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Consignes :

- Le rendu doit étre téléchargé sur moodle sous forme de PDF a la fin du projet.

- Remplissez tous les champs prédéfinis dans les sections 2, 3, et 4.

- Indiquez toujours les unités & la suite des valeurs numériques.

- Indiquez optionnellement les formules mathématiques utilisées.

- Utilisez optionnellement les sections de discussion pour détailler vos calculs.

- Soignez les schémas et graphiques.

- Les schémas peuvent étre faits a la main.

- Il est conseillé d’implémenter un code Matlab et de 1’ utiliser pour générer les graphiques.



1. Calculs préliminaires
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Que pouvez-vous dire de la rigidité des lames selon z ? Quelle hypothése peut-on faire ?

Discussion

Précisions
L’équation pour la rigidité des lames est dépendante de leurs conditions aux limites, que 1’on peut ici
considérer comme encastrées. Utilisez Euler-Bernoulli pour identifier la rigidité des lames lorsque

elles est soumis a une force laterale.
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Rappel: Théorie des poutres Euler Bernoulli

M, q(z) >0
VYVYVYYY

2 2
Pour une poutre d'Euler-Bernoulli, il est vrai que % <E1%u(x)> = q(x)

Ou u(x) est le déplacement de la poutre le long de I'axe z, et q est la charge répartie.

Pour calculer la rigidité des lames, puisque EI est constant le long de x et que I'on sait qu'une force F
agit a I'extrémité de la poutre, nous pouvons écrire I'équation d'Euler-Bernoulli sous la forme d'une
équation différentielle du troisieme ordre:

d3
El— =—F

Utilisez cette équation pour trouver la rigidité demandée.

NOTE : Le systéme de coordonnées indiqué ici est différent du systéme global se référant au rotor.
Le systéme global du rotor a les axes x et z corrects, le long desquels vous devez calculer la rigidité
latérale.

Le systéme de poutre local introduit dans cette section se référe uniquement aux équation différentielle
ci-dessous et n'est utile que pour expliquer la poutre d'Euler-Bernoulli.

Pour plus d’informations : https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory .



https://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory

2. Accélération du groupe d’entrainement

Schéma du modele cinématique réduit

Courbe d’accélération du groupe
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Discussion

Précisions
Couple moteur :
Couple résistant du rotor :
Principe de réduction :
Couple résistant du rotor réduit :

Couple global réduit :

Equation de mouvement cinématique :

T(wy) = Ty, = cst
Tr(wy) = ayw, + by

T (W) wm = Ty (wr) 0y
T (W) = aywy, + by
T"(wy) =a*wy, +b*

];(bm = T*(wm)




3. Analyse dynamique du groupe d’entrainement

Schéma du modele dynamique réduit

Schéma du modele dynamique réduit et simplifié

Justification de la simplification
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Discussion

Précisions

Utilisez le modeéle simplifié uniquement pour calculer I'erreur sur la fréquence naturelle.
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4. Réponse forcée du rotor

Schéma du modéle dynamique

Courbes de déplacement et d’accélération des supports
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u/
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