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B Dynamique de Systémes Mécaniques

Chaines cinématiques

= Composé d’organes effectuant
des mouvements en translation
et / ou rotation et a vitesses
différentes

"y

Figure 13.11 [Spinnler]

= La cinématique d’un tel systéme complexe s’exprime par la reduction
de la cinématique aux coordonnées menantes

= La réduction d’'un systéme mécanique permet d’exprimer les énergies
cinétigue & potentielles et les efforts en fonction de la/les cordonnée/s
menante/s



=PFL  Equation de mouvement

= Par la méthodologie de Lagrange (L = T— U)

4 (0L (0L _d (OT\ oT oU _ .
dt \ dq dq ) dt \ 9¢ dqg 9dq

... et en utilisant les expressions pour T, U et Q" en fonction des lois d’espace

fonction de la coordonnée menante

on trouve:
g 1 Efforts moteurs
g - / .2 / . */ , .
8 I(q)q + §I (q)q 4+ U (q) — Qm — Qe <« Efforts d’entrainement
& Efforts Contribution de I’énergie potentielle
3 d’accélération de
E Iinertie réduite Efforts dus a la variation de I'inertie réduite en
£
&
|
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B Dynamique de Systémes Mécaniques

Discrétisation des masses

= Loi de mouvement complexe complique la description mathématique
» Placer les masses a des endroits ou la loi est plus simple

= Principes d’équivalence

e Masse
* Centre de masse

* Moment d’inertie

m=ma-+mpg
maa = mpb

Jg = mAa2 + mez

Equivalence
statique

J

Equivalence
dynamique

(b)

Figure 13.42 [Spinnler]



B Dynamique de Systémes Mécaniques

Efforts d’inertie

= | 'effort d’inertie pour un corps solide
C_I:T(P) — 0 17?" — O

0= ﬁ — [m&'a(A) + mﬁﬁ -+ mﬁ X (ﬁ X E)} # Principe D’Alembert

F.Inertie
= Le principe D’Alembert impose
0=F -+ FInertie Flnertie = —MQq <—— Accélérations
- - — imposées par les
0=M —+ MI'n,e'rtie MIne'rtie = —JGOZG <——| lois d’espace
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B Dynamique de Systémes Mécaniques

Limitations par les efforts d’inertie

= Les efforts d’inertie chargent les élements et limitent la transmission
d’efforts utiles

* Question: comment se comportent I'effort utile et la puissance utile en
fonction de la vitesse du systeme?

= |Les éléments sont chargés par

e Une précontrainte g0 \l/— Coefficient géométrique

 Une contrainte d’inertie or = Cipv?

« Une contrainte utile oy = CyF

’|§ Coefficient dépendant de la

géométrie et de la sollicitation
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B Dynamique de Systémes Mécaniques

Limitations par les efforts d’inertie

= Hypothese: contraintes paralleles
 Critere de dimensionnement

O Lim <——— Contrainte limite

S
oo + Crpv® + CyFy <

og+or+oy <

O Lim
S <— Coefficient de sécurité
= 'effort et la puissance utiles deviennent:

1 O Lim
Fy < Fy_pdm = Co [ 155, — 0y _CIPUQ]

Py =Fy_pgn v =
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=PFL Limitations par les efforts d’inertie

1 OLi
For < Frr = [ m —C 2]
U > l'u-Ad Co g g0 1pv
= Représentation graphique )
PU:FU—Adn'U: CU [ULst,m _UU_CIPUQ}

\/ 1 (aLim ) 1
VUopt = — 0 — “UMazx
pt 30C; \ S 0 3 M

2
FU—Opt — gFU—Max

2
.P ax = F —Max ° v ax
M 3 \/g U—-M M

caniques

B Dynamique de Systémes Mé
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B Dynamique de Systémes Mécaniques

Limitations par les efforts d’inertie

= Comment augmenter la puissance utile?

Olim )3

Ptax = ——— 1(
Max = g0uv3C; \ p \ S

Choisir un matériau léger (p|) et résistant (Oyin1)
Précontrainte de la piece (o< 0)

Limiter le coefficient de sécurité S

Modifier la conception de la piece (Cy+/C; 1)

11
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=PFL  Equilibrage des efforts d’inertie ’

= Equilibrage des efforts d’inertie des bielles de locomotives

www railpictures.net v \V/

Lorsque les bielles (en translation) Les efforts d’inertie sont compensées par
entrainent les roues elles générent des contrepoids tournants avec les roues
des efforts d’inertie

B Dynamique de Systémes Mécaniques
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B Dynamique de Systémes Mécaniques

Equilibrage des efforts d’inertie

= Equilibrage des efforts d’inertie d’'un vilebrequin de moteur a
combustion interne

/ -
Les efforts d’inertie des bielles tournantes sont compensé
par des contrepoids tournant avec le vilebrequin

14
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B Dynamique de Systémes Mécaniques

La force résultante )

Fig3

m3
- C)3

Figure 16.17 [Spinnler]

= Caractéristiques des efforts d’inertie
« La résultante des n éléments est appliquée au centre de gravite G du

meécanisme
n n n
mZE m FIZE F‘”"Z_E mkak=mag
k=1 k=1 k=1
’|f Masse du
mécanisme Accélération du centre de |

gravité du mécanisme
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B Dynamique de Systémes Mécaniques

La force d’inertie résultante *

= Les efforts d’inertie d’'une chaine cinématique plane a 1 degré de

mobilité
i’
-3 mya
k=1

7 q(t) estle mouvement de Figure 16.17 [Spinnler]
\l/ I’'élément menant

Fros = = 3 m el (0°(0) + ()0

= — > m [yGr (@ () + yor (9)d(t)]

k=1
- T Origine interne provenant de
Origine externe provenant _ e

delaloi o 'accélération du mouvement
e la loi d'espace menant
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B Dynamique de Systémes Mécaniques

Le moment d’inertie résultant ’

= Les efforts d’inertie d’'une chaine cinématique plane a 1 degré de
mobilité
» Couple d’inertie appliqué au bati

Mic = =) Jar [0Cr(@)d*(t) + v (@)d(t))]

k=1 Figure 16.17 [Spinnler]

« Auquel se rajoute le moment des forces d’inertie par rapport au point O

Mo =Mc+ ) ok X Fiy

k=1
’T\ Moment des forces
d’inertie
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B Dynamique de Systémes Mécaniques

Equilibrage des efforts |

= L’équilibrage a comme but d’annuler les efforts d’inertie
» L’équilibrage parfait est atteint lorsque:

—

FIZO MIOZO

= Comment équilibrer les efforts d’inertie?
* Modification de la distribution des masses des éléments mobiles

« Ajouter des mécanismes auxiliaires qui compensent les efforts du
mecanisme principal

18
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B Dynamique de Systémes Mécaniques

Equilibrage des efforts i

= Modification de la distribution des masses des éléments mobiles
« Les éléments sont intrinséquement équilibrés
» Les organes de guidage sont déchargés

* Généralement le mécanisme est alourdi (m & J 1)
- dynamique du systeme en souffre!

0 0 ©

Figure 16.19 [Spinnler]

19
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B Dynamique de Systémes Mécaniques

Equilibrage des efforts il

= Equilibrage par mécanisme auxiliaire
* Un systéme a came permet de compenser les efforts d’inertie. Le profil de la
came doit étre adapté au mouvement du centre de gravité du systeme

» Le systéme auxiliaire complique, alourdit et renchérit le mécanisme

Figure 16.17 [Spinnler]
Figure 14.44 [Spinnler]
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B Dynamique de Systémes Mécaniques

Exemple: Machines a pistonl

Connecting

rod —\
,: : A
= Calcul des efforts d’inertie _4 | : o
On cherche donc: SO [
n 3 . G
E r ' 1
FI—SE = — m?:ﬂ,‘?, Crank /“"“2§"’ - -; |— x
=1 > 7 J\ Cylinder
n —ig
FI -y = — E m?,:sz
i=1

Pour cela on doit exprimer les masses m; des différents éléments et leur loi
d’espace

Les lois d’espace de la manivelle et du piston sont simples puisque elle
représentent des rotation et translations pures

La loi d’espace de la bielle correspond a une translation combinée avec une
rotation
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston I

= Discretisation des masses (étape 1)

S . Translation pure
. rod
Rotation pure Vi N

23
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Exemple: Machines a piston Il

= Lois d’espace du piston en translation (étape 2)

-+ re [cos t+ r cos 2 t}
Tz, =r+ — ) —1r w — w
P 4] 4]

:B'p = rw [sinwt -+ % sin 2wt]

:ﬁ'p — rw? [cos wt + ; COS 2wt]

24
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston IV

= Loi d’espace de la manivelle en rotation (étape 2)

T, = —T COSwt T, = —rwsinwt

Yy = —TsInwt Yp = —TW COSwWi

S —

2

T, =TW
Yy = Tw?
<X

cos wt

sin wt
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B Dynamique de Systémes Mécaniques

L

Exemple: Machines a pistonV
L =

= Les forces d'inertie (étape 3) "
« Composeées des effets des masses en rotation et en translation

Fr_y = —|myZyv + mrip]
Fr_y = — [mviv]
_ 2 2 r
Fr_, = —myrw®coswt — mprw” |coswt + 7 cos 2wt
. \ J
Fr_, = —myrw? sin wt N
b v 4 ‘ Composante du
mouvement du piston
/l\ Force centrifuge de la masse

tournante (manivelle + bielle)
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston VI

= Force oscillante: allure en fonction de v/l

a/Omega”?2

15

10

-10

e /|=0.5

o= /|=0.33

e 1/1=0.25

e /|=0.2

180

3¢

Angle de manivelle [°]

50
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B Dynamique de Systémes Mécaniques

L

Exemple: Machines a piston Vi

= Equilibrage de la force centrifuge (étape 4)

2

Fr_, = —myrwcoswt — myrw? [cos wt + % cos 2wt]

Fr_, = —my rw? sin wt

U J
Y

» Puisque il s’agit d’'une force tournante d’intensité constante elle est
facilement équilibrée par un simple ajout de masse

m
< m { m
» . »
0
O O ’ne
e
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B Dynamique de Systémes Mécaniques

Vilebrequin de moteur a 4 cylindres.
www larousse.fr

Embiellage de locomotive a vapeur.
www .emdx.org

Compresseur a piston.
www .compair-kompressoren.ch

Embiellage de locomotive électrique.
www seetalkroki.ch
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston Vi

= Equilibrage de la force oscillante du piston (étape 4)

Fr_,. = —mvfrwz cos wt — mprw? [cos wt + % cos 2wt]

) \
F;_, = —myrw? sinwt Y

J
L Composante oscillante

« La composante oscillante est composée d’'une fondamentale (vitesse de
rotation du vilebrequin) et d'une harmonique de 2€™e ordre

« Comment équilibrer une force oscillante?

30
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B Dynamique de Systémes Mécaniques

L

Exemple: Machines a piston IX

= Caracterisation de la force oscillante du piston
« Une force oscillante peut étre représentée par deux forces contrarotatives

2 2
mrrw MTTW
2 L= cos(wt) + —

mrrw” cos(wt) =

cos(—wt)

Figure 16.22 [Spinnler]

31
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston X

= Caracterisation de la force oscillante du piston

« La décomposition de la force oscillante
en deux composantes s’applique également
a la force harmonique de 2€me gordre

mrrw

cos(twt)

mrte T cos(2wt)

B =

Figure 16.23 [Spinnler]

32
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston XI

= Equilibrage de la force oscillante du piston

* Il n'est donc pas possible d’équilibrer entierement une force d’inertie
oscillante par un simple ajout de masse sur l'arbre tournant

« L’ajout d’'une masse sur le vilebrequin permet de réduire la composante
fondamentale de la force d’inertie de 50%

* |l subsiste néanmoins une force d’inertie tournant en sens inverse d’une
intensité de 50% de la force oscillante

* |l subsiste également l'intégralité de la composante harmonique de 2i€me
ordre

33
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L

Exemple: Machines a piston XiI

= Equilibrage de Lanchester

* |l est possible de parfaitement équilibrer la
fondamentale oscillante avec deux masses
contrarotatives entrainées par le vilebrequin
avec i =1

* Les masses sont calées de maniere a compenser
d’inertie oscillante

« On note que cet équilibrage ne décharge pas
les organes de guidage de la machine

Figure 16.24 [Spinnler]

34
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B Dynamique de Systémes Mécaniques

Exemple: Machines a piston XliI

= Equilibrage de Lanchester

* |l est possible d’équilibrer I'harmonique de
2ieme grdre en ajoutant des masses
contrarotatives entrainées par le
vilebrequin avec i = 0.5

lA
EFiD]]

i

a8

Figure 16.26 [Spinnler]

2¢
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B Dynamique de Systémes Mécaniques

Exemples

Equilibrage Lanchester de 21éme ordre

36
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B Dynamique de Systémes Mécaniques

Exemple: moteur bicylindre

= Equilibrage des composantes de 1°" ordre

* Les composantes des forces de 1°" ordre
co-rotatives sont équilibrées par des masses
tournantes sur le vilebrequin

» Les composantes des forces de 1°" ordre
contrarotatives sont équilibrées par des
masses tournant a sens inverse

» Les masses auxiliaires compensent
les composantes contrarotatives

Figure 16.31 [Spinnler]

37
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B Dynamique de Systémes Mécan

Exercices

= Compresseur a piston
= Equilibrage d’'un entrainement par hélice

= Equilibrage d'un moteur 4 cylindres plat

] M
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