solution a 1’équation diophan-
tine. Une solution est :

Ro(2) = R'(2)C'(z) = —2* + 223 — 1
So(z) = S'(2)C"(2) = 2° — 22* 4 2

Elle vérifie 65y > d A et n’est de ce fait pas a degré minimal. Une solution a degré
minimal s’obtient simplement en divisant Sy(z) par A(z) :

So(z) = 2° — 224 +z ‘A(z):z3—222—z+2
25 — 224 — 2% + 222 2+ 1=Q(2)
23— 2224 2
25 —222—2+2
2z —2=15(2)
Soit :
R(z) = Ro(2) + Q(2)B(2)
=22 4+22% 14+ (22 +1)(22 — 22)
=22 -22-1
La solution R(z) = 22 — 2z — 1 et S(2) = 2z — 2 est a degré minimal. [ ]

Les opérations entrant en jeu dans la méthode fondée sur ’algorithme d’Eu-
clide, dont un exemple vient d’€tre présenté, peuvent étre rassemblées sous une
forme matricielle, conduisant a I'algorithme d’Euclide étendu ; pour le surplus, cet
algorithme génére une solution a degré minimal. Il est particuliérement rapide,
car tirant pleinement bénéfice de la nature polynomiale du probléme, et jouit d’un
bon conditionnement numérique.

10.3.4 Existence et unicité d’un régulateur RST causal a degré minimal

Le polynéme 7'(z) dun régulateur RST découle de (10.14); les polyndomes
R(z) et S(z) sont fournis par I’équation (10.15) de type diophantine, et R(z) =
B1(2)R(z). Les polyndmes A,,(z), Ao(z), A(z) et B*(z) sont choisis moniques.
En outre, A > §B. Les polynomes A(z) et B(z) sont supposés n’avoir aucun
facteur commun (autre que numérique); il en est donc de méme pour A(z) et
B~(z) : le plus grand commun diviseur de A(z) et B~ (z) est un nombre et le
théoréme 10.2 permet d’affirmer qu’une solution R(z) et S(z) existe. En pré-
sence d’un intégrateur, les polyndomes R’'(z) et S(z) sont une solution de (10.16)
et R(z) = (z — 1)’R/(2) = (z — 1)*BT(2)R'(z). 1l va de soi que, dans ce cas, les
inconnues sont R'(z) et S(z), tandis que les polyndmes connus sont A(z)(z — 1)*
et B~ (z), de méme que le second membre A,,(z)Aq(z). Par ailleurs, on présume
que B~ (z) ne renferme pas de zéro z = 1 afin qu’il n’y ait pas de facteur com-
mun a A(z)(z — 1) et B~ (z). Cette hypothése est pratiquement toujours vérifiée
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car nous savons (ex. 4.28) qu'un zéro z = 1 refléte un comportement dérivateur
rarissime dans les processus a commander.

Afin de ne pas se restreindre a des situations particuliéres, les polynomes
A (z) et Ag(z) constituant le second membre de ’équation de Diophante peuvent
étre quelconques (sauf que, comme déja mentionné, ils sont moniques et leurs z¢-
ros sont tous a l'intérieur du cercle unité).

On sait qu’il existe une infinité de solutions et que, pour 'une d’entre elles,
68 < A oudS < §(A(z — 1)) = 0A + £ en présence d’un intégrateur. Le
théoréme suivant révele que cette solution particuliere, a degré minimal, permet
de construire un régulateur RST remplissant les conditions de causalité exprimées
dans la section 10.2.

Théoréme 10.3

1l existe un régulateur RST, a degré minimal, tel que SR > 0T et 0R > 4.S si les
inégalités suivantes sont respectées :

§Ay, — 6By > 0A — 6B (10.29)
§Ag > 20A — A, —6BT —1 (10.30)

Lorsqu’un intégrateur est inséré, il existe un régulateur RST, a degré minimal,
tel que OR > 6T et 6R > S si l'inégalité (10.29) et I'inégalité suivante sont
satisfaites :

§Ag > 26A—8A,, — 6B + 10— 1 (10.31)

Démonstration

En multipliant les deux membres de (10.15) par BT (z), nous obtenons :

A(2)R(2) 4+ B(2)S(2) = Apm(2)Ao(2) BT (2) (10.32)
Ainsi
(AR + BS) = 6(ApnAgB") = 6A,, + 5Ag + 6BT (10.33)

L’inégalité (10.30) est par hypothése vérifiée, conduisant a :

§A;, +6Ag +6BT >254A -1 (10.34)
En combinant (10.33) et (10.34) :

0(AR+ BS) >20A -1 (10.35)

La solution retenue remplit la condition 65 < A, équivalentea 65 <A —1;de
surcroit, 6 B < 0A ou dB < 6 A — 1 car la fonction rationnelle H(z) = B(z)/A(2)
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est strictement propre; donc §(BS) = B + §S < 20A — 2 et, pour respecter
I'inégalité (10.35):

0(AR) > §(BS)
Alors :

0(AR+ BS) = §(AR) (10.36)
Les égalités (10.33) et (10.36) fournissent :

S(AR) = 6A+6R = 5A,, +0Ay + 6B+
On en déduit :

SR =6A,, +04g+ 0BT —6A (10.37)
Par ailleurs, vu que T'(z) = B}, (2)Ao(2) :

8T = 6B, + 04 (10.38)

Partons maintenant de (10.29); en tenant compte de B,,,(z) = B~ (2)B],(z) et
B(z) = B*(2)B™(z), (10.29) peut s’écrire :

§Ay — (6B~ +0B.,) > 6A — (6BT +6B")

Ou encore, en ajoutant 0 Ag aux deux membres de cette inégalité et aprés réorga-
nisation :

§Am +0Ag + 0BT —5A > 5B, + 64, (10.39)

La premiére condition de causalité R > 67 découle de (10.37), (10.38) et (10.39).
En vertu de (10.35) et (10.36) :

0(AR) =0A+JR>20A—-1
Ou, de fagon équivalente :
OR>0A-1 (10.40)

Comme 65 < A — 1, il découle de (10.40) que la condition de causalité R > §.5
est satisfaite.

La premiere partie du théoréme est ainsi démontrée. Quant a la seconde, trai-
tant la situation ou un intégrateur est incorpor¢, elle se démontre de la méme
maniére. Les détails sont laissés aux soins du lecteur. [ |

La condition (10.29), déja rencontrée dans I'exemple 10.2, est particuliére-
ment facile a interpréter physiquement : le surplus de poles, autrement dit le re-
tard, du modéle a poursuivre doit étre supérieur ou égal au retard du systéme
a commander ; par conséquent, un régulateur RST causal ne peut pas compen-
ser un retard dans le processus a commander, ce qui est en parfait accord avec
I'intuition.
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Il a toujours été admis que le polyndme R(z) pouvait étre choisi monique.
Un examen de la démonstration du théoréme 10.3 révéle que c’est effectivement
le cas. En effet, le membre de droite de (10.32) est un polyndéme monique puisque
Am(2), Ao(2) et BT(2) sont moniques. Comme 6(AR + BS) = §(AR) (équation
(10.36)) et vu que A(z) est monique, le polynome R(z) est lui aussi monique.

Il résulte du paragraphe 10.3.3 que, outre la solution a degré minimal vérifiant
0S5 < §A, une autre solution potentiellement intéressante est celle satisfaisant
R < 8B~ inégalité équivalente 3 6R < &6B. Sous les hypothéses du théoréme
10.3, cette solution est néanmoins a rejeter car conduisant a un régulateur RST
non causal. Pour le prouver, supposons R < 6B :

0A > 0B >R
L’inégalité (10.35) conduit a :

0(AR+ BS)>26A—1>0A+0R—1
Ou:

0(AR+ BS) > 0A+6R
Ceci n’est possible que si :

0(BS) > §(AR)

Or, comme 6B < §A, cette derniere inégalité ne peut étre satisfaite que lorsque
0S5 > 0R, excluant la causalité du régulateur.
La démonstration du théoréme 10.3 fixe le degré du polynéme R(z) selon la
formule (10.37); vu que R(z) = B*(2)R(z),ona6R = dB* +§Ret:
SR=0R— 6Bt =0A,, +5A; — 6A

En présence d’un intégrateur, nous avons R(z) = (z— 1)!B*(2)R'(z);donc 6R =
dBT +0R/(2) + Let:

SR =0R —6BT — 0 =6A,, + 549 —6A — ¢
La solution retenue, a degré minimal, vérifie 65 < A — 1; ainsi, le degré de

S(z) est dans I'intervalle [0, 64 — 1]. Toutefois, le théoréme suivant montre que
0S5 = §A — 1, de surcroit, les polyndmes R(z) et S(z) sont uniques.

Théoréme 10.4

Le degré du polynome S(z) vaut 0A — 1; en outre, les polyndmes R(z) et S(2)
sont uniques. En présence d'un intégrateur, S = A+ —1,; R'(z) et S(z) sont
uniques.

Démonstration

Le régulateur RST est causal, impliquant R > §5; de plus, A > 0B car
la fonction de transfert H(z) est strictement propre. D’ou §(AR) > §(BS) et
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S(AR) > 6(B~S). Le systéme linéaire (10.28), que nous écrivons sous la forme
compacte Ma = ¢, comprend dés lors §A + § R + 1 équations. Les inconnues,
regroupées dans le vecteur x, sont les coefficients des polyndmes R(z) et S(z),
au nombre de SR + 1 plus 6S + 1. Supposons qu’il y ait plus d’équations que
d’inconnues :

SA+0R+1>06R+1+6S+1=6R+365+2

Comme I’équation diophantine posséde au moins une solution (théoréme 10.1),
cette hypothése est absurde ; en effet, le second membre ¢ étant quelconque puisque
A (2) et Ap(z) peuvent étre sélectionnés librement, le rang de la matrice M ne
pourrait pas étre égal au rang de la matrice augmentée [ M ¢ ] (sect. IV.1). Alors
SA+SR+1<S6R+36S+2,0u6S>0A—1.VuquedS € [0,5A— 1], onen
conclut :

55 =6A—1 (10.41)

Par ailleurs, I'’égalité (10.41) est équivalente A 6A + R+ 1=606R+ S +2:1le
systéme d’équations Max = ¢ comprend le méme nombre d’équations et d’incon-
nues ; la matrice M est donc carrée. L’existence d’au moins une solution garantit
que le rang de la matrice M soit égal a celuide [ M ¢ |. Le vecteur ¢ étant quel-
conque, le rang de M vaut § R + §S + 2, égal au nombre d’inconnues, démontrant
I'unicité de la solution de Mz = c.

En présence d’un intégrateur, nous avons 65 < 0A + ¢ — 1; de la méme fagon
que ci-dessus, il est facile de constater qu’en fait :

08 =0A+10-1

Les polyndomes R'(z) et S(z) sont en outre uniques. [ |

Le systéme linéaire (10.28) ou, sous la forme compacte Mx = c adoptée
dans la démonstration ci-dessus, exhibe une structure quelque peu particuliére.
Le polynéme A(z) est monique, se traduisant par ap = 1, de méme que le second
membre A,,(z)A(z) de I’équation diophantine (10.15), de sorte que ¢p = 1. La
premiére équation du systeme (10.28) produit toujours rg = 1 et le polynome
R(z) est monique comme il se doit.

Comme cela est expliqué dans la section 10.2, il existe essentiellement deux
techniques de réalisation du régulateur RST. Dans la premiére (implantation stan-
dard), le temps de calcul et de conversion est négligeable vis-a-vis de la période
d’échantillonnage et 6R = 05 = 7. On impose ce cas en échangeant, dans
I’énoncé du théoréeme 10.3, les inégalités (10.29) et (10.30) avec des égalités. En
effet, il suffit de reprendre point par point la démonstration de ce théoréme pour
constater que la premiére condition de causalité d R > 07 se transforme en 6 R =
0T. La démarche donne aussi R = §A — 1; comme le degré du polynome S(z)
vérifie (10.41), la seconde condition de causalité 6R > 4.5 devient )R = 45. La
modification supplémentaire a apporter en présence d’un intégrateur est évidente :
il faut remplacer I'inégalité (10.31) par une égalité.
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La seconde alternative est adoptée quand le temps de calcul et de conversion
est égal a la période d’échantillonnage, se reflétant par R — 1 = 6S = 07 ou
SR + £ —1 = 6S = §T avec un intégrateur. Un raisonnement identique a celui
des lignes précédentes fait ressortir que, pour se placer dans cette situation, les
inégalités (10.29), (10.30) et (10.31) doivent respectivement étre échangées avec
les égalités :

8A,, — 8B, =8A— 0B+ 1
85Ag =20A — 8A,, — 6B
54y =28A—6A,, —6BT +¢

10.3.5 Choix du modéle a poursuivre

Le modele a poursuivre H,,(z) est généralement simple, garantissant glo-
balement les caractéristiques souhaitées en boucle fermée. Le paragraphe 10.3
contient déja quelques informations a ce sujet. La sélection précise dépend de
Papplication, raison pour laquelle nous ne détaillons ici que quelques exemples
parmi d’autres. Toutefois, le numérateur B,,(z) du modéle a poursuivre vérifie
B,.(z2) = B~ (2)B.,(z), indiquant qu’il doit toujours contenir les zéros du sys-
téme a commander qui ne sont pas simplifiés. Typiquement, les zéros de B~ (2)
sont les zéros de B(z) a 'extérieur de la région en tramé de la figure 10.7. 1l est
certainement utile de rappeler ’absolue nécessité que tous les zéros de B(z) sur
ou a I'extérieur du cercle unité soient des zéros de B~ (z) afin d’éviter I'instabilité.

Un choix rudimentaire est le suivant :

_,y P
P Y5
Hp(z) = TP
Dans ce cas :
B (2) = B~ (=) 5((11)) B.(2) = ;((11)) ER  Apn(z) = 24P(2)

Le facteur z¢ dans A,,(z), dit polynéme auxiliaire, est souvent requis afin
de respecter (10.29); il introduit d podles nuls, dits péles auxiliaires. Le nom-
bre P(1)/B~(1) assure H,,(1) =1, éliminant tout statisme d’asservissement
(ex. 10.1). Le polynéme P(z) fixe les modes principaux en boucle fermée; il est
monique et de degré 1 ou 2 selon que des oscillations de la grandeur a commander
sont bannies ou tolérées, respectivement :

P(z)=z+c

P(z) =22+ c1z+ ¢
Dans ces expressions, les coefficients ¢ ou ¢; et ¢o sont sélectionnés de maniere
a ce que des conditions absolue et relative d’amortissement soient remplies, ou

encore afin d’obtenir une bande passante et un gain a la résonance fixés. Les z¢é-
ros de P(z) sont appelés péoles dominants en boucle fermée. Typiquement, —c €
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[0,5,0,9](§9.4.2); les coefficients ¢; et ¢ sont choisis de telle sorte que les zéros
de 22 4+ ¢1 2+ ¢y soient a 'intersection du cercle centré a I’origine dont le rayon est
entre 0,5 et 0,9, et des spirales logarithmiques associées a une condition relative
d’amortissement d’un facteur a = 535 en N = 1 oscillation (§ 9.4.3). Un exemple
apparait dans la figure 10.9.

@ ExeEMpPLE 10.7
Soit le processus a commander :

b
H(z) = At a)
Dans cet exemple :
A(z) = 242+ a) B(z)=b Bt (z)=1 B (z)=b
Un polynéme P(z) de premier degré est choisi :
P(z)=z+c
Le numérateur du modéle a poursuivre s’écrit :

B, (z) = B(z);_((ll)) =1+c¢

Et:

!

Bin(2) = B-(1) b

Une implantation standard est souhaitée, imposant §A,, — 6B,, = 0A — 0B =
d+1;douédA,, =d+1et, comme §P = 1, il faut insérer un facteur z? dans le
polyndme A,,(z), lequel prend la forme A,,(z) = z%(z + ¢). Finalement :

Hm(z) = %

Avec |c¢| < |a|, la dynamique en boucle fermée sera plus rapide que celle en boucle
ouverte. Le degré du polyndme observateur est fixé par (10.30), ou I'inégalité est
remplacée par une égalité (implantation standard) :

0Ag =20A—0A, —1=2(d+1)—(d+1)—1=d
Un polyndme observateur a réponse pile est sélectionné :
Ap(z) = 24

Les degrés des polyndmes R(z) (= R(z) puisque BT (z) = 1) et S(z) se calculent
aisément :
0R=0Am +0A)—0A=d+1+d—(d+1)=d
0S=0A-1=d+1-1=d
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D’ou:
R(z) = 1ozt +r2%7 4y
S(z) = s0z 4+ 51297 - 5g
L’équation de Diophante s’écrit :
2z 4+ a)(rozt + iz b ) F b(se2% Fs1297 4+ sg)
= 2%z +¢)2¢
Ou, en regroupant les termes de méme degré :
10224 4 (arg + 11)2%% + (ary +19) 2247 -

+ (arg—1 + rd)z’“'l + (arq + bso)zd +bs12%

— 22d+1 + csz

1+"'+b5d

Les coefficients des termes de degré identique peuvent étre égalés :

T'():l
arg+ry =c¢

ar1 +r2 =0

arg—1+rq =20

arqg +bsg =0
b81=O
bSdZO

Il est facile de résoudre ce systeme d’équations :

7‘0:1
m=c—a
ro = —a(c — a)

s (Cotie—a
s0=—7 (-a)" e —a) =3 (~a)'(c ~ )
S1 = 0

Sd = 0
La synthése du régulateur RST s’achéve avec le calcul du polynéme T'(z) :

T(2) = B, (2)Ao(z) = % 2

35



36 Synthése algébrique du régulateur RST

Dans le cas particulier des exemples 9.3 et 9.9, ou a = —0,985, b = 0,015
et d = 3, et avec ¢ = —0,8, ces résultats produisent les polyndomes R(z) = 23 +
0,18522 + 0,182z + 0,179, S(2) = 11,787 23 et T'(z) = 13,333 2°. [ ]

Plitot que d’imposer d pdles a I’origine, par le biais du polynome auxiliaire 2%
incorporé dans A,,(z), il est généralement préférable d’introduire des poles auxi-
liaires non nuls engendrant des modes s’amortissant plus en douceur et exigeant
de plus faibles amplitudes du signal de commande; ces poles sont les zéros du
polyndme auxiliaire monique P4(z), placé au dénominateur du modéle a pour-
suivre, qui prend la forme :

A Pa()P(1)
O i)
S ETE
Et:
ey APy ) PP

AnL(z) = PA(Z)P(Z)

Le degré de P4(z) est déterminé a Iaide de (10.29). Typiquement, les modules des
zéros de P4 (z) sont deux a trois trois fois plus petits que ceux de P(z). Au surplus,
le polyndme auxiliaire P4(z) autorise, en y introduisant a la fois des zéros nuls et
non nuls, une fusion des deux philosophies ci-dessus. Les zéros non nuls peuvent
étre les poles en boucle ouverte rapidement amortis, par exemple les pdles du filtre
de garde.

Certaines applications exigent des modifications dans les modéles a pour-
suivre qui viennent d’étre proposés. Par exemple, dans les systémes mécatroniques
a hautes performances, il importe d’annuler non seulement le statisme, mais aussi
la trainée. On montre, dans les prochaines lignes, que le modéle a poursuivre doit
contenir des zéros positionnés convenablement dans le plan complexe. Le poten-
tiel de placement des zéros intrinséque au régulateur RST est ici pleinement ex-
ploité.

La fonction de transfert H,,(z) du mode¢le a poursuivre est mise sous la forme
factorisée suivante, mettant en évidence ses zéros z;, j = 1, 2, ..., m, et ses poles
pi,t=1,2,...,n:

m

bo | I (Z — Zj)
( ) boz™ + blzm_1 +- b j=1

H Z) = =
" 2V +az" M tay -

(z —pi)
i=1
Le statisme doit étre nul, impliquant H,,,(1) = 1 (ex. 10.1). L’écart Y.(z) — Y (2)
entre la consigne Y.(z) et la sortie Y (z) du modele a poursuivre est, pour une
consigne en forme de rampe :
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hz
(T

D’ou, en faisant appel a la régle de Bernoulli-L’Hospital :
T (yo(k) — y(k) = lim (= = 1) (Ya(z) = Y (2)

= lim(z — 1)(2;?721)2 (1 - Hpn(2))

z—1
_ piim L fm(2)
z—1  z—1

= YVC(Z)(l - Hm(z)) = 1-— Hm(z))

Notons que :

d 1 dH,,(2)
— InH,(z) = o) =

dz

D’ou, en tenant compte de H,,,(1) = 1:

lim (ye(k) —y(k)) = —hlim Hm(z)i In H,,(z)

k— o0 dz
:—hhrri— In H,,(z)

m
H z— zj)
H Z_pz
d ) m n
= —higrria In by +Zln(z—zj) —gln(z—pi)

=1

> . - = : } (10.42)
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Les zéros zj, j = 1, 2, --- , m, du modéle a poursuivre H,,(z) doivent &tre sélec-
tionnés selon cette égalité si aucune trainée n’est tolérée ; la contrainte H,,(1) = 1

doit bien sir elle aussi étre vérifiée.

La relation (10.42) est trés pratique pour déterminer un seul zéro de B, (z).

Soit, sans perte de généralité, z; ce zéro et z;, j = 2, 3, ..., m, les autres zéros de
B,,(2);(10.42) s’écrit :

"1 1 U |
= +
gl—pi 1—2 Zz:l—zj
D’ou
1
21=1-— 0 - . (10.43)
i:ll_pi j=21_zj

ExXEMPLE 10.8

L’exemple 10.7 est repris avec la spécification supplémentaire d’une trainée
nulle. Un zéro z; est inclus dans le polynéme B/, (z), qui n’est dés lors plus un
nombre. Le modé¢le a poursuivre est maintenant :

(z — 21) 11j ¢
Hm(z) = W_’_C)Zl
Ici:
1+c¢ , 1+c¢

B (2) = (2—21) Am(2) = 29 (2 +¢)

B (2) = (z—21)

1 — 21 b(]. —Zl)

La contrainte H,,(1) = 1 est respectée; afin d’annuler la trainée, le zéro z; est
déterminé a I'aide de (10.43) :

1
d+
_ 1 _ 1+¢
n=1- i T i
d+1)— + —— 1+d+ ——
(+)1+1—|—c * +1+c

L’implantation est standard puisque 0A,, — dB,, = 0A — B = d + 1. Le degré
du polynoéme observateur vaut :

0Ag =20A—6A, —1=2(d+1)—(d+2)—-1=d—-1
D’ou le polyndme observateur a réponse pile :
Ap(z) = 2471

Il est facile de vérifier que les polyndmes R(z) et S(z) obtenus dans I’'exemple 10.7
ne sont pas modifiés. Par contre, le polynéme T'(z) devient :
1+4+c¢

T(z) = By, (2)Ao(2) = 247 (z — Zl)m -
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Ces résultats peuvent &tre généralisés a des consignes quelconques, mais
connues a I'avance. En fait, le théoréme suivant révéle que le polynéme B, (z)
fixant, en sus de I'incontournable polynéme B~ (z), les zéros du modéle a pour-

suivre peut étre calculé en résolvant une seconde équation diophantine.

Théoréme 10.5

Soit Y.(z) = B.(2)/Ac(2) la transformée en z rationnelle propre d’une consigne
connue. Son dénominateur est factorisé sous la forme A.(z) = Af (2)A; (2), ou
AT (2) est un polyndme monique dont les zéros sont a l'intérieur du cercle unité
et A_ (z) un polynéme dont les zéros sont sur ou a I'extérieur du cercle unité.
Les polynomes A.(z) et B.(z) nont aucun facteur commun (autre que numé-
rique), de méme que les polynomes A7 (z) et B~ (z). Soit B}, (z) un polynéme
satisfaisant I'équation diophantine :

AZ(2)X(2) + B (2)B,(2) = Am(2) (10.44)
Sous ces hypothéses :

Jim (ye(k) —y(k)) =0

Démonstration
En tenant compte de Y (2)/Ye(2) = B (2)/Am(2)

A (2)Ad

Afin de mettre a profit le théoréme 4.7 sur la valeur finale, il faut s’assurer que
les poles de cette expression posseédent des modules strictement plus petits que 1
(a I’éventuelle exception d un podle simple égal a 1). Tous les zéros de A4,,(z) et de
AT (z) sont a I'intérieur du cercle unité. Comme tous les zéros de A (z) sont sur
ou a ’extérieur du cercle unité, ces zéros doivent étre des zéros de A, (2) — By, (2)
pour disparaitre (A.(z) et B.(z), et par 1a A_ (z) et B.(z), n'ont aucun fac-
teur commun; par ailleurs, un éventuel zéro simple z = 1 dans A_ () nest
pas conservé car cela impliquerait limy .o (yc(k) — y(k)) # 0). Autrement dit,
Am(z) — Bn(z) doit étre égal a un polynéme A_ (z)X(z). Vu que By, (z) =
B~ (2)B.,(2):
Am(2) = B™(2)By,(2) = A; (2)X(2)

m

S+
—
N
~—
b
X
—
N
~—

Ou, les polynomes X (z) et B, (z) jouant le role des inconnues :
A (2)X(2) + B™(2) By, (2) = Am(2)

C
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Afin d’assurer une solution a cette équation diophantine, le plus grand commun
diviseur de A (z) et B~ (z) doit étre un facteur de A,,(z) (théoréme 10.1), condi-
tion vérifiée puisque A_ (z) et B~ (z) n’ont aucun facteur commun autre que nu-
mérique.
Le théoréme 4.7 conduit a :
(Am(z) — B, z))B(
A (2) AT (2)AZ (2)

A (2)X(2)Be(2)

Jim (ye(k) — y(k)) = lim (2 — 1)

= lim(z — 1)

=1 Am(z)A+(Z)Ac_(Z)

L (Z)B((Z)

=IO At o)

=0 u

Parmi toutes les solutions de I’équation diophantine (10.44), il en est une, a
degré minimal, vérifiant 6B, < dA, (§ 10.3.3). C’est la solution retenue par la
suite. Le théoréme suivant constitue alors une condition suffisante permettant de
respecter I'inégalité (10.29). Les inégalités (10.30) et (10.31) du théoréme 10.3 ne
mettent pas en jeu B,,(z) et ne requiérent de ce fait aucune retouche ; mais elles
doivent bien sir aussi étre satisfaites afin de garantir la causalité du régulateur
RST.

Théoréme 10.6

Si6A,, > 0A — 6B +5A; — 1, alors le polynéme de degré minimal B, ()
solution de I'équation diophantine (10.44) est tel que 6 A,, — 0B, > 0A — 0B,
assurant la causalité du régulateur RST.

Démonstration

La solution adoptée obéit a B, < A, ,oudB), <A, — 1. En tirant parti
de cette inégalité, 'hypothése du théoréme peut s’écrire :

6Am > 6A— 0BT +0A; —1
>0A— 6B +4B),
=06A— (6B* +dB7)+ 0B, + 6B~
Comme B(z) = BT (2)B™(z) et By, (z) = B~ (2)B.,(2) :
0A, >0A— 6B+ 6B,
Ou:

0A,, — 0B, > A — 6B ]

La solution a degré minimal vérifie § B!
fournit des informations plus précises.

7, < 0A- — 1. Le théoréme ci-apres
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Théoréme 10.7
Le polynéme B, (z) est de degré A, — 1 et unique.

Démonstration

La seconde équation diophantine (10.44) implique, en tenant compte de
B~ (2)Bl,(z) = Bn(2) :

§(A7X + Bp) = 6An, (10.45)

En outre, comme 0A,, — 0B,, > JA — dB (théoréme 10.6) et A > OB
(H(z) = B(z)/A(z) est strictement propre) :

0Am > 0By,
L’égalité (10.45) ne peut étre satisfaite que si :
0(A; X) > 0By, (10.46)

Le systéme linéaire (10.28), écrit sous la forme compacte Ma = ¢, comprend dés
lors 0A_ + 60X + 1 équations. Les inconnues, rassemblées dans le vecteur x, sont
les coefficients des polynomes X (z) et B],(z), au nombre de 6.X + 1 plus 6 B/, +1.
Supposons qu’il y ait plus d’équations que d’inconnues :

A, +0X +1>0X +1+46B), +1=0X+0B,, +2

Comme la seconde équation diophantine posséde au moins une solution (théo-
réme 10.1), cette hypothese est absurde ; en effet, le second membre ¢ étant quel-
conque puisque A,, (z) peut étre sélectionné librement, le rang de la matrice M ne
pourrait pas étre égal au rang de la matrice augmentée [ M ¢ ] (sect. IV.1). Donc
0A; +0X+1<6X+0B),+2,0udBl, >35A; —1.VuquedB,, € [0, A, —1],
on en conclut :

0B, =d6A; —1 (10.47)

Par ailleurs, I’égalité (10.47) est équivalente & A, +0X +1 =0X +0B),
+ 2 : le systeme d’équations Max = ¢ comprend le méme nombre d’équations et
d’inconnues ; la matrice M est ainsi carrée. L’existence d’au moins une solution
garantit que le rang de la matrice M soit égal a celui de [ M ¢ ]. Le vecteur ¢
étant quelconque, le rang de M vaut 6 X + 6 B!, + 2, égal au nombre d’inconnues,

m
démontrant 'unicité de la solution de Mx = c. [ |

Les relations (10.45) et (10.46) donnent 6(A_ X + B,,) = 6(A. X) = 6Am,
d’'oudA; +0X = JA,, et, finalement :

5X = A, — 6A; (10.48)

Lorsqu’une implantation standard du régulateur RST est souhaitée, il suffit
de remplacer I'inégalité formant I’hypothése du théoréme 10.6 par une égalité :

§A,, =8A— 0BT +5A; —1
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En effet, en reprenant la démonstration du théoréme 10.6, tout en sachant que
0B!, = 6A_, — 1, nous aboutissons & dA,, — 6B,, = §A — dB. Par contre, afin
de se placer dans la situation ou l'intégralité de la période d’échantillonnage est
consacrée aux calculs et aux conversions, il s’agit, dans le théoréme 10.6, d’échan-
ger son hypothese avec I’égalité :

§A, =6A— 0BT +6A;
Ce choix produit I’égalité désirée 6 A,,, — 6B,, = dA — B +1(§10.3.4).

ExempLE 10.9
Soit une consigne en forme de saut unité :
z

Y.(z) = po| Ac(z) =A () =2—1 B.(z) =z

Le polyndéme B/, (z) est de degré A, —1 =1 —1 = 0; c’est par conséquent un
nombre, solution de I’équation de Diophante :

(2= )X (2) + B~ (2)Bl, = An(2)
Avec z = 1, cette égalité fournit :

;o A (1)
Bm = 3-00)

Comme B~ (1)B), = Bn(1), on a B,,(1)/A,(1) = Hp,(1) = 1, résultat déja
trouvé dans 'exemple 10.1 et exploité a plusieurs reprises depuis lors.

ExempLE 10.10
Examinons a nouveau ’exemple 10.8, dans lequel :

hz

Ye(2) = Go1p

A(z) = A7 (2) = (2 —1)2 B.(z) = hz

Une implantation standard est recherchée, si bien que :

§A, =0A— 0BT +5A; —1=d+1-0+2—-1=d+2
Le polynéme A,,(z) de I'exemple 10.8 est retenu :

Am(2) = 2 (2 +¢)

Les degrés des polyndmes X (z) et B, (z) sont fixés par (10.48) et (10.47), respec-
tivement :

0X =0A, —0A, =d+2-2=4d

§B., =6A; —1=2-1=1
D’ou:

X(2) =wo2? + 212+ g

Bl (2) = bmgz + b,
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La seconde équation diophantine s’écrit, en se rappellant que B~ (2) = b:

(z = 1)2X(2) 4+ b(byyz + b, ) = 2471z + ¢)
Quand z = 1, cette égalité polynomiale donne :

b(bmg + bm,) =14c¢ (10.49)
De surcroit, en dérivant ses deux membres :

24X

2(z—1D)X(2)+ (2 —1) o

(2) + bby = (d + 1)2%(2 + ¢) + 271
En posant a nouveau z = 1:

bbm, = (d+1)(1+¢)+1
D’ou:

(14c¢)(1+d) +1
b

Par substitution dans (10.49) :

b =

1+c—bbyy, 14+c—(1+c)(1+d) —1 dl+c)+1
b, = - -
b b b
Finalement :
1 1 1 1 1
B;n(z):( +c)(b+d)+ Z_d( +bc)+

Un rapide examen révéle qu’il s’agit du polynéme By, (z) obtenu dans I'exemple
10.8; le régulateur RST déja dimensionné n’est pas altéré. |

Notons que le polynome T'(z) = B, (z)Ao(z) dépend de la consigne puisque
B! (2) est solution de I’équation diophantine (10.44), laquelle met en jeu le poly-
néme A_ (z) au dénominateur de ce signal. Un changement de consigne requiert
une adaptation du polyndéme T'(z). Ce probléme sera repris dans la section 12.4
consacrée aux régulateurs a gains programmes.

Une application relativement sophistiquée a été mentionnée dans ’exemple
1.41. C’est le moment de signaler que les résultats reportés dans la partie droite
de la figure 1.85 ont été obtenus avec des régulateurs RST mettant a profit les
méthodologies du présent paragraphe.

Quelques informations sur un régulateur trés particulier concluent le para-
graphe. Avant d’en parler, il est certainement utile de rappeler que les poles en
boucle fermée sont les zéros du polynéme caractéristique A(z)R(z)+ B(z)S(z) =
A (2)Ao(2)BT(z). Dans la fonction de transfert Y'(z)/Y.(z) en asservissement
et aprés simplification par les polynomes Ag(z) et BT (z), ces poles sont les zé-
ros de A,,(z); en rejet de perturbation, il y a simplification de la fonction de
transfert Y (z)/W (z) par BT (z) et les poles en boucle fermée sont les zéros de
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A (2)Ap(2); quant a la fonction de transfert U(z)/Y.(z) entre la consigne et la
commande, son dénominateur vaut, aprés simplification par Ag(z), 4., (2)BT(2)
(§ 10.3.2). Afin d’assurer un amortissement du régime transitoire le plus rapide
possible, ceci non seulement dans les trois fonctions de transfert qui viennent
d’étre rappelées, mais dans toutes les fonctions de transfert en boucle fermée, il
peut venir & I'esprit de sélectionner des polyndmes A,,(z), Ag(z) et BT (z) dont
les zéros sont tous nuls. Le plus souvent, B¥(z) = 1 car des zéros nuls dans le pro-
cessus a commander ne se rencontrent que rarement. En asservissement, le régime
transitoire de la grandeur commandée y(kh) est alors une somme pondérée et finie
d’impulsions unités apparaissant aux instants d’échantillonnage 0, h, ..., A, h
(§4.4.1); en rejet de perturbation, ces impulsions se manifestent jusqu’a (J4,, +
5Ag)h et, dans le signal de commande u(kh), jusqu’'a (§4,, + 6BT)h. Un ré-
gulateur RST caractérisé par A(z)R(z) + B(2)S(z) = An(2)A¢(2)BT(2) =
20Am+040+3BT ogt appelé régulateur RST a réponse pile. Signalons au passage
qu’un tel comportement ne peut pas exister en analogique puisque les modes, qui
sont des exponentielles, ne sont pas nuls aprés un temps fini. Par ailleurs, une si-
tuation spéciale se produit avec une consigne en forme de saut unité (64, = 1)
et sans simplification de zéros du systéme & commander (§BT = 0); le théoréme
10.6 fournit, pour une implantation standard :

§A,, =0A—0BT +5A; —1=6A-0+1-1=45A

En asservissement, les modes dans y(kh) sont donc nuls aprés 'instant § Ah, au-
trement dit aprés un nombre de coups d’horloge égal a I'ordre du processus a
commander ! Ceci n’est pas le cas en rejet de perturbation, entre autres, car le po-
lynéme observateur Ag(z), de degré 649 = dA + ¢ — 1 selon le théoreme 10.3,
n’est pas simplifi¢ dans la fonction de transfert Y (z)/W (z). Pour en terminer
avec les régulateurs a réponse pile, il est clair que les amplitudes de la grandeur
de commande sont potentiellement trés élevées étant donné que les modes sont
violemment amortis. Dans cette situation, il est tentant d’augmenter la période
d’échantillonnage h afin d’étendre les temps d’amortissement ; toutefois, le théo-
réme de Shannon peut ne plus étre respecté, provoquant lors de mesures bruitées
de la grandeur a commander un repliement spectral (sect. 6.3). Au surplus, des
perturbations analogiques affectant le systéme a commander sont mal rejetées
car leur effet n’est plus observé entre deux coups d’horloge. Finalement, les ré-
gulateurs a réponse pile souffrent d’une mauvaise robustesse. Leur déploiement
est des lors envisageable quand d’importantes amplitudes de la commande sont
tolérées, ou sans étre soumis a des perturbations, et en disposant d’une fine modé-
lisation du processus a commander. Ces circonstances se rencontrent notamment
dans certains entrainements électriques.

10.3.6 Algorithmes de synthése du régulateur RST

Un objectif du présent paragraphe est de résumer les résultats précédents sous
la forme de tableaux, tout en les enrichissant d’exemples illustratifs. Ces tableaux
montrent que la synthése d’un régulateur RST peut étre scindée en deux étapes
principales : calcul des polynomes R(z) et S(z) intervenant dans la boucle de
rétroaction, puis du polyndme 7'(z) extérieur a celle-ci.



Régulateur RST 45

On examine, pour commencer, le cas le plus simple ot aucun zéro du proces-
sus a commander n’est simplifié et sans effet intégrateur. Par conséquent :

Bt (z)=1 B™(z) = B(z)
B(z) est donc un facteur de B, (2) :
Bu(2) = B()Bl,(2)
En outre :
R(z) = R(z)
L’équation de Diophante s’écrit alors :
A(2)R(z) + B(2)S(z) = A (2)Ao(2)
Le dimensionnement du régulateur RST est consigné dans le tableau 10.1.

Tableau 10.1 Synthése du régulateur RST sans intégrateur et sans simplification de zéros
du systeme a commander.

Données
A(z) et B(z)

Spécifications
Am(z), Bm(z) et Ao(z)

Conditions

A(z) et B(z) n’ont aucun facteur commun
Bt(z)=1

Bu(2) = B(2)Bi(2)

0Apm —6Bm > 0A— 6B

0Ap >20A—0A, —1

OR=0Am +56A0 — A

085 =06A-1

Etape 1
Résoudre A(z)R(z) + B(z)S(z) = Am(2)Ao(2)

Etape 2
Calculer T'(z) = B, (2)Ao(2)

Dans ce tableau, et également dans les suivants, les degrés des polynomes
A (2), Bn(z) et Ag(z) dépendent des inégalités figurant dans la liste des condi-
tions; par spécifications, il faut comprendre la structure de ces polyndmes. En
guise d’exemple, c’est au stade des spécifications qu’un polynéme observateur
Ap(z) a réponse pile peut étre considéré. Au surplus, par souci de simplicité, le
calcul du polynéme B, (z) a I'aide d’une seconde équation diophantine n’appa-
rait pas explicitement.
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@ ExemPLE 10.11

Revenons a la commande en vitesse d’un entrainement déja abordé a plusieurs
reprises. Avec h = 0,025 s comme dans I'exemple 9.8, le processus a commander
est représenté par la fonction de transfert échantillonnée :

0,0975

H(z) = 505

Il s’agit de dimensionner un régulateur RST, pour le moment sans intégrateur, et
bien str sans simplification de zéro du systéme a commander puisque ce dernier
n’en possede point.

Ona:

A(z)=2-095  B(z)=0,0975 Bf(z)=1 B (z) =0,0975

La fonction de transfert H(z) contient le pole z = 0,95 relativement proche de 1.
En boucle ouverte, 'amortissement du régime transitoire est par conséquent de
qualité moyenne.

Sélectionnons un mode¢le a poursuivre selon les directives les plus simples du
paragraphe 10.3.5. Le polynéme P(z) est de degré 1 :

P(z)=z+c
Une condition absolue d’amortissement d’un facteur ¢ = 15 en k, = 5 coups
d’horloge est imposée (ex. 9.8) ; le zéro z = —c de P(z) doit ainsi étre égal a :
_Inil5
e 5 =0,58

Le numérateur du modéele a poursuivre est donc :

B P(1) 1-0,58
B,.(z)=B (Z)B—(l) =0,0975 00075 0,42
Et:
P(1)
/ _ _
B, (z) = B 4,31

On souhaite une implantation standard ; alors 6 A,, —0B,, = §A — 6B = 1, four-
nissant 0A4,, = 1; vu que P = 1, il n’est pas nécessaire d’insérer un polyndome
auxiliaire dans le modé¢le a poursuivre. Par conséquent, A,,(z) = z — 0,58 et :

0,42

Hin(2) = 0753

Qui plus est, avec ce type d’implantation :

§Ag=20A—6A, —1=2-1-1=0
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Nous avons :
OR=06A,,+0A)0—0A=1+0-1=0
0S5=0A-1=1-1=0

Ainsi :
R(z)=1 S(z) = so
Il en découle ’équation diophantine :
(z—0,95) -1 40,0975 59 = (2 — 0,58) - 1
Donc :
0,0975 59 — 0,95 = —0,58
Et:
so = 3,79
On calcule finalement T'(z) :
T(z) = B,,(2)Ao(z) =4,31-1
L’équation du régulateur RST, préte a étre codée, s’écrit alors :
u(k) = 4,31 y.(k) — 3,79 y(k)

Le systéme en boucle fermée est par conséquent décrit par le schéma fonctionnel
a trois branches de la figure 10.8.

+ U» 0,0975 Y(2)
Ye(z) — 4,31 ——>O—> 095
z—=U

3,79 [=—

Fig. 10.8 Commande RST de vitesse d’un entrainement.

Notons que la fonction de transfert en boucle fermée est :

0,0975

Y (2) _ 431 z—0,95 _ 0,42

Y.(2) 1+3.79 0,0975 z—0,58
z—0,95

Cette expression est égale a H,,,(z), comme il se doit.
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@ ExempLE 10.12
L’entrainement de I'exemple précédent est maintenant commandé en posi-
tion. Avec h = 0,025 s, sa fonction de transfert échantillonnée est (ex. 5.1) :
107%(1,232+1,21)  1,23-10%(z + 0,98)
22 -1,9524+095  (z—1)(z —0,95)

H(z) =

Un régulateur RST sans intégrateur est synthétisé. Le zéro du systéme a comman-
der vaut z = —0,98; bien qu’a 'intérieur du cercle unité, il est trop proche de —1
pour étre simplifié.

Vu I'importance pratique de cet exemple, nous le traitons symboliquement en
posant :

bo(z +b)
(z=1)(z —p)

Le pole p et le zéro —b vérifient 0 < p < let —1 < —b < 0, respectivement ; en
outre, bp > 0.0On a:

H(z)=

A(z) = (z=1)(z —p) B(z) = bo(z + b)
Aucune simplification de zéro n’est souhaitable; ainsi :
Bt (z)=1 B7(z) =bo(z+b)

Le modéele a poursuivre le plus simple du paragraphe 10.3.5 est tout d’abord
choisi, avec un polynéme P(z) de degré 2 :

P(z) =22+ c1z+c
Le numérateur du modéle a poursuivre s’écrit :

14+c1 4+ e 1+c1+ceo
=b b = b
oz + 05 T Trp G0

Et:

P(l) . 1+c1+co
B(1)  b(+b)

By, (2) =

Une implantation standard est spécifiée ; donc 6 A,,, — 0B,, = 64 — 6B = 1, don-
nant §A,, = 2; comme JP = 2, il n’est pas nécessaire d’incorporer un polynome
auxiliaire dans le modéle & poursuivre. Alors A,,(z) = 22 + c12 + co et :

Ho(2) 1+c1+co z+b
m(2) = .
1+b 22+012+CQ

Avec cette fagon de réaliser le régulateur :

0Ag=20A—-0A,—-1=4-2-1=1
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Un polynoéme observateur pas forcément a réponse pile est considéré :
Ao(z) =z+a
De surcroit :

OR=0A,, +0Ag—0A=2+1-2=1
0S=0A-1=2-1=1

Par conséquent :

R(z)=z+mr S(z) = soz + s1
D’ou I’équation diophantine :

(z—=1)(z = p)(z +71) + bo(z + b) (502 + 51) = (22 + c12 + ¢2) (2 + a)
Ou:

(22 = (1 +p)z +p)(z +71) + (boz + bbo) (502 + 51)
=22+ (a+c1)2® + (acy + c2)z + acy

La matrice de Sylvester associée a cette équation est d’ordre 6R + 65 + 2 =
1+1+2=4:

1 0 0 0 0 1
—(1+p) 1 bp O r1 a+ac
= 10.
p —(]. +p) bb() bo S0 acy + Co ( 0 50)
0 P 0 bbby s1 acs

La premicre équation fournit rg = 1, comme il se doit (§ 10.3.4). Finalement :

T(2) = B (2)A0fz) = i (24 a)

14citco

En pOsant tg = To(110)

et t; = tpa, on a I'équation du régulateur RST :
(z+11)U(2) = (toz +t1)Ye(2) — (s02 + 51)Y (%)
D’ou:
(1+rig Du(k) = (to + t1g~ ye(k) — (so + s1q~ y(k)
Il en résulte la relation suivante, préte a étre codée :
u(k) = —riu(k — 1) 4+ toye(k) + trye(k — 1) — soy(k) — s1y(k — 1)
Traitons I’application numérique p = 0,95, by = 1,23 - 102 et b = 0,98. Par

ailleurs, a = —0,5 (fig. 10.9) : le polyndme observateur n’est pas a réponse pile.
Tout en imposant une condition relative d’amortissement d’un facteur 535 en une
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Fig. 10.9 Zéros des polyndmes A, (z) et Ag(z).

oscillation, le module des zéros de A,,(z) est pris égal a 0,9; cela conduit aux
zéros (poles en boucle fermeée) 0,89 + j 0,09 (fig. 10.9).

La résolution de (10.50) débouche sur le polynome R(z) = z — 0,38 : dans cet
exemple, les fonctions de transfert S(z)/R(z) et T(z)/R(z) jouissent de la pro-
priété de stabilité. La réponse indicielle en boucle fermée, ainsi que la grandeur de
commande, sont reportées dans la figure 10.10. Une rapide analyse de la robus-
tesse (§ 10.3.1) méne a la marge de gain 22,1 dB et a la marge de phase 58°.

Comme il ressort de la partie supérieure de la figure 10.11, le régulateur RST
dimensionné dans les lignes précédentes ne parvient pas a éliminer la trainée. Le
polynome T'(z) est maintenant modifié afin de corriger ce défaut.

La grandeur de consigne est :

hz

L’implantation est standard, de sorte que :
§Apm =6A—0BT +6A; —1=2-0+2-1=3

Le polynome A,,(z) est constitué du polyndme 22 + ¢z + c2, comme ci-dessus,
auquel est adjoint le polyndme auxiliaire z + ¢ :

An(2) = (24 )(2% + c12 + ¢2)
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T ™ t[s]
1,5 2

0,5 4

0,5

T — t[s]
1,5 2

Fig. 10.10 Grandeur de commande et réponse indicielle en boucle fermée d’un entraine-
ment commandé par un régulateur RST sans simplification du zéro du processus & com-

mander.

Les degrés des polyndmes X (z) et By, (z) découlent de (10.48) et (10.47), respec-

tivement :

5X = 6A, —6A; =3-2=1

0B, =0A; —1=2-1=1

D’ou:

X(z)=zoz+ 11
Bl (2) = bmgz + b,
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La seconde équation diophantine s’écrit :

(z = 1)2(z0z + x1) 4 bo(2 + 0) (byng 2 + bm,) = (2 + ¢) (22 + c12 + ¢2)
Ou:

(2% =224+ 1)(20z + 21) + (boz + bbo) (g 2 + bim,)
=234 (c+c1)2% + (ce1 + )z + cen

La matrice de Sylvester liée a cette équation est d’ordre X + dB

L2 =
1+1+2=4:
1 0 0 0 o 1
-2 1 bo 0 T c+c
1 -2 bb() b() bmo ccy + co (1051)
0 1 0 bb() bm1 CCo

Le degré du polyndme observateur passe a zéro :
§Ag=20A —6A, —1=4-3-1=0

Et:

Ao(z) =1

Les polynémes R(z) et S(z) déja obtenus demeurent les mémes, pour autant que
le polyndme auxiliaire z + ¢ soit égal a ’ancien polyndme observateur z + a,

autrement dit si ¢ = ¢. Quant au polyndéme T'(z), il devient :

T(z)

B:n(z)AO(Z) = B:n(z) = meZ + bml

Soit le cas concret deja considéré dans la premiere partie de 'exemple. Le zéro

supplémentaire incorporé dans le modele a poursuivre, découlant de (10.51) (ou
de la formule (10.43)), vaut —by,, /bm, = 0,919, si bien que :

0,062 (2 + 0,98)(z — 0,919
Ho(2) = ( ) )

(z—0,5)(z — 0,89 — j0,09)(z — 0,89 + j0,09)
0,062 (= +0,98)(z — 0,919)

(z—10,5)(22—-1,78 24 0,8)

La partie inférieure de la figure 10.11 montre clairement que ’ajout de ce zéro
annule la trainée.
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[rad]
A
2
yc(t)
1 -
y(t)
T T T T > ¢ [s]
0,5 1 1,5 2
[rad]
A
2 4
1 —
ye(t)
y(t)
T T T — {[s]
0,5 1 1,5 2

Fig. 10.11 Réponses & une rampe en boucle fermée d’un entrainement commandé par un
régulateur RST sans et avec zéro supplémentaire dans le modéle a poursuivre.

Examinons maintenant la situation, toujours sans intégrateur, ou il s’agit de
provoquer une simplification de zéros du processus a commander, zéros appar-
tenant a la région en tramé de la figure 10.7. C’est alors le polyndome R(z) qui
doit étre déterminé a I’aide de I’équation de Diophante, et non pas R(z) comme
dans Palgorithme précédent. Vu que R(z) = B (2)R(z), le degré de R(z) vaut
dR — 6B : il est inférieur a celui de R et le nombre de coefficients & déterminer
passe & 6R + 0 + 2, inférieur & SR + 6.5 + 2. La résolution de I’équation de Dio-
phante est de la sorte moins gourmande en temps de calcul, ce qui est appréciable



54 Synthése algébrique du régulateur RST

notamment lors de la mise en ceuvre en temps réel de la synthése du régulateur
dans un schéma de commande adaptative (chap. 12). Au surplus, il est possible
de déterminer, en fonction de la position des zéros en boucle fermée, des bornes
sur le nombre d’extrema de la grandeur commandée. Ces bornes peuvent dans
certains cas €tre mises a profit pour garantir ’absence de dépassement de la va-
leur de consigne. Un moyen potentiel d’aboutir aux bornes souhaitées consiste a
éliminer les zéros génants en les incorporant dans le polyndome BT (z).

Le dimensionnement du régulateur RST avec simplification de zéros, sans in-
tégrateur, est résumé dans le tableau 10.2.

Tableau 10.2 Synthése du régulateur RST sans intégrateur dans le cas ot il y a
simplification de zéros du systéme a commander.

Données
A(z) et B(z)

Spécifications
Am, (Z), Bm, (Z) et AO (Z)

Conditions
A(z) et B(z) n’ont aucun facteur commun

Les zéros de B (z) appartiennent a la région
en tramé de la figure 10.7

Bin(z) = B~ (2)Bn(2)

85A,, — 6By > 6A— 6B

A0 >28A—5A, —6BT —1
OR = 0Ay, +6Ag — 5A

§S=06A-1

Etape 1

Effectuer la factorisation B(z) = BT (2)B~ (z)
Etape 2

Résoudre A(z)R(z) + B~ (2)S(z) = Am(2)Ao(z)
Etape 3

Calculer R(z) = BT (2)R(z) et T(z) = B, (2)Ao(z)

@ ExemMPLE 10.13

On reprend ici ’entrainement de I’exemple précédent, mais en commettant la
maladresse de simplifier le zéro z = —b = —0,98 proche de —1, maladresse qui
n’est pas fatale en soi puisque ce zéro est a I'intérieur du cercle unité. Maintenant :

Bt (z)=z+b B~ (z) =bg
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Le modéle a poursuivre est sélectionné selon les directives du paragraphe
10.3.5, avec un polyndéme P(z) de degré 1 :

P(z)=z+c

D’ou le numérateur du modéle a poursuivre :

REEP Y. I NS ET
Et:
/ . P(].) . 1+¢
BnL(Z) - B_(l) — bo

Dans une implantation standard, nous avons 6 A4,, — dB,, = A — 0B =1, d’ou
0A,, = 1;avec 6P = 1, il ne faut pas insérer un polynome auxiliaire dans le
modele a poursuivre. Par conséquent, A,,,(z) = z+ cet :

1+c¢
Hm(z):2+c

Avec cette maniére d’implanter le régulateur :

649 =28A—0A, — 6Bt —1=4-1-1-1=1
Soit le polyndme observateur :

Ao(z) =z+a
En outre :

SR=0A,,+0A4;—0A=1+1-2=0
§58=64—-1=2-1=1

Ainsi :
R(z)=1 S(z) = soz + s1
L’équation diophantine s’écrit :
(z=1)(z—p) - 1+bo(soz+s1) =(2+c)(z+a) (10.52)
Cette équation donne, en posant successivement z = letz =p:
bo(so +s1)=(1+¢)(1+a)
{bo(SOP +s1)=@+c)(p+a)

On en déduit facilement :

l+a+4+c+p ac—p
sg= ——— $1
bo bo
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Finalement :
R(z) =BT (2)R(z) =z +b
1+c
bo

Avec tg = lbt € et t; = tpa, nous aboutissons au régulateur RST :

(z+b)U(2) = (toz +t1)Ye(2) — (s02 + 51)Y (2)
Alors :
(1+bg "u(k) = (to +trg™ ye(k) — (s0 + 519~ y(k)

T(z) = By,(2)Ao(2) =

(z+a)

u(t) [V]

80 MNn
40 A
20 +
.

—20

—40 - i

—60 - UU=

—80 T T T > ¢ [s]

yczl AATA A o o

0,5

T T T > ¢ [s]
0,5 1 1,5

Fig. 10.12 Grandeur de commande et réponse indicielle en boucle fermée d’un entraine-
ment commandé par un régulateur RST avec simplification du zéro du processus a com-
mander.
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L’équation a coder est donc :
u(k) = —bu(k — 1) + toye(k) + t1yc(k — 1) — soy(k) — s1y(k — 1)

La réponse indicielle en boucle fermée et la grandeur de commande sont tra-
cées dans la figure 10.12, dans le cas p = 0,95, by = 1,23 - 1073, b = 0,98,
a = —0,5et ¢ = —0,9. Comme cela est précisé dans le paragraphe 10.3.2, le
polynéme B (z) = z + 0,98 se retrouve intact au dénominateur de la fonction de
transfert U(z)/Ye(2) : le mode sonnette (—0,98)%, k > 0, qui en résulte provoque
une forte agitation de la grandeur de commande ; qui plus est, ce mode sonnette
est mal amorti puisque —0,98 est proche de —1; apres filtrage par le processus a
commander, I’agitation due au mode sonnette se retrouve sous la forme de légeres
oscillations affectant la grandeur commandée entre les instants d’échantillonnage
(§10.3.2). [ |

Un cas extréme de I’algorithme précédent se produit quand tous les zéros du
systéme a commander sont simplifiés. Ceci n’est possible qu’a la condition ex-
presse qu’ils soient a I'intérieur du cercle unité, ou mieux qu’ils appartiennent a la
région en tramé de la figure 10.7. Donc :

Bt (z) = blB(Z) B (z) = b
0

Le nombre b est le coefficient dans le terme de plus grand degré dans le polynome
B(z). Par conséquent :

B (2) = boB,,(2)
L’équation de Diophante a résoudre est ainsi :

A(z)R(2) + b S(2) = A (2)Ao(2)

Comme 6 B~ = 0, nous constatons que la matrice de Sylvester du systéme d’équa-
tions algébriques linéaires (10.28) est triangulaire :

) 0o ... 0 0 0 ... 07
o a i . .
as a1 - 0

az - a 0 0 .0

asA . ap bg O .0

0 asa - a 0 by - O
L0 0 ...oaa 0 0 ... b

La solution de I’équation diophantine est alors immédiate. Cette situation est
consignée dans le tableau 10.3.
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Tableau 10.3 Synthése du régulateur RST sans intégrateur dans le cas ou tous les zéros
du systéme a commander sont simplifiés.

Données
A(z) et B(z)

Spécifications
Am(z), Bm(z) et Ao(z)

Conditions

A(z) et B(z) n’ont aucun facteur commun
Les zéros de B(z) appartiennent a la région
en tramé de la figure 10.7

B (2) = boB,,(2)

0Am — 6By > A — 6B

0Ag > 20A—6A,, — 6B —1

SR =6Am +0A0 — 5A

55 = 6A—1
Etape 1

Résoudre A(z)R(z) 4+ boS(2z) = Am(z)Ao(2)

Etape 2

Caleuler R(2) = — B(2)B(2) et T(2) = Bla(2)Ao(2)

=

ExempPLE 10.14

Dans ’'exemple précédent, le seul zéro du systéme a commander est simplifié.
L’équation diophantine (10.52) peut étre mise sous la forme suivante :

(22 = (1 +p)z+p) +bo(soz + s1) = 2> + (a+ ¢)z + ac

La matrice de Sylvester qui lui est attachée est triangulaire et d’ordre 6 R+55+2 =
0+1+2=3:

1 0 0 70 1
—(14+p) by O so | =] a+c
p 0 bo 51 ac

La premiere équation fournit évidemment ro = 1; les deux derniéres donnent :

l+a+c+p ac—p
= - 81: -
bo bo

S0
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On traite finalement le cas ou un intégrateur est incorporé dans le régulateur
RST; une simplification de zéros du processus a commander est admise, couvrant
de la sorte les situations extrémes ou il n’y a aucune simplification et ou tous ces
zéros sont simplifiés. Le dimensionnement est résumé dans le tableau 10.4.

Tableau 10.4 Synthése du régulateur RST avec intégrateur dans le cas ou il y a
simplification de zéros du systéme a commander.

Données
A(z) et B(z)

Spécifications
Am,(z), Bm, (Z) et AO (Z)

Conditions

A(z) et B(z) n’ont aucun facteur commun
Les zéros de B (z) appartiennent a la région
en tramé de la figure 10.7

Bu() = B~(2)Bju(2)

0Am —0Bm > 0A— 6B

§Ag >26A—6A, —dBT +4 -1

SR = 6Am + 040 —6A— ¢

0S =0A+1-1

Etape 1

Effectuer la factorisation B(z) = B1(2)B™ (z)

Etape 2

Résoudre A(z)(z — 1)*R/(z) + B~ (2)S(2) = Am(2)Ao(z)
Etape 3

Calculer R(2) = (z — 1)*BT(2)R'(2) et T(2) = B}, (2)Ao(2)

ExemMPLE 10.15

Revenons a la commande de la vitesse d’un entrainement (ex. 10.11), perturbé
maintenant par un couple résistant constant. Cette perturbation agit de fagon ad-
ditive en amont du systéme a commander, comme cela est représenté dans figure
10.4 (voir aussi a ce sujet 'exemple 7.18). Afin de la rejeter, on insére un intégra-
teur de type £ = 1. Donc :

0Ag=23A—0An+0—-1=2-141-1=1
Avec un polynome observateur a réponse pile :

Ao(z) =2

&
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Par ailleurs, en tenant compte du fait qu’ici R'(z) = R'(z) puisque B*(z) = 1:

SR =6A, +040—0A—(=1+1-1-1=0
0S=0A+¢—-1=1+1-1=1

Par conséquent :
R'(z)=1 S(z) = soz + s1
L’équation diophantine s’écrit :
(z—10,95)(z — 1) - 14+ 0,0975(s0z + s1) = (2 — 0,58) 2
Ainsi :
224+ (=1 —0,95+0,097550)z + 0,95 + 0,0975 51 = 2% — 0,58 2
Ou:

0,0975 so = —0,58 — (—1,95)
0,0975 s; = —0,95

Alors :
so = 14,05 s1=—9,74
Et:
T(z) = B,,(2)Ao(z) = 4,312
Il en résulte I'équation du régulateur RST :
(z—=1)-1-U(z) =4,312Yc(z) — (14,05 z — 9,74)Y (2)
Donc:
(1—q Yu(k) = 4,31 ye(k) — (14,05 — 9,74 ¢~ ")y (k)
Le code se fonde directement sur 1’équation :

u(k) = u(k — 1) + 4,31 y.(k) — 14,05 y(k) + 9,74 y(k — 1)

10.4 Commentaires

10.4.1 Influence d’un intégrateur

Comme nous I’avons vu dans la section 10.2, I’effet majeur d’un intégrateur
est de rejeter des perturbations; la sensibilité a basse fréquence est de surcroit
amoindrie (§ 10.3.1).
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Il existe deux différences importantes entre un intégrateur incorporé dans un
régulateur RST et le terme intégral placé dans une architecture classique, par
exemple un régulateur PID numérique.

La premiére réside dans le fait qu’un intégrateur dans un régulateur RST n’éli-
mine pas forcément des écarts permanents d’asservissement. En effet, si le modéle
a poursuivre n’est pas choisi de sorte que limy o (yc(k) — y(k)) = 0, cet écart
permanent se transmet tel quel sur le systéme en boucle fermée, comme on I'a
relevé dans le paragraphe 10.3.1.

En outre, I'introduction d’un terme intégral dans un régulateur classique af-
fecte généralement le montage en asservissement. Ce n’est théoriquement pas le
cas en insérant un intégrateur dans un régulateur RST puisque seul le modéle a
poursuivre fige le comportement en asservissement.

ExeMPLE 10.16

L’introduction, dans ’exemple 10.15, d’un intégrateur dans le régulateur RST
de 'exemple 10.11 ne modifie théoriquement pas le comportement en asservisse-

ment, complétement fixé par le modéle a poursuivre Hp, (2) = 225 [ |

Toutefois, il découle du critére de Nyquist que les marges de stabilité s’ame-
nuisent avec I'ajout d’intégrateurs. Par ailleurs, quand le modeéle nominal H(z) =
B(z)/A(z) du processus a commander employé dans la synthése du régulateur
RST différe du systéme a commander réel H°(z) = B%(z)/A%(z), le théoréme
10.1 montre que, avec R(z) = (z — 1)*R/(2), la fonction de transfert en boucle
fermée s’écrit :

H,,(z)

— 1 1 B~ (2)
1+ (2= 1)°'R'(2) (HO(Z) - H(z)) Am(2)Ao(2)

11 est clair que, si £ > 0, la différence H+(2) - ﬁ provenant des erreurs de modé-
lisation est en quelque sorte gommée quand z tend vers 1 : le facteur multipliant
le modele a poursuivre H,,(z) devient égal a I'unité. Ce résultat est couramment
mis a profit pour éliminer de petits écarts permanents dus aux erreurs de modéli-
sation. Nous en concluons que des effets intégrateurs peuvent agir favorablement
sur le montage en asservissement.

Dans le détail, lorsque H%(z) # H(z), un calcul de I’écart entre la consigne
Y.(z) = B.(z)/A.(z) et la grandeur a commander Y (z) fournit (voir a ce sujet le
théoréme 10.5 et sa démonstration) :
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Am(2) = B (2) + (2 = 1)'R'(2) (Hol(z) - H?z)) ii(Z) B.(2)
1 1 ) B~ () A2

En tirant parti du théoréme 10.5, on sait que le polynéme B,,(z) est tel que
A (z) — Bi(2) est égal & un polyndme A (2)X(z), ou A; (z) apparait dans
la factorisation spectrale A.(z) = A} (2)A, (2) :

An(2) + (=~ 'R(2) (

ExeEmMPLE 10.17

Soit une consigne en forme de saut unité :

V= A=A G =m1 B =
Alors :
ILH;O (ye(k) — y(k))

| (z=1X(2)+ (2= 1)'R'(2) (Hol(z) - th)) io(zz)) z

zzllgll(z_l) . 1 1 B~ (2) z—1
Am(z) + (Z - 1) R (Z) (HO(Z) B H(Z) AO(Z)
(== DX(2) + (z = )R'(2) (Hol(z) B th)) io((zz))

= lim

lim ) 1 1 B (z

An(2) + (2 = )R (2) (HO(@ ~a6) T
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Si le processus a commander renferme un intégrateur, mais que le régulateur RST
n’en posséde point (¢ = 0), cette limite est manifestement nulle. Par contre, si le
systéme a commander ne contient aucun intégrateur, il est nécessaire d’avoir £ > 1
afin d’éliminer le statisme d’asservissement.

ExempLE 10.18
Considérons maintenant une consigne en forme de rampe discréte :
hz

(z-1)

Par conséquent :

Jim (ye(k) = y(k))

Y.(2) = Ac(z) = A7 (2) = (2 — 1)? B.(z) = hz

(2 — 12X (2) + (= - D'R() (

= lim(z - 1) 1 RO
Am(2) + (= = )R (2) (HO(Z) - H(Z)) AO((Z)) | |
(z—1)2X(2) + (z — 1)*R/(2) (Hol(z) - HL)) io((zz)) h
= lim |
lim / 1 1 B (z z—1
Am(2) + (= 1)'R'(2) (Ho(z) - H(Z)) Ao((z))

Un rapide examen de cette expression fait ressortir qu’une trainée existe quand
la boucle n’inclut qu’un intégrateur, a savoir un intégrateur dans le processus a
commander et £ = 0 ou aucun intégrateur dans le systéme a commander et £ = 1.
On note aussi que la trainée disparait avec deux intégrateurs dans la boucle. W

Le probléme de 'emballement discuté dans le contexte de I’algorithme PID
est toujours d’actualité lorsque le régulateur RST inclut un ou plusieurs intégra-
teurs (¢ > 0). Des mesures drastiques s’imposent pour en atténuer les consé-
quences. Pous ce faire, nous pouvons nous inspirer des techniques développées
dans le paragraphe 8.3.5. Seule la mesure anti-emballement illustrée sous forme
de schéma fonctionnel dans la figure 8.22 est maintenant reprise.

Pour une meilleure lisibilité, on consideére un régulateur RST incluant ¢ =
1 effet intégrateur et dont ses polyndmes sont exprimés en puissances négatives
de z :

(1= 2" HR(2)U(2) = T(2)Ye(2) = S(2)Y (2)

Ou:
T(2) S(z)
Ve =g rm ¥ - a—orm ' @
Posons :
/ T(2) S(z)
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1 !
U(z) = 1.1 U'(2)
Comme cela est mis en évidence dans la figure 10.13, un élément non linéaire de
type saturation délivre la grandeur de commande effective u.(kh) au processus a
commander H (z).

Ye(z) © Ue(2) Y(z)
—_— H(z)
—p
SG) |o
R/ (2)

Fig. 10.13 Mesure anti-emballement du régulateur RST.

Le degré d’incursion dans la saturation est quantifié par le signal u — u(kh) si
u(kh) > pet —pu — u(kh) si u(kh) < —p; ce signal, amplifié par le gain K orw,
est adjoint a 'entrée de I'intégrateur afin, en quelque sorte, de le « vider » quand
il y a saturation. Tout se passe alors comme si une consigne +p constante était
assignée a u(kh) (fig. 10.14).

U'(2)

z + 1
il‘z 1 1K ARW > > U(2)

Fig. 10.14 Mesure anti-emballement vue comme un montage a rétroaction.

La fonction de transfert en boucle fermée (asservissement) est :
Karwz
Z(l + KARW) -1
Son pdle vaut :
1
1+ Karw
On peut aisément régler ce pole a ’aide du paramétre K ogwy .

€1]0,1]
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Le code du régulateur RST équipé de la mesure anti-emballement consiste
a évaluer v/ (kh) sur la base de I’équation R'(2)U’(z) = T(2)Y.(2) — S(2)Y (2),
puis, comme (1 — 2~ HU(2) = U’(z), a calculer u(kh) = u(kh — h) + u'(kh);
ensuite, avant la conversion digital-analogique, il s’agit d’insérer les instructions
suivantes recalculant un nouvel échantillon w(kh) s’il y a saturation :

ulloh) = u(kh — h) + ' (kh) + Kapw (1 — u(kh)) siu(kh) > u
u(kh — h) + ' (kh) + Kagw (—p — u(kh))  siu(kh) < —p

La valeur p de la saturation doit étre connue, contrairement au signal u.(kh).

10.4.2 Amplitudes de la grandeur de commande

L’intuition suggere que les amplitudes de la grandeur de commande sont
d’autant plus importantes que la bande passante en boucle fermée est grande.
Une analyse quantitative s’effectue en relevant que :

;:c((z)) = Hm(z)
Qui plus est :
Y(2) ;

La fonction de transfert liant la consigne Y.(z) a la grandeur de commande U(2)
est ainsi H,,(z)/H(z). Posons z = e“" pour se placer en régime harmonique. Le
module |H,, (e")/H (e3*")| est égal au quotient des amplitudes de la grandeur
de commande et de la grandeur de consigne. Ce quotient est particulierement
bien mis en évidence dans un diagramme de Bode, comme cela est illustré dans la
figure 10.15.

Soit wy, la pulsation de coupure en boucle fermée, qui fixe la bande passante
[0, wp]. Pour des consignes dont la pulsation se rapproche de w;, ’amplifica-
tion |Hp, (ei") /H ()| peut étre significative, provoquant de larges amplitudes
de la grandeur de commande. Cette amplification augmente nettement avec la
pulsation de coupure wy.
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[dB]

[H (e

Hm(ejwh)
H(ejwh)

-3 4

Hm(ej“’h)

- 1
H(ejwh) >

Fig. 10.15 Fonctions de transfert harmoniques | H (e’“")| du processus & commander et
du mode¢le a poursuivre |Hm(ejWh) ; en décibels, le quotient |Hm(ej“’h)/H(ejWh)| est la

différence entre | Hy, (e7°") | et | H (e ")|.

10.5 Variantes du régulateur RST

10.5.1 Mise en évidence de la commande a priori

Le régulateur RST peut étre mis sous une forme intéressante mettant claire-
ment en évidence une commande a priori. Pour ce faire, on démontre le résultat
suivant.

Théoréme 10.8

Soit Yy, (2) = JjLEZZg Y.(2) la sortie du modéle a poursuivre. La grandeur de

commande délivrée par un régulateur RST s’écrit alors :

Démonstration
En exploitant (10.10), (10.12), (10.13), (10.14) et (10.15) :

T(z) _ Bn(2)40(z) _ Am(2)A0(2)B,,(2)

R(z)  B*(2)R(z)  An(2)Bt(2)R(z)

(A(2)R(z) + B~ (2)5(2)) By, (2)
Am(2) B+ (2)R(2)
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_ m )
-~ B*(2)Am(z) Bt (2)R(2)An
_ AR)B(2)B,,(2) | S(z)B(
B*(2)B~(2)Am(2)  BF(2)R(
_ A(2)Bn(z)  S(2)Bm(z)
B(2)Am(z)  R(2)Am(2)
La grandeur de commande (10.4) générée par le régulateur RST devient donc :

A(z)B;,(2)  S(z)B~(2)B],(=
(

_T(z) 5(2)
_ A(2) . B,.(z) . S(z) [ Bm(2) V(s
- B(z) Am(z) YC( )+ R(Z) (Am(z) YC( ) Y( )>
Vu que Y, (2) = ig% Y.(2), le théoréme est démontré. [ |

Avec un intégrateur, il s’agit de poser R(2) = (z — 1)*R/(z). Le résultat est
illustré dans la figure 10.16.

A(z)
B(z)

5(2) + B |Y(&)
R(z) A(2)

B (2)
Am(2)

Ye(z) ——

Fig. 10.16 Régulateur RST faisant ressortir la commande a priori ggz; Y (2).

Le régulateur RST renferme par conséquent une commande a priori telle que
définie dans la section 9.10 (voir entre autres la figure 9.65). Le filtre H,,(z) a
maintenant une signification limpide : c’est le modele a poursuivre. La sélection
de H,,(z), par exemple ses zéros, est dictée par les développements du paragraphe
10.3.5. Afin d’assurer d’une part la causalité et d’autre part la stabilité BIBO de
la fonction de transfert engendrant la commande a priori, le schéma fonctionnel
de la figure 10.16 est bien évidemment mis sous la forme équivalente apparaissant
dans la figure 10.17 (sect. 9.10).

Le régulateur RST peut étre codé suivant la variante illustrée dans la figure
10.17, plutot que directement a partir de I'équation R(z)U(z) = T'(2)Ye(z) —
S(2)Y (z) (sect. 10.2). Il est clair que, dans cette derniére équation, la commande a
priori existe, mais n’apparait pas sous une forme explicite. Au surplus, la fonction
de transfert fournissant la commande a priori peut étre exprimée en fonction du
polynome T'(z) ; en effet, comme T'(z) = B}, (2)Ao(2) :

Bn(2)A(z) _ _ T(R)A()
Am(2)B*(2)  Am(2)A0(2) B (2)




68 Variantes du régulateur RST

By, (2)A(2)
Am(z)Bt(2)
Bn()] £ S(2) | B | Y@
Yc(z) o Am(z) Ym(Z) _ R(Z) + U(Z) A(Z)

Fig. 10.17 Régulateur RST réalisable faisant ressortir la commande a priori
B ()AG) y (3
Am(2)BT(2) “ /"

10.5.2 Simplification de poles et de zéros

Dans le paragraphe 10.3.2 consacré a I'imposition d’un modé¢le a poursuivre,
le polynome B(z) constituant le numérateur du systeme a commander H(z) =
B(z)/A(2) est factorisé sous la forme B(z) = BT (2)B~(z); le polyndome B*(z)
est un facteur du polynome caractéristique en boucle fermée A(z)R(z)+B(2)S(z)
afin de se simplifier. En sus, il est parfois souhaitable d’éliminer des zéros inclus
dans le dénominateur A(z), autrement dit des poles de H(z). Pour ce faire, le
polynome A(z) est lui aussi soumis & une factorisation spectrale :

A(z) = AT(2)A™ (2)

Le polyndme AT (z) est monique et ses zéros sont impérativement a I'intérieur
du cercle unité, ou mieux dans une région telle que celle en tramé dans la figure
10.7. Reprenons sur cette base le raisonnement du paragraphe 10.3.2, en partant
de I’équation (10.11) :
BF(2)B~(2)T(2) _ Bu(2)
A+t(2)A=(2)R(2) + B(2)S(2)  An(2)
Les zéros de AT (z) doivent tous étre des zéros de AT (2)A~ (2)R(z) + B(2)S(z)
afin de provoquer la simplification désirée. Comme aucun zéro de A™(z) n’est zéro
de B(z) puisque A(z) = AT (2)A™ (z) et B(z) n’ont pas de facteur commun, tous
les zéros de A™ (z) sont des zéros de S(z). Le polyndme AT (z) est alors un facteur
de S(z) :

S(z) = AT(2)S(2) (10.54)

(10.53)

Par ailleurs, tous les zéros de A1 (z) doivent également étre des zéros du numéra-
teur BT (2)B~(2)T(z), a nouveau dans le but de réaliser la simplification voulue.
Pour la méme raison qu’avant, il faut que A (z) soit un facteur de T'(z) :

T(z) = AT(2)T(2) (10.55)
La relation (10.53) devient, aprés substitution de (10.12), (10.13), (10.54) et (10.55) :
B*(2)B~(2)A* (2)T(2) _ B (2)B,,(2)

B+(2)A* () (A~ (2)R(2) + B~ ()S(2)) A (2)
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En simplifiant :

T(z) By, (2)
A= (2)R(2) + B=(2)S(z) An(2)

D’ou, en introduisant un polynéme observateur Ay(z) monique :

T(2) = Bly(2) A ()
A7 (2)R(2) + B~ (2)S(2) = Amn(2)Ao(2) (10.56)

En présence d’un intégrateur, I’équation diophantine (10.56) prend la forme :
A7 (2)(z = 1)*R'(2) + B~ (2)S(2) = An(2)Ao(2)

D’autre part, le polynome caractéristique en boucle fermée comprend maintenant
les poles simplifiés :

A(2)R(2) + B(2)S(2) = A (2)Ao(2) AT (2) BT (2)

Les résultats des sections 10.3 a 10.4 s’étendent facilement a la nouvelle situa-
tion. Par exemple, la fonction de transfert du montage en régulation s’écrit :

B(2)R(z) B~ (2)R(z)

A(2)R(2) + B(2)S(2)  Apm(2)Ag(2)A*(2)

Quant a la fonction de transfert U(z)/Y.(z), elle n’est pas modifiée. Les théo-
rémes 10.1, 10.3 et 10.4 subissent de légeres retouches détaillées ci-dessous. Les
démonstrations sont identiques a celles déja présentées, raison pour laquelle elles
sont laissées aux soins du lecteur intéressé.

Théoréme 10.9

Soit un régulateur RST dimensionné sur la base du modéle H(z) = B(z)/A(z)
du systeme a commander. L'implantation de ce régulateur sur le processus a com-
mander réel H'(z) = B°(2)/A%(2) conduit, pour le montage en asservissement,
a la fonction de transfert suivante :

H,,(2) 7

1
1+ RG) (Ho(z) - H(z)) A (2)A0(2)A%(2)
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Théoréeme 10.10
1l existe un régulateur RST a degré minimal tel que SR > 6T et 0R > 05 si les
inégalités suivantes sont respectées :

0A,, —0B,, > A — B

10.57
Ay > 25A— A, —6AT —6BT —1 ( )

Lorsqu'un intégrateur est inséré, il existe un régulateur RST a degré minimal
tel que OR > 6T et 6R > 4SS si l'inégalité (10.57) et l'inégalité suivante sont
satisfaites :

§Ag >28A—G6A,, —0AT — 6Bt +1 -1

La démonstration de ce théoreme fixe le degré du polynéme R(z) :
SR =6A,, +0Ag+ 0BT —6A~

Vu que R(z) = BT(2)R(z),onadR = 0BT +dRet:
SR=0R—6B" =0A,, +5Ag — A~

Avec un intégrateur, nous avons R(z) = (z — 1)‘B*(z)R/(z); donc 6R =
0BT + R + let:

SR =6R—6B" —{ =6A,, +64g— A~ — ¢

Théoréme 10.11

Le degré du polynome S(z) vaut A~ —1; en outre, Zespolynémes_ﬁ(z) et S(z)
sont uniques. En présence d'un intégrateur, 6S = A~ +{ —1; R'(z) et S(z)
sont uniques.

10.5.3 Poursuite et régulation a objectifs différents

Dans certaines applications, on requiert que le comportement en poursuite
soit indépendant de celui en régulation, par exemple quand le temps dépensé lors
d’un changement de consigne peut étre sensiblement supérieur a celui pris pour
rejeter une perturbation (ou vice versa). Les modes, par conséquent les pdles, pour
les montages en asservissement et en régulation doivent alors étre différents. L’ob-
jectif du présent paragraphe est de montrer qu’il est facile d’exaucer ce veeu.

Rappelons que la fonction de transfert en régulation vaut (§ 10.3.2) :

B(z)R(2) _ B~ (2)R(2)
A(2)R(2) + B(2)S(2) ~ Am(2)Ao(2) (10.58)




Régulateur RST 71

Apres avoir sélectionné les polyndmes A,,(z) et Ag(z) fixant les pdles en régu-
lation, un régulateur RST est dimensionné en suivant pas a pas la démarche dé-
taillée dans les sections précédentes. Il n’est pas nécessaire a ce stade de calculer le
polyndme T'(z), lequel n’intervient pas dans la fonction de transfert en régulation
(10.58). Bien évidemment, seuls les poles en régulation sont de la sorte assignés
a volonté. La relation (10.58) révele que les zéros, quant a eux, sont des zéros
du processus a commander auxquels s’adjoignent les zéros du polynéme R(z), en
d’autres termes les poles du régulateur. Ainsi, en régulation, la synthése ne permet
structurellement pas d’imposer un modéle complet ; uniquement son dénomina-
teur peut I’étre.

On passe maintenant au montage en asservissement. La consigne Y.(z) n’est

pas injectée telle quelle, mais passe au préalable dans un filtre de fonction de trans-
fert A,,(z)/A%, (2) (fig. 10.18).

T
| R i
! |
| | An() || I L
S I e I RST ©, B : I > Y(2)
| | © [T
i | r ]
| | N
! | [ [
| 1 B(:)T()  _ Bm(2) N
| -
| IOl CRR CEONETC I
i Bm(2) |
L R ]
Fig. 10.18 Poursuite et régulation a objectifs différents.
La fonction de transfert globale en asservissement vaut donc :
Y BTTL Am Bm
(2) _ Bu(2) An(2) _ Bu(2) (10.59)

Yo(z)  An(z) An(z) An()

Le polynéme A,,(z) disparait par simplification et les poles en asservissement (zé-
ros de A?,(z)) sont distincts des poles en régulation (zéros de A,,(z) et de Ag(z)),
réalisant par conséquent le découplage des modes des deux montages. A noter
que le découplage des dynamiques les caractérisant n’est pas parfait : le polynome
B~ (z), inclus dans B,,(z), est présent dans les numérateurs des deux fonctions de
transfert (10.58) et (10.59).

Le polyndéme A}, (=) est monique; ses zéros sont a 'intérieur du cercle unité
et son degré est pris égal a celui de A,,(z) :

SAY, = 5A,,
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Lors du choix du modéle a poursuivre pour le montage en asservissement
(§ 10.3.5), il importe, afin de remplir scrupuleusement le cahier des charges ayant
trait au suivi de la consigne, de faire jouer & A%, (z) le role de A,,(z). Entre autres,

la seconde équation diophantine (10.44) produisant B, (z) est maintenant :

AL (2)X(2) + B™(2) By, (2) = A, (2)

De surcroit, pour autant que 6 A%, > 6A— 0B+ +3§A_ —1, la causalité et 'unicité
du régulateur RST, avec d B/, = dA_ — 1, sont assurées (théorémes 10.6 et 10.7).
Le polynéme T'(z) = B, (2)Ao(z) met en ceuvre le polynome B),, (z) dimensionné
sur cette base.
L’équation fournissant la grandeur de commande U(z), remplagant I’égalité
(10.4), s’écrit :
T(z) Am(2)

VO =0y e @ -

Comme 6A4,, = §A* , les contraintes de réalisation de la fonction de transfert

m>
;Eg . 2;"5; ;, par exemple lors d’une implantation standard, sont celles régissant

la fonction de transfert 7'(z)/R(z). Le code de cette variante du régulateur RST
se base sur ’égalité suivante, dans laquelle les polyndmes sont exprimés en puis-
sances négatives de z (sect. 10.2) :

S(z)
R(2)

Y(2)

=

R(2)A;,(2)U(2) = T(2)Am(2)Ye(2) — 5(2) A7, (2)Y (2)

10.5.4 Synthése par calibrage fréquentiel

L’objectif d’une synthése par calibrage fréquentiel est de fagonner dans le do-
maine fréquentiel la fonction de transfert en boucle ouverte ou les fonctions de
sensibilité, ou encore d’autres fonctions de transfert, dans le but d’imposer des
marges de robustesse, de rejeter des perturbations, de filtrer des bruits de me-
sure, etc. Le lecteur peut, a ce sujet, se référer a 'approche classique de la section
9.8. Dans le cas général, le probléme se résout par une optimisation fondée sur
le concept de norme Ho,. Nous nous contentons, dans ce paragraphe, d’une ap-
proche itérative, intuitive et facile a mettre en ceuvre.

Les polynomes R(z) et S(z) sont contraints a inclure des parties préspécifiées
Pr(z) et Ps(z), respectivement :

R(z) = Pr(2)R'(2) S(z) = Ps(2)5'(2)

En sus des poles de la perturbation a rejeter (principe du modéle interne), le poly-
noéme Pg(z) contient des zéros utiles au calibrage. Le polyndome Pg(z) incorporé
dans S(z) est lui aussi un outil de calibrage. Comme dans le paragraphe 10.3.2,
le polyndme B*(z) est un facteur de R'(z), si bien que R'(z) = Bt (2)R'(2).
L’équation de Diophante a résoudre, au cceur de la synthése du régulateur RST,
est alors :

A(2)Pr(2)R'(2) + B~ (2)Ps(2)S'(2) = Am(2)Ao(2) (10.60)
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Il est certainement approprié de rappeler que le polynéme A, (z) comprend sou-
vent, en plus du polynéme P(z) fixant les modes dominants en boucle fermée, un
polyndéme auxiliaire P4(z) (§10.3.5) :

Am(z) = Pa(2)P(2)

Quelques retouches ayant trait aux degrés de certains polyndmes sont requises
dans le présent contexte. Pour les justifier, il suffit de reprendre les démonstra-
tions des théorémes 10.3 et 10.4; ces développements, laissés aux soins du lecteur,
révélent que, dans le théoréme 10.3, I'inégalité (10.31) doit étre remplacée par :

§Ag > 26A —6A,, — 6B +5Pg+6Ps — 1 (10.61)
Quant au degré du polynome R , il vaut :
0R = 6A,, + 64— A — 6Py

Finalement, en ce qui concerne le théoréme 10.4, la solution a degré minimal
vérifie :

88" =06A+6Pr—1

La syntheése du régulateur RST est effectuée itérativement comme suit. Avec un
choix initial des polynémes Pg(z), Ps(z), Pa(z) et Ag(z), I’équation diophan-
tine (10.60) est résolue pour donner les polyndmes R’(z) et S’(z). Une analyse
dans le domaine fréquentiel, basée sur la fonction de transfert en boucle ouverte,
les fonctions de sensibilité ou d’autres fonctions de transfert en boucle fermée,
permet ensuite de vérifier si les spécifications sont remplies. Si tel n’est pas le
cas, les polyndmes Pg(z) et Ps(z), de méme que le polynéme Pa(z), voire le
polyndéme observateur Ag(z), sont altérés afin d’obtenir les calibres désirés. Par
altération, on entend modification de coefficients ou ajout de zéros. Avec les po-
lyndmes Pr(z), Ps(z), Pa(z) et Ao(z) ainsi mis a jour, I’équation diophantine
(10.60) est a nouveau résolue et le processus répété. Cette approche revét claire-
ment un aspect intuitif : les révisions successives des polynéomes Pr(z), Ps(z),
P4(z) et Ap(z) requiérent un riche savoir-faire. Au surplus, aucun résultat solide
assurant la convergence des itérations n’est disponible. L’expérience montre néan-
moins qu’elle est rapide : trois a quatre itérations fournissent souvent une solution
tout a fait convenable.

La partie préspécifiée Ps(z) du polyndme S(z) inclut souvent un zéro z = —1,
en d’autres termes le facteur z + 1. Afin de justifier cette pratique, rappelons que
la fonction de transfert liant le bruit de mesure V' (z) a la grandeur de commande
U(z) sécrit (§ 5.4.4) :

Ulz) _ K(z) A(2)5(z)

V(z) 1+ K(2)H(z)  A(2)R(2)+ B(2)S(2)

En régime harmonique, cette fonction de transfert devient :
A(ejwh)S(ejwh)
A(eiwh)R(eiwh) + B(eiwh)S(eiwh)
A(ejwh)PS(ejwh)Sl(ejwh)
A(elwh)R(eiwh) 4+ B(eiwh) Pg(eiwh)S! (eiwh)
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Le spectre du bruit de mesure se situe a I’extérieur de la bande passante en boucle
fermée, avec des pulsations se rapprochant de la pulsation de Nyquist wy ; or :

. . r
lim elwh — glwnh — Gigh — 1

W—WN
Par conséquent, si le polyndome Pg(ei“") comprend le facteur " + 1 :

lim Ps(ed*m) =0

W—WN
Donc :

. A(eIm)§ (i) B
A, (‘ A(eRM)R(eim) + B(ew>5<ew>> -

Le bruit de mesure ne provoque ainsi pas une forte agitation du signal de com-
mande.

Il découle du théoréeme 10.6 que le degré du polynéme A,, (z) augmente avec
celui de A (z). Sans parties préspécifiées Pr(z) et Pg(z), I'inégalité (10.61) (ou
10.30) peut dés lors ne plus pouvoir étre vérifiée. Dans ces circonstances, en plus
d’étre un outil de calibrage fréquentiel, des parties préspécifiées permettent de
résoudre le probléme.

10.6 Problémes

10.6.1 En présence de variations du processus a commander H(z), démontrer
que la sensibilité de la fonction de transfert en boucle fermée avec un régulateur

RST est :
1
SC) =TT RmER

10.6.2 Dans I'exemple 10.3, prouver que la causalité¢ du régulateur RST est ga-
rantie quand le surplus de poles de H,,(z) est plus grand ou égal a celui de H(z).

10.6.3 En admettant que le modéle H(z) = B(z)/A(z) du systéme a comman-
der est distinct de la fonction de transfert H%(z) = BY(z)/A%(z) du processus
réel, calculer, dans I'’exemple 10.3, la fonction de transfert en boucle fermée réelle.

10.6.4 Détailler la démarche du paragraphe 10.3.2 en présence d’un intégrateur
de type ¢, aboutissant a I’équation diophantine (10.16).

10.6.5 Parmi toutes les solutions de ’équation diophantine, démontrer qu’il est
toujours possible d’en trouver une telle que le degré 6 R de R(z) soit inférieur au
degré 0B de B(z) :

IR < 6B
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10.6.6 Développer une méthode de synthése du régulateur RST sans intégra-
teur dans laquelle aucune simplification de zéros avec des poles de la fonction de
transfert en boucle fermée n’est provoquée. Comme dans la section 10.3, I’égalité
suivante est recherchée :

BOTE)  Bul2)
A(2)R(2) + B(2)S(z) An(2)

Mais, ici, 49 = 6B™ = 0. Modifier en conséquence le tableau 10.1. Est-ce-
que le suivi parfait, quand le temps tend vers 'infini, d’une consigne quelconque
Y.(2z) = B.(2)/Ac(z) est possible dans ces conditions ?

10.6.7 Démontrer le théoréme 10.3 dans le cas ou un intégrateur de type ¢ est
implanté.

10.6.8 En présence d’un intégrateur, prouver que 1’égalité (10.41) doit étre rem-
placée par :

05 =0A+¢-1

10.6.9 Quand le temps de calcul et de conversion est négligeable vis-a-vis de
la période d’échantillonnage, démontrer que les inégalités (10.29) et (10.30) du
théoréme 10.3 deviennent des égalités. Modifier ce résultat en présence d’un inté-
grateur.

10.6.10 Modifier les résultats du probleme 10.6.9 lorsque le temps de calcul et
de conversion est égal a la période d’échantillonnage.

10.6.11 Répéter 'exemple 10.12 dans le cas ou le temps de calcul et de conver-
sion est égal a la période d’échantillonnage. Ecrire un pseudo-code du régulateur
RST.

10.6.12 Répéter 'exemple 10.12 en implantant dans le régulateur un intégrateur
de type 1. Ecrire un pseudo-code du régulateur RST.

10.6.13 Répéter 'exemple 10.12 en prenant P(z) = z + c.
10.6.14 Répéter 'exemple 10.13 en sélectionnant le modeéle a poursuivre :

1+ +c)z

H,, =
(2) z224c1z4co

Ecrire un pseudo-code du régulateur RST.

10.6.15 A T'aide d’un logiciel de simulation et de conception, reproduire les ré-
sultats de ’'exemple 10.12 (fig. 10.10). Avec le polynéme P(z) du probléeme 10.6.13,
déterminer ensuite la grandeur de commande et la réponse indicielle en boucle fer-
mée dans les cas ¢ = 0,8, 0,6, 0,4, 0,2, 0 (régulateur a réponse pile), —0,2, —0,4,
—0,6, —0,8. Reproduire ensuite les résultats de 'exemple 10.13 (fig. 10.12); dans
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cette situation, tracer sur le méme graphique la réponse indicielle en boucle fer-
mée analogique y(t) et sa version échantillonnée {y(k)} ; interpréter les résultats
obtenus. Un couple parasite constant M, s’exerce maintenant sur la charge, se
traduisant par une perturbation w = —%MT ; dans les conditions de I'exemple
10.12 et avec w = —5, déterminer la grandeur de commande et la réponse indi-
cielle en boucle fermée ; éliminer le statisme en incorporant dans le régulateur un
intégrateur de type 1 (probléme 10.6.12).

10.6.16 Soit un entrainement électrique de position par moteur brushless com-
mandé en courant :

G(s) = % 7=1

Echantillonner ce processus avec une période d’échantillonnage h = 0,025 s. Soit
le modéle a poursuivre :

_0,25(z+1)

 2(2—-0,5)

Est-ce que ce modele est raisonnable ? Synthétiser un régulateur RST sans inté-
grateur. Ecrire un pseudo-code réalisant le régulateur obtenu.

H,,(z)

10.6.17 La cuve de mélange de 'exemple 5.2, avec a = 0,015 s~ tetT = 1, est
commandée par un régulateur RST. La période d’échantillonnage vaut h = 1s.
Trouver la fonction de transfert échantillonnée H(z). Concevoir un régulateur
RST sans intégrateur, avec le modele a poursuivre :

0,5
z2(z—0,5)

Est-ce que ce modé¢le a poursuivre est raisonnable ? Ecrire un pseudo-code réali-
sant le régulateur obtenu.

H,(z)=

10.6.18 Soit I'installation thermique du probléme 5.5.7. Une condition absolue
d’amortissement d’un facteur ¢ = 20 en k, = 5 coups d’horloge est imposée.
Aprés avoir sélectionné un modéle & poursuivre convenable, dimensionner un ré-
gulateur RST sans intégrateur.

10.6.19 L’objectif du présent probléme est de démontrer que le prédicteur de
Smith examiné dans la section 9.9 est un cas particulier du régulateur RST. En
adoptant les notations de la section 9.9, la relation (9.37) montre que, avec un
prédicteur de Smith, la fonction de transfert en boucle fermée est :

—a_K(R)H'(z)
1+ K(2)H'(z)
En prenant pour modéle a poursuivre cette fonction de transfert, prouver que le
régulateur RST de I'exemple 10.3 est identique au prédicteur de Smith (9.36).

10.6.20 Soit un entrainement électrique en position par moteur brushless com-
mandé en courant :

G(s)::—2 vy=1
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La période d’échantillonnage h vaut 0,1 s et on considére le modéle a poursuivre :

B,.(z)

Hm(2) = 2%z —0,5)

Le temps dépensé pour I’exécution de I’algorithme de commande et les conver-
sions est négligeable vis-a-vis de la période d’échantillonnage. Le régulateur RST
qu’il s’agit de dimensionner ne comprend pas d’intégrateur. Le statisme et la trai-
née d’asservissement doivent étre nuls. Fixer le modéle a poursuivre H,,(z) en
choisissant B,,(z) et d. Synthétiser ensuite un régulateur RST. Ecrire un pseudo-
code réalisant le régulateur ainsi obtenu.

!
m

10.6.21 Vérifier que les polynémes B
10.10 sont bien les mémes.

() obtenus dans les exemples 10.8 et

10.6.22 Démontrer que, dans le paragraphe 10.3.2, on recherche des simplifica-
tions de zéros du systéme a commander B(z)/A(z) avec des poles de la fonction
de transfert S(z)/R(z). Interpréter ces simplifications a I’aide du lieu des poles
§9.7.2).

10.6.23 Dans 'exemple 10.12, calculer le zéro additionnel z = 0,919 a l'aide de
la formule (10.43).

10.6.24 Parmi les solutions de I’équation diophantine (10.44), il en est une
vérifiant X < 6B~ (§ 10.3.5). Démontrer que cette solution n’est pas intéres-
sante car conduisant a §A,, = 6 B,, alors que la fonction de transfert H,,(z) =
B, (2)/Anm(z) doit étre strictement propre.

10.6.25 Démontrer le théoréeme 10.9.
10.6.26 Démontrer le théoréme 10.10.
10.6.27 Démontrer le théoréme 10.11.

10.6.28 A l'aide du tableau 10.1, vérifier que, pour ’équation de Diophante de
I’exemple 10.4, il est possible de poser 6R = 0S5 = 6A — 1.

10.6.29 A Tl'aide d’un logiciel de simulation et de conception, traiter 'exemple
10.7 dans le cas particulier a = —0,985, b = 0,015 et d = 3 (ex. 9.3 et ex. 9.9).
Avec ¢ = —0,8, tracer la grandeur de commande et la réponse indicielle en boucle
fermée, et évaluer les marges de gain et de phase. Répéter le probléme avec d’autres
valeurs de c, en particulier ¢ = 0 et ¢ = 0,5. Expliquer en détail les comportements
ainsi obtenus.

10.6.30 Dans I'exemple 10.7, un polynéme observateur qui n’est pas a réponse
pile est sélectionné :

Ao(2) = (z + ) a#0

Proposer un choix pour a. Démontrer ensuite que les coefficients s;, i = 1, 2,
..., d, du polynéme S(z) sont nuls.
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10.6.31 Dans le cas d’une consigne sinusoidale y.(kh) = sin(wkh), donner le
polynéme A (z) et le degré du polyndme B}, (z) intervenant dans ’équation dio-
phantine (10.44).

10.6.32 Dans I’'exemple 10.12, avec une consigne en forme de saut unité, poser
a = ¢1 = ¢ = 0 afin d’obtenir un régulateur a réponse pile. Déterminer le temps
nécessaire pour amortir complétement le régime transitoire de la grandeur a com-
mander y(kh) en asservissement, puis en régulation et finalement de la grandeur
de commande u(kh). Valider ces résultats a I’aide d’un logiciel de simulation et de
conception.

10.6.33 Dans I'exemple 10.12, avec une consigne en forme de rampe, poser ¢ =
c1 = co = 0 afin d’obtenir un régulateur a réponse pile. Déterminer le temps
nécessaire pour amortir complétement le régime transitoire de la grandeur a com-
mander y(kh) en asservissement, puis en régulation et finalement de la grandeur
de commande u(kh). Calculer le zéro permettant un suivi asymptotique de la
consigne. Valider ces résultats a ’aide d’un logiciel de simulation et de concep-
tion.

10.6.34 Soit le processus a commander suivant, échantillonné avec la période
d’échantillonnage h = 1s:

0,015

Az = 25008

Concevoir un régulateur RST sans intégrateur, avec le modele a poursuivre :

1

H,(z)=—

() = =

Est-ce que ce modele a poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.35 Soit le processus a commander :

0,015

A = 0989

Concevoir un régulateur RST sans intégrateur, avec le modéle a poursuivre :

0,4

Hn(2) = =02 —05)

Est-ce que ce modele a poursuivre est raisonnable ?

10.6.36  Soit le processus a commander suivant, échantillonné avec la période
d’échantillonnage h = 0,025 s :

~1,23-107%(z 4 0,98)
A& == —5G —00s)
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Ecrire, sous forme matricielle, le systéme d’équations algébriques fournissant un
régulateur RST sans intégrateur, avec le modéle a poursuivre :

Z 40,98

) = To522

Est-ce que ce modeéle a poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.37 Soit le processus a commander suivant, échantillonné avec la période
d’échantillonnage h = 1s:

0,015

A = 0989

Concevoir un régulateur RST sans intégrateur, avec le modele a poursuivre :

Est-ce que ce modele a poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.38 Soit le processus a commander suivant, qu’il s’agit d’échantillonner avec
la période d’échantillonnage h = 0,025 s :

Ecrire, sous forme matricielle, le systéme d’équations algébriques fournissant un
régulateur RST sans intégrateur, avec le modéle a poursuivre :

_05(2+1)

Hm(Z) 2

z

Est-ce que ce modele a poursuivre est raisonnable ? Calculer et tracer la réponse
indicielle en boucle fermée.

10.6.39 Lorsque les polyndomes R(z) et S(z) incluent des parties préspécifiées
Pr(z) et Ps(z) (§ 10.5.4), prouver, en reprenant les démonstrations des théorémes
10.3 et 10.4, que :

§Ag >26A—6A,, — BT +0Pr+6Ps — 1

0R = 6Am + 849 — 0A — 5Py

88" =06A+6Pr—1






CHAPITRE 11

Identification

OBJECTIFS

» Définir la notion de régression linéaire.

e Structurer le probléme de I'identification des systémes
dynamiques en une régression linéaire.

* Développer les algorithmes des moindres carrés simples,
pondérés, récurrents et pondérés récurrents.

11.1 Introduction

Le concept de modéle mathématique d’un processus est vital dans les disci-
plines scientifiques et techniques. C’est une abstraction résumant I'information
disponible. Par exemple, dans les chapitres précédents, le systéme a commander
est supposé étre décrit par une fonction de transfert. Un seul et unique modele
ne permet qu’exceptionnellement de résoudre tous les problémes, allant de la
conception du processus a sa commande, en passant par la simulation. En fait,
une hié¢rarchie de modéles doit généralement étre élaborée. Un modéle détaillé,
non linéaire, d’ordre important et faisant intervenir des variables d’état internes
est requis pour simuler un systeme dynamique, afin d’en extraire les finesses et
de reproduire un comportement fidéle a la réalité. Un tel modéle de simulation
est notamment exploité pour analyser les performances du processus en boucle
fermée (§ 1.4.4). Un modéle de commande nettement plus grossier, linéarisé au-
tour d’un point ou d’une trajectoire de fonctionnement, d’ordre réduit et souvent
externe, s’'impose par contre pour la synthése du régulateur.

Une fagon de construire un modeéle, qu’il soit de simulation ou de commande,
consiste a se servir des lois physiques qui gouvernent le systéme. Cette approche
donne un modéle de connaissance ou modéle physique. Les lois physiques régis-
sant le comportement d’un processus sont parfois trop complexes pour en tirer
pleinement bénéfice, ou méme carrément inconnues. Certains parameétres du sys-
téme peuvent s’altérer lentement au cours du temps et doivent alors étre rafraichis.
Dans de telles circonstances, plutot qu une modélisation de connaissance, il appa-
rait souhaitable de créer et, si nécessaire, de mettre a jour un modéle du systéme
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en profitant de mesures récoltées in situ. 1l en découle un modéle de représenta-
tion ou modéle expérimental. La détermination d’un modeéle de représentation est
appelée identification.

Nous distinguons deux sortes de modeles de représentation. Tout d’abord,
les modéles de représentation non paramétriques sont constitués de courbes (par
exemple la réponse impulsionnelle ou la fonction de transfert harmonique dans
des diagrammes de Bode) ne pouvant pas étre décrites par un ensemble fini de
nombres. Les modeéles de représentation paramétriques, quant a eux, peuvent étre
caractérisés par un ensemble fini de nombres (par exemple les coefficients des po-
lyndmes au dénominateur et au numérateur d’une fonction de transfert).

Le présent chapitre constitue une introduction a 'identification. Ce domaine
est riche et vaste, exigeant beaucoup de savoir-faire et de nombreuses compé-
tences ; d’excellents ouvrages lui sont totalement dédiés. Souhaitant conserver le
niveau élémentaire adopté dans ce texte, 'approche retenue est résolument dé-
terministe (a ’exception d’une digression dans la section 11.4). D’importants as-
pects, qui ne peuvent étre mis en évidence qu’au moyen d’outils stochastiques
sophistiqués, sont donc laissés de coté. Au surplus, on se restreint a ’approche
par moindres carrés pour établir prioritairement des modeles de représentation
paramétriques.

Le chapitre débute par la définition, directement dans un format matriciel
offrant une interprétation géométrique naturelle, d’une régression linéaire
(sect. 11.2). Le probléme de I'identification des processus dynamiques est ensuite
structuré en une régression linéaire (sect. 11.3). La section 11.4 est dévolue a la
version de base de I’algorithme des moindres carrés, qui est par essence une pro-
jection orthogonale. La méthode des moindres carrés pondérés est présentée dans
la section 11.5, qui se termine par I'importante notion de facteur d’oubli. Des
formes récurrentes, cruciales pour une mise en ceuvre en temps réel, sont finale-
ment étudiées, tout d’abord pour la version de base (sect. 11.6), puis pour celle
avec pondération (sect. 11.7).

11.2 Régression linéaire

De nombreux problémes d’estimation peuvent étre mis sous la forme de I’équa-
tion suivante, portant le nom de régression linéaire :

y(k) = ®(k)9 + e(k) (11.1)

Dans ce modeéle, y(k) € RY est le vecteur de mesures, 9 € RP le vecteur de para-
métres et e(k) € RY le vecteur d’erreurs ; ®(k) € RN P est la matrice d’observa-
tions. Par convention, 'entier k apparaissant dans y(k), ®(k) et e(k) souligne le
fait que le dernier instant d’échantillonnage entrant en jeu dans la construction de
ces grandeurs est t;, = kh; le vecteur y(k) et parfois la matrice ® (k) contiennent
des mesures. Le probléeme est de déterminer le vecteur inconnu 9 de maniére a
minimiser, dans un sens a préciser, le vecteur d’erreurs (k).
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Il est instructif de faire ressortir les lignes et les colonnes de la matrice d’obser-
vations ® (k). Les N lignes sont dénotées ¢? (k), 2 (k), ..., ¢pi(k), avec ¢, (k),
oK), ..., dn(k) € R, etles p colonnes ¢ (k), ¢*(k), ..., pP(k) € RN :

¢1 (k)

¢3 (k)
(k) = : =[ o' (k) (k) ... ¢"(k) ]

o (k)

Ici encore, 'argument k indique que le dernier instant d’échantillonnage inter-
venant dans ¢ (k), i = 1,2, ..., N,et ¢’(k), j = 1,2, ... ,p, est tp = kh;
le symbole T signifie la transposition d’un vecteur ou, plus généralement, d’une
matrice.

La régression linéaire (11.1) peut étre écrite comme suit :
y(k) = 018" (k) +02¢% (k) + -~ + 0,8 (k) + e(k)

Ainsi, au vecteur d’erreurs (k) pres, y(k) est une combinaison linéaire des co-
lonnes ¢'(k), ¢ (k), ..., ¢ (k) de la matrice ®(k), les coefficients de cette com-
binaison linéaire étant les composantes ¥;, ¥, ..., ¥, du vecteur de parametres.
La figure 11.1 illustre géométriquement la situation pour N = 3 etp = 2.

Sous-espace vectoriel engendré par _/
les colonnes ¢! (k) et ¢p? (k) de ®(k)

Fig. 11.1 Interprétation géométrique d’une régression linéaire dans lecas N = 3etp = 2.

La fourchette des probémes d’estimation pouvant étre structurés comme une
régression lin€aire est extrémement vaste. Les quelques exemples introduits dans
les lignes suivantes ne constituent que des amuse-bouches. En outre, I'une des
approches permettant d’identifier une fonction de transfert discréte fera I'objet
d’une section séparée, vu le role central qu’elle joue actuellement en automatique.

ExemMPLE 11.1
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Nous avons tous été une fois ou I'autre confrontés au probléme de tracer une
droite de pente a et d’ordonnée a I’origine b passant au mieux par des échantillons
y(0), y(h), ..., y(kh) obtenus expérimentalement a des instants 0, h, ..., kh.
Les parametres a identifier sont les nombres a et b. Il s’agit par exemple d’esti-
mer une vitesse au moyen de mesures de position prises a des temps différents,
ou encore d’évaluer un débit via des échantillons de poids, de volume ou de ni-
veau. Comme cela est illustré dans la figure 11.2, on pourrait se contenter de deux
échantillons a des temps distincts, par exemple O et h :

y(t) =at+b

y(h)

[
|
|
i
I
:
h
Fig. 11.2 Identification des paramétres a et b a partir des deux échantillons y(0) et y(h).

Sous forme matricielle :

y0) | [0 1 a
yth) | — | h 1 b
—_——  ———
y(1) ®(1) 9
La régression linéaire est donc :
y(l) = ®(1)9 (11.2)

Ici, N = p = 2, (1) = 0 et, géométriquement, le vecteur de mesures y(1) ap-
partient au sous-espace vectoriel engendré par les colonnes linéairement indépen-
dantes de la matrice ®(1) (fig. 11.3).

La solution est évidente; il suffit de résoudre le systéme d’équations algé-
briques linéaires (11.2) :

b=1y(0)

Cette approche n’est pas recommandée, car elle manque de fiabilité. En effet, les
échantillons y(0) et y(h) sont entachés d’erreurs de mesure ; qui plus est, il existe
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des erreurs de modélisation dans le sens que, en réalité, ’hypothése d’une droite
passant par les échantillons n’est pas forcément correcte. Toutes ces erreurs se

y(1) = 010! (1) +92¢%(1)

Sous-espace vectoriel engendré par /

les colonnes ¢! (1) et ¢p2(1) de ®(1)
Fig. 11.3 Interprétation géométrique d’une régression linéaire dans le cas N = p = 2.

répercutent alors sur les parametres calculés. Afin de filtrer les erreurs, une re-
dondance est introduite en fondant I’estimation de a et de b sur un nombre N
d’échantillons plus grand que le nombre p = 2 de ces paramétres. Dés que N > p,
les échantillons y(0), y(h), ...,y(kh) ne sont généralement plus alignés sur la
droite at + b, a cause des erreurs de mesure et de modélisation (fig. 11.4).

y(5h)

at+b

e(kh)
y(kh) = akh + b+ e(kh)

1

I

|

|
‘: II/_T’—‘> t
h kh
Fig. 11.4 Identification des parametres a et b a partir de N = k + 1 > p = 2 échantillons
y(0), y(h), ..., y(kh).

Maintenant :

y(0) = b+¢(0)
y(h) = ah +b+¢e(h)

y(kh) = akh + b+ e(kh)
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Ou:
y(0) 0 1 £(0)
y(h) hol|r, e(h)
N { b } i
y(kh) kho 1| g | e(kh)
y(k) ® (k) e(k)

La régression linéaire est par conséquent :
y(k) = (k)9 + e(k)

Ona N = k+ 1> p = 2. Géométriquement, le vecteur de mesures y(k) n’ap-
partient pas au sous-espace vectoriel engendré par les colonnes linéairement in-
dépendantes de la matrice ®(k) (fig. 11.1).

En guise d’application, considérons I'identification, a partir de la réponse im-
pulsionnelle, du gain statique y et de la constante de temps 7 d’une fonction de
transfert analogique du premier ordre (voir a ce sujet 'exemple 1.14) :

G(s) = —L

s+ 1

Pour une entrée en forme d’impulsion de Dirac, la sortie de ce modéle vaut
(fig. 11.5):

L’_l(G(s)) = ge_$
Ona:

Yot o o2
(le7) =+l

y

Fig. 11.5 Réponse impulsionnelle d’un systéme du premier ordre.
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Grace a cette propriété, il suffit de prendre le logarithme naturel des grandeurs en
ordonnée dans la figure 11.5 pour aboutir a une forme linéaire, représentée dans
la figure 11.6.

R

In =+ Iny(h)

Iny(0) }

Iny(3h)

Iny(2h)

t
_tmY
T T

Fig. 11.6 Identification de & = —1/7 et b = In2 a partir des échantillons Iny(0),
Iny(h), ..., Iny(kh).

Le probléme a résoudre est maintenant un cas particulier de celui traité dans
les lignes précédentes avec a = —1/7, b = In T et les nombres Iny(0), Iny(h),
..., Iny(kh) obtenus a partir des mesures brutes y(0), y(h), ..., y(kh) de la ré-
ponse impulsionnelle. Aprés estimation des paramétres a et b, v et 7 s’obtiennent
directement :

1 1,

T=—— vY=——€
a a

Un essai consistant a injecter une impulsion de Dirac pour récolter la réponse
impulsionnelle est délicat & mettre en ceuvre. En effet, une entrée aussi violente
peut étre interdite ; qui plus est, des incursions dans le domaine non linéaire sont
hautement probables, faussant les prévisions.

ExXEMPLE 11.2

L’approche présentée dans ’exemple précédent s’étend aisément au cas ou
il s’agit de faire passer au plus prés d’échantillons mesurés une fonction qui est
elle-méme une somme pondérée de fonctions de base spécifiées, par exemple des
polyndmes orthogonaux, des fonctions trigonométriques ou encore des splines.
Soient f; : R — R, i = 1,2, ..., p, ces fonctions de base. Le probléme est
d’estimer les coefficients ¢;, ¢ = 1, 2, ..., p, de maniere a ce que la fonction
c1fitcafo+- - -+, fp passe au mieux par les mesures y(0), y(h), y(kh). Alors, en
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admettant qu’il y ait plus d’échantillons que de fonctions de base afin de disposer
d’une certaine redondance :

y(0) = c1f1(0) + c2f2(0) + - - - + ¢ fp(0) + €(0)
y(h) = c1fi(h) + cafa(h) + -+ cpfp(h) +e(h)

Y(ph) = cofs(ph) + cafo(ph) + -+ o fo(ph) + £(oh)

y(kh) = lel(kh) + CQfQ(kh) +--F Cpfp(kh) + €(k‘h)

Ou:

[ y(©) 1 [ fi(0)  f2(0) fp(0) ] [ £(0) ]
y(h) fi(h)  fa(h) W 1 e(h)
yoh) | T | Bk Bk o fek || [T ewn)

Lytkh) | L AGR) ) o g |y L etk |
y(k) (k) (k)

La régression linéaire s’écrit, avec N =k +1 > p:
y(k) = ®(k)?9 + (k)

Comme application, revenons au probléme de la détermination expérimen-
tale de la fonction de transfert harmonique G(e¥“”) d’un processus BIBO stable
(§ 6.2.1). Avec une excitation sinusoidale sin(wkh), k > 0, et aprés amortissement
du régime transitoire, sa réponse est une sinusoide de pulsation w atténuée et dé-
phasée, par rapport a l'entrée, par ‘G(ej“’h)| et de Arg G(e*"), respectivement.
En tirant bénéfice d’une identité trigonométrique élémentaire, cette réponse prend
la forme :

|G(ej“’h)| sin(wkh + Arg G(ej“’h))
= |G(ej“h)| cos(Arg G(e!*")) sin(wkh) + |G(ej“’h)| sin(Arg G(e1*")) cos(wkh)
Ou, avec ¢; = |G(ej“h)‘ cos(Arg G(eI*")) et ¢y = |G(ej“’h)‘ sin(Arg G(e*")) :
‘G(ej“h)| sin(wkh + Arg G(ej“h)) = ¢ sin(wkh) + co cos(wkh)

On a les deux fonctions de base sin(wkh) et cos(wkh) et il faut estimer les coef-
ficients ¢ et co a partir d’échantillons y(0), y(h), y(2h), ..., y(kh) récoltés a la
sortie du systéme. Finalement, les quantités |G(e")| et Arg G(e3*") sont éva-
luées en notant que :

G| =/ + 3

Arg G(e?*") = Arctg 2—2
1
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ExemMPLE 11.3

La sortie y(k) d’un processus discret au repos, linéaire, causal et stationnaire
est fournie par le produit de convolution entre ’entrée w (k) qui lui est appliquée
et sa réponse impulsionnelle g(k) (théoréme 3.1) :

k

y(k) =Y u()g(k - 1) (11.3)

/=

o

Ce produit de convolution est commutatif (théoréme 3.2) :

y(k) = > _g(O)u(k — 1) (11.4)

hE

o~
Il
=)

Nous désirons ici identifier la réponse impulsionnelle g(k) a partir de mesures,
recueillies a différents instants d’échantillonnage, de I'entrée u(k) et de la sortie
y(k). C’est typiquement un probleme d’identification d’un mod¢le de représenta-
tion non paramétrique. Il s’agit en quelque sorte de défaire la convolution, d’ou
Pappellation, pour cette opération inverse, de déconvolution numérique. En met-
tant a profit 'équation (11.3) a différents coups d’horloge :

y(0) = u(0)g(0)
y(1) = u(0)g(1) 4 u(1)g(0)
y(2) = u(0)g(2) + u(1)g(1) + u(2)g(0)

y(k) = u(0)g(k) +u(l)g(k —1) + - -+ u(k)g(0)

Ou, sous forme matricielle :

y(0) u(0) 0 0 0 9(0)
y(1) w(l)  u(0) 0 0 g(1)
y(2) | = | w®@)  wu(l) u(0) 0 9(2)
y(k) u(k) u(k—1) u(k—2) w(0) | | g(k)
—_——
y(k) ® (k) 9

y(k) = ® (k)9 (11.5)

La matrice ®(k) étant triangulaire, sa résolution est immédiate ; en admettant que
u(0) # 0, on obtient la récurrence :
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1
9(0) = =755 400
o(1) = ﬁ (y(1) — g(0)u())
9(2) = ﬁ (4(2) - 9(0)u(2) — g(1)u(1))

k—1
o(k) = ﬁ <y<k> — Y gO)ulk - e))

£=0

L’évaluation de la réponse impulsionnelle est particuliérement simple si I'entrée
estlesautunité {..., 0,1, 1,1, ...}:

g(k) = y(k) = > g(t) (11.6)

Par ailleurs, (11.4) donne :

k—1
y(k—1)=> g(t) (11.7)
=0
D’ou, en combinant (11.6) et (11.7) :
g(k) =y(k) —y(k —1) (11.8)

Ainsi, la réponse impulsionnelle est la différence des échantillons, pris a deux ins-
tants d’échantillonnage successifs, constituant la réponse indicielle. Ce résultat
découle aussi d’un calcul par la transformée en z. En effet, pour une entrée en

forme de saut unité, U(z) = %5 et la réponse indicielle est :

: z—1
D’ou la transformée en z de la réponse impulsionnelle :
z—1 1
G(z) = Y(z)=(1—-2")Y(2)

z

C’est, dans le domaine temporel, ’équation (11.8).

La régression linéaire (11.5) n’offre aucune redondance puisque le nombre N
de mesures est égal au nombre p de paramétres. Admettons que le systéme soit a
réponse impulsionnelle finie, c’est-a-dire qu’il existe un entier K tel que g(k) = 0
si k > K. Pour un processus BIBO stable, la série Z;O:O| g(k)‘ est convergente
(théoréme 7.1) et, nécessairement, limy_. o, g(k) = 0. En pratique, les échantillons
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composant la réponse impulsionnelle peuvent étre considérés comme nuls apres
amortissement du régime transitoire. Dés que k£ > K, on doit introduire dans la
régression linéaire un vecteur d’erreurs de mesure et de modélisation :

y(0) u(0) 0 0 0 [ £(0) ]
y(1) u(l)  u(0) 0 0 e(1)
y(2) u2) (1) u(0) 0 9(0) £(2)
S e ||
K u(K) u(K—1) u(K—-2) ... (0 K
y(‘ ) (. ) u( ' ) u( | ) (‘) oK) E(. )
: . : . : N—— .
L y(k) | | u(k) uk—1) u(k—-2) ... u(k—-K) | U | e(k) |
—— N——
y(k) (k) (k)

Nous sommes en présence d’une régression linéaireavec N = k+1>p= K + 1.

Comment calculer les coefficients du dénominateur et du numérateur d’une
fonction de transfert G(z) a partir de la réponse impulsionnelle g(k)? Ce pro-
bleme d’identification paramétrique peut lui aussi étre modélisé a 1'aide du
concept de régression linéaire. On considére la fonction de transfert suivante, dans
laquelle, sans perte de généralité (§ 4.4.3), le degré du dénominateur est égal a celui
du numérateur :

G(2) boz™ +b1z2" 4+ by
zZ) =
2 az 4 tay

Le théoréme 4.12 fournit, avec a; = b; = 0 lorsque i > n :

k—1
g(k) = bk =) _g(O)a— k>0
£=0
Ou
k—1
b =Y g(Oar—¢+ g(k) (11.9)
=0
Donc, en posantk =0, 1, ..., n:
bo = g(0)

by = g(0)a1 + g(1)

bn = g(0)an +g(1)an—1 +---+g(n—1)as + g(n)
Sous forme matricielle :

[ by 1 0o ... 0 9(0)
b1 al 1 ... 0 g(l)
=1 . . . . (11.10)

by, an Gp—1 ... 1 g(n)
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Aveck =n+1,n+2, ..., 2n, larelation (11.9) donne, en tenant compte du fait
quea; =b;, =0désquei >n:

0= g(l)@n + g(z)an—l +---+ g(n)al + g(n + 1)
0=g2)an+9B)an_1+ --+gn+1as +g(n+2)

0=g(n)an, +g(n+ Dap—1+---+g(2n—1)ay + g(2n)

De fagon équivalente :

—g(n+1) o) -1 .. g1 [ m
Sgn+2) || gt D) g @) || a
—g(2n) g2n—1) g2n—2) ... gtn) | | an
——
y(2n) ®(2n — 1) 9

C’est une régression linéaire sans redondance, avec N = n = p, autrement dit un
systéme de n équations algébriques linéaires renfermant les n inconnues ai, aso,
..., an, lequel peut étre résolu pour autant que le rang de la matrice d’observa-
tions ®(2n—1) soit égal a n. Un filtrage est judicieusement introduit en adjoignant
des échantillons supplémentaires et un vecteur d’erreurs :

[—g(n+1)] [ g(n) gln—=1) ... g(1) ] [e(n+1)
—9(n+2) gln+1)  gn) ... g(2) a1 e(n+2)
—g(.2n) - g(2n.— 1) g(2n.— 2) ... g(n) + 5(2n)
o) | Lot-1) g2 gk L et |

—_———
y(k) ®(k—1) e(k)

Il s’agit a nouveau d’une régression linéaire, avec N =k —n >p=mn:
y(k) = ®(k — 1)9 + (k)

Apreés I'avoir résolue (sect. 11.4), les coefficients a;, ¢ = 1, 2, ..., n, sont dispo-
nibles pour calculer les coefficients b;, j =0, 1, ..., n, a laide de la transforma-
tion linéaire (11.10).

ExEmMPLE 11.4

Cet exemple est dévolu a 'identification paramétrique d’une fonction de trans-
fert harmonique. Considérons, par souci de transparence, le cas d’un systéme ana-
logique du second ordre :

by jw + b1

11.11
(jw)? + a1 jw+ a2 ( )
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L’approche décrite dans les lignes qui suivent, dite méthode de Levy, s’étend sans
autre a des fonctions de transfert analogiques et discrétes d’ordre quelconque. On
suppose que des essais harmoniques analogiques effectués aux pulsations w; ont
fourni des mesures z; + jy; € C,i =1, 2, ..., K, de cette fonction de transfert.
Il s’agit alors de caler, en ajustant les coefficients a1, as, by et b1, le modéle (11.11)
sur les mesures expérimentales x; + jy; ; autrement dit, en supposant qu’il y ait
redondance :

bo jwi + b
(jwi)? + a1 jw; + as

zi + jyi = te  i=1,2... K (11.12)

Les paramétres a estimer apparaissent ici de maniere non linéaire. Afin de contour-
ner le probléme, 1’équation (11.12) est écrite comme suit :

(i + jui) ((jwi)* + a1 jwi + az)
= bo jwi + b1+ ei((jwi)? + a1 jwi + az) (11.13)

Posons :

ei((jwi)? + a1 jwi + az) =e; =u; + ju; €C (11.14)
(11.13) devient :

(i + jyi) ((jwi)® + a1 jwi + az) = bo jw; + b1 + ¢

Ou, en égalant les parties réelles entre elles et en faisant de méme pour les parties
imaginaires :

2
—WwiT; = wiYia1 — Tia2 + by +u;
2
—Wi Y = —WiTia1 — Ysaz + wiby + v;
Chaque mesure de la fonction de transfert harmonique conduit a deux équations.

En admettant que le nombre K de mesures soit supérieur a deux afin d’étre re-
dondant, on aboutit a la régression linéaire :

—w%xl w11 —x1 0 1 U1
_W%yl —wW1Z1 —-y1 w; O ai U1
- : SRR B e O (11.15)
0
—w%mK wrYyxr —xx 0 1 by UK
—w%(yK —wWrgTx —Yx wg O T VK
y(K) o (K) e(K)

Dans cet exemple, N = 2K > p = 4.
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Nous reviendrons sur la méthode de Levy, en particulier sur un inconvénient
de la formulation qui vient d’étre présentée, dans ’exemple 11.11. Par ailleurs,
cette méthode ne peut pas directement &tre mise a profit en présence d’un retard
pur, vu le caractére non linéaire qu’il introduit. |

C’est principalement la situation N > p, c’est-a-dire quand le nombre de
mesures excéde celui des paramétres, provoquant un filtrage des erreurs, que nous
détaillerons par la suite.

11.3 Application a I'identification des systémes dynamiques

Les lois physiques étant le plus souvent de nature différentielle, un modéle de
connaisance, le cas échéant aprés lin€arisation autour d’un point (ou d’une tra-
jectoire) de fonctionnement et introduction de variables écarts, consiste en une
fonction de transfert analogique G(s). Son échantillonnage par la formule
H(z) = (1 —2"YZ{L7*(G(s)/s)} conduit a la fonction de transfert discréte
H(z) (fig. 11.7).

Parametres C:
de H(z) | Identification |-

1 |
| |
U(2) - D-A G(s) = AD i - Y(2)
| |
| |
| |

Fig. 11.7 Modélisations de connaissance et de représentation ; la ligne double indique la
présence de plusieurs quantités, a savoir les coefficients du dénominateur et du numérateur
de H(z).

Afin d’établir un modele de représentation, un algorithme d’identification
analyse les signaux d’entrée {u(k)} et de sortie {y(k)} pour estimer, puis mettre a
jour si nécessaire, les parameétres de H(z) ; ces paramétres sont les coefficients des
polyndémes au dénominateur et au numérateur de ’expression rationnelle H(z).

On peut remarquer que l'identification conduit directement a la fonction de
transfert H(z) du systéme échantillonné. Une alternative est de construire un mo-
dele de représentation du processus analogique G(s), en analysant son entrée et sa
sortie analogiques, comme dans I’exemple 11.4. Cette approche offre ’avantage
de conserver une signification physique aux parametres a identifier, lesquels ne
dépendent bien entendu pas de la période d’échantillonnage. Elle n’est cependant
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pas poursuivie ici parce que, visant des implantations numériques, nous souhai-
tons franchir la frontiére séparant le monde analogique du monde discret le plus
tot possible (sect. 8.1).
Il découle du paragraphe 5.2.1 que H(z) est une fonction de transfert, a ce
titre indépendante de I’entrée, rationnelle et strictement propre :
Y(2)  boz™ 4 b1z 4+ by,
U(z)  zt+az" 14 +a,
Il n’y a aucune perte de généralité en prenant un surplusde pdlesd =n—m =1
Y boz" "t 4+ b2 24 by
= LB Bz b
U(z) 24 apzm 4+ ay
En effet, si I’on sait que le surplus de podles réels d est strictement plus grand que 1,
physiquement que le retard est supérieur a une période d’échantillonnage, il suffit
de poser b; = 0,7 = 0,1, ..., d — 2, dans les développements qui suivent. En
puissances négatives de z :
Y(z) boz L4+ biz 2+ +by_127"
U(z)  l+azt+-+apzm
Dans le domaine temporel :
(L +aig™" + - +ang ")y(k) = (bog™" +b1g™? + -+ + bu1g”"u(k)
Et, finalement :
y(k) + ary(k —1) + -+ + any(k — n)
=bou(k — 1)+ bru(k—2)+ -+ bp_qu(k — n)

H(z) =

n>m

H(z) =

(11.16)

En admettant que I'ordre n du systéme soit connu, la procédure d’identi-

fication doit fournir une estimation des coefficients a;, i = 1,2, ..., n, et b;,
j=0,1,...,n—1,apartir des échantillons u(0), u(1), ..., u(k—1) et y(0),y(1),
.., y(k) récoltés aux instants d’échantillonnage 0, h, ..., kh. Comment trans-

poser ce probléme sous la forme d’une régression linéaire ? Ecrivons I’équation
aux différences (11.16) de la maniére suivante :

y(k) = —ary(k —1) —azy(k —2) — -+ — any(k —n)
+bou(k — 1) +bru(k —2) + -+ bp_qru(k — n)

y(k) = [—y(k:—l) —y(k—2) ... —y(k —n) u(k — 1) u(k — 2) u(k‘—n)]

a1
az

(11.17)
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Pour k¥ = 1,2, ..., 2n et avec des nombres u(—1), u(—2), ..., u(—n) et des
conditions initiales y(—1), y(—2), ..., y(—n) tous nuls, cette équation donne,
sous forme matricielle :

fy() 1 [ —y(0) 0 0 u(0) 0 0 ]
y(2) —y(1) —y(0) 0 u(1) u(0) 0
y(ﬁ) - —y(ﬁ —1) —y(ﬁ —2) ... —y.(O) u(n _ 1) u(n _ 2) ... u(.())
_y(én)_ _—y(?T.L -1 —y(QT.L -2)... —y(n) u(2n‘— 1) u(2n‘— 2) ... u(n)_
—_———
y(2n) P(2n—1)
as
b
b1
[0
—_——
v

D’ou la régression linéaire :
y(2n) = ®(2n — 1)

C’est un systéme de N = 2n équations algébriques linéaires renfermant les p =
2n inconnues ai, asg, .., Gn, bg, b1, ..., bp—1. Si le rang de la matrice carrée
®(2n — 1) vaut 2n, il posséde une solution unique. Géométriquement, le vecteur
de mesures y(2n) appartient au sous-espace vectoriel engendré par les colonnes
linéairement indépendantes de la matrice ®(2n — 1).

Cette approche souffre d’'un manque de fiabilité. Les échantillons «(0), u(1),
o, u(2n—1)ety(0), y(1), ..., y(2n) sont entachés d’erreurs de mesure : pertur-
bations pénétrant dans le processus, bruits de mesure sur la grandeur de sortie,
etc. Il existe en outre des erreurs de modélisation, par exemple des modes négligés
(Pordre réel du systéme est alors supérieur a n) ou des non-linéarités pas prises
en compte. Un filtrage de ces erreurs est mis en place avec un nombre N d’échan-
tillons plus élevé. Dés que N > p, les échantillons ne peuvent généralement plus,
a cause des erreurs de mesure et de modélisation, satisfaire I’égalité (11.17). En
rassemblant toutes les erreurs dans e(k), (11.17) devient :
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y(k) = [—y(k -1 —yk-2) ... —ylk—n)ulk—1) uk—-2) ... ulk— n)}

ai
a2

+e(k) (11.18)

D’ou, toujours avec des nombres u(—1), u(—2), ..., u(—n) et des conditions ini-
tiales y(—1), y(—2), ..., y(—n) nuls :

v ] [ —w(0) 0 0 u(0) 0 0
y(2) —y(1 -y(0) 0 u(1) u(0) 0
y() || —y(n—1) —y(n—2) —y'(O) u(n —1) u(n—2) u(0)
y(2n) —y(Zr.L -1) —y(27.1 —2)... —y'(n) u(2n'— 1) u(2n'— 2) ... u(n)

L y(k) ] i —y(/c.—l) —y(/c.—2) —y(k'—n) u(k'— 1) u(k—2) u(k;n)_

————

y(k) ®(k—-1)

i al T [ 5(1) )
as £(2)
an || =)
o ||
b e(2n)

Lona ] | er) |

———
v (k)

Il en résulte la régression linéaire :
y(k) = ®(k — 1)9 + e(k) (11.19)

Nous avons maintenant N = k > p = 2n. Géométriquement, le vecteur de
mesures y(k) n’appartient pas au sous-espace vectoriel engendré par les colonnes
de la matrice ®(k—1). Ilimporte de noter qu’ici la matrice d’observations ®(k—1)
renferme des mesures.
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ExemMPLE 11.5

Soit I’entrainement en vitesse déja traité au moyen du modéle de connaissance
suivant, ou la période d’échantillonnage h vaut 0,025 s :

0,0975

H(z) = 505

Une modélisation de représentation est maintenant effectuée ; il s’agit d’iden-
tifier, en partant des échantillons «(0), u(1), ..., u(k—1) et y(0), y(1), ..., y(k)

obtenus aux instants d’échantillonnage 0, h, ..., kh, les paramétres a et b de ’ex-
pression :
Y (2) b
H(z) = = 11.20

En puissances négatives de z :

Y(z) bzt
U(z) 1+az!

Dans le domaine temporel :
(1+ag™")y(k) = bg~"u(k)

D’ou I’équation aux différences :
y(k) +ay(k — 1) = bu(k — 1)

Ainsi, en incorporant U'erreur (k) :

o) = [ =1 k-1 ][ § ] +ew

On en déduit la régression linéaire :

y(1) —y(0) u(0) e(1)
y(2) —-y(1) u(1) a £(2)
: - : : { b } - :
y(k) —y(k—=1) u(k-1) e(k)

Généralement, a partir de la fonction de transfert échantillonnée H(z), il n’est pas
possible de calculer directement les paramétres physiques du modéle analogique
G(s). Cela est néanmoins faisable dans le présent exemple.

En effet, pour un entrainement en vitesse (ex. 1.14) :
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~ désigne le gain statique et 7 la constante de temps. Sa fonction de transfert
échantillonnée est :

En comparant (11.20) et (11.21):

b
TS 1¥a
h
7-__ln(—a)

Dés lors, apres avoir estimé les paramétres a et b, il est facile d’évaluer ~ et T,
constituant une alternative aux approches des exemples 1.14 et 11.1, de méme
qu’a la méthode de Levy. ]

Il est trés utile d’exploiter d’éventuelles connaissances a priori dans 'identifi-
cation d’un processus dynamique. Ceci permet de diminuer appréciablement I’er-
reur d’estimation. L’approche fusionnant modélisation de connaissance et mo-
délisation de représentation est malheureusement fort complexe, parce qu’elle
conduit généralement a un probléme intrinsequement non linéaire. Quelques si-
tuations simples sont néanmoins recensées ; les plus importantes sont abordées
dans les lignes qui suivent.

La fonction de transfert H(z) a identifier posséde un surplus de poles égal
a 1, comme cela est mentionné au début de la présente section. Si le surplus de
poles d est connu et strictement plus grand que 1, on peut directement inclure
cette connaissance a priori en construisant la régression linéaire avec b; = 0,7 =
0, 1, ...,d—2. La méme approche permet de traiter le cas ou certains coefficients
du numérateur et du dénominateur de H(z) sont nuls (ou connus).

Il arrive que H(z) posseéde I’allure suivante :

H(z) = _ (11.22)

Les polynémes A’(z2) et B’(z) sont connus, contrairement aux polynomes A(z) et
B(z). Tous ces polyndmes sont exprimés en puissances négatives de z. La relation
(11.22) fournit :

A'(2)Y(2) _ B(2)
B'(2)U(z)  A(2)




100 Application a I'identification des systémes dynamiques

Définissons la sortie et I'entrée artificielles :

La méthode du paragraphe précédent est tout simplement appliquée a la fonction
de transfert B(z)/A(z), qui décrit la partie inconnue de la fonction de transfert
complete (11.22). Les signaux mis en jeux dans cette phase sont Y'(z) et U’'(z),
égaux aux signaux réels Y (z) et U(z) filtrés par les polyndémes A'(z) et B'(z),
respectivement. Cette approche, rencontrée sous le nom de méthode de Clary, est
illustrée dans la figure 11.8.

Coefficients de Q___—_ Y'(2)
A(z) et B(z) Identification -

o

U'(z)

B'(2) A'(2)

U) - HE) = TR - Y ()

Fig. 11.8 M¢éthode de Clary.

Un cas abondamment rencontré dans les systémes mécatroniques et relevant
de ce formalisme est un effet intégrateur :

Y B
HE) =50 = T han)

Onaalors A’(z) = 1 — 27! et B/(2) = 1. L'identification portera sur la fonction
de transfert ci-aprés, ou Y’ (z) = (1—271)Y (2) est le signal Y (2) filtré par 1—z~1 :

Y'(z) _ B(2)
Uz)  A(z)
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ExXEMPLE 11.6

Un entrainement en position a déja été, dans ce texte, examiné a maintes re-
prises. Son mode¢le de connaissance est, avec une période d’échantillonnage h =
0,025s:

H(z) = 1,23-10732+1,21-1073
T T E 1)z - 0,95)

Il existe un effet intégrateur reflétant le passage d’une vitesse a une position.

Conscients de I’existence de cette intégration, nous élaborons maintenant une

modélisation de représentation. A I'aide des mesures «(0), u(1), ..., u(k — 1)
et y(0), y(1), ..., y(k), I'identification porte sur les paramétres a, by et by de la
fonction de transfert :
Y b b
H(z) = 22 _ oz th

UGz (2-1)(2+a)
En puissances négatives de z :

Y(2) boz ™t + b1z7?

U(z) (A—-zH(1l+az"1)
Soit :
Y'(z) = (1 - )Y (2)

Donc :
Y'(z)  boz t4brz?
U(z)  1+az!

Dans le domaine temporel, ces deux derniéres équations donnent :
y'(k) = (1—q Hy(k)
(14 ag™")y' (k) = (bog~" + big~*)u(k)
D’ou :
y' (k) = y(k) — y(k — 1)
y' (k) +ay'(k—1) = bou(k — 1) + byu(k — 2)

La seconde égalité devient, apres introduction de I'erreur e(k) :

y'(k) = [ —y(k—1) ulk—1) ulk—2) ] bo | +e(k)
by
On en déduit la régression linéaire :
y'(1) —y'(0) u(0) 0 e(1)
y'(2) —y'(1) u(1) u(0) “ £(2)
. = : . . bo | + .
b1

v/ (k) Y k-1) u(k-1) u(k-2) (k)
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Les nombres y ( ), ¥'(1), ..., ¥’ (k) sont déterminés a partir des échantillons réels
y(0), y(1), ..., y(k) comme sult
y'(0) 0
y'(1) y(1) —y(0)
= .
y'(k) y(k) —y(k—1)
Revenons un instant a I’équation (11.18) :
y(k) = —ary(k —1) —agy(k —2) — -+ — any(k —n)
+bou(k — 1) + byu(k —2) + - - - + by_1u(k — n) + (k) (11.23)

Par définition :

y(k) = —ary(k —1) —azy(k —2) — -+ — any(k —n)
+bou(k — 1) +bru(k —2) + -+ bp_ru(k —n)

Cette expression peut étre interprétée comme la prédiction de la sortie y(k) au
temps kh obtenue a partir de (11.23) en négligeant I’erreur inconnue (%), mais en

disposant du mode¢le, a savoir les coefficients a;, i« = 1,2, ..., n, et b;, j =
0,1,...,n — 1, et des entrées et sorties mesurées u(k — 1), ..., u(k — n) et
y(k — 1), ..., y(k — n). Tout naturellement, la quantité (k) = y(k) — y(k) est

appelée erreur de prédiction. En théorie de ’estimation, ce signal se rencontre plu-
tot sous le nom d’innovations puisque, dans y(k) = y(k) + e(k), (k) renferme
I'information nécessaire pour passer de la prédiction (k) a la valeur mesurée
y(k). Le vecteur e(k) € RY dans la régression linéaire (11.19) est le vecteur d’er-
reurs de prédiction. Dans le contexte de I’équation (11.23), e(k) est aussi une erreur
d’équation, car C’est elle qui quantifie le degré de transgression de I’équation aux
différences originale (11.16); e(k) est par conséquent un vecteur d’erreurs d’équa-
tion.

Il est instructif de représenter (11.23) a ’'aide d’un schéma fonctionnel. En
suivant a rebours, erreur d’équation incluse, la démarche ayant permis d’aboutir

a(11.16):
(I+aiqg '+ +ang ™ylk) = (bog ' +big 2+ +bo_1q” ")u(k) +e(k)

D’ou, avec I+arz 4 tanz™™ = A(2), bz b1z 2+ -+ b, 127" = B(2)
et E(z Z{e }

Il en découle le schéma fonctionnel de la figure 11.9, dit modéle auto-régressif avec
entrée exogéne ou, plus simplement, modéle ARX.
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E(z)
1
A(z)
Y (2) +
U(z) ——] ig - Y(2)

Fig. 11.9 Mod¢le ARX.

Il importe de bien noter qu’ici U(z) et Y (z) sont les transformées en z des
signaux mesurés a l'entrée et a la sortie du processus réel. Le modele B(z)/A(z),
excité par U(z), n’est capable de reproduire Y (z) qu’en commettant I'erreur
E(z)/A(z). Une autre facon de voir le probléme est de se remémorer I'image
géométrique de la figure 11.1 parce que, fondamentalement, le modéle ARX est
équivalent a la régression linéaire (11.19).

Le schéma fonctionnel de la figure 11.9 révéle que la structure ARX est quel-
que peu artificielle d’un point de vue physique car I'erreur d’équation (k) est
filtrée par la fonction de transfert 1/A(z) impliquant le dénominateur du modele
B(z)/A(z). Il semble plus raisonnable de considérer la structure représentée dans
la figure 11.10 ou I'erreur perturbant la sortie du modele B(z)/A(z) est indépen-
dante de ce dernier.

Es(z)
B(z) 17(Z) +
U(z) ——— e 4:0——> Y(z)

Fig. 11.10 Modele avec erreur de sortie.

Le signal E;(z) est I’écart entre la sortie mesurée sur le processus réel et la

sortie Y (z) = igzg U(z) du modele, justifiant pour e,(k) = Z~*(FE,(z)) la déno-
mination erreur de sortie. Cette sortie n’étant pas accessible a la mesure, une idée
consiste a la calculer en faisant entrer en jeu 'entrée connue U (2) et les paramétres
du modele B(z)/A(z) qu’il s’agit d’estimer. Cela nous conduit malheureusement
a une difficulté de taille : les calculs font intervenir les paramétres de fagon non
linéaire, excluant toute structuration du probléme dans le format d’une régression

linéaire. Pour s’en convaincre, il suffit d’examiner un exemple trés simple.
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ExemMPLE 11.7

Par souci de transparence, on traite le cas d’une fonction de transfert B(z)/A(z)
du premier ordre :

V()  ba!
U(z) 1+az!

D’ou I’équation aux différences :
yk) = —ag(k — 1)+ bu(k - 1)

Par récurrence, en supposant comme d’habitude que y(—1) = u(—1) =0:

y(0)=0

3(1) = —ag(0) + bu(0) = bu(0)

y(2) = —ay(1) + bu(l) = —abu(0) + bu(1)

9(3) = —ay(2) + bu(2) = a*bu(0) — abu(1) + bu(2)

y(k) =) (=a)*"bu(i - 1)

o ..

Il
_

K3

—~

Et, comme y(k) = g(k) + e5(k) :

y(k) =) (—a)* bu(i — 1) +e4(k)

-

=1

Les paramétres a et b n’apparaissent pas linéairement dans le second membre de
cette égalité, excluant la construction d’une régression linéaire. |

D’autres structures sont documentées dans les textes dévolus a I'identifica-
tion. On peut citer le modéle auto-régressif a moyenne ajustée avec entrée exogéne,
ou modeéle ARMAX (fig. 11.11), et le modéle de Box-Jenkins (fig. 11.12), condui-
sant eux aussi a des régressions non linéaires.

Bz | Y i
A(z) +

Fig. 11.11 Modele ARMAX.
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E(2)
C(z)
D(z)
B(z) f/(z) +
Ve — a6 - Y(2)

Fig. 11.12 Modele de Box-Jenkins.

11.4 Méthode des moindres carreés

Retournons a la régression linéaire générale (11.1). Le vecteur de paramétres
est maintenant déterminé de maniére & minimiser le vecteur d’erreurs (k). Quel
critére adopter pour procéder a cette minimisation ? La méthode des moindres car-
rés consiste & minimiser le carré de la norme euclidienne du vecteur d’erreurs. La
fonction J : RP — R a minimiser est ainsi :

J(09) = ||e(k)||” =" (k) e(k) = (y(k) — @(k)ﬁ)T(y(k) —®(k)9) (11.24)

I

Le vecteur de paramétres qui minimise le critére J(¢), dénoté 3(16), est appelé
vecteur de paramétres estimé ; 'entier k indique que le dernier instant d’échan-
tillonnage pris en compte est ¢, = kh. La solution est résumée dans le théoréme
suivant.

Théoréeme 11.1

En supposant que la matrice d’observations ® (k) soit de rang p, le vecteur de
parameétres estimé est unique et donné par :

o~

I(k) = (87 (k) <I>(/g))’1<1>T(k)y(k) (11.25)

Démonstration

Tout au long de cette démonstration, 'argument k est omis pour simplifier
Pécriture. On a :

T
J(9) = (y— ®9) (y— ®9)
=yTy—yT@®9 — 9" dTy + 9 7T d0 (11.26)

Le rang de la matrice d’observations ® est égal a p par hypothése; ’algebre li-
néaire, comme cela est rappelé dans la section IV.2, nous enseigne que le rang de
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la matrice carrée @7 ® d’ordre p vaut aussi p; elle est par conséquent inversible.
L’égalité (11.26) peut étre écrite comme suit :

J(@9) = (0~ (<I>T<I>)’1<I>Ty)T *7® (v (27®) '@Ty)
+y'y -y e(@7®) 8Ty

Seul le premier terme de J (1), qui peut étre mis sous la forme suivante, dépend
de 9 :

(e (19—(<I>T<I>)’1<I>Ty))T (@ (v-(2"2)'"y))

Ce terme est toujours strictement plus grand que 0, sauf quand
®(9 - (<I>T<I>)71<I'Ty) = 0; il est alors nul et la fonction J(9) atteint son
minimum. Le rang de ® étant p, le systeme d’équations algébriques linéaires
®(v - (27®) 71<I>Ty) = 0 posséde une et une seule solution nulle :

9 (27®) '@y =0
D’ou:

9= (7®) '®Ty u

Les lignes de la matrice d’observation ® (k) sont dénotées ¢ (k), ¢a, ...,
o5 (K), avec ¢, (k), Py(k), ..., ¢n(k) € RP. Léquation (11.25) peut donc étre
écrite :

N -1 /N
I(k) = (Z ¢>i<k>¢?<k>> (Z @(k)yi(k)) (11.27)

Les formules (11.25) et (11.27) peuvent étre interprétées comme un filtre qui,
a partir du vecteur de mesure y(k), élabore une estimation optimale ¥(k) du vec-
teur de parameétres 9. Ces formules ne sont correctes que si le rang de la ma-
trice ®(k) vaut p. En d’autres termes, les p colonnes de ®(k) doivent étre li-
néairement indépendantes. Dans le contexte de 'identification des processus dy-
namiques (sect. 11.3), il est intuitivement évident que I’excitation doit étre suffi-
samment riche ou persistante pour influencer convenablement tous les modes. Les
échantillons de I’entrée et de la sortie, disposés dans la matrice d’observations,
sont dés lors suffisamment différents les uns des autres, se traduisant mathémati-
quement par des colonnes linéairement indépendantes.

La relation (11.25) peut étre mise sous la forme suivante, rencontrée sous le
nom d’équation normale :

(87 (k)@ (k)) D (k) = 7 (k)y(k) (11.28)

Il s’agit d’un systéme d’équations algébriques linéaires, pouvant étre résolu par
une élimination gaussienne ou une factorisation standard de la matrice ®7 (k) ® (k).
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Ces approches se révélent parfois périlleuses. En effet, si la matrice ® (k) renferme
de petits et de grands nombres, le calcul du produit ®7(k)®(k) accentue encore
la dispersion ; des manipulations sur ®7(k)®(k) dont le bon conditionnement
numérique n’est pas garanti, par exemple une élimination gaussienne, deviennent
délicates. Il existe des algorithmes d’algebre linéaire numérique permettant d’évi-
ter efficacement ces embiiches.

L’équation normale (11.28) est équivalente a :
@7 (k) (y(k) — (k)9 (k) =0

Ou, en faisant intervenir les colonnes ¢ (k), ¢*(k), ..., ¢F (k) € RY de ®(k) :

o' " (k)
¢f%)(mm—¢wﬁw»=o
Wﬁ@
Donc:
&' T (k) (y(k) — ®(k)I(k)) =0 i=1,2,...,p

Ainsi, les colonnes de la matrice ®(k) sont toutes orthogonales au vecteur y(k) —
® (k)9 (k) : ce vecteur est orthogonal au sous-espace vectoriel engendré par les

colonnes de la matrice ® (k). Le vecteur ® (k)9 (k) est par conséquent la projection
orthogonale de y(k) sur ce sous-espace (fig. 11.13).

y(k)

y(k) = ®(k)9(k)
=019 (k) + 2% (k)

Sous-espace vectoriel engendré par
les colonnes ¢! (k) et ¢p? (k) de ® (k)

Fig. 11.13 Interprétation géométrique de la méthode des moindres carrés dans le cas N =
3etp=2.

On retrouve un résultat bien connu en algebre linéaire, qui se généralise aux
espaces de Hilbert et joue un role central dans une large palette de problémes
d’approximation.
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La différence 9(k) = 9 — 9(k) € RP entre le vecteur de paramétres et son

o~

estimation est dite erreur d’estimation. La projection orthogonale ® (k)9 (k) de
y(k) est dénotée y(k). Le vecteur y(k) = y(k) — y(k) est le vecteur d’erreurs qui
minimise le critére J(3). Notons que :

(k) = y(k) — (k) = ®(k)0 + (k) — ®(k)D(k)
= ®(k)(9 — I(k)) + e(k) = ®(K)I(k) +

En tenant compte de (11.25), le vecteur g(k) = ®(k)J (k) devient :
G(k) = B (k) (27 (k)@ (k)) " @" (R)y(k)

Pour des raisons géométriques évidentes, la matrice ® (k) (®” (k)@ (k)) T (k)
est appelée matrice de projection; il est facile de vérifier qu’elle est idempotente,
c’est-a-dire que son carré est égal a elle-méme, traduisant le fait que la projection
de y(k) sur le sous-espace vectoriel engendré par les colonnes de la matrice ® (k)
est y(k).

ExeEmMpPLE 11.8
Supposons que N mesures dénotées y(1), y(2), ..., y(IN) d’une quantité
constante ¥ soient disponibles. Comment estimer +J ? C’est une situation spéciale
de 'exemple 11.1, avec a = 0 et b = ¥. Les échantillons récoltés satisfont :
y(1) =9 +e(1)
y(2) =0 +2(2)

y‘(N) =9 +¢e(N)

Ou:
C (1) 1 £(1)
u(2) 1 £(2)
=| . |0+
(V) 1 £(N)
y(N) ;S (V)

La régression linéaire s’écrit :
Yy(N) =®J +e(N)
Le paramétre estimé E(N ) est fourni par (11.25) :

-1
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J(N) est simplement la valeur moyenne des mesures, ce qui est intuitivement
correct. |

Dans le contexte de I'identification des processus dynamiques (sect. 11.3), le
vecteur de mesures y(k) est structuré comme suit :

y(k) = _ cRY N=k>p=2n

En calculant @(k) selon I’équation (11.25), on note que tous les échantillons
amassés aux instants d’échantillonnage h, 2h, ..., kh (et au temps 0 puisque les
nombres y(0) et u(0) entrent en jeu dans la matrice d’observations) sont exploités.
Quand % augmente, il en est de méme pour N. Comme les mesures du passé sont
dans leur intégralit¢ prises en compte, on dit que I'estimateur (11.25) générant
Y(k) constitue un filtre @ mémoire croissante. Lorsque le systéme a identifier est
légérement non stationnaire, il apparait raisonnable de rejeter les anciens échan-
tillons ayant perdu leur fraicheur. Il est bien évident que I’approche par fonction
de transfert ne conserve un sens que si les parameétres varient beaucoup plus len-
tement que les autres variables. Dans cette situation, N peut étre gardé constant
et le vecteur de mesures est une fenétre fixe de N > p mesures :

y(k—N+1)
y(k) = y(k_:N+2) eRY N>p=2n
y(.k)

L’estimateur (11.25) est alors appelé filtre @ mémoire fixe ou filtre a mémoire li-
mitée. Une alternative plus douce, élaborée dans la prochaine section, consiste a
placer un poids plus important sur les mesures les plus actuelles.

Le présent chapitre privilégie une vision déterministe des moindres carrés,
comme cela a été mentionné dans I'introduction (sect. 11.1). Une entorse a cette
philosophie est maintenant perpétrée, constituant une digression exigeant a priori
certaines connaissances en variables aléatoires. Son omission ne nuit pas a la com-
préhension de I'ensemble.

Dans ce qui suit, les vecteurs de mesures y(k) et d’erreurs £(k) sont des pro-
cessus stochastiques vectoriels a temps discret. Les éléments de la matrice d’ob-
servation @ (k) sont eux aussi des processus stochastiques. Par contre, le vecteur
de parametres ¥ est déterministe. Le vecteur de parametres estimé @(k), donné
par lestimateur (11.25), est mathématiquement une fonction y(k) — 1A9(k) du
vecteur de mesures ; ¢’est donc un processus stochastique. Une étude approfondie
du vecteur aléatoire ¥ (k) exigerait la connaissance de sa densité de probabilité, ce
qui reléve dans le cas général d’une mission impossible. Une question moins am-
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bitieuse est de savoir si, stochastiquement, le vecteur de paramétres estimé 9 (k) est
égal au vecteur de parametres ¥. Une définition précise est proposée ci-dessous,
dans laquelle £ dénote I'espérance mathématique.

Définition 11.1

Un estimateur 3(14) est un estimateur non biaisé du vecteur de parametre ¢ si,
quel que soit & :

e{I(k)} =9
Le biais d’un estimateur est la valeur moyenne de I’erreur d’estimation :

E{D(k)} = E{0 —O(k)} =0 — E{I(k)}
Le résultat suivant se démontre aisément.

Théoréme 11.2

L'estimation 9(k) par moindres carrés est non biaisée si la valeur moyenne du
processus stochastique e(k) est nulle et si e(k) et ®(k) sont stochastiquement
indépendants.

Démonstration

En combinant (11.1) et (11.25), tout en omettant ’argument & pour plus de
clarté :

9= (®7%) @7 (@9 +¢)
—9+ (87®) '®7e
Et:
P} =v+e{(e"®) 0"} (11.29)

Les grandeurs € et ® sont stochastiquement indépendantes. Nous savons que des
fonctions de ces quantités sont elles aussi indépendantes, de sorte que :

@y =9+¢ {(¢T<1>)*1<1>T} £{e}

Comme ¢ est un processus stochastique & valeur moyenne nulle, E{e} = 0 et :
{9} =0 [ ]
Le théoréme 11.2 fournit des conditions suffisantes pour que I’estimation par

moindres carrés soit non biaisée. Si ces conditions ne sont pas satisfaites, aucune
conclusion ne peut en étre tirée.
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Dans le probléme de I'identification des systémes dynamiques, les quantités
®(k) et (k) ne sont pas stochastiquement indépendantes et le théoréme se ré-
vele a priori inutile. Un simple exemple va illustrer ces difficultés et révéler que,
dans les faits, I'estimation par moindres carrés est biaisée. Les résultats déduits ici
s’étendent sans autre au cas général.

ExXEMPLE 11.9

On considére une situation tres particuliere de (11.18) dans laquelle il n’y a
qu’un paramétre a a identifier :

y(k) = —ay(k — 1) + (k) (11.30)

La régression linéaire s’écrit :

y(1) —y(0) (1)
y(2) —y(1) £(2)
N
y(k) k-1 | V| e
—_—— —/ —_———
y(k) ® (k1) o (h)

L’équation (11.30) donne, par récurrence :

y(1) = —ay(0) + (1)
y(2) = —ay(1) +&(2) = a’y(0) — ac(1) +£(2)

k—1
y(k —1) = —ay(k —2) +e(k — 1) = (=a)*"'y(0) + , (—a)* 1 7"e(i)

(11.31)

Ainsi, la matrice d’observations est :

—y(0) |
ay(0) —e(1)
—a?y(0) + as(1) — &(2)
Pk-1)=
k—1
—(=a)*'y(0) = Y (—a)* ' e(i)

L =1

~

Elle dépend du vecteur aléatoire (k) : ®(k — 1) et (k) ne sont pas stochasti-
quement indépendants. A ce stade, le théoréme 11.2 ne permet pas d’affirmer que
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I’estimation par moindre carrés est biaisée ou non. Toutefois, la relation (11.29)
¢tablie dans la démonstration du théoréme prend ici la forme :

k—1
y(i)e(@i + 1)
k) =0 €& 1'=°H
v (j)

§=0

k—1 .
_p-Y e YT (11.32)
=0 v2(j)
7=0

La somme constituant le second terme du membre de droite de cette égalité n’est
généralement pas nulle, de sorte que £ {19(k)} # 9. Cependant, quand les erreurs
d’équation (k) sont faibles vis-a-vis des échantillons y(k), autrement dit lorsque
le rapport signal sur bruit est favorable, nous remarquons que les termes de la
somme sont petits, atténuant ainsi le biais.

On admet souvent que le processus stochastique e(k) est blanc : sa valeur
moyenne est nulle et les variables aléatoires obtenues en considérant le processus
stochastique a deux instants différents sont indépendantes. De surcroit, ce pro-
cessus stochastique est supposé étre indépendant de y(0). Dans un tel contexte,
le dernier terme dans la somme du second membre de (11.32) est nul. En effet, il
s’écrit :

£ M (11.33)
> yP)
j=0
Il découle de (11.31) que y(k — 1) dépend de y(0), (1), &(2), ..., e(k —1); en

outre Z?;& y%(j) est pour les mémes raisons aussi une fonction de y(0), (1),

€(2), ..., e(k—1). Les variables aléatoires y(k — 1)/ Zf éyz( ) et e(k) sont par
conséquent indépendantes et (11.33) devient :

B ECERIEOR G CESV Gr

k—1
PRRE)) > Y3)
=0 =0

Malheureusement, les £ — 1 autres termes de la somme sont en général différents
de zéro et 12 encore £ {19 )} # 9. [ ]
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Dans certaines applications, le biais associé a la méthode des moindres car-
rés est tolérable. Par exemple, un régulateur dimensionné sur la base d’'un modéele
identifié biaisé peut étre acceptable pour autant qu’il jouisse de marges de robus-
tesse capables d’absorber les erreurs de modélisation. Dans d’autres situations, ce
biais est rédhibitoire. Il est possible de modifier la méthode des moindres carrés
(variables instrumentales ou I’équation normale (11.28) est remaniée, modélisa-
tion affinée du vecteur d’erreurs) de telle sorte que I'estimateur soit consistent :
le vecteur de parametres estimé (k) tend vers le vecteur de paramétres 9 quand
le nombre N de mesures tend vers I'infini. Toutefois, la notion de limite est ici
mathématiquement délicate : il s’agit d’une convergence stochastique dont la des-
cription sort du cadre du présent texte.

11.5 Méthode des moindres carrés pondérés

Il est fréquemment souhaitable d’attribuer des pondérations différentes aux
mesures accumulées. Par exemple, des mesures de piétre qualité doivent intervenir
plus légérement dans les calculs que celles qui sont trés précises. Dans I'identifica-
tion d’un processus dynamique, dont les caractéristiques s’altérent lentement au
cours du temps, les échantillons récents doivent clairement bénéficier d’un poids
plus important que les anciens, porteurs d’informations périmées. En quelque
sorte, il ne faut pas que le lointain passé sature le présent. Une premicre pos-
sibilité est un filtre a mémoire fixe; une action plus douce découle d’une habile
pondération.

Comment traduire mathématiquement ces desiderata? Plutot que le critére
(11.24), 1l suffit de minimiser la fonction J : R? — R suivante :

T) = [l [y
=Tl (k)W(k)e(k) (11.34)

y(k) — ®(k)9)  W(k) (y(k) — B(k)0)

La matrice de pondération W (k) € RN*N est symétrique (sans perte de géné-
ralité) et définie positive. Elle est souvent diagonale et ses éléments diagonaux
attribuent des poids distincts aux composantes du vecteur d’erreurs (k). L'en-
tier k£ dans la matrice W (k) souligne le fait qu’elle fixe la pondération a I'instant
d’échantillonnage t;, = kh. Ainsi, J(1) n’est plus le carré de la norme euclidienne
du vecteur d’erreurs, comme dans la section précédente, mais le carré de la norme
induite par la matrice W (k). Cela revient a remplacer la norme euclidienne de
RY par une norme fixée par la matrice de pondération. Le théoréme 11.1 doit
étre modifié comme suit.
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Théoréme 11.3

En supposant que la matrice d’observations ® (k) soit de rang p et que la matrice
de pondération W (k) soit symétrique et définie positive, le vecteur de paramétres
estimé qui minimise (11.34) est unique et donné par :

(k) = (@T(k)W(k)@(k))‘1¢T(k)vv(k)y(k) (11.35)

Démonstration

La démonstration est identique a celle du théoréme 11.1.

ExempPLE 11.10

Reprenons le probleme de I’estimation d’une constante (ex. 11.8), mais en ad-
mettant que cette constante se modifie lentement avec le temps. Il faut par consé-
quent imposer un poids plus grand aux récentes mesures qu’aux anciennes. Le
critére ci-apres est choisi pour refléter ce souhait :

J@W) = AN71e2(1) + AV T22(2) + - -+ Ae2(N — 1) +2(N)

- N-1 -

w2 0

=e?(N) e(N) 0<a<1

W(N)

Vu que 0 < A < 1, les mesures récentes jouissent d’'une pondération plus lourde
que les anciennes : on réalise un oubli progressif, de type exponentiel, des échan-

tillons périmés plutdt qu’'un rejet pur et simple comme dans un filtre 8 mémoire
fixe. La solution se détermine aisément via (11.35) :

r /\N—l T 1
AN=2 0 1
IN)=|[1 1 1]
0 A
L I
[ AN 17 v(@) ]
AN=2 0 y(2)
[1 1 1]




Identification 115

AV-1T L AN=-2 1 ... +1

ExemPLE 11.11

L’objectif de cet exemple est de mettre en lumiére une déficience de la méthode
de Levy (ex. 11.4), puis de la corriger.

La méthode de Levy standard exploite les moindres carrés non pondérés de
la section précédente. Les paramétres ay, as, bg et by de la fonction de transfert
(11.11) sont donc calculés de fagon a minimiser le carré de la norme euclidienne
du vecteur d’erreurs e(K) ; ce carré s’écrit, en tenant compte de la définition de
e(K) dans (11.15) :

K

e()|[* =D (u? +0?)

=1
Ou, al'aide de (11.14):

K

le(E)]* =" Jei|”

=1

LS. 2
= Z|€i| |(jw:)? + a1 jw; + as|
i=1

Les erreurs e; seront d’autant plus faibles en module que les pulsations w; seront
elevées, i = 1, 2, ..., K; en effet, une importance accrue leur est alors octroyée
dans HE(K)||2 au travers du facteur |(jw;)? + a1 jw; + a2‘2. Si les pulsations w;
s’étendent sur une large plage, typiquement plusieurs décades, il découle de (11.12)
que la méthode de Levy conduit & une mauvaise identification de la fonction de
transfert aux basses pulsations. Cette approche n’est intéressante que pour une
identification dans une plage fréquentielle restreinte.

Lorsque les mesures sont disponibles dans une large bande, il est possible de
modifier la méthode de Levy en plagant une pondération contrecarrant I'influence
du polyndéme (jw;)? + ajjw; + az formant le dénominateur de la fonction de
transfert a identifier. La matrice de pondération choisie est :

: : 0 :

‘(jwl)Q +ay jwi + Cl2|2

1
. 2 . 2
W(K) = |(jw2)? + a1 jws + a2 (11.36)

0

|(jwk)? + a1 jwk + a2‘2 _
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La fonction & minimiser est ainsi :
K

[SUSTEPEDY

=1 |(jwi)? + a1 jwi + ag ?
Ko

= _leil
i—1

La méme influence est par conséquent attribuée aux erreurs e;, i = 1, 2, ..., K.
11 subsiste un probléme de taille : la matrice W (K) n’est pas connue puisqu’elle
fait intervenir les coefficients a; et as a estimer ! Une approche itérative est adop-
tée dans la pratique. Initialement, la matrice W(K) est prise égal a la matrice
identité, ce qui revient a la méthode de Levy standard. Aprés calcul d’un premier
jeu de parametres, W (K) est actualisé selon (11.36) et les moindres carrés pon-
dérés livrent de nouveaux parameétres. Cette procédure est ensuite répétée jusqu’a
convergence. ]

ool

La philosophie de ’exemple 11.10 est adoptée pour I'identification des sys-
temes dynamiques légérement non stationnaires, de préférence a un filtre a mé-
moire fixe. Les variations paramétriques doivent évidemment étre beaucoup plus
lentes que celles des autres variables entrant en jeu afin que ’approche par fonc-
tion de transfert conserve son sens. La matrice de pondération sélectionnée est :

Akfl
we o 0

W(k) = 0<A<1

0 A

Le critére a minimiser prend la forme :
J(9) = e (k)W (k)e(k)
= A2 N2 (2) - A (k- 1) + 24(k)

Grace au nombre A € |0, 1[, rencontré sous le nom de facteur d’oubli, les me-
sures récentes ont une plus grande influence que les anciennes. Ce rejet exponen-
tiel des échantillons est ajusté par le biais de A : plus A diminue, plus 'oubli est
précoce ; toutefois, une valeur trop faible de A détruit la propriété¢ de redondance
inhérente aux moindres carrés. Le facteur A est, dans la pratique, pris dans I'inter-
valle [0,95, 0,995 ]. Il existe de nombreuses autres politiques de gestion de I’oubli,
qui sont documentées dans les ouvrages dévolus aux méthodes d’identification.

11.6 Méthode des moindres carrés récurrents

Le vecteur de mesures y(k) regroupe N échantillons et I’équation (11.25)
fournissant le vecteur de paramétres estimé manipule en bloc tous ces échantillons.
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Dans la pratique, les mesures arrivent souvent séquentiellement en temps réel, par
exemple a chaque coup d’horloge, plutét que simultanément. Malheureusement,
quand une nouvelle mesure est disponible, il faut pour en tirer profit recommencer
intégralement tous les calculs selon la formule (11.25). Cette maniére de procéder
apparait d’emblée comme du gaspillage. En particulier, le volume de calcul et la
taille mémoire augmentent au fur et 2 mesure que les échantillons s’accumulent.
Est-il possible d’organiser I’algorithme de telle sorte que les résultats obtenus sur
la base de IV observations puissent étre explicitement utilisés pour en déduire le
vecteur de parametres estimé au moyen de NV + 1 observations ? Plutot que de trai-
ter en bloc toutes les mesures a chaque instant d’échantillonnage, nous désirons
donc développer un algorithme de mise a jour incorporant I'information qu’il est
possible d’extraire d’un nouvel échantillon. Cet algorithme devra bien slr étre
doté d’une initialisation appropriée.

Soit la régression linéaire (11.1) ; le vecteur de paramétres estimé 1A9(k;) découle
du filtre (11.25). On admet pour simplifier que la nouvelle observation y(k + 1) €
R est disponible a I'instant d’échantillonnage ¢;+1 = (k+ 1)h. Avec cette nouvelle
mesure, la régression linéaire devient :

y(k+1) = ®(k+1)0 +e(k+1) (11.37)
Le vecteur de paramétres estimé 9(k + 1), qui minimise J(9) = |le(k + 1) 2
s’écrit :

Ak+1)= (®T(k+1)®(k+ 1)) @7 (k+ Dy(k+1) (11.38)

Plut6t que d’employer (11.38), qui met en jeu toutes les composantes de y(k +
1), exploitons le fait que (k) soit disponible. Les quantités apparaissant dans

(11.37) sont supposées étre organisées de la maniére suivante, ou ¢p(k+1) € RP et
e(k+1)eR:

y(k+1) = | y(z(f)l) } e RN+
®(k+1)= _ d);?k(? D } e RWHDxp
elk+1)= E(Z(—If—)l) } c RN+

L’idée-force sur laquelle se fonde la mise au point de I’algorithme récurrent est de
conserver scrupuleusement cette partition tout au long des développements. On
démontre tout d’abord le théoréme suivant, appelé lemme d’inversion matricielle ;
ce résultat joue un role central en théorie de I’estimation.
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Théoréme 11.4

Soient A, C et C~! + DA B des matrices inversibles. Alors la matrice A +
BCD est inversible et :

(A+BCD) '=A'-A'B(C"'+DA 'B) 'DA"!

Démonstration
Effectuons la multiplication :

(A+BCD) (A™' - A”'B(C™' + DA™'B) 'DA™!)
—1-B(C'+DA'B) 'DA"! + BCDA!
~BCDA 'B(C™! + DA™'B) 'DA™!
—1+BCDA ' — (B+BCDA 'B)(C™' + DA 'B) 'DA™!
—1+BCDA' -BC(C™' + DA™'B)(C™' + DA'B) 'DA"!
=1+ BCDA ' —BCDA™'
—1

De la méme fagon, il est facile de prouver que :

(A" ~A"'B(C"' +DA'B) 'DA™') (A +BCD) =1

Théoréme 11.5

En supposant que la matrice d’observations ® (k) soit de rang p, le vecteur de
parameétres estimé vérifie I'équation récurrente :

Ik +1) =9(k) + K(k +1) (y(k +1)— T (k + 1)?9(/@) (11.39)
Avec :
B Pk)p(k+1) »
K(k+1)= e+ PR+ eR (11.40)
P(k+1) = (I- K(k+1)¢" (k + 1))P(k) € RP*? (11.41)
Démonstration

La matrice ®(k) € RY*P est de rang p d’aprés I’hypothése; la matrice
®(k+1) € RNV+D*P_ obtenue a partir de (k) en lui adjoignant la ligne ¢” (k +
1), est par conséquent elle aussi de rang p. Le théoréme 11.1 peut donc étre utilisé
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pour évaluer 1A9(k; + 1). Pour alléger I'écriture, ’'argument k de y(k) et de ®(k),
de méme que 'argument k + 1 de ¢” (k + 1), sont omis :

(3130 (5T Lt

¢
(e 1)) 1o o1] ety ]
= (®T® +po") ' (Ty + py(k +1))
= (7D + p9") BTy + (87D + ¢0") "pylk+1)
73) @7y + (7@ + ¢9”)  y(k +1)

+ ((<1>Tq> +og") - (@72) ") @7y
En tenant compte de I’équation (11.25) :

Dk +1) =9(k) + (®7® + ¢¢T)_1¢y(k +1)
+

11.42
((@T@ +poT) (<I>T<1>)‘1) 3Ty (1142

Par ailleurs :

((<I>T<I>+¢¢T) — (®"7®)" ) Ty

H1- (@7 + ¢o”") (@ <1>)*1)<1>Ty

= (@7 +p9") " (
= (7@ + pp”) " (I 1— ¢o" (87®)" )<1>Ty
— (7% + ppT) 'popT (27®) '@ Ty
—(<1>T<1>+¢>¢ ) o I(k) (11.43)

Par définition :
K(k+1) = (37® + ") '¢ e R” (11.44)
D’ol, en combinant (11.42), (11.43) et (11.44) :

(k) + K(k+1)y(k+1) — K(k+1)¢"9(k)
(k) + K(k+1)(y(k + 1) — ¢" 9(k))

Ik+1) =

<) )

La premiere égalité du théoréme est démontrée.
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On pose :
P(k) = (87®) ' e RP*P (11.45)

Alors :

P(k+1) = (<I>T(I<;+1)<I>(k+1))_1:<{ ¢:I>T r [ ¢(>I>T D_l

— (@7® + pp”) " (11.46)

Avec A = T®, B = ¢, C =1letD = ¢>T, le lemme d’inversion matricielle
permet de transformer I'inversion matricielle (11.46) en une division scalaire :

(87 + poT)
1 1

— (®T®) " - (87T®) !
(@' e) (@' ®) ¢1+¢T(¢T@>_1¢

o' (2T®)” (11.47)

Le nombre 1+ ¢7 ('I’T<I>) _1¢ est évidemment plus grand ou égal a 1; par consé-
quent, son inverse existe. En portant (11.45) dans (11.47) et le résultat dans (11.46):

. Pk)e
14+ ¢"P(k)p

La définition (11.44) de K (k + 1) et (11.46) impliquent :

P(k+1)=P(k) ¢ " P(k) (11.48)

Kk+1)=Plk+1)p (11.49)
En insérant (11.48) dans (11.49) :
_ P()¢
1+¢"Pk)o

 Pk)e¢
14+ ¢"P(k)p

¢"P(k)$
P(k)o <1 1+ ¢TP(k)¢>

K+ 1) = (PG 8'P) @

=P(k)¢ " P(k)op

__PWE L yTpg— o7
= TxaTpg (T ¢ PHS — 9 P(h)e)

__ Pk
1+ ¢'P(k)p

C’est la relation (11.40). Finalement, substituons (11.50) dans (11.48) pour abou-
tira(11.41):

(11.50)

Pk+1)=P(k) - K(k+1)¢'P(k) = (I- K(k+1)¢")P(k) [
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L’algorithme des moindres carrés récurrents, selon le théoréme 11.5, n’est va-
lide que si le rang de la matrice d’observations @ (k) vaut p. Au démarrage, ® (k)
ne posséde méme pas p lignes, violant ipso facto cette hypothése. Soit kg un entier
tel que le rang de ® (ko) est p. Alors, d’apres (11.45) et le théoréme 11.1 :

! (11.51)

P (ko) = (@7 (ko)® (ko)) ™
D(ko) = P(ko)®7 (ko)y (ko) (11.52)

Muni de ces conditions initiales, I’algorithme récurrent peut étre employé avec
k=ko, ko+1, ...

ExEMPLE 11.12

On considere la régression linéaire :

y(3) = 2(3)9 +(3)

R EC R R S I ORI

La matrice ®(2) est de rang 2. Calculons 'initialisation du filtre récurrent qui
livrera 99(3) par mise a jour de ¥(2) :

9(2) = P(2)@T (2)y(2) = [ 7 } [ ! } H } = [ X }

Les équations (11.39) et (11.40) donnent :

9(3) = 9(2) + K(3)(y(3) — " (3)9(2))
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3ol

Cette valeur est corroborée par la formule non récurrente :

On en déduit :

[SSRRSNE

9(3) = (7 (3)8(3)) " @7 (3)y(3)

1
_[011} ?; [011}}1_“:] .
{121 121 =2
1 1 3

Les initialisations (11.51) et (11.52) du filtre récurrent sont fournies par ’algo-
rithme non récurrent. Cette maniére de procéder est malcommode, car elle exige
la commutation d’une structure de ’estimateur a une autre. Le théoréme suivant
permet, au prix d’une erreur parfaitement maitrisée, de lancer d’emblée 1’algo-
rithme récurrent. Sans perte de généralité, nous supposons que le premier échan-
tillon placé dans le vecteur de mesures est pris a 'instant d’échantillonnage h, les
suivants étant obtenus aux temps 2h, 3h, ..., kh, kh + h.

Théoréme 11.6

Soit P(0) une matrice symétrique définie positive. Avec les conditions initiales
3(0) et P(0), lalgorithme des moindres carrés récurrents (11.39), (11.40) et
(11.41) utilisé aux instants d’échantillonnage 0, h, 2h, ..., kh génére le vecteur
de paramétres estimé :

Bk+1)= (PH0)+ T (k+1)®(k+1)) "

- (P710)9(0) + T (k + Vy(k + 1))

Démonstration

Avant de s’attaquer a la démonstration proprement dite, quelques équations
¢tablies précédemment sont remaniées sous ’hypothése habituelle que la matrice
® (k) est de rang p.

L’équation (11.46) s’écrit :

P(k+1) = (®T(k)®(k) + (k + 1)¢T (k +1))
Ou:

P lk+1)=dT(k)®(k)+ d(k+1)¢p" (k+1) (11.53)
En employant (11.45) :

P lk+1)=P (k) + ok +1)p" (k+1) (11.54)
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Par ailleurs, définissons :

w(k+1) =P '(k+1)9(k+1) eR? (11.55)
Ou:

I(k+1) =Pk + Da(k + 1) (11.56)
En portant (11.39) dans (11.55) :

2(k+1) =P '(k+ )( (k) + K (k + 1) (y(k + 1) = ¢" (k + 1)I(R)) )

=P ( 1)d(k)
A+ DKE+ D) (y(k+1) - T (k+ 1DI(k)  (11.57)

Légalité (11.49) montre que K(k + 1) = P(k + 1)¢p(k + 1), équivalente a
“Yk+1)K(k+1) = ¢(k+1);(11.57) devient ainsi :

2(k+1) =P (k+ 1)B(k) + p(k + 1) (y(k +1) — ¢" (k + 1)D(k))

D’ou, en exploitant (11.53) :

z(k+1) = (87 (k) ®(k) + p(k + 1)¢" (k + 1)) (k)
+¢>k+1)( (k+1) — " (k + 1)9(k))
= &7 (k)®(k)9(k) + ¢(k + 1)y(k + 1)

En vertu des définitions (11.45) et (11.55) :

z(k+1) =P L (k)I(k) + ¢k + y(k + 1) (11.58)
=x(k) + ¢k + Dy(k+1) ’

Afin de démontrer le théoréme, les relations (11.54) et (11.58) sont mises a
profit formellement avec k = 0, 1, ...; comme le rang de la matrice ®(k) ne peut
pas étre €gal a p dans les premiers instants d’échantillonnage, en tout cas pas pour
k < p, il importe de vérifier avec grand soin que toutes les expressions entrant en
jeu sont parfaitement définies.

Avec k = 0, (11.54) s’écrit :
P1(1) =P 71(0) + ¢(1)p" (1) (11.59)

La matrice P(0) est définie positive par hypothése, donc inversible, si bien que le
membre de droite de (11.59) a un sens. De surcroit, P~1(0) est définie positive, de
sorte que P1(0) + ¢(1)¢” (1) est définie positive, par conséquent inversible. En
d’autres termes, P~1(1) est définie positive et inversible. (On signale au passage
que les lignes de la matrice ®(k + 1) sont maintenant dénotées ¢” (1), ¢ (2), ...,
@" (k + 1) et non pas ¢ (k + 1), ¢s (k + 1), ..., 1 (k + 1) comme dans la
section 11.2.) Avec k = 1, (11.54) donne :

P1(2) =P (1) + ¢(2)¢" (2) (11.60)
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Pour les mémes raisons que ci-dessus, P~1(2) est définie positive et inversible. En
substituant (11.59) dans (11.60) :

P1(2) =P71(0) + ¢(1)o" (1) + #(2)9" (2)

=P 10) + 7 (2)®(2)
En poursuivant de la sorte :
Plk+1) =P 10)+®"(k+1)®(k+1) (11.61)

D’autre part, en utilisant formellement (11.58) avec £ = 0 et la condition
initiale (0) = P~1(0)9(0) :

z(1) = z(0) + ¢(1)y(1)
Etaveck =1:
z(2) = z(1) + ¢(2)y(2) = z(0) + ¢(1)y(1) + ¢(2)y(2)

= z(0) + 2" (2)y(2)
En continuant :

z(k+1)=z(0)+ @7 (k+ y(k+1)
=P 10)9(0) + T (k+ y(k + 1) (11.62)

Incorporons finalement (11.61) et (11.62) dans (11.56) :
Ik+1)= (P H0)+ T (k+1)®(k+1))"
(P7LH0)9(0) + T (k + 1)y (k + 1))
Le théoreme est démontré. |

Le vecteur de parameétres estimé exact est, selon le théoréeme 11.1 :
Dk+1)= (®T(k+1)®(k+1))" &7 (k+ 1)y(k+1)

Le vecteur de parametres estimé d’apres le théoréme 11.6 peut €tre rendu aussi
proche que désiré de la valeur exacte en sélectionnant ¥/(0) = 0 et une matrice
P—1(0) suffisamment petite. En pratique, on choisit P(0) = oI, ou a € R est
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beaucoup plus grand que 1, par exemple o = 10%. Alors, doté de I'initialisation
9(0) = 0 et P(0) = oI, 'algorithme constitué des équations (11.39), (11.40) et
(11.41) peut étre employé aux coups d’horloge £ = 0, 1, 2, ... Il est illustré dans
la figure 11.14.

9(0) =0 P(O)=ol a>1
|
i ,
; | 1)
(11.39) I K (11.40
v(1) k=0 i k=0
(1) I
| _laranly
| k=0
: P(1)
: Y
(11.39)]_ K(2) | (11.40)
v(2) k=1 | k=1
3(2) =
| (11.41)|
| k=1
| P(2)
|
|
K(3)
S e— @
3(3) I
| (11.41)
I k=2
| P(3)l
|
|
|

Fig. 11.14 Algorithme des moindres carrés récurrents; les numéros entre parenthéses se
réferent aux équations du théAorémeAl 1.5; la sortie de ’estimateur est la suite des vecteurs
de parametres estimés 9(1), ¥(2), 9(3), ...

Nous remarquons dans la figure 11.14 que les mesures y(1), y(2), y(3), ... ne
franchissent pas la frontiére en traitillé ; elles n’interviennent donc pas dans I’éva-
luationde K (1), P(1), K(2),P(2), K(3),P(3), ...l est ainsi possible de calculer
ces quantités, et de mémoriser K (1), K(2), K(3), ..., avantle démarrage de I’al-
gorithme, réduisant considérablement la charge en temps réel (par contre, la taille



126 Méthode des moindres carrés récurrents

mémoire est augmentée). Cette facon de procéder est exclue dans I'identification
des processus dynamiques, ou les lignes de la matrice d’observations renferment
des échantillons récoltés en temps réel.

La mise a jour (11.39) mérite d’étre interprétée physiquement. Pour ce faire,
on écrit la derniére ligne de la régression linéaire (11.37) :

yk+1) =" (k+1)9 +e(k +1) (11.63)

Au vu de (11.63), le terme ¢ (k + 1)1A9(k) entrant en jeu dans (11.39) peut étre
considéré comme la prévision a I'instant d’échantillonnage kh + h , en se fon-
dant sur ’estimation (k) au temps kh, de la mesure réelle y(k + 1). L’estimation

o~

9(k + 1) a l'instant kh + h s’obtient a partir de ¥(k) par ajout de la correc-
tion K (k +1)(y(k +1) — o (k + 1)5(k)) ; cette correction est proportionnelle
a Pécart y(k + 1) — ¢ (k + 1)0(k) entre Iéchantillon réel y(k + 1) et sa pré-
vision ¢” (k + 1)9(k). Cet écart quantifie I'information apportée a la prévision
ol (k+ 1){9(1@) pour générer la nouvelle mesure y(k + 1) ; il est pour cette raison
appelé innovations (sect. 11.3).

La mise a jour (11.39) peut aussi étre regardée comme un filtre numérique qui,
excité par la mesure y(k + 1), génére le vecteur de parameétres estimé 9(k + 1).
Ce filtre est non stationnaire; il est méme non linéaire quand la matrice d’obser-
vations inclut des mesures, comme dans I'identification des systémes dynamiques
(fig. 11.15).

y(k+1) Dk +1)

@7 (k + 1)9(k) (k)

Filtre numérique non stationnaire

Fig. 11.15 Algorithme des moindres carrés récurrents vu comme un filtre numérique non
stationnaire ; les lignes doubles désignent des signaux vectoriels ; les fleches obliques traver-
sant K (k+1) et ¢7 (k+1) soulignent le fait que ces quantités évoluent au cours du temps,
provoquant la n/gn-stationnari/t\é du filtre ; finalement, I’opérateur retard vectoriel g~ ' est
défini par ¢~ {9(k + 1)} ={9(k)}.
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ExemMPLE 11.13

Développons la forme récurrente du filtre élaborant ’estimation d’un para-
metre constant (ex. 11.8). La régression lin€aire s’écrit :

y(1) 1 e(1)
y(2) 1 £(2)
= |v+
y(k) 1 e(k)
y(k+1) 1 e(k+1)

Vu I'extréme simplicité de cette application, il est possible d’évaluer P(k+1) € R
directement selon sa définition (11.45), plutot que d’aprées (11.41) :

-1

1
1
Pk+1)=][1 1 ... 1 1]]: :%H
1
1
D’ou, a I'aide de (11.49) :
1
K 1) = —— 11.64
(k+1) | (11.64)
En portant ces résultats dans (11.39) :
~ ~ 1 ~
1) = — 1) —
I(k+1) 0(k)+k+1(y(k+ ) — 9(k))
Et, finalement :
—~ ~ 1
dk+1) = I(k)+ ——ylk+1) (11.65)

T k41 E+1

1l s’agit d’un filtre numérique non stationnaire, initialisé¢ avec 9(1) = y(1) (le
rang de la matrice d’observations vaut toujours 1) et exploite avec k = 1, 2, ...
On peut aussi I'utiliser avec la condition initiale ¥(k) = Oet k = 0, 1, ... Une
comparaison avec ’estimateur de 'exemple 11.8 révele parfaitement le caractére
récurrent, la mise a jour de I'information, intrinséque a (11.65).

La formule (11.64) montre que :

lim K(k+1)=0
k—o0

Le gain multipliant les innovations y(k+1) — 3(1@) tend vers zéro quand le nombre
de mesures tend vers I'infini. Dans les faits, les mesures fraiches ne sont plus prises
en compte a partir d’un certain moment : le passé sature le présent. Un moyen
d’éviter ce probléme consiste & pondérer les mesures, par exemple via un oubli
exponentiel de celles-ci.
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11.7 Méthode des moindres carrés pondérés récurrents

La version récurrente de la méthode des moindres carrés pondérés, étudiée
dans la section 11.5, fait I’objet du théoréme suivant. La matrice de pondération
W (k + 1), intervenant dans la fonction J(9) = ||e(k + 1)||3N(k+1) 4 minimi-
ser, est supposée diagonale et définie positive; elle est structurée comme suit, ou
wk+1)eR:

W) 0

c RINHDx(N+1)
of  wk+1)

W(k+1):[

Théoréme 11.7

En supposant que la matrice d’observations ® (k) soit de rang p et que la ma-
trice de pondération W (k + 1) soit diagonale et définie positive, le vecteur de
parameétres estimé vérifie I'équation récurrente (11.39), avec :

Pk)op(k+1)

Kk+1)= i € RP (11.66)
T
—_ E+1)P(k)p(k+1
oD T DPE)B0 1)
La matrice P (k) est fournie par (11.41).
Démonstration
La démonstration est identique a celle du théoréme 11.5. |

En appelant & un entier tel que le rang de la matrice ® (k) est p, 'algorithme
récurrent (11.39), (11.66) et (11.41) peut étre employé successivement avec k =
ko, ko + 1, ... en partant des conditions initiales :

P(ko) = (®7 (ko)W (ko) @ (ko))
D(ko) = P (ko)®7 (ko)W (ko)y (ko)

Comme dans la section 11.6, il est possible d’utiliser d’emblée, aux coups
d’horloge k =0, 1, 2, ..., 'algorithme du théoréme 11.7 en I'équipant des condi-
tions initiales ¥(0) = 0 et P(0) = o, ou le nombre « est beaucoup plus grand
que 1.

Dans le contexte de 'identification des processus dynamiques, la matrice de
pondération W (k) est donnée par :

Akfl
vz

W (k) = e RVXN 0<A<1




Identification 129

Et la matrice de pondération W (k + 1) a I'instant d’échantillonnage ty11 =
(k + 1)h s’écrit :

)\k
e 0

W(k+1) = . c R+ x(N+1)

0 A

Afin de faire ressortir W (k) dans W (k + 1), cette derniére matrice est mise sous
la forme suivante :

- k-1 -

A2 0

W(k)
W(k+1) =\ (11.67)
OT

I
>
>= o

0 1

1
L )

L’algorithme des moindres carrés pondérés récurrents avec facteur d’oubli est ré-
sumé dans le théoréme suivant.

Théoréme 11.8

En supposant que la matrice d’observations ® (k) soit de rang p et que la matrice
de pondération W (k + 1) soit fournie par (11.67), le vecteur de paramétres
estimé vérifie I'équation récurrente (11.39), avec :

B P(k)p(k +1) .
Ko+ ) = s )Pt D)
Pk+1)=(I-K(k+1)¢" (k+ 1))@ € RPXP
Démonstration

Il suffit de reprendre point par point la démonstration du théoréme 11.5 avec
la matrice de pondération (11.67) pour aboutir au résultat désiré.

ExempLE 11.14
Soit ’entrainement en vitesse de 'exemple 11.5:

b

H(z):z+a
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Le paramétre a est sujet a de 1égéres mais brusques fluctuations dans l'intervalle
[-1,—0,9] et b dans [0,095, 0,1]. La figure 11.16 montre la tension électrique
u(k) injectée et la vitesse de rotation y(k) qui en résulte. Le vecteur de parameétres
9 et son estimation J(k) s’écrivent, respectivement :

_|a Sy — | @)
o=5] w5
Ils apparaissent tous deux dans la figure 11.16, dans les cas A = 1 (il n’y a pas
d’oubli des anciennes mesures), A = 0,95 et A = 0,85. Nous remarquons que ’ou-

bli exponentiel des anciennes mesures permet de traquer des paramétres évoluant
dans le temps.

11.8 Problémes

11.8.1 Soit un moteur a courant continu et a excitation séparée entralnant une
charge. La résistance R du circuit d’induit est connue. Le courant d’induit 4(¢),
la tension d’alimentation u(t) et la vitesse de rotation w(¢) sont mesurés. Imagi-
ner une méthode d’identification de la constante K® du moteur. Est-il possible
d’estimer le couple résistant a partir de K®?

11.8.2 Soit un moteur a courant continu et a excitation séparée entrainant une
charge. Le courant d’induit i(¢), la tension d’alimentation w(t) et la vitesse de
rotation w(t) sont mesurés. Imaginer une méthode d’identification de la constante
K& du moteur et de la résistance R du circuit d’induit du moteur.

11.8.3 Soit un entrainement électrique en vitesse (ex. 1.14) :

G(s) = —L

s+ 1

Ce processus est soumis a un saut unité; on mesure la sortie a un temps donné %
et la vitesse permanente lim;_, ., y(¢). Calculer «y et 7 & partir de ces deux mesures.
Appliquer les résultats obtenus dans le cas y(2) = 30 rad/s et lim; . y(t) = 70
rad/s. Comment améliorer I’estimation des paramétres et 7 ?

11.8.4 Soit un processus a identifier échantillonné comportant une double inté-
gration. Comment tirer profit de cette connaissance a priori?

11.8.5 Un entrainement électrique de position par moteur brushless commandé
en courant se comporte approximativement comme un double intégrateur analo-

gique :

G(s):l v>0

Déterminer sa fonction de transfert échantillonnée. Exploiter les connaissances a
priori afin d’identifier la constante .
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11.8.6 Soit un systéme caractérisé par I’équation aux différences :

y(k) + ary(k — 1) + -+ any(k —n)
=boulk—1)+bu(k—2)+ -+ boqulk—n)+u
Etablir une régression linéaire permettant d’identifier a;, ¢ = 1, 2, ..., n, et by,

j=0,1,...,n— 1, dans le cas ou le nombre @ est connu. Répéter le probléme
quand w doit lui aussi étre identifié.

11.8.7 Soit la fonction de transfert discréte :
z—b B(z)

HE == A

Les polynémes A(z) et B(z) sont de degrés appropriés. Pourquoi I'identification
des coeflicients des polynomes A(z) et B(z), du zéro b et du pdle p devient-elle
délicate lorsque le pole p se rapproche du zéro b?

11.8.8 Ausens des moindres carrés, tracer une droite passant par les échantillons
de la figure 11.17.

A
10
R ,
8 1 |
7 }
6 J——————————————— '? |
5 === * | |
| | |
4 A | : ;
i e S A
2 4 | | | |
] | | |
08 T N
£ T T T >
1 2 3 4

Fig. 11.17 Echantillons d’une régression linéaire.

Calculer la norme euclidienne minimum J (5(4)) Evaluer cette norme avec
la droite 2¢ + 1,5.

11.8.9 Résoudre, au sens des moindres carrés, le systeme d’équations algébriques
linéaires :

r+2y+z=1
3x—y =2
2r+y—z2=2

r+2y+2z=1
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11.8.10 Avec des conditions initiales nulles, un objet est laché dans le vide et sa
position mesurée a divers instants (tab. 11.1).

Tableau 11.1 Mesures de la position d’un objet laché dans le vide.

Temps [s] Position [m]

0,1 0,05
0,2 0,2
0,3 0,4
0,4 0,8

Estimer I’accélération terrestre g par la méthode des moindres carrés.

11.8.11 Un objet est laché dans le vide avec une vitesse et une position initiales
non nulles; sa position est mesurée a différents instants. Ecrire une régression
linéaire permettant d’estimer I’accélération terrestre.

11.8.12 La position d’un objet se déplagant en ligne droite avec une accélération
constante est mesurée par un radar (tab. 11.2).

Tableau 11.2 Mesures de la position d’un objet se déplagant en ligne droite avec une
accélération constante.

Temps [s] Position [m]
0 3
0,2 59
0,4 98
0,6 151
0,8 218
1 264

Identifier par la méthode des moindres carrés la position et la vitesse initiales,
de méme que I’accélération. Prévoir la position de ’objet au temps 1,4 s.

11.8.13 Les nombres de Nusselt et de Reynolds, dénotés respectivement Nu et
Re, sont liés par ’équation :

Nu = aRe’

Des mesures expérimentales sont reportées dans le tableau 11.3.
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Tableau 11.3 Mesures des nombres de Reynolds et de Nusselt.

Re Nu
10* 32
2-10* 60
4.10* 90
5-10% 119

Identifier par la méthode des moindres carrés les paramétres a et b.

11.8.14 Soit la régression linéaire :

2 1 1
31 =11 1 J+e
2 1 147y

Déterminer 9. Le nombre ~ est beaucoup plus petit que 1 de sorte que, sur un
ordinateur d’un certain type, a + 72 est arrondi au nombre a # 0, tandis que
a + y est évalué correctement. Calculer ¥ en commettant cette erreur numérique
et interpréter le résultat obtenu.

11.8.15 Soit I’entrainement en vitesse de 'exemple 11.5. Déterminer pour cette
installation la matrice ®7'(k — 1)®(k — 1) et le vecteur ®7'(k — 1)y (k).

11.8.16 Soit le processus non linéaire gouverné par ’équation :
y(k) + ay(k — 1) = bou(k — 1) + byu?(k — 1)
Etablir une régression linéaire permettant d’identifier a, by et b;.

11.8.17 Démontrer que la matrice de projection est idempotente, c’est-a-dire que
son carré est égal a elle-méme.

11.8.18 Prouver que, pour la méthode des moindres carrés non pondérés :
~ -1
J(O(k)) = y" (k)y(k) — y" (k)@ (k) (7 (k)®(K)) @ (k)y(k)

11.8.19 Que devient la formule (11.25) quand la matrice d’observations ® (k) est
carrée ?

11.8.20 Démontrer le théoréme 11.3.
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11.8.21 Dans le contexte du théoréme 11.4, prouver 1’égalité :

(A"'~A"'B(C™' +DA'B) 'DA™!) (A + BCD) =1

11.8.22 Démontrer que le nombre 1 + ¢T(<I>T<I>)_1¢ intervenant dans la dé-
monstration du théoréme 11.5 est plus grand ou égal a 1.

11.8.23 Déduire I’équation (11.65) a partir du résultat trouvé dans I’exemple
11.8.

11.8.24 Détailler la démonstration du théoréme 11.7 en reprenant point par
point la démonstration du théoréme 11.5.

11.8.25 Détailler la démonstration du théoréme 11.8.

11.8.26 Soit le circuit électrique de la figure 11.18.

i(t)

R
| S—

u(t) l <> L

Fig. 11.18 Circuit électrique.

La tension u(t) et le courant (¢) sont mesurés aux instants 0, h, 2h, ..., kh.
Soit ’'approximation :

di i(kh) — i(kh — h)

— (kh) ~

dt (kh) h

Etablir une régression linéaire permettant d’identifier les parametres R et L a par-
tir des mesures.

11.8.27 Appliquer la méthode de Levy a la fonction de transfert Sia. Explici-

ter les dimensions des vecteurs et de la matrice associés a la régression linéaire
obtenue.

11.8.28 Un entrainement par moteur brushless et son alimentation peuvent étre
modélisés par la fonction de transfert :

e_ST% b, T>0
s
Des essais harmoniques analogiques effectués aux pulsations w; ont fourni des
mesures r; e1% € C,i =1, 2, ..., K, de cette fonction de transfert. Etablir deux
régressions linéaires permettant d’identifier les parameétres b et 7' a partir de ces
mesures. En déduire une estimation de ces paramétres.
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11.8.29 Déterminer par la méthode des moindres carrés le polyndme du deuxieme
degré qui passe au mieux, au sens des moindres carrés, par les cinq points :

(0,1, —0,18) (0,2,0,31) (0,3, 1,03) (0,4,248) (0,5,3,73)

Reporter les résultats sur un graphique.

11.8.30 Soit ’expérience représentée dans la figure 11.19. Des résultats expéri-
mentaux sont reportés dans le tableau 11.4.

Longueur = [cm]

Force y [g]

Fig. 11.19 Force appliquée a un ressort.

Tableau 11.4 Mesures de la force appliquée a un ressort et de sa longueur.

Force y [g] Longueur x [cm]

0 6,1
20 7,6
40 8,7
60 10,4

Estimer par la méthode des moindres carrés la constante du ressort.

11.8.31 Soit un gaz a température constante contenu dans le volume V' a pres-
sion p :

pV7 =c¢

Ecrire une régression linéaire permettant d’identifier les paramétres c et y a partir
de mesures de volume et de pression.
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11.8.32 On considére I’équation différentielle suivante :

§(t) = 3y(t) +2y(t) = 0

Des mesures de y(¢) étant données a plusieurs instants, établir une régression li-
néaire permettant d’estimer les conditions initiales y(0) et §(0).

11.8.33  Soit M(k) = ®(k) (@7 (k)®(k)) '®7 (k) la matrice de projection. Avec
k

PL(k) = (I-P(k)), demontrer que y(k) = J-( ) (k) et que la matrice P+ (k)
est idempotente. Prouver ensuite que P(k)P+(k) = P+ (k)P(k) = O et interpré-
ter les résultats.

11.8.34 Afin d’identifier le paramétre w, de la fonction de transfert w, /s, on
souhaite mettre a profit la méthode de Levy. Pour cela, des essais harmoniques
analogiques effectués aux pulsations w; ont fourni les mesures z; + jy;, i =
1,2, ..., K, de cette fonction de transfert. Etablir la régression linéaire corres-
pondante, en explicitant les dimensions des vecteurs et de la matrice qui lui sont
associés. Calculer 0, (K).



CHAPITRE 12

Commande adaptative

OBJECTIFS

e Combiner un régulateur RST et une procédure d'identification
pour aboutir 3 un schéma de commande adaptative
par imposition d'un modéle.

* Présenter |'auto-ajustement des régulateurs RST et PID.

e Décrire le régulateur a gains programmeés.

12.1 Introduction

La synthése d’un régulateur RST se présente naturellement sous la forme d’un
algorithme. Par ailleurs, une modélisation du processus a commander par identi-
fication peut, elle aussi, étre décrite par une suite d’opérations numériques. Il est
alors possible d’automatiser intégralement la sixieme filiére de la figure 8.1, consti-
tuée d’une identification paramétrique suivie d’une synthése directe : I’ajustement
du régulateur est effectué par un algorithme. Cet auto-ajustement peut étre éla-
boré en temps réel, conduisant a un schéma de commande adaptative, dans lequel
le régulateur détermine lui-méme et met continuellement a jour ses parameétres.

Le volume de calcul requis par une commande adaptative est nettement plus
conséquent que celui mis en jeu dans un régulateur a parametres fixes. Toutefois,
des réalisations basées sur microprocesseurs sont actuellement possibles.

Un schéma adaptatif constitue intrinséquement un systéme non linéaire. 11 est
trés difficile, voire impossible, de ’analyser complétement. Qui plus est, son im-
plantation industrielle est délicate et exige un vaste savoir-faire. Elle porte en elle
les germes de défaillances majeures. C’est par conséquent une solution a n’envisa-
ger dans certaines applications exigeantes qu’apres s’étre assuré qu’un régulateur
a parameétres fixes ou programmeés, le cas échéant équipé d’une touche d’auto-
ajustement, ne peut pas remplir les spécifications.

Le présent chapitre est une introduction aux méthodes de commande adap-
tative. Seuls des aspects déterministes sont explorés. L’approche par modele de
référence n’est pas abordée; en fait, les différences entre celle-ci et ’architecture
détaillée dans les sections qui suivent se révélent mineures.
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La section 12.2 décrit une commande adaptative par imposition d’un mo-
dele; le schéma indirect est traité dans le paragraphe 12.2.1 et le schéma direct
dans le paragraphe 12.2.2. L’auto-ajustement d’un régulateur a parameétres fixes
jouit d’une importance pratique considérable. Le cas du régulateur RST est rapi-
dement étudié au début de la section 12.3; des approches conceptuellement fort
différentes, en particulier les méthodes dites du relais, sont offertes pour I’auto-
ajustement du régulateur PID. Finalement, le régulateur a gains programmeés est
développé dans la section 12.4.

12.2 Commande adaptative par imposition d’un modéle

12.2.1 Schéma indirect

Nous avons noté dans le chapitre 10 que la synthése d’un régulateur RST se
présente comme un algorithme directement programmable : étant donné les poly-
noémes A(z) et B(z) de la fonction de transfert H(z) = B(z)/A(z) du systéme a
commander échantillonné (et des spécifications), les parameétres du régulateur, a
savoir les coefficients des polynomes R(z), S(z) et T'(z) qu’il fait intervenir, sont
déterminés par une suite d’opérations numériques, dont le cceur est la résolution
d’une équation diophantine et résumées dans les tableaux 10.1 a 10.4. La figure
12.1 illustre la démarche par un schéma fonctionnel. Selon les conventions ha-
bituelles, Y,(z), U(z) et Y (z) dénotent les grandeurs de consigne, de commande
et a commander, respectivement ; G(s) est la fonction de transfert analogique du
processus a commander.

Synthe 3 Coeflicients de
ynthese A(z) et B(2)

Coefficients de
R(z), S(z) et T(z)

!_ __________________ hl

Yo(z) — U(z) i Y(z)
RST = D-A G(s) A-D
T |
| B(2) '
| (2) = '
I |

Fig. 12.1 Schéma fonctionnel du montage en asservissement avec un régulateur RST muni
de sa synthése ; les spécifications intervenant dans la synthése ne sont pas représentées.
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Par ailleurs, I’élaboration d’un modé¢le externe de représentation par identi-
fication a été explorée dans le chapitre 11. Sa version récurrente est bien adap-
tée a une implantation en temps réel. Lorsque des parameétres de I'installation a
commander s’altérent lentement au cours du temps, ce qui est admis ici, il est in-
dispensable d’incorporer un facteur d’oubli. Les variations paramétriques doivent
évidemment étre beaucoup plus lentes que celles des autres variables entrant en jeu
afin que 'approche par fonction de transfert conserve tout son sens. L’algorithme
est résumé dans le théoréme 11.8 et par le schéma fonctionnel de la figure 12.2.

Coefficients de 3
A(z) et B(z)

Identification

T T T 0T Tl
|
U(z) : > D-A > G(s) = A-D : > Y (z)

| |

| |

[ _ B(»)

| Hz) = 25 :
L _

Fig. 12.2 Modélisation de représentation du systéme a commander.

Il apparait logique de combiner les figures 12.1 et 12.2, puis d’effectuer conti-
nuellement, dans I’ordre et a chaque coup d’horloge, I'identification du processus
a commander et la synthése du régulateur RST. On aboutit ainsi a un schéma de
commande adaptative (fig. 12.3), dans lequel la modélisation du systéme a com-
mander et la synthése du régulateur sont automatisées en temps réel. L’appellation
adaptative provient de la caractéristique inhérente du montage de s’ajuster auto-
matiquement et en permanence au processus & commander, méme quand celui-ci
est légérement non stationnaire.

Coefficients de
A(z) et B(z)

Synthése
Identification
Coefficients de -
R(z), S(z) et T(z) = — = .
|
|
Ye(z) —— U(z) | 1 |
RST } D-A G(s) = A-D [ Y (z)
| |
vt | |
! H(x) = B l
[ A(z) !
- J

Fig. 12.3 Schéma de commande adaptative indirect.
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Réorganisons légérement le schéma fonctionnel de la figure 12.3 pour se pla-
cer dans le format standard de la figure 1.79, faisant ressortir I’horloge délivrant
les instants d’échantillonnage (fig. 12.4). La réalisation logicielle est esquissée dans
la figure 12.5.

A Tinstant d’échantillonnage ¢, = kh délivré par I’horloge, la conversion
analogique-digital fournit le nombre y(k) par échantillonnage de la grandeur a
commander analogique mesurée. L’algorithme manipule ensuite cet échantillon,
en exploitant encore d’autres nombres mémorisés. Il peut étre scindé en une phase
d’identification récurrente, qui met a jour I’estimation des coefficients des poly-
noémes A(z) et B(z); en se basant sur cette estimation, un régulateur RST est
synthétisé et, finalement, la grandeur de commande u(k) (ou u(k + 1) si le temps
de calcul et de conversion vaut h) est calculée selon ’équation aux différences dé-
crivant le régulateur. Le nombre u(k) (ou u(k + 1)) est alors maintenu constant,
par le convertisseur digital-analogique, pendant une période d’échantillonnage
compléte. Toutes ces opérations sont répétées au coup d’horloge suivant.

Pour lindentification qui nous concerne ici, la matrice d’observations
®(k — 1) a 'instant d’échantillonnage kh ne renferme des échantillons que jus-
qu’au temps kh—h compris ; le nombre u(k) n’intervient pas; la notation ®(k—1)
souligne d’ailleurs cette situation, laquelle est en fait fort heureuse car I’évaluation
de u(k) n’est activée qu’apres la procédure d’identification ; u(k) est une quantité
non définie lors de I'identification.

Le dimensionnement du régulateur ne se fonde pas sur le modéle complet
et exact du processus & commander ; en fait, & chaque coup d’horloge, un mo-
dele de commande simplifié, linéaire et stationnaire, estimé avec diverses erreurs
par lalgorithme d’identification, est employé comme si ¢’était le modéle exact. En
terminologie anglaise, une telle approche s’appelle certainty equivalence principle,
que 'on peut traduire par principe de Uéquivalence certaine.

Le qualitatif indirect ou explicite attaché au schéma de la figure 12.3 provient
du fait que les paramétres du systéme a commander doivent étre estimés avant
de servir a la synthése du régulateur. Le prochain paragraphe est dévolu a un
schéma direct ou implicite , dans lequel ce sont les parameétres du régulateur qui
sont d’emblée identifiés.

Le découplage des taches d’identification et de syntheése, intrinséque a 1’ap-
proche indirecte, offre d’intéressants atouts. Tout d’abord, d’éventuelles connais-
sances a priori sur 'installation & commander peuvent étre prises en compte par
I'identification. Ensuite, il est possible de sélectionner indépendamment une
méthode d’identification, parmi un choix tres riche, et un régulateur, la aussi dans
une large palette. Par exemple, plutot quune approche polynomiale RST, un ré-
gulateur PID est possible, bien que sa synthése se préte généralement mal a étre
directement transcrite en algorithme. Nous constatons donc que le schéma fonc-
tionnel de la figure 12.3 est extrémement flexible et constitue un concept générique
et un cadre structurant de grande portée.

Il existe visiblement deux boucles dans un schéma de commande adaptative.
La premiére est une rétroaction classique de la grandeur a commander ; quant a
la seconde, plus lente, elle se compose du mécanisme d’ajustement des parametres
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| Horloge |

Identification [ |

Coefficients de
A(z) et B(z)

Synthése

R(z), S(z) et || T(2)

- — ]

Ye(z) —

= D-A

G(s)

v {L

| |
| |
: |

|
[ Coefficients de l
| |
| :
| l
‘L._ __ Algorithme | _,_ll

Fig. 12.4 Schéma de commande adaptative indirect dans le format de la figure 1.79.

tr = kh

Conversion A-D de la
grandeur a commander

Identification du
systéme a commander

|
|
|
|
Synthese du I
régulateur RST I
|
|
|

Conversion D-A de la
grandeur de commande

N

Fig. 12.5 Réalisation logicielle d’'un schéma de commande adaptative indirect.
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du régulateur. Vu ce mécanisme d’ajustement, le systéme en boucle fermée est
profondément non linéaire ; son analyse compléte, en particulier de la stabilité et
des performances, est extrémement ardue. Seuls des résultats partiels, valides dans
des situations idéalisées, sont connus ; leur présentation sort du cadre de ce livre.

Dans le schéma indirect de la figure 12.3, il existe un conflit potentiel entre
I'identification et la commande. Expliquons qualitativement le phénoméne en pre-
nant une consigne constante. A I'enclenchement de 1’algorithme de commande
adaptative, le régulateur est fréquemment médiocre parce que mal ajusté ; la gran-
deur de commande est ainsi excitante, générant une grandeur commandée agitée.
Cette situation se révele favorable pour la procédure d’identification (sect. 11.4),
conduisant a une modélisation pertinente du processus a commander. La synthése
affine alors substantiellement le régulateur, engendrant une grandeur de com-
mande et une grandeur a commander plus calmes qu’initialement. Les modes de
I'installation a commander sont moins influencés et la richesse de son excitation
se détériore. Au fur et a mesure que le temps s’écoule, la grandeur a commander
s’approche de la valeur de consigne, constante; la grandeur de commande devient
elle aussi constante. L’objectif de commande est atteint. Malheureusement, les
modes du systéme a commander sont mal excités et les conditions de persistance
détruites, ceci se reflétant mathématiquement par une matrice d’observations de
rang insuffisant. L’identification transmet un modéle aberrant a la syntheése, qui
donne un régulateur inconsistant : il y a explosion de la grandeur de commande,
puis de la grandeur a commander. Ce comportement intempestif est appelé écla-
tement, ou burst-out en anglais. Dés son apparition, la richesse de I’excitation est
a nouveau suffisante et le cycle complet recommence.

i

Coefficients de Supervision
A(z) et B(z)
7 @
Synthe
ynthese Identification

Coefficients de

R(z), S(z) et T(z) F————— = =
Yo(2) U(z)| | l
RST T* D-A = G(s) f——= A-D | 4 Y(2)
l
v oo
| z
[ (2) = A0) |

Fig. 12.6 Schéma de commande adaptative indirect avec supervision de Iidentification.
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Il importe de déconnecter I'identification dés que le modeéle de commande est
jugé correct. Généralement, une gestion plus subtile de I'identification est mise en
place. Comme cela est montré dans la figure 12.6, le modéle n’est pas directement
exploité pour la synthese du régulateur; il passe au préalable dans un module de
supervision, pouvant également tirer profit de la consigne, de la grandeur de com-
mande et de la grandeur a commander ; ce module transmet I'information a la
procédure de synthése uniquement quand cela est nécessaire. Il n’existe aucune
méthodologie générale de supervision de l'identification ; c’est souvent un en-
semble de regles heuristiques, dépendantes de ’application et documentées dans
la littérature spécialisée.

ExemMPLE 12.1

Le schéma de commande adaptative de la figure 12.3 est appliqué a un en-
tralnement électrique commandé en vitesse. Une période d’échantillonnage h =
0,1 s est adoptée. L'identification du processus est assurée par 1’algorithme des
moindres carrés récurrents du théoréme 11.8, avec un facteur d’oubli A = 0,98.
Le régulateur RST implanté n’inclut pas d’intégrateur; le temps de calcul et de
conversion est négligeable vis-a-vis de la période d’échantillonnage ; on adopte le
modele a poursuivre :

0,3
z—0,7

Hy(2) =

La synthése du régulateur est résumée dans le tableau 10.1. Des résultats décou-
lant d’un essai sur une installation réelle sont reportés dans la figure 12.7, qui met
en évidence I'ajustage du régulateur dans les premicres périodes d’échantillon-
nage. Aucun phénomeéne d’éclatement n’est décelé dans cette application.

u(t) [V]

A
10

—10 H

Fig. 12.7 Grandeur de commande et réponse en boucle fermée d’un entrainement com-
mandé en vitesse par un régulateur RST adaptatif’; la grandeur de commande est limitée a
+10V.
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[rad/s]

60

20

T T T T T —» ¢ [s]

—20 ~ yc(t) . y(t)

—40 —

—60 1

Fig. 12.7 (Suite et fin.)

Le systeme a commander échantillonné est représenté par :

b
z24+a

H(z)=

Le vecteur de parameétres est donc :

[

A /7 b(t)
1,5
14
0,5 -
- T T T I T » ¢ [s]
1 2 3 4 5 6 7
57 I
1 4
—-1,5 -

Fig. 12.8 Paramétres estimés.
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Le vecteur de paramétres estimé est écrit de la maniére suivante :

wo- (3]

La figure 12.8 montre ’évolution temporelle des coefficients a(k) et g(k)

12.2.2 Schéma direct

L’approche indirecte, passant par 'identification explicite du processus & com-
mander, requiert un volume de calcul important. Un schéma direct ou implicite,
dans lequel ce sont les parameétres du régulateur qui sont estimés, permet de sup-
primer le bloc de synthése de la figure 12.3, d’ou un gain en temps de calcul ap-
préciable. De surcroit, ’'analyse de la stabilité en boucle fermée se simplifie sub-
stantiellement. Le schéma fonctionnel du montage direct est dessiné dans la figure
12.9.

Coefficients de Identification
R(z), S(z) et T(2)
rr— Y — — — — — - i
)] 1 |
U(z
Ye(2) RST = D-A - G(s) AD F— Y(2)

I |
\\/A | |
i () = 20 |
I A I
I o ]

Fig. 12.9 Schéma de commande adaptative direct.

Les deux membres de ’équation diophantine (10.15) sont multipliés par Y (z) :
A(2)R(2)Y (2) + B~ (2)S(2)Y (2) = A (2)A0(2)Y (2)
D’ou, en tenant compte successivement de Y (2)/U(z) = B(z)/A(z), B(z) =
B*t(z)B~(z) (factorisation spectrale (10.10)) et R(z) = BT (z)R(z) (égalité
(10.13)):

A (2)A0(2)Y (2) = B(2)R(2)U(2) + B~ (2)S(2)Y (2)

Y(z) (12.1)
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Par conséquent :

Y() B (3)R()
U(z) Am(2)Ao(z) — B~ (2)S(2)

(12.2)

L’égalité (12.2) peut étre considérée comme la description du systéme a comman-
der paramétrisé non pas avec les polynomes A(z) et B(z), mais avec les polyndmes
A (2), Ao(z), B~ (2), S(z) et R(2); Am(z) et Ag(2) sont fixés par les spécifica-
tions tandis que B~ (z), R(z) et S(z) sont inconnus. A I'aide des échantillons
{u(k)} et {y(k)} récoltés respectivement a I'entrée et a la sortie de I'installa-
tion a commander, I'identification des polyndmes B~ (z), R(z) et S(z) conduit
directement au régulateur RST défini par les polynémes R(z), S(z) et T'(z) =
B! (2)Ap(2). Sa synthése explicite est de la sorte éliminée.

Malheureusement, le probleme d’identification tel qu’il vient d’étre posé meéne
a une régression non linéaire puisque B~ (z) multiplie, dans (12.2), R(z) et S(z).
Cette difficulté n’existe pas si B~ (z) = 1 ou, plus généralement, si B~ (z) est
une constante by € R, en d’autres termes quand tous les zéros du processus a
commander sont simplifiés. Comme cela a été relevé dans le paragraphe 10.3.6, il
s’agit d’une restriction sévere, excluant d’emblée tous les systémes a non-minimum
de phase et, trés souvent, les systémes dont les zéros n’appartiennent pas a une
région convenable entiérement située a I'intérieur du cercle unité (par exemple la
région en tramé de la figure 10.7). Lorsque B~ (2) = bo, (12.1) devient :

Am(2)Ap(2)Y (2) = boR(2)U(2) + boS(2)Y (2) (12.3)

L’algorithme d’identification est maintenant chargé de I’estimation des coefficients
des polynomes by R(z) et byS(z) qui entrent en jeu linéairement dans (12.3).

La relation 6R = 6A,, + 6Ag + 0BT — §A a été établie dans le chapitre 10
(égalité (10.37)); vu que B~ (z) = b, nous avons 6B = § B+ et :

SR = 6A,, + Ao — (A — 6B)
= §(AmAg) — (5A —6B)

Le surplus de poles d = 0A — 6B vérifie I'inégalité d > 0. En tirant profit de
O0R = 6(boR) > 0S5 = 6(byS), traduisant la causalité du régulateur RST, on
aboutit a :

5(AmAg) = 6(boR) +d > 6(boS) +d (12.4)

Ainsi, le degré du polynéme A,,(z)Ao(z) est strictement plus grand que celui
de boR(z), lequel est plus grand ou égal a celui de byS(z). Multiplions les deux
membres de (12.3) par z—%(Am40) et passons dans le domaine temporel. Le mem-
bre de gauche est alors une somme des échantillons y(k), y(k — 1), ...,
y(k — 6(AmAg)), pondérée par les coefficients du polyndme donné A, (z) Ag(2).
La valeur de cette somme est donc parfaitement connue a I'instant d’échantillon-
nage t; = kh. Le membre de droite est une somme d’échantillons de 'entrée
{u(k)} et de la sortie {y(k)}, pondérée avec les coefficients des polynomes in-
connus byR(z) et byS(z), qui constituent les composantes du vecteur de para-
meétres ; les relations (12.4) montrent que le dernier échantillon intervenant dans



Commande adaptative 149

cette somme est récolté avant I'instant d’échantillonnage ¢, = kh; par exemple,
si d = 1, les échantillons entrant en jeu sont saisis aux temps kh — h, kh — 2h,
..oy kh —0(A,, Ag)h et la matrice d’observations ®(k — 1) associée a la régression
linéaire ne renferme des échantillons que jusqu’a I'instant kh — h compris.

Les deux membres de I’équation R(2)U(z) = T'(2)Y.(z) — S(2)Y (z) du régu-
lateur RST sont multipliés par by pour obtenir :

boR(2)U(z) = boT (2)Ye(2) — boS(2)Y (2) (12.5)

On sait que T'(z) = BJ,(2)Ao(z); par conséquent, boT'(z) = byB.,(2)Ao(z) =
B, (2)Ap(z) et (12.5) devient :

boR(2)U(2) = Bm(2)Ao(2)Ye(2) — bpS(2)Y (2)

Le code du régulateur se fonde sur cette relation, ou les coefficients des polyndmes
boR(z) et byS(z) sont estimés par I'algorithme d’identification. La figure 12.10
compléte la figure 12.9 en faisant intervenir ’horloge et la figure 12.11 illustre
Parchitecture logicielle.

L’algorithme se décompose maintenant en une phase d’identification récur-
rente, chargée de la mise a jour de Iestimation des coefficients des polyndomes
boR(z) et bpS(z); la grandeur de commande u(k) (ou u(k + 1) sile temps de cal-
cul et de conversion vaut h) est ensuite déterminée selon ’équation aux différences
décrivant le régulateur.

r————-
{ Horloge :

- ——d

Identification

Coefficients de
boR(Z) et boS(Z)

l— — — ——

Ye(z) —= L DA ] G(s)

| |
| |
| |
| J
| |
| | |
L Algorithme —‘

Fig. 12.10 Schéma de commande adaptative direct dans le format de la figure 1.79.
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tr = kh

Conversion A-D de la
grandeur a commander

lf— ____________ =

|

| “E’ Identification du I
| = régulateur RST

= 4 |

| 5 !

| <  Commande RST :

b e 1

Conversion D-A de la
grandeur de commande

N

Fig. 12.11 Réalisation logicielle d’un schéma de commande adaptative direct.

Dans le schéma indirect du paragraphe précédent, les parameétres estimés du
processus a commander sont utilisés comme s’ils étaient les vrais parameétres tan-
dis que, dans le schéma direct du présent paragraphe, les paramétres estimés du
régulateur RST sont employés comme s’ils étaient exacts. Bien évidemment, les
résultats issus de ces deux démarches différent.

Mentionnons pour conclure qu’un intégrateur peut aisément étre incorporé
dans le régulateur RST d’un schéma direct.

12.3 Auto-ajustement du régulateur

Dans les schémas de commande adaptative de la section précédente, le méca-
nisme d’ajustement du régulateur est théoriquement activé a chaque coup d’hor-
loge ; dans la pratique toutefois, ce mécanisme peut étre gelé par un module de su-
pervision gérant I'identification. Ces architectures sont attractives au démarrage
et pour des systémes a commander légerement non stationnaires. Par contre, elles
apparaissent trop lourdes et potentiellement délicates pour des processus station-
naires, ou des régulateurs a parameétres figés apreés leur ajustement conviennent en
général parfaitement.

La détermination automatique de ces parameétres peut étre effectuée en conser-
vant au démarrage les structures des figures 12.3 ou 12.9, puis en débranchant
la procédure d’ajustement quand les performances sont jugées satisfaisantes; les
parametres du régulateur conservent alors leurs derniéres valeurs. Une telle phi-
losophie est appelée auto-ajustement ou, en anglais, auto-tuning.



Commande adaptative 151

Il est aussi possible de tirer profit du mécanisme d’ajustement en boucle ou-
verte, en injectant dans le systéme a commander, qui doit étre stable, une excita-
tion suffisamment riche pour I'identification ; le régulateur est dimensionné puis
exploité tel quel en boucle fermée. La figure 12.12 illustre ’auto-ajustement du ré-
gulateur RST dans le cas d’un schéma indirect et la figure 12.13 pour un schéma
direct. L'importance pratique d’un auto-ajustement est considérable : sur simple
demande, des régulateurs sont synthétisés automatiquement.

Coefficients de
A(z) et B(z)

Synthése <L

Identification
Coeflicients de
R(z), S(z) et ||T(2) [~ ———— 9
| |
U(z) f D-A G(s) A-D - Y (z)
| |
| |
I B(2) |
| (2) =~ ]
I o J
Fig. 12.12 Auto-ajustement en boucle ouverte d’un régulateur RST indirect.
@ Identification
Coeflicients de
R(z), S(z) et T(2)
U(z) — D-A | G(s) A-D Y (z)

Fig. 12.13 Auto-ajustement en boucle ouverte d’un régulateur RST direct.

Les méthodes de synthése du régulateur PID étudiées dans les chapitres 8 et
9 n’exhibent pas la forme algébrique de celles caractéristiques du régulateur RST.
L’auto-ajustement du régulateur RST qui vient d’étre proposé n’a par conséquent
pas d’équivalent immédiat pour la commande PID. Il existe néanmoins des tech-
niques d’auto-ajustement conceptuellement différentes, bien adaptées au régula-
teur PID, dont les plus importantes sont maintenant passées en revue.

Une approche possible se fonde sur la synthése par imposition d’un mode¢le a
poursuivre analogique, laquelle est traitée dans le paragraphe 1.7.6. Aprés identi-
fication d’un modele de commande G(s), un régulateur PI, PD ou PID est ajusté a
l’aide des expressions algébriques développées dans ce paragraphe. Le régulateur
obtenu est numérisé selon les indications du chapitre 8, puis finalement implanté.
Cette technique s’avére mal adaptée a des processus comprenant un retard pur.
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La premiere méthode de Ziegler-Nichols (§ 1.7.5) peut elle aussi étre exploitée
dans ce contexte. Le systéme a commander est tout d’abord soumis a un essai indi-
ciel. La réponse qui en résulte est ensuite analysée afin d’extraire les nombres a et
L ; dans le but d’automatiser la procédure d’ajustement, il est possible d’identifier
par moindres carrés une droite passant par la réponse indicielle échantillonnée, en
adoptant une faible pondération pour les premiers échantillons liés au retard pur
L. Le régulateur est alors dimensionné selon le tableau 1.1, puis le cas échéant re-
touché, numérisé et implanté. Cette approche se révele sensible aux erreurs com-
mises dans I’estimation des parameétres a et L. Par ailleurs, il n’est pas possible
d’en bénéficier quand le retard L est inexistant dans la réponse indicielle.

Quant a la seconde méthode de Ziegler-Nichols, elle est difficile a automa-
tiser, ceci étant pour I'essentiel dii a la maitrise trés délicate de 'amplitude des
oscillations. Qui plus est, opérer a la limite de la stabilité en boucle fermée se

Im

KpeG(jw)

Fig. 12.14 Diagramme de Nyquist associé a la seconde méthode de Ziegler-Nichols.

Im

Re

Y

Kpe

G(jw)

Fig. 12.15 Diagramme de la figure 12.14 modifié.
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révele périlleux ou méme interdit dans certaines circonstances. Afin de contour-
ner ces difficultés fort élégamment, les résultats fournis par la seconde méthode de
Ziegler-Nichols vont étre créés complétement différemment a I’aide d’un régula-
teur non linéaire de type tout-ou-rien (sect. 1.6). Mais, auparavant, les conditions
qu’elle impose sont interprétées dans un diagramme de Nyquist analogique (les
lecteurs peu familiers avec ce concept trouveront d’utiles informations dans I’an-
nexe I1). Il est évident que, la limite de la stabilité en boucle fermée étant atteinte,
la fonction de transfert analogique harmonique en boucle ouverte K,.G(jw)
passe par le point critique —1 (fig. 12.14).

Une division par le gain critique K, conduit au diagramme de la figure 12.15.

Le régulateur proportionnel de gain K, est maintenant remplacé par un ré-
gulateur tout-ou-rien, comme cela est montré dans la figure 12.16. La consigne
est nulle.

Fig. 12.16 Commande tout-ou-rien.

La méthode du premier harmonique, rappelée dans I’annexe II, est mainte-
nant mise a profit. La fonction de transfert généralisée N (a) de I’élément tout-ou-
rien s’écrit :

_

Ta

N(a)

Le nombre a dénote 'amplitude de la sinusoide a I’entrée du dispositif tout-ou-
rien et d Pamplitude de ce dernier. On sait qu’il existe dans le systéme de la figure
12.16 un régime d’oscillations quand :

. 1
Gljw) =~ @
Graphiquement, cette condition est remplie lorsque la fonction de transfert har-
monique G(jw) de I’élément linéaire coupe le lieu critique —1/N (a) (fig. 12.17).
Les valeurs a. et w. correspondantes sont respectivement ’amplitude et la pulsa-
tion de Ioscillation a I’entrée du dispositif tout-ou-rien (ou a la sortie du processus
a commander puisque la consigne est nulle). En outre, I’oscillation est stable si, en
parcourant la courbe représentant la fonction de transfert harmonique G(jw) au
voisinage de a. et w. dans le sens des w croissants, nous laissons a gauche le sens
des a croissants sur le lieu critique —1/N(a). L’oscillation est instable dans la si-
tuation contraire.
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Im

1 _ 7
N(a)  4d

C

Re

\j

We

G(jw)

Fig. 12.17 Existence, dans le montage de la figure 12.16, d’une auto-oscillation stable
d’amplitude a. et de pulsation we.

Pour autant que le systéme a commander agisse comme un filtre passe-bas
efficace, 1’élément tout-ou-rien se comporte de la méme fagon qu’un régulateur

proportionnel de gain variable N (a) = i—i. En régime d’oscillations, ce gain vaut
4d

Tac *

Une comparaison des figures 12.15 et 12.17 montre qu’elles sont en fait iden-
tiques. Par conséquent, les intersections de la fonction de transfert harmonique
G(jw) avec I’axe réel sont les mémes dans les deux figures, impliquant :

1 TAc

K,  4d

4
Ky = d (12.6)

Ta,

Quant a la pulsation critique w. de I'oscillation, elle est liée a la période critique
T, par la formule :

_277

We
T

L’auto-ajustement du régulateur est effectué comme suit. Un régulateur tout-
ou-rien est d’abord monté en boucle fermée (fig. 12.16). En admettant qu’il donne
naissance a une oscillation stable, on mesure 'amplitude a. de celle-ci a 'entrée du
régulateur (ou a la sortie du processus & commander), qui fournit directement K,
selon I’équation (12.6), et sa période T... Le régulateur est ensuite dimensionné a
l’aide du tableau 1.2, puis retouché si nécessaire, numérisé et finalement implanté
en lieu et place du régulateur tout-ou-rien. Cette maniére de procéder est facile a
automatiser ; elle ne requiert pas une recherche par titonnement du gain critique
et, de surcroit, I'amplitude a. de Ioscillation peut étre réglée au moyen de 'ampli-
tude d de I’élément tout-ou-rien. C’est le point de départ de nombreuses variantes
et extensions rencontrées sous le nom de méthodes du relais.
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EXEMPLE 12.2

Revenons a la cuve de mélange de I'exemple 5.2, avec les valeurs numériques
déja considérées a plusieurs reprises, en particulier dans ’exemple 7.7. Un régula-
teur tout-ou-rien, pour lequel d = 10, est placé en boucle fermée comme cela est
illustré dans la figure 12.18. La sortie y(t) de la cuve est reportée dans la figure
12.19.

+ .. 0,015
Ye(s)=0 —=0O——{| - +—» » o35 — e Y (s)
s+ 0,015

Fig. 12.18 Commande tout-ou-rien d’une cuve de mélange.

y(t) [° C]
'}
0,6

0,4
0,2 - ac = 0,44

‘U T T T = {[s]
10 20 30 40 50

-0,2
—0,4 4

—0,6 A T, =12

Fig. 12.19 Réponse en boucle fermée d’une cuve de mélange dans le cas d’un régulateur
tout-ou-rien.

Abstraction faite du retard pur, le systéeme a commander est du premier ordre
et n’agit donc pas comme un filtre passe-bas vraiment efficace ; 'approche est
néanmoins exploitée telle quelle. L’amplitude de I'oscillation vaut a. = 0,44 °C et

sa période T, = 12 s. On en déduit le gain critique :
4d
Kpe=——=29
TG,

D’ou le régulateur PID analogique, selon la derniere ligne du tableau 1.2 :
1
K(s)=1741+—+1,5
(s) =17, ( to T s)

Sa numérisation donne, dans une version non filtrée et avec une période d’échan-
tillonnage h = 1s:

1 1
K'(z) =174 (1 UL )
z—1 z
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Ce régulateur PID numérique est finalement implanté en boucle fermée (fig. 12.20).

Y(2)

+ 1

Ye(2) K'(2) = D-A o—3s 0015 »{ A-D
s+0,015

Fig. 12.20 Commande PID numérique d’une cuve de mélange.

La réponse indicielle en boucle fermée tracée en trait plein dans la figure 12.21
présente un fort dépassement, caractéristique d’une synthése par les méthodes de
Ziegler-Nichols. Une retouche des paramétres, selon la régle des deux (§ 1.7.5),
conduit au régulateur moins agressif :

0,085 z z— 1)

3
z—1+ z

K'(z) =87 <1 +

La réponse indicielle qui en découle apparait en traitillé dans la figure 12.21.

y(t) [° C]
A
2 4
1,5 A
TN
Ye =1 e —
ry-J, \/v\/
/
/
/
i
0,5
T T T T — 1 [s]
20 40 60 80 100

Fig. 12.21 Réponse indicielle en boucle fermée d’une cuve de mélange dans le cas de ré-
gulateurs auto-ajustés par la seconde méthode de Ziegler-Nichols.
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Connaissant ici la fonction de transfert du processus a commander, il est fa-
cile de calculer la période et le gain critiques exacts; les valeurs obtenues sont
T. = 11,79 s et K, = 35,55. Une erreur appréciable entache surtout ’estima-
tion du gain critique, justifiant une amélioration de la méthode ; cette refonte sera
présentée a la fin de la présente section. ]

Comme il ressort de la figure 12.22, un régulateur tout-ou-rien en boucle fer-
mée permet d’identifier I'intersection de la fonction de transfert harmonique ana-
logique G(jw) du systéme a commander avec I'axe réel. La pulsation w, est égale a
la pulsation de I'oscillation tandis que le point d’intersection —1/K,. vaut — =,
ou a. est 'amplitude de 'oscillation et d ’amplitude du dispositif tout-ou-rien.

Im

w,
— > Re

-1 1 -
G(jw) T Kpe 4

i (—m+w)

/

1
Ky (1 + jWTd) G(jw)
JwTy

= K(jw)G(jw)

Fig. 12.22 Synthése du régulateur analogique PID de fonction de transfert K (s) afin d’im-
poser une marge de phase V.

Nous désirons maintenant dimensionner un régulateur PID analogique ga-
rantissant une marge de phase ¥ spécifiée (fig. 12.22). Sa fonction de transfert
harmonique non filtrée est :

1
K(jw) =K, (1 ot ijd)

i

En insérant en boucle fermée un régulateur PID, il s’agit de déplacer I'intersection
de G(jw) avec I'axe réel sur le point e/(~7+%)_ La valeur de K ( jw.) doit vérifier :

K(jwc)G(ch) = ej(_ﬂ+W)
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Cette égalité impose, pour 'argument de K (jw.)G(jw.) :

1
Arg K (jw:)G(jw.) = Arg K, (1 + - T + jwch> —T=-1+V

cli

D’ou:

1 1
Arg( 1+ - 4+ jw Ty ) =Arg( 1+ j (| weTy — =V
jweT; weT;

Ou:

1
Arct Ty — =V
Irc g(wc d wch)

On en déduit :

1
weTy — =tgW (12.7)
weT;

Cette équation ne fournit pas a la fois 7; et 7. En s’inspirant des régles de Ziegler-
Nichols (dernieres lignes des tableaux 1.1 et 1.2), un choix possible est :

T, =4Ty (12.8)
Alors, (12.7) devient :
22 1
wiT; —wTatg¥ — 1= 0

Il en découle, en ne conservant bien stir que la solution positive de cette équation :

2
Td:tgw+\/1+tg v (12.9)

2w,

Le gain K, du régulateur est ensuite déterminé de maniére a ce que le module
de K (jwe)G(jw.) vérifie :

|K (jwe)G(jwe)| = Kp |1+ jwlcTi + jweTy Kl,,c =1
Donc:
Ky|l+ - +jwch:Kp1+j<wch— ! )‘:Kpc
JweT; weT;
En tirant profit de (12.7) :

Ky 1+ jtg?¥] = K.
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D’ou :

Kp\/1+1t82W = K.

Par conséquent :

K, = Kp.cos¥ (12.10)

L’auto-ajustement d’un régulateur PID avec marge de phase imposée est
conduit de la fagon suivante. Un régulateur tout-ou-rien est d’abord monté en
boucle fermée (fig. 12.16). L’amplitude a. de I’oscillation est mesurée, de méme
que sa période T, ; les nombres K. (égalité (12.6)) et w, = 27/, sont calcu-
Iés. La marge de phase ¥ étant spécifiée, le régulateur PID analogique est ensuite
dimensionné a I’aide des relations (12.9), (12.8) et (12.10), puis numéris¢ et finale-
ment implanté a la place du régulateur tout-ou-rien.

Seule une certaine marge de phase est garantie dans cette approche. La marge
de gain peut étre trop faible. Plutdt que de déplacer, a I'aide de K (jw), I'intersec-
tion de G(jw) avec I'axe réel sur le point e(=7+¥) il est plus judicieux d’opérer
un mouvement vers un point combinant des marges de phase et de gain. L'expé-
rience montre que le point 0,5 e~ 3" est dans ce contexte un excellent compromis.
Les égalités fixant le régulateur PID analogique deviennent :

1 2

T, — +v2
2w,

T; =4Tq

K, = 0,5 K. cos g

A la place d’un transfert de G(jw.) sur le point e(=7+%) il est parfois pré-
férable de déplacer G(jws), ou wy est la pulsation de coupure en boucle fermée
incluse dans les spécifications, sur ce point, avec ¥ proche de 90°. La boucle ana-
logique est ainsi, dans une large mesure, calibrée selon les indications de ’annexe
IT (§ I1.4.3). La détermination de G(jwy) n’est pas effectuée a I'aide d’un élément
tout-ou-rien, mais via un simple essai harmonique a la pulsation wy.

ExempPLE 12.3
La cuve de mélange de ’exemple 12.2 est a nouveau considérée. La réponse en
boucle fermée avec un régulateur tout-ou-rien a donné K. = 29 et w, = 27/12;
d’ou le régulateur PID analogique :

K(s) =10,25 (1 + +23 s>

9,25
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Aprés numérisation, avec h = 1s:

11 1
K'(2) = 10,25 (1 L L )
z—1 z

La réponse indicielle du systéme en boucle fermée est reportée dans la figure
12.23. [ |

y(®) [° C]
A

1,4

1,2 1

yczl v

0,8

0,6 -

0,4

T T T T — t[s]
20 40 60 80 100

Fig. 12.23 Réponse indicielle en boucle fermée d’une cuve de mélange dans le cas d’'un
régulateur PID auto-ajusté par imposition de marges de gain et de phase.

Une hystérésis ¢ est maintenant introduite dans le régulateur tout-ou-rien
(fig. 12.24).

Fig. 12.24 Régulateur tout-ou-rien avec hystérésis.
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Comme cela est rappelé dans 'annexe 11, le lieu critique devient une demi-
droite d’ordonnée négative — 75 (fig. 12.25)

1 s E
_ —_ " S22
Na@) 2 V" %
Im
A
» Re
- _me
1 4d
~ N(a)

Fig. 12.25 Lieu critique pour un élément tout-ou-rien avec hystérésis.

11 est dés lors possible d’identifier I'intersection de G(jw) avec cette demi-
droite, ce qui se révele utile quand la courbe G( jw) ne coupe pas I'axe réel négatif.
L’ordonnée de la demi-droite est modifiée en variant I’hystérésis.

Dans le but de synthétiser un régulateur K (jw) par calibrage de la boucle
(§ I1.4.3), plusieurs valeurs de G( jw) peuvent étre mesurées harmoniquement au-
tour de la pulsation de coupure en boucle fermée w;, spécifiée. Les parametres de
K (jw) sont ensuite déterminés de maniére a déplacer au mieux les valeurs identi-
fiées de G(jw) sur un profil désiré pour la fonction de transfert en boucle ouverte
K(jw)G(jw). Un exemple de profil trés simple est wy,/s. Il importe ici de tirer
bénéfice de la forme parall¢le du régulateur PID afin que les paramétres incon-
nus apparaissent linéairement (§ 1.7.4). Leur évaluation peut étre effectuée par la
méthode de Levy (ex. 11.4), réalisant une optimisation par moindres carrés. Cette
philosophie ne se restreint pas au régulateur PID paralléle ; elle peut étre mise a
profit pour n’importe régulateur décrit par une fonction de transfert rationnelle,
qui plus est analogique ou discréte. De surcroit, il est possible de montrer que
des contraintes linéaires liées a la robustesse de la stabilité et des performances
peuvent étre imposées. Il en résulte un probléme d’optimisation convexe; un al-
gorithme d’optimisation quadratique se révele particulierement bien adapté pour
en trouver la solution.

Nous avons relevé dans I'exemple 12.2 une certaine imprécision dans le calcul
de K. et de T;. (ou w,), imprécision due a la nature approximative de la méthode
du premier harmonique. La dégradation des résultats est d’autant plus marquée
que le processus a commander n’agit pas comme un filtre passe-bas efficace. Il est
certes possible d’examiner plus finement la sortie de 1’élément tout-ou-rien par
extraction de sa composante fondamentale. L’approche de ’exemple 11.2 ou une
analyse de Fourier se révelent intéressantes dans ce contexte. On propose mainte-
nant une alternative particuliérement efficace, parce que produisant intrinséque-
ment moins d’harmoniques qu’un dispositif tout-ou-rien.
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Comme cela est illustré dans la figure 12.26, un élément non linéaire de type
saturation (§ 8.3.5), complété par une boucle adaptant le gain de la partie linéaire
de cette saturation, remplace le régulateur tout-ou-rien de la figure 12.16.

L _
€ -1 g
Kp(t)
|-
1
s
4 _
Kp(t)

Fig. 12.26 Schéma fonctionnel pour la détermination du gain et de la pulsation critique.

Dans cette figure, le bloc | - | fournit une sortie égale a la valeur absolue de
Pentrée tandis que ’élément x délivre le produit de ses entrées. Par ailleurs, ¢
et a sont des constantes positives, avec ¢ < a; K,(t) est un gain variable dans le
temps assujetti a I’équation :

Kp(t) = —ale(t) —u(t)| + (12.11)

Sie = 0, alors lim;_,o, Kp(t) € [0, K,.] quelle que soit la condition initiale
de I'intégrateur 1/s. En effet, supposons pour commencer que K,(0) € [0, Kp.].
Quand la saturation est inactive, les signaux e(t) et u(t) sont égaux et K,(t)

= 0, de sorte que K,(t) = K,(0) € [0, K], t > 0. Si la saturation est activée
dans certains intervalles de temps, |e(t) — u(t)| est positif dans ces intervalles et
Kp(t) = —ale(t) — u(t)| < 0: K,(t) devient plus petit que K,(0). Le gain di-
minuant, "amplitude de e(¢) se réduit et la saturation n’est plus activée lorsque
K, (t) est suffisamment affaibli. Cela implique que K,(¢) cesse de décroitre avant
de devenir négatif. On en conclut que lim;_,o, K,(t) € [0, Ky ].
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Considérons maintenant la situation ou K,(0) > K,.. Le systétme bouclé
est donc instable et la saturation est inéluctablement activée aprés un certain
temps. Par conséquent, K,(t) < 0 dans certains intervalles et K,(t) = 0 dans
d’autres. Quoiqu’il en soit, K, (¢) décroit tant que K,(¢) > K. ; aprés un temps
fini, K,(t) € [0, K,.] et on se trouve dans la situation décrite dans les lignes
ci-dessus ; au final, lim;_,o K,(t) € [0, Kp.].

Admettons ensuite que ¢ > 0. Quand la saturation est inactive, K, (t) = ¢ si
bien que K, (t) = K,(0)+ct et K,(t) devient plus grand que K. en un temps fini.
La saturation est ainsi inévitable. Alors K ,(t) = —ale(t) — u(t)| + € et, puisque
€ < a, K,(t) devient négatif. Le gain diminue jusqu’a ce que K, (t) = —ale(t) —
u(t)|+& = 0ou |e(t)—u(t)| = e/a. Comme e < a, la saturation est pratiquement
désactivée et le cycle recommence.

Donc le gain K, (¢) diminue quand la saturation est active et, dans le cas
contraire, croit avec un taux égal a €. Vu que ¢ < a, un retour de K,(¢) dans
I'intervalle | K., oo [ prend plus de temps qu’un passage a K,(t) € [0, Kp.]. En
régime d’oscillation stationnaire, K, (¢) fluctue dans un voisinnage de K. avec
une amplitude d’autant plus faible que € est petit vis-a-vis de a. La saturation
n’est que marginalement activée : la production d’harmoniques est minime, amé-
liorant substantiellement, par rapport a 'utilisation d’un élément tout-ou-rien, la
précision des résultats.

ExXEMPLE 12.4 @

Dans le contexte des exemples 12.2 et 12.3, on remplace le régulateur tout-ou-
rien par 'arrangement de la figure 12.26, avec € = 0,005, ¢ = 0,5 et K,(0) = 100;

Kp(t)
A
100
80 A
60 A
40 A
20 ~
T T T T — t[S]
20 40 60 80 100

Fig. 12.27 Signaux K,(t), e(t), u(t) et y(t) dans le cas d’une cuve de mélange équipée du
montage de la figure 12.26 avec ¢ = 0,005, a = 0,5 et K,,(0) = 100.
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e(t)

301

t[s]

y() [°C]
A
0,4

0,2 -

t[s]
20 40 60 80 100

-0,2 A

—0,4 4

Fig. 12.27 (Suite et fin.)

plutét que poure € [—1, 1]etu € [—1, 1], I’élément saturation est linéaire pour
e € [-10, 10] et w € [—10, 10], ceci afin de générer des signaux d’amplitudes
suffisantes. La figure 12.27 montre ’évolution temporelle de K,(t), de e(t) et u(t),
ainsi que de y(¢). En régime d’oscillation stationnaire, le gain K, (¢) fluctue dans
Iintervalle [35,54, 35,59 ] alors que K. = 35,55 (ex. 12.2); par ailleurs, la sa-
turation n’est pratiquement pas activée et la période des oscillations mesurée sur
la sortie y(¢), laquelle n’exhibe presque pas d’harmoniques, est égale a la valeur
théorique calculée dans ’'exemple 12.2. |

En mode saturation, une décroissance plus rapide de K, (t) est obtenue en
remplagant (12.11) par :

Kp(t) = —ale(t) — u(t))’ +e
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12.4 Régulateur a gains programmés

Il arrive parfois qu'une ou plusieurs variables auxiliaires présentant une cor-
rélation marquée avec les conditions de fonctionnement du systéme en boucle
fermée soient disponibles. Dans une telle situation, dimensionnons et stockons
hors-ligne plusieurs régulateurs, chaque régulateur étant associ¢ a des conditions
de fonctionnement bien distinctes. Apres, en temps réel, selon ces régions saisies
par les variables auxiliaires, les parameétres du régulateur sont sélectionnés parmi
les valeurs fixes mémorisées, puis commutés d’un jeu a un autre. Les changements
des conditions de fonctionnement ont, en comparaison avec un régulateur dont
les parameétres sont figés une fois pour toutes, des séquelles fortement atténuées.
Une telle philosophie est appelée commande a gains programmés ou, en anglais,
gain scheduling. Elle est décrite dans la figure 12.28 et s’applique a des régula-
teurs quelconques, par exemple de type PID ou RST. Un soin particulier doit étre
consenti lors d’une transition ; une interpolation des paramétres du régulateur se
révele souvent nécessaire. La stabilité du montage ne peut pas toujours étre ga-
rantie, méme si elle est assurée indépendamment avec chaque régulateur.

Paramétres du Conditions de
régulateur — fonctionnement
Sélection des
parametres
U(z) Y (2)
Y.
<(2) Régulateur =| D-A G(s) A-D

N

Fig. 12.28 Régulateur a gain programmés ; G(s) dénote la fonction de transfert du pro-
cessus a commander.

ExEMPLE 12.5

Soit une bobine de papier ou autre matériau flexible qui alimente une ma-
chine imprimant et confectionnant des emballages. Un régulateur de la tension
du papier est nécessaire afin d’éviter sa rupture. L’inertie de la bobine varie consi-
dérablement suivant son état de déroulement. Il est dés lors naturel d’adopter
un régulateur a gains programmés : des régulateurs sont dimensionnés hors ligne
pour divers états, par exemple bobine 100 % pleine, 75 % pleine, 50 % pleine, 25 %
pleine. En temps réel, connaissant I’état de déroulement, un jeu de paramétres du
régulateur est choisi dans la table stockée, puis modifié lors du passage d’un état a
un autre. Les effets des variations d’inertie sont de la sorte pratiquement gommeés.

|
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Comme cela a été mentionné a la fin du paragraphe 10.3.5, le polynéme 7'(z)
d’un régulateur RST requiert normalement une adaptation lors d’un changement
du type de consigne : il s’agit de programmer certains parameétres du régulateur
en fonction de la consigne. Par ailleurs, signalons ici que les régulateurs a gains
programmeés sont abondamment exploités dans le domaine aéronautique ou les
modéles aérodynamiques varient grandement avec le nombre de Mach ou la pres-
sion dynamique (dépendant de la vitesse et de la densité de I’air), lesquelles se
révélent étre des variables auxiliaires de premier choix.

Une controverse existe quant a ’appartenance ou non d’une commande a
gains programmés a la famille adaptative; en effet, le mécanisme d’ajustement
s’effectue en boucle ouverte puisqu’il n’existe aucune rétroaction directe compen-
sant un choix erroné des paramétres du régulateur.

La mise a jour du régulateur est tres rapide car ses parameétres sont fixés avant
le démarrage. Toutefois, le volume de calcul a traiter hors-ligne est important : il
s’agit de dimensionner une banque de régulateurs. Une touche d’auto-ajustement
peut étre activée pour les diverses conditions de fonctionnement et constitue dans
ce contexte une aide trés précieuse.

12.5 Problémes

12.5.1 Développer un schéma de commande adaptative direct avec un régulateur
RST incorporant un intégrateur de type /.

12.5.2 Soit la cuve de mélange modélisée par la fonction de transfert :

35 0,015
5+ 0,015

Apreés avoir calculé sa réponse indicielle, synthétiser des régulateurs P, PI et PID
analogiques par la premiére méthode de Ziegler-Nichols. Numériser ensuite ces
résultats, avec une période d’échantillonnage h = 1s. A l'aide d’un logiciel de
simulation, évaluer les réponses indicielles en boucle fermée avec les régulateurs
numériques ainsi obtenus.

G(s)=e~

12.5.3 Soit un régulateur RST incorporé dans un schéma adaptif direct. L’équa-
tion (12.2) fournit le systéme a commander paramétrisé avec les polynémes A,,(z),
AO(Z)a B~ (Z)a S(Z) et R(Z) :

Y(2) B~ (2)R(z

U(z)  Am(2)Ao(2) — B~ (2)5(2)

A (2)Ao(2)Y(2) = B™(2)R(2)U(2) + B (2)S(2)Y (2)

Quand B~ (z) est une fonction de z distincte de la constante by, pourquoi n’est-
il pas possible d’identifier les polynémes B~ (z)R(z) et B~ (z)S(z), qui appa-
raissent pourtant linéairement dans cette équation ?
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12.5.4 Soient le processus a commander échantillonné et le régulateur PID nu-
mérique non filtré :

Ecrire ce régulateur sous la forme :

K(z) _ 5022 + 812+ S9

2(z—1)
Dimensionner les parameétres sg, 1 et s2, puis K, T; et Ty du régulateur en im-
posant que les poles du systéme en boucle fermée soient les zéros du polynome
donné z(z2 + c12 + ¢2). En déduire une méthode d’auto-ajustement du régulateur
PID, puis imaginer un schéma de commande adaptative indirect incorporant un
régulateur PID.

12.5.5 Dans I'exemple 12.2, démontrer que I’auto-oscillation provoquée par un
régulateur tout-ou-rien est stable.

12.5.6 Dans I'exemple 12.2, calculer le gain et la période critique intervenant
dans la seconde méthode de Ziegler-Nichols.

12.5.7 Utiliser les équations (12.9), (12.8) et (12.10) pour synthétiser un régu-
lateur PID analogique pour I'exemple 12.2. Aprés numérisation, et & I'aide d’un
logiciel de simulation et de conception, déterminer la réponse indicielle en boucle
fermée. Expliquer le mauvais comportement obtenu en calculant la marge de gain.

12.5.8 De la méme manicre que dans la section 12.3, développer une méthode
d’auto-ajustement d’un régulateur proportionnel dérivé numérique par imposi-
tion de marges. Est-il possible de mettre a profit cette approche pour auto-ajuster
un régulateur proportionnel intégral ?

12.5.9 A Tl’aide d’un logiciel de simulation et de conception, calculer dans I’exem-
ple 12.3 les marges de gain et de phase.

12.5.10 En s’inspirant de 'approche de la section 12.3, développer une méthode
d’auto-ajustement d’un régulateur proportionnel garantissant une marge de gain.
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12.5.11 La commande tout-ou-rien d’un processus a fourni la sortie reportée
dans la figure 12.29.

y(t)
A
0,2
0,1 4
T T T T — t[s]
2 4 6 8 10
—0,1 |
—0,2 A

Fig. 12.29 Réponse en boucle fermée avec un régulateur tout-ou-rien.

L’amplitude du régulateur tout-ou-rien est égale a d = 0,5. Dimensionner un
régulateur PID fondé sur la seconde méthode de Ziegler-Nichols. Dimensionner
ensuite un régulateur PID garantissant une marge de phase valant ¥ = 45°,

12.5.12 Soit le systéme décrit par le schéma fonctionnel de la figure 12.30.

Fig. 12.30 Montage permettant d’estimer la marge de gain.

Démontrer que ce montage permet d’estimer la marge de gain du systéme
dont la fonction de transfert en boucle ouverte est K (s)G(s).
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12.5.13 Soit le systéme décrit par le schéma fonctionnel de la figure 12.31.

- — K(s) || Gs) -

+
0 | =
+

Fig. 12.31 Montage permettant d’estimer la marge de phase.

Prouver que le schéma fonctionnel de la figure 12.31 est équivalent a celui de
la figure 12.32.

ot N 1 K(s)G(s) — 1 _
s K(s)G(s)+1

Fig. 12.32 Schéma fonctionnel équivalent a celui de la figure 12.31.

En mettant a profit ce schéma fonctionnel réduit, démontrer qu’il est possible
d’estimer la marge de phase du systéme dont la fonction de transfert en boucle
ouverte est K (s)G(s).

12.5.14 La fonction de transfert harmonique G( jw) d’un processus est mesurée
pour w = wy. Déterminer les paramétres K, T; et Tq d’un régulateur PID ga-
rantissant une marge de phase ¥ spécifiée. On imposera T; = 4T,. Décrire une
procédure d’auto-ajustement d’un régulateur PID mettant a profit ces résultats.
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