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B Dynamique de Systéemes Mécaniques

Cinématique vs. dynamique?

= Cinématique: mouvement de corps rigides

Force périodique

, . .. 9,  Modélisation
Mécanisme de flaps pour A320

http:/en.wikipedia.ora/wiki/Flap_%28aeronautics %29

i
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Figure 13.23 [Spinnler]

= Dynamique: tient compte de la déformation des éléments


http://en.wikipedia.org/wiki/Flap_(aeronautics)

=PFL  Cinématique

= | a cinématique étudie le mouvement, la vitesse et I'accélération de
points et de corps rigides

= Ensemble de corps rigides liés entre eux
—> chaine cinématique

= | e degré de mobilité détermine le nombre de parametres indépendants
nécessaires pour fixer tout élément dans I'espace

= | e mouvement des élements est décrit univoquement par les lois
d’espace

B Dynamique de Systéemes Mécaniques



=PrL

sanbjueog|\ sawa)sAg ap enbiweuAq N



=PrL

Dynamique des Systémes Mécaniques

Loi de mouvement
cinématique

m Ecole Prof. J. Schiffmann

polytechnique
fédérale
de Lausanne



=PFL  Chaines cinématiques |

= Chaine cinématique de machine

my Figure 13.11 [Spinnler]

« Composée d’organes effectuant des mouvements en translation et/ou
rotation et a vitesses différentes

« Comment exprimer la cinématique d'un tel systeme?
—> Par la réduction de la cinématique a la/les coordonnée/s menante/s

B Dynamique de Systéemes Mécaniques
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= Quelques définitions
auele P4
Cf["a‘(7 2/
-@mte la coordonné geénéralisée de I'élément p

= Selon le contexte il s’agit d’'une translation ou d’'une rotation 1T Z@I kz]

@ote I'effort généralisé appliqué a I'élément p Ecic = i I.‘{'z
2

= Selon le contexte il s’agit d’'une force ou d’'un couple

q
=)
O
/
S

B Dynamique de Systéemes Mécaniques

= F(qggure 13.11 [Spinnler]



=PFL Lol d’espace |

= | a loi d'espace décrit intégralement le mouvement d’'un élément

Exemple d’'un mouvement plan d'un élément

< a 3 degrés de liberté

Figure 14.3 [Spinnler]

» Lois d’espace du mouvement plan pour le corps i en fonction de q(t)

TB; = sz'(qtg\

YBi = yBi(Q)
PBi = <PB7;(Q)

B Dynamique de Systéemes Mécaniques
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Exemple d'un mouvement plan d'une piéce
a 3 degrés de liberté

mouvement imposé

) .
. ' . < 04)( 017 = X -
SN dpi—ani) X oggtaq A ]
UBi = Ypi(9)4(t) LAY i?’?‘ o
- L (aa <=%% e 1+ 1
oBi = ¢pi(0)d(t) 7 \7:1 A
° ! AlA i ] .2 I .
L'accelération DX ,, + X.7
H iB - sz(q)q (t) + sz(q)q(t) p ( ) dei
¢ . ; 5 Lpi\q) =
i = Ypi(2)4°(t) + ¥pi()d(t) dq
= g ; g 2
B = ()4 (1) + ¢5:(0)d (1) ohilg) = LB
% /]\ 1\ Fonctions géométriques liés au 1



=PFL Lol d’espace IV

(bati) 0 (bielle) 2 (piston) 3

= Exemple Bielle-Manivelle-Piston
 Mouvement plan a 1 degré de mobilité

AB=35mm
manivelle ou |BC =128 mm
vilebrequin 1 [CG =286

Bielle: translation & rotation

Manivelle:
rotation 2 L

Piston: translation

Guide de Mécanique, Fanchon

» Position des différents composants définie univoquement par la coordonnée
généralisée q(t) et les lois d’espace

B Dynamique de Systéemes Mécaniques
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B Dynamique de Systéemes Mécaniques

Loi d’espace V

c= ’;; = ;(;)._i - Xf, = (bati) 0 (fielle) 2 (piston) 3

» Caractérisation

Vitesse d'entrée

« Rapport de transmission i=—; :
Vitesse de sortie

=g

G

35 mm
128 mm
=2BG

manivelle ou
vilebrequin 1

/
Xp

« Systeme uniforme / homocinétique / synchrone si i = cst.

« Systeme non-uniforme / hétérocinétique si i = f(q;)

L_> X/b, _ 5’( (\,Pl/ =0
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=PFL Lol de mouvement cinématique

= |'objectif est de trouver une méthode pour dériver les lois qui gérent le
couplage entre les efforts et le mouvement d’'une chaine cinématique

= | 'idée est de suivre une approche basée sur une formulation de
Lagrange

Energie cinétique

——~
o
B
=
S)
—
=4
o,
@
S
n
=)
wv
—
o
-
S—
X

Energie potentielle

\‘ AB =35 mm

anivelle ou |{BC=128 mm
vilebrequin 1 |CG =286

B Dynamique de Systéemes Mécaniques
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B Dynamique de Systéemes Mécan

Energie cinétique

= | 'énergie cinétique d’'une chaine cinématique

T= 5 Z [mi (1132}3z + y‘l?;z) + JBz";bzgi] 137&' = z3;(9)4(t)

i=1 . .
\yj” = U(@)d()
= L3 [ (e + 0B + o] o5i = pu(0)d(0)

./7 f i=1 ) y;
C
= 5-’(61)(1 Lo

 L'inertie réduite I(g) représente l'inertie globale du systéme meécanique
ramenée au mouvement de la coordonnée généralisée

13
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B Dynamique de Systéemes Mécaniques

Energie cinétiquelll

= Exemple Bielle-Manivelle-Pist Chpdas= 1Y |l

7 .z | / | ;t" ‘

TManiveIIe = —-Il\-.‘f‘h
LA)Z

Guide de Mécanique, Fanchon

Thielle AB = 35 mm

0 manivelle ou |BC =128 mm
LT Ts: vilebrequin 1 |GG = 2BG

3
=

c6
2

AB=35,;BC=128; BG=

3(21
=

1

T = Thranivelle + TBiette + T'Piston = 51 (9)d°

» L’énergie cinétique du systéme complet s’exprime en fonction de la
coordonnée généralisée et de la loi d’espace

14
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B Dynamique de Systéemes Mécan

Efforts extérieurs |

= Réduction des efforts extérieurs a la coordonnée gen. menante q
 Le travail effectué par les efforts paralleles aux mouvements

y J I L Lol X
SW = Z(Fm,.csacz + F,0y; + Midp;) = Q 57
L—-/ g=1
4
 La loi d'espace impose dx; = ﬁamz 0q = X; So[
» L'effort réduit devient
} Efforts moteur

R Oxi o Oy 2 0P _ e o
Q _;(Fmaq +Fy18q+M28q)—Qm Q>

? ‘\ Efforts résistant
[ l T

15
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B Dynamique de Systéemes Mécaniques

Efforts extérieurs Il

(biti) 0 (bielle) 2 (piston) 3

= Exemple Bielle-Manivelle-Piston eIl

AB =35 mm
0 manivelle ou |BC =128 mm
LT Ts: vilebrequin 1 |GG = 2BG

3
=

CG

AB=35,;BC=128; BG= -5

s |

TCy0= Torg Force de pression Fp

0 RN axP
* = Fpo——
Q P 34

» Avec la coordonnée généralisée on ramene les efforts extérieurs
quelconques au mouvement de la coordonnée généralisée q

16
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B Dynamique de Systéemes Mécan

Equation de mouvement|

= Formulation de Lagrange
« Permet d’identifier les équations de mouvements de systémes complexes

 Cette formulation est fondée d /L oL
sur I'équilibre énergétique Ly = (_> _ <_> = Q:
- Le Lagrangien L dt dq1

a oy (o) _g,
dt \ 0g2 dq2) °?
L=T-U

\ \ Energie potentielle
Energie cinétique [_.> i (8L> _ (a_L) = Q;kl,

17
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B Dynamique de Systéemes Mécaniques

Equation de mouvement i

= Pour un systeme a 1 degré de mobilité

v Y
L=T-U

d (oL _(9LY _ d
t \ 9q oq ) dt

« En utilisant les expressions pour T, U et O* on trouve I'’équation de
mouvement d'une chaine cinématique a 1 degré de mobilité

/ Efforts moteurs
k ’ .

oT 8T aU 2
(a_q> og Fog =9

/ /
- Efforts d’entrainement
1@+ 5 T(@)d® +U'(0) = Q= QF — |
Efforts ’\ Contribution de I’énergie potentielle
d’accélération de
Iinertie réduite Efforts dus a la variation de I'inertie réduite en

fonction de la coordonnée menante

18
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B Dynamique de Systéemes Mécaniques

Equation de mouvement Il

= Procédure

1.
2.

3.
4.

5.

Déterminer / discrétiser les masses des corps rigides

Déterminer le degré de mobilité est choisir les coordonnées généralisees
adéquates

Décrire les lois d’espace des différents éléments

Exprimer les énergies cinétique et potentielle du systéme en fonction des
coordonnées généralisées (- utiliser les lois d’espace)

Déduire les équations de mouvement (= Lagrange)

- Modéle cinétique / cinétostatique

19
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B Dynamique de Systemes Mécal

Equation de mouvement IV

v J

O 1Ol

= Exemple: réducteur
* Trouver I'équation de mouvement

/’, Sjv/ﬁ/\w—u o: /’ J/r’f 0‘« /--/L./A’i‘-(

—_> Vl=qq

20



=PFL  Equation de mouvementV

0’ ’ 0/7 _ I7 0"/2
Q=2reg - g~ ey,
| ; ~ “T_
Q‘v = /7._, - —.’"
» A ! _--2 c. o ¥
. Tjegtq1¥ -«
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B Dynamique de Systéemes Mécaniques

Discrétisation des masses |

= | ois de mouvement souvent complexes
« Complique la description mathématique
« = Appliquer le principe de discrétisation de masse

Rotation & translation combinée

Connecting
Rotation pur " i
otation pure Translation pure

........

Crank —§—

— Cylinder

Piston

Design of Machinery, Norton

23
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B Dynamique de Systéemes Mécaniques

Discrétisation des masses i )

= Masses equivalentes

» La connaissance de la loi d’espace de deux points du corps permet de
simplifier > masses équivalentes

« La procédure consiste a remplacer la masse et l'inertie au centre de gravité
par des masses équivalentes aux endroits ou les lois sont plus simples

Figure 13.42 [Spinnler]
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B Dynamique de Systéemes Mécaniques

Masses équivalentes|

= Principes d’equivalence

 Masse m="ma + mp
Equivalence
statique

« Centre de masse maa =mpgb et

« Moment d’inertie

Jo = maa® + me2'

Equivalence
dynamique

Figure 13.42 [Spinnler]

25
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B Dynamique de Systéemes Mécaniques

Masses équivalentes i "

= Exemple: discretisation de la bielle

Rotation & translation combinée - complication

Connecting
rod

: Translation pure
Rotation pure

Crank —

Piston Design of Machinery, Norton

» Le but est de repartir I'inertie de la bielle aux points A et B pour faciliter la
description mathématique du mouvement
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B Dynamique de Systéemes Mécaniques

Masses équivalentes |

= Exemple: discretisation de la bielle

* Enfixant [, & /,: 2 inconnues et 3 équations
—>3>M3 =MA +MB

Equivalence statique
> M Ala =m Blb

T =mal? +mpl?
G3 Alg +mply

« L’équivalence statique méne a

o mp =m la
la-l—lb] B =T

ma = M3
L

&

| IG’3 - ”713lalb
l}

“-‘ Design of Machinery, Norton
L/

/

s

27
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B Dynamique de Systéemes Mécaniques

Masses équivalentes IV "

= Solution exacte S~
* 4 inconnues et 3 équations e al o &
—> M3 = M Ae + MBe m‘ - 'sB
— mAelae = mBelbe -4 “"D

Design of Machinery, Norton

— IG3 — mAelg,e + mBelge

* En choisissant /,, = [, il vient:

Igs
m3lb

lb i —pomy lae
lae =t lb Be — T8 lae i lb

T

MmaAe = T3 ae —

* ’erreur de discrétisation sur lI'inertie devient:

Igs — Ig3 lae — la Si (I,.-1,) << I, l'erreur reste acceptable
Igs Lae
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B Dynamique de Systéemes Mécaniques

Efforts d’Inertie |

= Relation entre un référentiel inertiel et un repére

Référentiel

e Théoréme de Newton
F = mad,(P)

1

Accélération absolue du
point P mesurée dans le

référentiel

Toutes les forces
extérieures

30
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=PFL  Efforts d’inertie Il

« Théoréme de Newton 0
F=mi,(P) % 2
- = ap — a —
F = ma,(A) + mOAP +mf x (4 x AP) + ma,(P) + 2mS x 7,

Accélération relative
dans le repéere

B Dynamique de Systéemes Mécaniques
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B Dynamique de Systéemes Mécan

Efforts d’inertie Il

« Theoreme de Newton
F = ma,(P)
) . - c )
F=md,(A) + mOAP + m x (Q x ﬁ) + ma,(P) 4+ 2mS) x U,

, Lz . . ) Accélération relative
» L'accélération dans le repére devient dans le repere

E_a‘a(A)—ﬁﬁ—ﬁx(ﬁxﬁ)—2ﬁxﬁ}
m

ax(P) =

32
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=PFL  Efforts d’inertie IV

* Théoréme de Newton
F = mad,(P)

F = ma,(A) + mOAP + m@ x (8 x AP) + ma,(P) + 2m$ x 7,
) . . Accélération relative
» L’accélération dans le repére devient: dans le repére

BeAPT = — Ga(A) — GAP — G x (3 x AP) - 207,

* Pour un corps solide:

iques

L—) ﬁr(P) = O Q—)'r — O <——  L’observateur dans le repére voit le corps au repos
—)

0=F — [m&'a(A) + mOAP +mQ x (9 x ﬁ)] B Frincipe D'Alembert

N J

"

B Dynamique de Systéemes Mécan

FI'n,e'rt'i,e
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B Dynamique de Systéemes Mécaniques

Efforts d’inertieV

0=F — [m&’a(A) + mOAP + m x (Q x ﬁ)]

. >

N

FI'n,ert'i,e

Tout corps soumis a une loi de mouvement oppose un effort résistant >
effort d’inertie

L’effort d’inertie charge le corps conjointement avec I'effort utile

Les deux efforts (utile et inertie) limitent la vitesse du systéme

L'effort d’inertie est un effort mesuré dans le repéere A

34
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B Dynamique de Systemes Mécaniques

Efforts d’inertie VI

= Exemple: lanceur de marteau

0=F — mrw?
N

=5
FI'n.e'rt'ie

» Pour effectuer la trajectoire sur un cercle la masse voit une force extérieure
qui pointe vers le centre de rotation (force centripete dans le référentiel)

« ['athlete ressent une force de traction dans ses bras. C’est une force
d’inertie: la force centrifuge. Elle est mesurée dans le repére A

35



=PFL  Calcul des efforts d’inertie |

= Comment calculer les efforts d’inertie d’'un élément dans une chaine
cinématique? i

YG

Figure 16.4 [Spinnler]
— X

0 %G

* Le principe D’Alembert impose

0= F + Frnertie Frnertie = —Magq <« Accélérations
- o - o imposées par les
0=M + Mipertic Minertie = —Jao, «— lois d’espace

» Les efforts d’inertie se déduisent des lois d’espace

B Dynamique de Systéemes Mécaniques
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B Dynamique de Systéemes Mécan

37

Calcul des efforts d’inertie ll

= Pour un corps rigide G dont le mouvement est commandé par ¢(z)

e = zc(q) ye = ya(q) v = pac(q)

.. les efforts d’'inertie deviennent
Frnertie—z = —malzg(0)¢* (t) + 2()d(t))
Frnertie—y = —mc[ye(0)d° (t) + ya(2)d(®)]
Mrpertie = —JcloG(0)4* () + ¢ (0)d()]

de la loi d'espace I'accélération du mouvement menant
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B Dynamique de Systéemes Mécaniques

Calcul des efforts d’inertie Il

= Quelques commentaires
» Les efforts d’inertie sont proportionnelles a l'inertie

 Lorsque la vitesse est constante (¢(t) = cst) et que le systeme est non-
uniforme, les effort sont proportionnels au carré de la vitesse

 Lorsque le systéme est uniforme (I’(q) = cst) les efforts sont proportionnels a
I'accélération du systéme

« Dans des machines rapides les efforts d’inertie peuvent devenir nettement
plus grands que les efforts utiles

M
Frnertie—z = —mG[CU,c’;(Q)qz(t) + x’G(q)q(t)]

,rl —
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B Dynamique de Systéemes Mécan

Exercices W2

= Equation de mouvement par Lagrange
= |nertie réduite d’'un mécanisme complexe
= Entrainement d’un rotor d’hélicoptére

= Turbopompe de moteur de fusée
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