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B Optical absorption

What is optical absorption

= All materials are made up of protons, neutrons and electrons

= Light (photons) interact with charged species i.e. protons and
electrons

= |n some cases a photon transfer all its energy to a proton or electron -
this is absorption. The photon is ‘absorbed’ and ceases to exist.

= At optical wavelengths (i.e. the colours we see) photons normally
interact with electrons. This lecture focuses on this
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Two measurements

= We can’t measure something that has ceased to exist
= Measuring the energy change of the electron directly is difficult

= \We measure the number of photons not absorbed, typically by those
reflected and those transmitted

= Photons not reflected or transmitted are those absorbed
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7L Applications

= Sight is partly based on reflection and transmission
= Understanding biological cells
= Observing chemical reactions
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= Calculating the potential of solar cells aw &
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=P7L  Sections

= Transmission and reflection measurements
= The theory of transmission and reflection
= Practical examples
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=P7L  Sections

= Transmission and reflection measurements
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=P The simple picture

= Light comes from a light source
= We measure the light reflected (R) and transmitted (T)
= The absorption is A=1-R-T
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=P An example to do at home

= Ambient light and cameras can be used to measure transmission and
reflection
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= Here is a simple example of looking at the effect of making tea
= Most phone cameras automatically adjust exposure settings
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=P An example to do at home

. . . N 1
= Here | calculate the % change in transmission —————2<

Original image
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100s 200s 300s 400s

= For this sample | know change in transmission is due to absorption
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B Optical absorption

Limitations of the tea experiment

= Ambient light can change (e.g. the sun moves)

= We can’t be sure all the signal is due to transmission and not
reflection

= We don’t have wavelength resolution i.e. we just measure some
average absorption
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Equipment to measure transmission and
reflection well - monochromatic measurement

= Monochromatic light source (LED, laser pointer)
= Detector (typically a ‘photodiode’, though can be a camera)
= Can only measure one wavelength
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Equipment to measure transmission and
reflection well - UV-Vis measurement

= Broadband white light source (lightbulb, Xenon arc lamp...)
= Single wavelength selector (bandpass filter or diffraction grating)
= Detector (typically a ‘photodiode’, though can be a camera)
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Diffraction gratings

= Microscale repeating unit
= Spread colours of light over many angles

2nd order

1st order

Oth order
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Equipment to measure transmission and
reflection well - UV-Vis measurement

= Broadband white light source (lightbulb, Xenon arc lamp...)
= Single wavelength selector (bandpass filter or diffraction grating)
= Detector (typically a ‘photodiode’, though can be a camera)
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Equipment to measure transmission and
reflection well - Spectrometer measurement

= Broadband white light source (lightbulb, Xenon arc lamp...)
= Single wavelength selector (filter or diffraction grating)
= Camera made up of many photodiodes

I A spectrometer
camera (many

photodiodes)



=P*L Experimental layout to measure transmission

= Everything is in one line
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Sample signal

= Transmission = : :
Nothing there signal

Sample

Reference
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Experimental layout to measure reflection

= Keep everything as close to one line as possible
= Need a mirror (or similar) with known reflection spectrum (see later)

Sample signal

= Reflection =
f Reference signal-+Reflection strength of reference

Sample and reflection
reference both have
same position

7
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=L How to do a measurement and the sample

= Make sure that the substrate/glass/liquid your sample is on/in does
not have a strong optical response
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= Absorption = 1 — Transmission — Reflection

Absorbance Spectrum of Chlorophyll
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Background signals

= |n any measurement there is a background signal (when the light
source is turned off)

Sample signal—Background signal

» Transmission = , . .
Nothing there signal—Background signal

= Reflection = . _
Sample signal—Background signal

(Reference signal—Background signal)-+Reflection strength of reference

19
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References and how to calibrate them

= Here | discuss the process for a mirror
= Often companies will publish this data

Reflected signal —Background signal

= Reflection reference strength =
f f g Direct signal—Background signal
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Mirror, want light as
close to perpendicular
as possible

Nothing there (raw
light source counts)
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- Light scattering - direct and diffuse
measurements

= |n reality light doesn’t just travel in straight lines

= Rough samples scatter light in many directions

= We use ‘integrating spheres’ to measure this

= |Integrating spheres randomise the direction of light inside

Sample

2\ Detector notin thh&
N\direct light path

N

w N

N
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Light scattering - direct and diffuse
measurements

= Direct reflection/transmission/absorption is without an integrating
sphere

= Diffuse reflection/transmission/absorption is with an integrating
sphere

= Both definitions can be useful for answering different questions

= |f scattering is strong
Absorption = 1 — direct transmission — direct reflection — scattering
= 1 —dif fuse transmission — dif fuse reflection

22

Alan R. Bowman alan.bowman®@epfl.ch



PF

B Optical absorption

- Optical absorption as a function of angle

= Direct measurements are a function of angle of the incident light
= |[f not stated, it's assumed the incident light is perpendicular to the

sample
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Sections

= The theory of transmission and reflection
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Optical constants

= All materials have optical constants
= Different fields call these different terms

= The real refractive index (n) determines the speed of light in the
material

= The extinction coefficient/imaginary refractive index (k) determines
how strongly the sample absorbs

= Often the total refractive index is written as N=n+ik

= Some groups use relative permittivity, &, which has real and imaginary
parts. For a non-magnetic material N = +/«.

= These constants are available online for many materials, e.qg.
https://refractiveindex.info

25
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Beer-Lambert Law 1

= The absorption coefficient, «, is defined as the fraction of light
intensity absorbed per unit length

4tk .
= q = % where 1 is wavelength

= Consider light travelling in a medium. We can state that
[(x +dx) —I1(x) = —al(x)dx
where I is the intensity of light and x the position in the material.

= This can be solved to give I(x) = I,e™%*, where I, is the intensity at
x=0

26
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Beer-Lambert Law 2

= [(x) = [je™**
= Light is absorbed by an exponential function within a material

= The absorption between x = 0 and x is given by that not present at x,
Absorption = [,(1 — e~™%%)
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Calculating transmission and reflection for a
thick object - 1

= For thick objects we only need to consider the intensity of light

= All materials start and end somewhere - at these surfaces reflect and
transmit light

= The intensity reflection coefficient between two materials is given by

N1—N, |2 :
Ry, = (not derived here)
N;i+N,

= Within a material there are many reflections, these must all be
accounted for

28
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Calculating transmission and reflection for a
thick object - 2

= Consider the following situation (no scattering)
R R

AIO Aloe_ad

Blje~ %4 BI,

< »
<

d

= We can say:
Aly = (1 = R)Iy + RBlje%¢
Bl, = RAl,e~%¢
T = (1 —R)Alje~%
® = (1 — R)Blyje™ % ¥\
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Calculating transmission and reflection for a

thick object -3

= Consider the following situation (no scattering)

R

AIO Aloe_ad

Blje~ %4 BI,

< »
< »

d

= Can solve to give
(1= R)?e

1 — Rze—z(xd

R

IoR(1 — R)%e~2%4d
) = 1 — Rze—Zad

Absorption=1—-T — ®
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Calculating transmission and reflection for a
thick object -3

= Many materials have lots of layers - this becomes a headache!

= Thankfully there is a good mathematical approach to this, called the
‘Transfer Matrix Method’

= | will not give details here but several excellent (and short) tutorials
exist e.g. https://www.youtube.com/watch?v=XuSxmb9-viY
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Calculating transmission and reflection for a
thinobject - 1

= The picture becomes more complicated for thin objects
= Good evidence for this is thin film interference

= [t depends on your light source and sample, but typically thin film
interference should be considered for samples <100um thick

= Need to model the electric field of light instead of its intensity
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Calculating transmission and reflection for a
thin object - 2

= Thin film interference is due to multiple rays interacting
= Can get unexpected effects in transmission and reflection

= The transfer matrix model can also be applied in this situation, but
with electric fields instead of light intensities

—=m Incident Ray Wave 1
AIR : : == Reflected Ray
2> Refracted Ray

AIR \ Wave 2
Destructive interference

|
SOAP FILM X Refracted then Incident Ray
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Rough materials

= Light often doesn’t travel in straight lines

= Can increase absorption beyond the Beer Lambert law significantly

with rough films

(al

Eli Yablonovitch, "Statistical ray
optics," J. Opt. Soc. Am. 72, 899-
907 (1982)
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Scattering theory

= As well as rough films, small objects scatter light

= Often small objects strongly scatter one particular wavelength
= One of the effects of this is the sky being blue

= Scattering theory is a huge area of research!
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= Practical examples
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Absorption by methane (arb. units)

Identifying chemicals in solution

= Every material has its own optical constants
= We can tell the difference between materials by measuring

absorption

= One application of this is identifying chemicals in the air
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Monitoring chemical reactions quantitatively

= We can monitor the rate of chemical reactions by measuring
absorption

= By measuring absorption at different wavelengths we can monitor
different parts of the reaction
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Calculating material thicknesses

= Can fit absorption measurements to transfer matrix method
calculations, to calculate the thickness of samples (here gold)

= Excellent agreement with thickness measured by other techniques
(‘AFM thickness’ below)
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Measuring absorption to calculate maximum
solar cell efficiency

= We need to know how much light is absorbed in solar cells
= From this data we can calculate the maximum efficiency of a solar cell
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Conclusions

= Optical absorption is a very powerful but simple technique

= |t is possible to carry out simple measurements, or more complicated
wavelength/angle resolved approaches

= Even a thorough absorption measurement only requires readily
available equipment

= There are a very wide range of applications
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