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B Dynamique de Systéemes Mécaniques

Chaines cinématiques

= Composé d’organes effectuant
des mouvements en translation
et / ou rotation et a vitesses
différentes

"y

Figure 13.11 [Spinnler]

= La cinématique d’un tel systeme complexe s’exprime par la réduction
de la cinématique aux coordonnées menantes

= | a réduction d’'un systéme mécanique permet d’exprimer les énergies
cinétique & potentielles et les efforts en fonction de la/les cordonnée/s
menante/s



=PFL  Equation de mouvement

= Par la méthodologie de Lagrange (L = T— U)

d(OLY (BLY _d (9T 9T OU _ .
dt \ 0q dq ) dt \ 9qg dq Oq

... et en utilisant les expressions pour T, U et Q" en fonction des lois d’espace

fonction de la coordonnée menante

on trouve:
§ 1 Efforts moteurs
g . / %) / . */ , .
8 I(q)q 4 5I (q)q +U (q) — Qm e Qe <« Efforts d’entrainement
& Efforts Contribution de I’énergie potentielle
3 d’accélération de
S I'inertie réduite Efforts dus a la variation de I'inertie réduite en
€
&
|
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B Dynamique de Systéemes Mécaniques

Discrétisation des masses

= |_oi de mouvement complexe complique la description mathématique
* Placer les masses a des endroits ou la loi est plus simple

= Principes d’équivalence

« Masse
 Centre de masse

e Moment d’inertie

m=ma+ mp
maa = mpgb

Jo = maa® + mpb?

Equivalence
statique

Equivalence
dynamique

(b)

Figure 13.42 [Spinnler]



=PFL  Efforts d’inertie

= |’effort d’inertie pour un corps solide
a:'r'(P) =0 'Ur = ()

0=F — [m&’a(A) + mﬁﬁ + m x (ﬁ X ﬁ):l B Frincipe D'Alembert

ﬁ[ne'r‘i:ie
= Le principe D’Alembert impose
é — — —
g 0=F+ FInertz'e FInertz'e = —MAq <— Accélérations
& - - - imposées par les
g 0=M + MInert'ie MInertz'e — —JGaa <——| lois d’espace
g
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B Dynamique de Systéemes Mécaniques

Limitations par les efforts d’inertie

= Les efforts d’'inertie chargent les élements et limitent la transmission
d’efforts utiles

* Question: comment se comportent I'effort utile et la puissance utile en
fonction de la vitesse du systeme?

= | es éléments sont chargés par

* Une précontrainte 0o Coefficient géométrique
« Une contrainte d’inertie or :@p‘f
« Une contrainte utile oy = CyF,
’T‘ Coefficient dépendant de la

géométrie et de la sollicitation
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B Dynamique de Systéemes Mécaniques

Limitations par les efforts d’inertie

= Hypothese: contraintes paralleles
* Critere de dimensionnement

O Lim <——— Contrainte limite

0'0+0'I+0'US@

_> 00+ Crpv’ + CyFy < 7Lim

S <— Coefficient de sécurité
= | 'effort et la puissance utiles deviennent:

1 OLim
Fu < Fy_adm = 8. [ I:S, — 00 — CIPvz]
U J
1 O Lim
PU:FU_Adn-’U:CU[ I,;S' —O'O—CIP’U2:| (Y
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=PFL  Limitations par les efforts d’inertie

1 OLim
Fi < Fy_ agm = [ — oo —C ]
U > lu-Ad Cu g g0 I1pY
= Représentation graphique .
FLin_ -F, B . 0 Lim 2
Cﬁ“[—l’f 5] =Fu-na +Pq_ PU—FU—Adn"U—CU[ S —UO—CIP’U]

. _\/ 1 (O'Lim_o_)_ 1
opt — SPCI g 0) — 3 Mazx

2 Lyo
FU—Opt — gFU—Ma:L‘ ’ ,5'3

iques

PMax: 3\/—FU Max - UMax
0,58

B Dynamique de Systéemes Mécan
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B Dynamique de Systéemes Mécan

Limitations par les efforts d’inertie

= Comment augmenter la puissance utile?

2 1 @)~y
o= | B D
SCU 3011 PN(S)

Choisir un matériau léger (p|) et résistant (o;;,1)
Précontrainte de la piéece (o, < 0)

Limiter le coefficient de sécurité S

Modifier la conception de la piéce (Cy+/C; 1)

11
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=L Equilibrage des efforts d’inertie ’

= Equilibrage des efforts d’'inertie des bielles de locomotives

s\ 0 s/ TR S =01 (CO=)QS = I
www railpictures.net v \V/

Lorsque les bielles (en translation) Les efforts d’inertie sont compensées par
entrainent les roues elles générent des contrepoids tournants avec les roues
des efforts d’inertie

B Dynamique de Systéemes Mécaniques
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B Dynamique de Systemes Mécaniques

Equilibrage des efforts d’inertie

= Equilibrage des efforts d'inertie d’'un vilebrequin de moteur a
combustion interne

/ -
Les efforts d’inertie des bielles tournantes sont compensé
par des contrepoids tournant avec le vilebrequin

14
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La force résultante "

Figure 16.17 [Spinnler]

= Caractéristiques des efforts d’inertie
» La résultante des n éléments est appliquée au centre de gravité G du

meécanisme
n n n
m = E mi FI= E F1k=— E mk5k=mag
’|f Masse du ‘
mécanisme Accélération du centre de

gravité du mécanisme
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=Pl La force d'inertie résultante

= |es efforts d’inertie d’'une chaine cinématique plane a 1 degré de

mobilite
n Fig)
F] = — E mkd’k =m5:(;
k=1
q(t) est le mouvement de Figure 16.17 [Spinnler]
\L I'élément menant
n
Frp=— E my [264,(9)°(t) + 261 (@)d ()]
k—l
8
£
£ — E :mk [vén(9)d*(t) + yer(9)d(t)]
% . ‘ T Origine interne provenant de
g Origine externe provenant - laccélération du mouvement
: de la loi despace menant
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Le moment d’inertie résultant

= Les efforts d’inertie d’'une chaine cinématique plane a 1 degré de =
mobilite s>

« Couple d’inertie appliqué au bati
n A
Mic = =) Jar [¢Ge(0)d* (1) + ¢ar(9)d(?)] o
— k=1 Figure 16.17 [Spinnler]

» Auquel se rajoute le moment des forces d’inertie par rapport au point O

n
M = Mg + E rak X Fri
k—1

W Moment des forces

d’inertie
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Equilibrage des efforts |

= L'équilibrage a comme but d’'annuler les efforts d’inertie
« L’équilibrage parfait est atteint lorsque:

Fr=0 Mp=0

o

= Comment équilibrer les efforts d’inertie?
@ Modification de la distribution des masses des éléments mobiles

Ajouter des mécanismes auxiliaires qui compensent les efforts du
mécanisme principal

18
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B Dynamique de Systéemes Mécaniques

Equilibrage des efforts Il

Modification de la distribution des masses des éléments mobiles

» Les éléments sont intrinsequement équilibrés hng = b r
» Les organes de guidage sont déchargés \__j/ Ve
« Généralement le mécanisme est alourdi (m & J 1) T, = v.2
. . | [ e
- dynamique du systéme en souffre! |
£zt [, =1

/’7

o/

Figure 16.19 [Spinnler]
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B Dynamique de Systéemes Mécaniques

Equilibrage des efforts Il

@ Equilibrage par mécanisme auxiliaire

« Un systéme a came permet de compenser les efforts d’inertie. Le profil de la
came doit étre adapté au mouvement du centre de gravité du systeme

» Le systeme auxiliaire complique, alourdit et renchérit le mécanisme

Figure 16.17 [Spinnler]
Figure 14.44 [Spinnler]
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=PFL  Exemple: Machines a pistonl

Connecting
rod

= Calcul des efforts d’'inertie
On cherche donc:

— Gas

{  pressure P,

{

b

n z
I
Fioa == ) mid =
- 77577
1’=1 \ Cylinder
n
Fr -, =-— E miYi
i=1
» Pour cela on doit exprimer les masses m; des différents éléments et leur loi

d’espace
Les lois d’espace de la manivelle et du piston sont simples puisque elle
représentent des rotation et translations pures

La loi d’'espace de la bielle correspond a une translation combinée avec une
rotation

B Dynamique de Systéemes Mécaniques
°
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B Dynamique de Systéemes Mécaniques

Exemple: Machines a piston I

= Discrétisation des masses (étape 1)

Connecting - -
i od N A ranslation pure
Rotation pure il
\;\ O "
(Xz ’// r '\;7 ‘ . i press Pg
Ay 2 Y
\”\/6@ l
Crank —— A\Y FAL - : L
0, ) Z\
k Cylinder

<%

23
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Exemple: Machines a piston Il

= Lois d’espace du piston en translation (étape 2)
2

T, = r+r —r[coswt+£cos2wt]
P 4l 4l

¢

. . ro.
Tp = TW [sm wt + ﬂ sin Zwt]

T, = rw2 cos wt + C CcoS Zwt]

X/ﬂw' fr

/

<— %

YN\

24
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Exemple: Machines a piston IV

= Loi d’espace de la manivelle en rotation (étape 2)

T, = —T COSWt T, = —Trw sin wt T, = rw? cos wt

—

—7Tw cos wt Y, = rw? sin wt

=

Yp = —Tsinwt Yo

——

 —

25
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B Dynamique de Systéemes Mécaniques

Exemple: Machines a pistonV

= |es forces d’inertie (étape 3)
« Composees des effets des masses en rotation et en translation

Fi_p =—[myiy +mrip]
Fi_y = —[myijv]
1 r 2
Fr_, = —myrw”coswt
2 . N
Fr_, = —myrw*sinwt
AN J
Y

T

AN =

yv

A

(— —

9 r
— MpTW [cos wt + — cos 2wt]

[

J

Composante du
mouvement du piston

Force centrifuge de la masse
tournante (manivelle + bielle)

26
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Exemple: Machines a piston VI

» Force oscillante: allure en fonction de r/I

a/Omega”2

15 -
r/1=0.5 >
10
e /|=0.33
5 e /|=0.25
e /|=0.2
0
0 180
-5
-10

360

Angle de manivelle [°]

=

27
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B Dynamique de Systéemes Mécaniques

Exemple: Machines a piston VI

28

= Equilibrage de la force centrifuge (étape 4)

Fi_, = —mvrw2

Fr_, = —myTw?

¢

cos wt

sin wt

J

Y

5 r
— MpTWw [cos wt + 7 COS 2wt]

» Puisque il s’agit d’'une force tournante d’intensité constante elle est
facilement équilibrée par un simple ajout de masse
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B Dynamique de Systéemes Mécaniques

www larousse.fr

Embiellage de locomotive a vapeur.
www .emdx.org

Vilebredlin de moteur a 4 cylindres.

Compresseur a piston.
www .compair-kompressoren.ch

Embiellage de locomotive électrique.
www seetalkroki.ch

29
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Exemple: Machines a piston Viii

= Equilibrage de la force oscillante du piston (étape 4)

—

2 [ 2 r
Fr_, = —myrw®coswt — mprw” |coswt + 7 cos 2wt
2 \
Fr_, = —myrw®sinwt Y
YV e— ‘\— Composante oscillante

« La composante oscillante est composée d’'une fondamentale (vitesse de
rotation du vilebrequin) et d’'une harmonique de 2™e ordre

« Comment équilibrer une force oscillante?

30
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Exemple: Machines a piston IX

= Caractérisation de la force oscillante du piston

» Une force oscillante peut étre représentée par deux forces contrarotatives
Co- f2uT, Cownrr A~ f2o7,

/ 2 ! { 5 \
cos(wt) +

[— mrrw

mrrw
mrrw? cos(wt) = L

cos(—wt)

——

Figure 1 6.2Vpin nler]

31



=PrL

B Dynamique de Systéemes Mécaniques

Exemple: Machines a piston X

= Caractérisation de la force oscillante du piston

» La décomposition de la force oscillante
en deux composantes s’applique également
a la force harmonique de 2¢me ordre

myrw?

2

cos(twt) >

myrw? r

T Z COS(:|:2Wt)

V

Figure 16.23 [Spinnler]
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Exemple: Machines a piston XI

= Equilibrage de la force oscillante du piston

* |l n’est donc pas possible d’équilibrer entierement une force d’inertie
oscillante par un simple ajout de masse sur I'arbre tournant

» L'ajout d'une masse sur le vilebrequin permet de réduire la composante
fondamentale de la force d’inertie de 50%

* |l subsiste néanmoins une force d’inertie tournant en sens inverse d’'une
intensité de 50% de la force oscillante

* Il subsiste également l'intégralité de la composante harmonique de 2¢me
ordre

33
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Exemple: Machines a piston XII

= Equilibrage de Lanchester

* |l est possible de parfaitement équilibrer la
fondamentale oscillante avec deux masses
contrarotatives entrainées par le vilebrequin
aveci=1

» Les masses sont calées de maniére a compenser
d’inertie oscillante

* On note que cet équilibrage ne décharge pas
les organes de guidage de la machine

Figure 16.24 [Spinnler]
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=P7L Exemple: Machines a piston XilI

= Equilibrage de Lanchester
* |l est possible d’équilibrer ’harmonique de ll_J'
2¢me ordre en ajoutant des masses

contrarotatives entrainées par le
vilebrequin avec i = 0.5

\w

20 | 20

A l -~
%Fioll Y Yz N\ fe sFioll
20 2¢

Figure 16.26 [Spinnler]

B Dynamique de Systéemes Mécaniques
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B Dynamique de Systemes Mécaniques

Exemples

1

Equilibrage Lanchester de 2éme ordre

36
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Exemple: moteur bicylindre

= Equilibrage des composantes de 1¢" ordre

» Les composantes des forces de 1¢" ordre
co-rotatives sont equilibrées par des masses
tournantes sur le vilebrequin

» Les composantes des forces de 1¢" ordre
contrarotatives sont équilibrées par des
masses tournant a sens inverse

» Les masses auxiliaires compensent
les composantes contrarotatives

Figure 16.31 [Spinnler]
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EPFL  Exercices

= Compresseur a piston

= Equilibrage d’'un entrainement par hélice

= Equilibrage d’'un moteur 4 cylindres plat ’——’ '_“,
A A'

iques

B Dynamique de Systéemes Mécan



