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Make things that change with time do what we want them to do

Most engineered systems
require controllers to
function

Controllers can provide
optimal performance

Analysis and understanding
of dynamic systems

A controller is anything that senses the environment, takes decisions, and modifies
the environment in order meet some objective.
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Components of a Control System Example: Autonomous Quadrocopter flight

e Highly agile due to fast rotational dynamics

e High thrust-to-weight ratio allows for large translational accelerations
e Motion control by altering rotation rate and/or pitch of the rotors
System The object we're trying to control e High thrust motors enable high performance control

Sensor Measure the world

Actuator Effect the world

Controller Takes decisions based on

o Measurements
e Knowledge of how the system works

A controller is anything that senses the environment, takes decisions, and modifies
the environment in order meet some objective.

Note: Controller doesn’t have to be a ‘computer’, or an electronic circuit

How a Quad Works

Force is quadratic in propeller speed:
Fi(t) = krwi(t)?
Moment is quadratic in prop speed:

]\41 (f) = k:Mwi(t)2

Vertical force: F(t) = F1(t) + Fa(t) + F3(t) + Fa(t)
Roll moment: Mo (t) = L(F1(t) — Fa(t))
e We can set the speed of the propellers (our inputs) Pitch moment: Mjs(t) = L(Fu(t) — Fa(t))
: = 2(t) — F3
e Our goal is to control the pitch, roll and altitude Rotation: M, () = Mi(t) + Ma(t) + Ma(t) + Ma(#)



How a Quad Works Quad Control

F1 Fa

Force is quadratic in propeller speed:
F7(t) = kpwi(t)Q
Moment is quadratic in prop speed:

M;(t) = karwi(t)?

Vertical force: F(t) ke ke kp kp wy (t)? Altitude:  mi(t) = —mg+  F(¢)
Roll moment: M (t) Lkr 0 0 —Lkp| | wa(t)? : : g
= ravit Thru f propeller:
Pitch moment: Mp(t) 0 Lkr —Lkp 0 ws (t)? avity st of propellers
) Hold altitude at z.: F(t) = K(z. — 2(t
Rotation: M, (1) kae o ke ke ke wa(t)* old altitude at z (t) (ze — 2(1))

Resulting system: mz(t) = —mg + K(zc — 2(t))

e We have four degrees of freedom and four forces / moments

e Can set the forces / moments as we like - these are our inputs

Quad Control Quad Control

F1 Fa

g
Roll and pitch: Yaw:
Ia6(t) = Ma(t) LA (t) = My (1)
Hold attitude at ., f.: Keep yaw at zero:
Ma(t) = Kalae - a(t)) M, (1) = —Ky(t) — DA(8)
Resulting system Resulting system
Laé(t) = Ka(ae - a(t)) LA(t) = —K(H) — Dy ()



Example: Autonomous Quadrocopter flight

Block Diagram of Attitude Controllers

Demo movie

Lexus & Kmel robotics

e — at)
Qe

M (t)

Ve
T

Attitude
Dynamics

o Reference a.

e Error a. — a(t)

e Input M, (t)

e Output a(t)

e Controller K,

e System I,(t) = Ma(t)

Goal: Track reference a..

a(t)

Summation

w(t) —+Q— (1) — y(t)

y(t)

Bifurcation

Block Diagrams - Basic Building Blocks

Enforces a dynamic constraint between the output y(¢) and the input u(t)

u(t) —

System  —— y(t)

e.g. §i(t) +ay(t) —i(t) + u(t) =0

ZC—>07'—>

Fo )
O

Vertical
Dynamics

e Disturbance g

Goal: Track reference z. and reject disturbance mg
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Block Diagram of Altitude Controller

z(t)
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Block Diagram of Yaw Controller

—(t)

Controller

M, (1)

Yaw
Dynamics

Cascade Control

10
- V() . wi(t)
Lke 0 0  —Lke )
),

I Dynamics

Mol 0 Lke —Lke O na(t

Roll Control }_‘F(tl kv kw  kw K wa(t
Altitude Control

e Controller dynamics: M., (t) = =K v(t) — D~5(t)

Goal: Regulate the yaw
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Cascade Control Canonical Block Diagram

Xe(t) —— x-controller o (t) o(t)
Integrator
Attitude w(t)
ye(t) y-controller Be(t) Controlled
Quadrotor S e(t) u(t) l
- +
z(t) z-controller 7(t) —+CO——>| Controller > System y(t)
ze(t) 2(t) Integrator T
O ()
Possibly lots more loops Why?
e Collision avoidance ° Inner. loops make :che system Goal: Make y(£) = r(£), no matter what w(), or v(£) are
e Trajectory planning predictable and simple
e Mission planning e Conceptually simpler If r(t) is...
e etc e zero, we're doing regulation

e time-varying, we're doing servoing / tracking
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Canonical Block Diagram Nomenclature

Input The system:
Disturbance

\
\

Error Input w(t)

U(s) — G(s) — Y (s)

Reference Output
0) u(t) l+
(t) Q- Controller ~O——>| System y(t) The open-loop system or loop gain:
T s
v(t U(s
© , v E(s) —  K(s) e G(s) = Y(s)
Outpuf

Disturbance
The closed-loop system:

Goal: Make y(t) = r(t), no matter what w(t), or v(t) are

+ E(s) U(s)
, R(s) —O—  K(s) G(s) Y(s)
If r(t) is
e zero, we're doing regulation I
e time-varying, we're doing servoing / tracking
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What is a System?

A dynamic system transforms an input signal u(t) into an output signal y(t).

y=G(u)

u(t) — g — y(t)

Quick Review of Systemes Dynamique

More complete review on Moodle
We care about LTI systems
Linear G(au1 + buz) = aG(u1) + bG(uz2)
Causal u(t) =0 for t < 0 implies y(t) =0 for t <0
Time-invariant y(t) = G(u(t)) implies that G(u(t +T)) = y(t + T)

18



Why are these types of systems important?

1. We can predict their behaviour from data easily

1. We can predict their behaviour from data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢t = O:

g9(t) :=G(8(¢))
Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is
G(u) =g*u

where y = g x u if

v = [ el =)

20

1. We can predict their behaviour from data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢ = 0:

g(t) == G(5(2))

1. We can predict their behaviour from data easily

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢t = 0:

g(t) == G(4(2))

Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is
G(u) =g~*u

where y = g x u if
t
y(t) = / w(r)g(t — 7)dr
0

If G is an LTI system, then the impulse response completely characterizes it.



1. We can predict their behaviour from data easily Why are these types of systems important?

Impulse Response

The impulse response g(t) is defined as the output of the system in response to a dirac
delta function at time ¢ = 0:

1. We can predict their behaviour from data easily

2. We can store and manipulate complex systems

g9(t) :=G(8(¢))
Theorem : Response of an LTI System

The output of an LTI system in response to an input signal u(t) is
Gu)=g=*u
where y = g x u if

v = [ el =

If G is an LTI system, then the impulse response completely characterizes it.

Key limitation: Most systems have an infinitely-long impulse response.

2. We can store and manipulate complex systems Manipulation of Simple Block Diagrams

Transfer Function

The transfer function of a system is the Laplace transform of its impulse response.

) . ult) s o |
L{g(t)} = G(s) r(t) —{ii(t) + 3u(t) = i (t) + 4r(t) (1) + 9(t) = ult) + 2i(t) y(t)

For LTI systems G(s) is a rational polynomial function If we're given the reference function r(t), what is y(¢)?

The point: Convolution becomes multiplication

y=g*u & Y (s) = G(s)U(s)



Manipulation of Simple Block Diagrams Manipulation of Simple Block Diagrams

P(t) —| ii(t) + 3u(t) = #(t) + 4r(1) ut | §0) + 9(0) = u(t) + 2a(t) — y(b)

r(£) —| ii(t) + 3u(t) = #(t) + 4r(1) u® | () + 9(t) = u(t) + 2a(t) — y(1)

i(t) + 3u(t) = 7(t) + 4r(t) = s°U(s) + 3U(s) = sR(s) + 4R(s)

i(t) + 3u(t) = 7(t) + 4r(t) = s°U(s) + 3U(s) = sR(s) + 4R(s)

() + y(t) = u(t) + 2a(t) = S2Y (s) + sY (s) = U(s) + 2sU (s) J(t) + y(t) = u(t) + 2u(t) = S2Y (s) + sY (s) = U(s) + 2sU (s)
Re-arranging gives:

s+4 14 2s

U(s) = o 3R(s) Y(s) = o SU(S)
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Manipulation of Simple Block Diagrams Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

() —|di(t) + 3u(t) = 7(t) + 4r(t) ul®) | () 4+ y(t) = u(t) + 2a(t) — y(t) My(t) = —Kyy(t) — Dy7(t) w(t) JH(t) i}M’y(t) + w(t)
—V(t)\ | Controller | M (2) i+ Yaw
w(t) 4+ 3u(t) = r(t) + 4r(t) = s*U(s) 4+ 3U(s) = sR(s) + 4R(s) - Dynamics +C Dynamics ~(®)
J(t) + y(t) = u(t) + 2u(t) = $2Y (s) 4 sY (s) = U(s) + 2sU(s)
Re-arranging gives:
Uls) = 24 ps) Y(s) = ijﬁj U(s)

s2+3
.. and we can compute the impact of r(¢) on y(t)
1+2s s+4
. R(:
s2+s s2+43 (s)

Series connection of blocks (convolution) becomes multiplication!

Y(s) =

14+2s s+4
. Y
s2+s s243 (s)

R(s)
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Example: System Response Example: System Response

Compute response to a impulsive disturbance acting on the yaw system

W(s)
M, (t) = —Ky(t) — Dy(t) w(t) J3(t) = My (8) + w(t) o) ) l 1
~_ — 5
N i Oﬁ—» K’Y —+ SD'Y 4>+O+—> ﬁ > F(S)
—(t) | Controller | M-(t) p Yaw ) I 8
- Dynamics + Dynamics 7
W(s)
—I(s) M, (s) L )
- K—y ar SD’y +u+ F F(‘S)
24 25
Example: System Response Example: System Response
W(s) W(s)
—I'(s M, (s l —I'(s M, (s l
?A. Ko+ sD, % % - T(s) % Koy + 5D, %Q*_» % I'(s)
Start at the output and work backwards against the arrows Start at the output and work backwards against the arrows
1 1
I'= ﬁ(W*(KW + sD)T') I'= E(W*(KW’+3DW)F)
(Js° +sDy + K,)I =W (Js* +sDy + K,)[ =W
W) - ()
Js2+ Ds+ K

Where we recall that D sets the damping and K the response rate.
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Example: Complex System

H3 <
G, O—| au
R(s) —»():—» G1 Hy, |« Ge
A
Gs ——+O— G5
Hy

Y (s)
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Example: Complex System

Start at the output and work back against the arrows.

A block is a multiplication, a summation is addition.

YZGGI

xTr = G4(GQZ — HQ.T) + G5(G32 — Hg.’lf)

z = G1(R — HgY — H4Y)

Solve for Y as a function of R

T = (G4G2 =+ G5G3)Z — (G4H2 + G5H2).T,‘

(1+ GaHs + GsHz)x = (GaG2 + G5G3)z

T =g
Y =G

G4G2 + Gs5G3

+ G4Hy + GsH> :

G4Ga + G5G3

1% GaHy + GoHs -

27

Example: Complex System

ol
G: |—O—] G
|
R(s) —O— Gy 2 i Hy [«—(O—
& -l
Hi

Add auxiliary variables for internal loops, and wherever convenient to simplify.

G

> Y (s)

26

Example: Complex System

Y -G Ga4G2 + Gs5G3

61+G4H2+GSH2 N

Q

Solve to get the transfer function

Y

z=G1R— (H3 + H4)Y

QG

R~ 1+ Q(Hs+ Hy)

If we want to do more algebra, we can eliminate )

Y G1G2G4Gs + G1G3G5Gg

R~ (Ga+ Gs)Hs + G2G1GoHs + G2G4GoHy + G3GsGoHs + GsGsGoHs + 1

28



Why are these types of systems important? 3. We can shape system behaviours

1. We can predict their behaviour from data easily Time domain

e PID

e Model predictive control

2. We can store and manipulate complex systems

3. We can shape system behaviour
e ...

29 30

3. We can shape system behaviours 3. We can shape system behaviours

Time domain Time domain

e PID

e Model predictive control

e PID

e Model predictive control

Frequency domain Frequency domain

e Loopshaping controllers e Loopshaping controllers

e T - robust optimal control e T - robust optimal control

Pole/zero domain

e Pole placement
e Linear quadratic regulation

30 30



3. We can shape system behaviours Key points to review

Time domain Please review:
e PID e Computation of Laplace transforms
e Model predictive control e Manipulation of block diagrams

° .. e Inverse Laplace transforms

Frequency domain e System response to impulse, step, ramp, etc

e Loopshaping controllers
e Hoo - robust optimal control

o ...
Pole/zero domain

e Pole placement
e Linear quadratic regulation
o ...
Many very well-established techniques that are proven and work well at large scales.

30 31
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We will mostly follow the textbook:

1. Lectures

GLOBAL 4
EDITION

e Two hours per week

Feedback Control of e Lectures are not recorded, but high-quality pre-recordings are on Moodle
Dynamic Systems 2 TPs

Gene F Franklin» . David Powel - Abbs Emari-Nacii e Seven TPs done via a MOOC interface driving a physical device
e Can do the TPs in-person or remotely

3. Exercises

e Written / computer exercises
e 13 exercise sets

Detailed schedule on Moodle

PEARSON

e The sections of the text that we are covering will appear on Moodle

e Lecture notes and pre-recorded videos are on Moodle

You are responsible for the material in the text and in the lecture notes

33 34

How to Get Help Grading and Exams

In person During lectures, or during afternoon exercise / TP sessions
Ed Discussion Please post your questions publicly - others will benefit!

Recorded videos Lectures have been pre-recorded and are available on Moodle.

100% Final exam

e One question from the TPs (MOOC) worth 20%
e Questions based on the lectures / exercises worth 80%
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Employee Scheduling : The Challenge

Too few salespeople Too many salespeople

Unhappy customers / less sales Excessive wages

Examples: Other Varieties of Control

What can control do?

37
The Control Problem sw-
... ACHIEVES SAVINGS BY MATCHING RESOURCES TO DEMAND  ExAwmPLE
Average number of weekday staff*
— Scheduled
— -~ Demanded
Employee Number 2
Preferences of
C * Original scheme (manually
ustomers scheduled, unoptimized)
*FTE hours per week
_ Understaffed / —Excess scheduled: 65
Controller E U( t) overstaffed —Unmet demanded: 85
d (Scheduler) L~ hours days hours 2 ! ~Mismatched: 150
0 S S S S S S S S . .
o9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 1%h
12 ¢ P o
5 * Optimized schedule
< Employees: (automatically produced)
H *FTE hours per week
% —Excess scheduled: 15
s —Unmet demanded: 39
% —Mismatched: 54
’ . « Estimated savings of up to 46
sl'we time overtime hours per week
opens closes 2+ (~10% of total) needed to
0 S S S S S S S S . . meet expected demand
9h 10h  11th  12h 13h 14h 15h 16h 17h 18h  19h
* For retail store with 14 staff (11.5 FTEs)
38 ** Sample optimized schedule provided by Apex Optimization GmbH 1 39



Example: ‘Fulfilment Centers’

Kiva systems

Sold to Amazon in March, 2012 for $775m USD

40 41

Inerter Demand Response

The Inerter in F1 Racing D] Resipses Ses

Slides from Prof. Malcom Smith
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Computer control ns e Feedback control is everywhere
o It is used to:

us Power systems e Stabilize unstable systems
e Make behaviors repeatable / predictable
) e Maximize performance
Traction control ms e Understand what complex systems are doing

Seconds  Buildings

Refineries Minutes

Hours Nurse rostering

Train scheduling Days

Weeks Production planning
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