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▪ Modèle mathématique permet de caractériser le fonctionnement d’un 
concept

• Est-ce qu’on peut atteindre les spécifications avec ce concept? Quelles sont 
ses performances?

▪ Support pour le dimensionnement
• Permet une analyse de sensibilité
• Identifier les plages de fonctionnement

▪ Evite des surprises lors de la mise en service
• Evite des coûts élevés et fait gagner du temps
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▪ La modélisation joue donc un rôle important dans la conception
• Lors de la phase d’analyse d’une idée
• Optimisation de la conception

▪ Un modèle peut inclure plus ou moins de détail, il est toujours basé sur 
des hypothèses simplificatrices

▪ Quel est le degré de précision nécessaire pour un modèle?
• Ça dépend des objectifs et de ce qu’on cherche…
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▪ Modèle statique
• Les efforts d’inerties sont négligeables par rapport aux efforts statiques → 

satisfaisant pour les machines très lentes

▪ Modèle cinématique
• Les éléments sont supposés indéformables
• Tient compte des efforts d’inertie provoqués par les grands mouvements

▪ Modèle dynamique
• Les éléments sont déformables
• Tient compte des efforts d’inertie provoqués par les grand mouvements et 

par les mouvements de vibration

Types de modèles en conception mécanique
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▪ Quand est-ce qu’il faut tenir compte de la déformation des pièces?
▪ Quand est-ce qu’on peut se contenter de les admettre comme 

indéformables?

→ Analysons l’effort transmis par l’élement « rigidité » d’un oscillateur 
élémentaire pour répondre à ces questions

Modèle cinématique ou dynamique?
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▪ Oscillateur élémentaire

• L’effort transmis par l’élément « rigidité » lorsque la rigidité est infinie?

Modèle cinématique
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▪ Oscillateur élémentaire

• L’équation de mouvement

• Avec la pulsation propre et le facteur d’amortissement

Modèle dynamique I
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▪ Oscillateur élémentaire 
• La rigidité transmet l’effort 

• En régime permanent l’effort ressort devient
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▪ Oscillateur élémentaire

Modèle dynamique III
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▪ Comparaison entre les modèles
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▪ Jusqu’à quelle pulsation relative peut-on appliquer le modèle 
cinématique?

• Une erreur limite permet le définition de μLim et βLim

• Le modèle cinématique ne tient pas compte de la nature vibratoire mais 
fournit un résultat acceptable lorsque
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▪ Jusqu’à quelle pulsation relative peut-on appliquer le modèle 
cinématique?

• L’amortissement influence peu le βLim
• Le modèle cinématique s’écarte fortement lorsque la pulsation relative 

s’approche de la pulsation propre
• Pour une excitation                   on peut se contenter d’un modèle 

cinématique (erreur de 5%)
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eLim 1% 5% 10%

βLim η=0 0.1 0.224 0.316

η=0.1 0.101 0.226 0.320

η=0.2 0.104 0.234 0.331
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▪ Négliger l’amortissement pour estimer la pulsation propre ?

• Il est raisonnable de négliger l’amortissement pour une estimation la 
pulsation propre 

Effet de l’amortissement I
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 w1 = w0 1 - h 2

Pulsation propre de 
l’oscillateur amorti

Pour un η = 0.2

 w1 = 0.98w0



▪ Négliger l’amortissement en régime forcé ?

• Pour une erreur admissible il existe deux plages où l’on peut négliger 
l’amortissement
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▪ Négliger l’amortissement lors d’un saut indiciel
• La réponse d’un oscillateur amorti à saut indiciel:
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▪ Modèle cinématique vs. dynamique

• Pour une excitation                   on 
peut se contenter d’un modèle 
cinématique

• Au-delà l’erreur sur l’amplitude du 
mouvement devient trop grande 
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▪ Le rôle de l’amortissement d’un modèle dynamique

• On peut estimer les fréquences propres en négligeant les amortissements 
sans erreur appréciable

• L’amortissement amortit les régimes transitoires

• Il faut tenir compte de l’amortissement lorsqu’on se rapproche de la 
résonance et s’il existe une exigence par rapport au déphasage
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Dynamique des Systèmes Mécaniques

Discrétisation 
dynamique

Prof. J. Schiffmann



▪ Discrétiser les inerties et les rigidités pour calculer son comportement 
dynamique
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▪ Comment joindre les différents mouvements?
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▪ Comment joindre les différents mouvements? 
• Par la réduction dynamique
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▪ Centrale éolienne (à vide)

Modèle dynamique: exemple I
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▪ Système à 2 degrés de liberté avec transmission
• Réduction à la coordonnée d’entrée 1
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▪ Réduction d’un effort
• Principe de conservation de la puissance transmise
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▪ Réduction d’une inertie
• Principe de conservation de l’énergie cinétique

Principe de réduction III
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▪ Réduction d’une rigidité
• Principe de conservation de l’énergie potentielle

 

• Approche valide seulement pour déformations faibles !
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▪ Deux inerties reliés par deux rigidités

• Système à 2 degrés de mobilité

Modèle dynamique: exemple II
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▪ Commentaires

• L’analyse du comportement dynamique d’une machine exige une 
discrétisation des inerties et des rigidités → degrés de liberté!

• Un grand nombre de degrés de liberté augmente la proximité d’un modèle au 
comportement réel. Il augmente aussi la complexité et le temps de calcul

• Il faut trouver le bon compromis entre un modèle très fin mais complexe et 
un modèle simpliste mais trop grossier
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▪ Comment déterminer le nombre de degrés de liberté idéal d’un modèle 
dynamique? Quelques directives:

• Généralement on modélise un système de manière que le modèle offre deux 
fréquences propres au-delà du spectre d’excitation

• Le nombre de degrés de liberté idéal d’un modèle dynamique dépend du 
spectre d’excitation

• Souvent 3-8 degrés de liberté sont suffisants. Il faut soigner le calcul des 
inerties et des rigidités → modèles cinématiques
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▪ Le nombre de degrés de liberté par rapport du spectre d’excitation

Discrétisation dynamique VI
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Figure 13.32 [Spinnler]

Le calcul cinématique est suffisant

Des résonances sont probables. 
Calcul dynamique

Régime surcritique. Calcul dynamique



▪ Quelques astuces de modélisation (1)
• Lorsqu’une inertie est plus grande que son inertie voisine, on peut considérer 

que l’inertie lourde joue le rôle d’un encastrement → exemple

• Lorsque un mouvement est imposé à un élément d’une chaîne cinématique, 
ce point se comporte comme un encastrement 
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Figure 13.34 [Spinnler]
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▪ Quelques astuces de modélisation (2)
• Un élément plus rigide que les autres peut être considéré comme 

indéformable → les inerties qu’il relie en forment une inertie unique

• La configuration du modèle peut changer selon le régime de fonctionnement 
(p. ex. un frein)
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▪ Pour simplifier le modèle il faut connaître la pulsation propre la plus 
basse → ceci nécessite un modèle préalable détaillé

• Comment faire? → utiliser des méthodes d’approximation

Méthode pour estimer ω0
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▪ Méthode 1
• Ne conserver qu’une inertie à la fois et annuler les autres

▪ Méthode 2
• Ne conserver qu’une rigidité à la fois en considérant les autres comme 

indéformables

Méthode pour estimer ω0
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Figure 13.40 [Spinnler]



▪ Discrétisation d’une manivelle

▪ Mécanisme d’un transporteur

▪ Machine scroll co-rotative

Exercices
3/

26
/2

02
5

35

1ᵗmOFte
It


