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Résumé

L’approche fréquentielle est présentée par ’entremise des séries de Fourier et de la trans-
formée de Fourier continue et discrete. L’échantillonnage et ces liens avec la représentation
fréquentielle y est égalment présenté. Ce document sert de support a la partie pratique qui se
déroule en laboratoire. La théorie est illustrée par divers exemples en relation avec la partie
pratique. L’objectif est d’attirer I’attention sur les restrictions de la cadence d’échantillonnage
et du nombre limité des échantillons a disposition. Une attention particuliere est portée sur
la détection de la fréquence d’ondes sinusoidales échantillonnées en utilisant la transformée de
Fourier discreéte. Les signaux déterministes sont traités dans la premiere partie et les signaux
aléatoires dans la seconde partie. On présente la fonction de corrélation, le théoreme de Wiener-
Khinchin qui relie la corrélation a la densité spectrale. Quelques techniques d’estimation non
paramétriques sont présentées et illustrées par des exemples. L’estimation du contenu fréquentiel
est dans le cas d’un signal aléatoire soumis & une incertitude qui se caractérise par un biais et une
variance. Les techniques ont toutes un compromis entre le biais et la variance et ce phénomeéne

est illustré par les expériences numériques.
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Premiere partie

Signaux déterministes

1 Série de Fourier et transformée de Fourier

Les fréquences fondamentales jouent un role prépondérant dans les systemes dynamiques et on ren-
contre dans beaucoup de systemes des phénomenes de résonance caractéristique. Ces phénomenes
sont mieux compris lorsqu’ils sont analysés dans le domaine fréquentiel. L’analyse de Fourier permet
d’introduire les harmoniques et d’effectuer une analyse de celles-ci. On distingue la décomposition
en série de Fourier lorsqu’on examine les signaux périodiques. La transformée de Fourier est alors
vue comme un cas particulier lorsque la période tend vers 'infini. Ainsi un signal avec des propriétés
convenables, afin de garantir 'existence et la convergence des intégrales de définition, admet une

transformée de Fourier.

1.1 Signaux périodiques

Soit {z(t)} un signal.



Définition 1.1. (SIGNAL PERIODIQUE) Le signal {x(t)} est périodique de période T, si et seulement
St

z(t+kT) =ax(t) vVieR Vk € Z

FIGURE 1 — Un signal périodique comporte une partie qui se répete a intervalles réguliers. Le plus

petit intervalle pour lequel ceci se produit est la période T

Cette définition signifie que le signal comporte une répétition périodique (indice k € Z) et qu’il
est suffisant de le connaitre sur une durée T'. Il est important de souligner que la connaissance
du signal peut commencer a n’importe quel instant ¢, ainsi I'intervalle de temps nécessaire pour la

détermination du signal complet est [t, ¢ + T'[, quel que soit ¢t € R.

1.2 Série de Fourier

La plupart des signaux périodiques admettent une décomposition en harmoniques successives ap-
pelées série de Fourier. Des précautions sont nécessaires en ce qui concerne le type de continuité
afin que la série de Fourier reflete fidelement le signal de départ. Lorsque le signal est discontinu,
il est également possible que la série de Fourier converge (selon le type de convergence tel que la
convergence presque partout, celle en moyenne, absolue, etc.), mais ce n’est pas toujours le cas.

D’autre phénomenes surprenants peuvent avoir lieu. On sait qu’un sinus ou cosinus est dérivable une
infinité de fois. Ils sont parfaitement réguliers. Ainsi, lorsqu’on somme un nombre fini de sinus, le

signal résultant conserve cette propriété d’étre différentiable une infinité de fois. Par contre, lorsqu’une



somme infinie de sinus est effectuée, il est possible de perdre la propriété de dérivabilité (cf. les signaux
discontinus ayant une série de Fourier convergeante). Et il peut méme y avoir des cas encore plus
séveres ou toute la régularité est perdue. Des sommes infinies de sinus donnent une fonction dérivable

en aucun point.

Définition 1.2. (SERIE DE FOURIER) Soit {x(t)} un signal périodique de période T. Sa série de

Fourier est définie par les formules

“+o00
2k
= E cpel !

k=—00

avec ¢ € C des coefficients complexes donnés par

Sl

1 2m
cr = T/t x(t)e‘y%tdt

__ T

=3

1.2.1 Fonctions discontinues

Un grand nombre d’exemples de fonctions périodiques discontinues sont représentables par des séries

de Fourier convergeantes. Nous donnons deux exemples, une onde carrée et une onde triangulaire.

Le train d’ondes carré. La série de Fourier correspondante est

FIGURE 2 — A gauche, le signal, et & droite, la somme $°° 0 2[1 — (—1)"] sin(2r nt), c.-a-d. celle

n=0 7n

obtenue a partir des 50 premiers coefficients de la série de Fourier. On illustre le phénomene de Gibbs

qui fait apparaitre des oscillations aux points de discontinuité de la fonction d’origine.



Le train d’ondes triangulaire. La série de Fourier associée est

o0

Bt) =) 2 sin(nt)

n

1.2.2 Fonction dérivable nulle-part

Weierstrass a mis en évidence des classes de fonctions ayant des séries de Fourier parfaitement bien

définies mais dérivables en aucun point. Un exemple est la fonction

z(t) = Zb” cos(a"mt)

Avec les parametres b = % et a = 3 la fonction devient ”fractale” bien que chaque fonction de base

apparaissant dans chacun des termes de la série soit un cosinus (le cosinus est parfaitement régulier).

1.3 Transformée de Fourier
1.3.1 Période qui tend vers l’infini

Lorsque la période T" d’un signal périodique {z(t)} augmente, les contributions z,, a la série de
Fourier interviennent a des fréquences de plus en plus rapprochées les unes des autres. Un signal non
périodique peut étre interprété comme un signal périodique de période infinie. Dans un tel cas, les
contributions fréquentielles ne sont plus séparées les unes des autres et la série (de Fourier) fait place

a une intégrale (car les contributions fréquentielles sont espacées infiniment prét les unes des autres).

Définition 1.3. (TRANSFORMEE DE FOURIER) La transformée de Fourier {X(f)} du signal {z(t)}
est définie par

X(f) :/ Oox(t)e_j%ftdt

oo

1.3.2 Transformée de Fourier des signaux périodiques

La transformée de Fourier d’un signal périodique de p ’eriode T est non-nulle uniquement aux

fréquences n/T conformément au résultat suivant.

Théoréme 1.1. (TF DE SIGNAUX PERIODIQUES ET SERIE DE FOURIER) Si {x(t)} est périodique

de période T alors la transformée de Fourier {X(f)} est non nulle uniquement aux fréquences % et



s’exprime a partir des coefficients x,, de sa série de Fourier (notés ¢, auparavant) par la formule

XU%zifLﬁ(f—n%)

n=—oo

Démonstration:

En partant de la définition de la transformée de Fourier et en y introduisant la série de Fourier du

signal périodique, nous obtenons successivement

+oo +00 o]
X(f) = / x(t) e_j%ftdt:/ (Z xnej%;t) eI It gt

o0 —00

—+00 “+00 -
+o0 .

- S
2

ou nous avons utilisés
1« (f)
+oo )
f) = / e 12t gt

CQFD.

1.4 Peigne de Dirac

Définition 1.4. Un peigne de Diract est une série d’impulsions de Dirac équiséparées.

Sp(t) = 53 5(t — kT)

k=—o0



1.2

0.8}

0.6

02}

FiGURE 3 — Un peigne de Dirac est une succession d’impulsions de Dirac équiséparées

1.5 Transformée de Fourier d’un peigne de Dirac

La transformée d’un peigne de Dirac est a nouveau un peigne de Dirac mais dont I’espacement est
inversément proportionnel a l'espacement du peigne de Dirac initial. Pour obtenir I'expression de
cette transformée on utilise le théoreme du décalage. Le résultat de cette section est utile lorsqu’il est
associé a la convolution. On explique ainsi la périodicité de la représentation fréquentielle d’un signal
échantillonné. Ceci fournit un autre regard sur le résultat déja obtenu a ’aide d’un calcul direct de

la transformée de Fourier associée a la série de Fourier d'un signal périodique.

1.5.1 Transformée de Fourier d’un signal décalé dans le temps

Soit {g(t)} un signal et {G(f)} sa transformée de Fourier. Déterminons la relation {G(f)} et la

transformée de Fourier de {g(t — a)}.
Théoréme 1.2. (DU DECALAGE)
g(t —a) & e oG(f)

Démonstration :

On applique la définition de la transformée de Fourier ainsi que le changement de variable { =t — «

+00 +o00 B
/ g(t — ) e ¥t gt = / g(t) e ¥ ) g —

o0 —00

+00 o 3 ) +oo .
/ g({) e—j27rft e—]27rfa dt = e—]27ra / g(t)6—27rftdt — 6—]27rfa G(f) (1)

o0 —00

9



CQFD.
En ce qui concerne le peigne de Dirac, il y a deux facons de déterminer sa transformée de Fourier, soit
en invoquant le thm. du décalage, soit en considérant que c’est un signal périodique et en évaluant

sa série de Fourier.

1.5.2 TF du peigne de Dirac en se basant sur le thm. du décalage

Théoréme 1.3. (TF DU PEIGNE DE DIRAC (1))

+o0o +oo
> S(t—kT) e Y e (2)
k=—00 k=—o00
Démonstration : Ceci résulte de
o(t) <> 1

et de l'application de (1).
CQFD.
1.5.3 TF du peigne de Dirac en se basant sur la série de Fourier

Théoréme 1.4. (TF DU PEIGNE DE DIRAC)

E:d@—kTM+% E:é(f—n%) (3)

k=—00 n=-—oo

Démonstration : Les coefficients de la série de Fourier du signal périodique de période T" que représente

le peigne de Dirac {dr(t)} sont donnés par

T
1 2 - 27
= — —J7t
Ck T/”g or(t)e dt
%
= / 5(t) e Tt dt
.

de telle sorte que la série de Fourier devienne

LD R SR (e
T T T

k=—00 n=—00
en utilisant a nouveau le théoreme du décalage.

CQFD.

10



1.6 Convolution et transformée de Fourier

Définition 1.5. (CONVOLUTION)

+o00
f*gz/ f(r) glt — 1) dr

=—00

Ce produit admet un élément neutre.

Théoréme 1.5. (ELEMENT NEUTRE POUR LA CONVOLUTION) L’mpulsion de Dirac est I’élément

neutre pour la convolution
g(t) = o(t) =g(t)  Vg(t)

Démonstration:(g * 6)(t) = [, g(1)d(t — 7)dr = g(t) CQFD.

Ce produit est commutatif et associatif

Théoréme 1.6. (COMMUTATIVITE ET ASSOCIATIVITE DE LA CONVOLUTION)
1. fxg=gxf
2. [ x(gxh)=(fxg)xh
dont la démonstration est un exercice de changement de variables. On peut également montrer qu’il

n’y a pas de diviseur de zero (Th. Titchmarsh) et donc les signaux constituent les éléments d’un

anneau integre dont le produit est la convolution et ’addition est la somme des signaux.

Théoréme 1.7. (PRODUIT DE CONVOLUTION ET PRODUIT SIMPLE DES TRANSFORMEES) Il existe
une correspondance entre le produit de convolution dans le domaine temporel et le produit stmple des

transformations de Fourier dans le domaine fréquentiel.

fxg = F(f)-G(f)
f@&)-g(t) « FxG

2 Fenétrage et échantillonnage

En pratique, nous aurons affaire a un nombre limités d’échantillons du signal. Une fonction du
temps est convertie en suite de nombre par le systeme d’acquisition (échantillonnage) et stocké dans
I'ordinateur en tant qu'un ensemble fini de valeurs. Nous aurons affaire ainsi a la restriction du signal
d’origine par une fenétre. Le signal est non seulement discrétisé dans le temps mais également limité

dans le temps.

11



2.1 Effet de la limitation dans le temps

La limitation dans le temps d’un signal a une conséquence importante sur sa transformée de Fourier.

Soit f(t) le signal illimité dans le temps et soit g(¢) le signal limité entre —% et %

0 |t] >

Nl

g(t) =
f@) 1t <

Sl

/ g

| A Avﬂv%%ﬂ«ﬁv%w—w

FIGURE 4 — Le signal {f(¢)} (a gauche) et sa restriction sur un intervalle {g(¢)} (a droite).

Soit la fenétre rectangulaire

12
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FIGURE 5 — La fonction r(t) est une fonction symétrique par rapport a l'origine égale & un sur un

intervalle de durée T' et nulle partout ailleurs.

Calculons la transformée de Fourier de la fenétre rectangulaire

R = [ ) gt = e

s _z
2
T 1 -
= / e It gt = — — ISt
T j2nf T
. (e — ernntt) S ST) _ o sine(£T)
j2rf mf

13



FIGURE 6 — La fonction sinus cardinal est la transformée de Fourier d'une signal rectangulaire. Elle
sin(7 f)

est définie comme sinc(f) = = 7.

2.2 Fonction gaussienne

La fonction Gaussienne préserve sa forme par transformée de Fourier mais ”sa largeur” est en cor-

respondance inverse apres transformée.

Théoréme 2.1. (TRANSFORMEE DE FOURIER D’UNE GAUSSIENNE)
\/_ 7252
42 e 4a
e at oY -

Vva

(2nt)?

Comme illustration, considérons le signal z(t) = e~ sin(2710t) qui est représenté a la figure 7.

14
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FIGURE 7 — Le signal e~ (2™’ sin(2710¢t) est un sinus de fréquence 10 modulé par une gaussienne.

Le signal x(t) étant le produit d’un sinus par une fonction gaussienne, la transformée de Fourier X ( f)
sera la convolution de la transformée du sinus (deux impulsions de Dirac en —10 et 10), autrement

dit

x(t) = Sin(271'10t).€—(27rt)2
g
1 q L
x= <_‘7§5(f_10)+355(f+10)> TN
je~ TP sinh(5 f)
2/

15
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FIGURE 8 - Le module de la transformée de Fourier X (f) du signal sin(2710t)e~3™”. On constate
les deux lobes a la fréquence 10 et —10 correspondants aux Diracs de la transformée du sinus. Les
Diracs ont été "étalés” a cause de la multiplication par la Gaussienne. La gaussienne a fenétré le
sinus et localisé celui-ci dans le temps. La conséquence est une perte le localisation dans le domaine

des fréquences.

1.0

-0.4 -0.2 i 0.2 0.4

FIGURE 9 — Le signal Sin(27r10t)e_(2’”5)2 est restreint par multiplication par une fenétre rectangulaire

To.8/2/x(t)-
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FIGURE 10 — Le module de la transformée du signal sin(2710t)e”" apres restriction par la fenétre
rectangulaire 7 g/2 /ﬂ(t) correspond a la convolution des deux lobes gaussiens par un sinus cardinal. Le
sinus cardial entraine de légeres oscillations et un ”étalement” supérieur di a la perte de localisation

fréquentielle.

On peut comparer graphiquement le résultat au fenétrage direct du sinus par la fenétre rectangulaire.

x(t) = sin(2w10t) - ro.8/2/x(1)

) 0
X(f) = {—j%é(f—l@)ntj%é(fntm)} \ g;fsmc (gf)
0.8

= —j Esinc (g(f — 10)) —I—jg sinc (g(f—i— 10))

17
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FIGURE 11 — Le signal sin(2710¢) est multiplié directement par la fenétre rectangulaire rs/2/(t).

|
0.14 -
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0.08
0.06 7
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0.02 7

V. V. VN AWAL Y VL fy

=20 -10 0 10 20

FIGURE 12 - La transformée de Fourier 7g.g/2/x() - sin(2w10t) est la convolution entre les Diracs du
sinus et les sinus cardinaux de la transformée du signal rectangulaire. Les sinus cardinaux sont donc
additionnés aux emplacements des Diracs, c.-a-d. en —10 et 10. Le graphique représente le module
de la transformée de Fourier. Les lobes sont plus prononcés que dans le cas du prétraitement par la

gaussienne.
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2.3 Echantillonneur parfait

Un échantillonneur parfait, a période d’échantillonnage h, produit a partir d'un signal continu {u(t)}
un signal {y(t)} de la variable continue ¢ mais dont I’énergie est concentrée dans des points discrets
de I'axe temporel. En d’autres termes, des quantums d’énergie sont contenus a des instants discrets.
Chaque quantum d’énergie est proportionnel a la valeur du signal {u(¢)} a I'instant d’échantillonnage

t = k h. Le quantum d’énergie est donné par une impulsion de Dirac §(t — k h).

Définition 2.1. (ECHANTILLONNEUR PARFAIT) Un échantillonneur prend un signal d’entrée {u(t)}
et produit un signal de sortie {y(t)} donné par

—+00

y(t) = Y u(kh)s(t — kh)

k=—o00

FIGURE 13 — Un échantillonneur parfait constitue un signal ayant une successions d’impulsions
de Dirac dont le poids correspond a la valeur du signal échantillonné a I'instant d’échantillonnage

correspondant.

Remarque : il ne faut pas confondre la suite des échantillons donné par ’ensemble
{u(kh)|k € Z} (5)

du signal {y(t)} donné ci-dessus et qui comporte des impulsions de Dirac.
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FIGURE 14 — Les échantillons ne forment qu’un ensemble discrets de valeurs et, contrairement & une

série de Dirac équiséparée et pondérée par les échantillons, ne véhiculent pas d’énergie.

REMARQUE : Le signal {y(t)} appartient aux signaux & énergie non nul bien que y(t) soit localement

confiné sur un point de I’axe temporel. L'impulsion de Dirac 6(¢) a une énergie unité car

/t st =1

=—00

Par contre, la suite des échantillons (5) ne posséde par d’énergie et n’en véhicule pas.

2.4 Signal a bande limitée

Définition 2.2. (SIGNAL A BANDE LIMITEE) Une bande de fréquence [By, Bs] ou un ensemble de

fréquences f telles que

B, < f< By

est donnée. Un signal {x(t)} est dit étre a bande limitée dans [By; Bs| si sa transformée de Fourier

est nulle lorsque f & [By; Bs].

2.5 Théoreme d’échantillonnage

Théoréme 2.2. (DE L'ECHANTILLONNAGE) Si un signal {x(t)} est d bande limitée [—B; B], il peut
étre reconstruit sans erreur a partir de ses échantillons x(t,) aux instants t,, = 5.

Démonstration :

20



Comme X(f) = 0, Vf, |f| > B, nous pouvons développer cette fonction en série de Fourier (en

fréquence) exactement comme pour un signal limité dans le temps :

—+o00
X(f)= Y ane il

ou z, est donné par
1 [*B Py
T, = — X(f)e2735f 6
b= 55 | X af (©
(Série de Fourier en fréquence). Comme X (f) =0, V|f| > B,
o) = [ X =[xy
—00 —-B
par la définition de la transformée de Fourier, et donc, comme ¢, = 3%, nous avons
+B ) N
w(ty) = X(fer I zm df
-B
et en comparant avec (6), on a
= splta)
Tn = 2B$ n

et le théoreme d’échantillonnage est ainsi démontré. En effet, connaissant z(¢,,) nous avons

1
Tn = =5l
Tn = 5p(ta)

et donc X (f) a partir de (6). Apres une transformée de Fourier, on reconstruit sans erreur x(t).

CQFD.

2.6 Formule de reconstruction

Soit la transformée inverse
B
ot) = [ Xy
-B
En utilisant (6) dans la formule précédante, on arrive a
. L[ (=)
_ 2 f(t— 5%
x@_%§%<ﬂ%5§/;63 w)df

L’intégrale est la TF de rop(f) (signal rectangulaire de largeur 2B en fréquence) dont la transformée

de Fourier inverse (TFI) est sinc(2B) = % ce qui donne
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Définition 2.3. (FORMULE DE RECONSTRUCTION)

—+00

2(t) = ) a(ty)sinc2B(t - t,))

n=—oc
EXPLICATIONS : La connaissance des échantillons z(t, ) permet de reconstruire sans erreur le signal
initial {z(¢)} a condition que ce dernier soit a bande limitée. La formule de reconstruction donne
exactement la maniere de le reconstruire. Un désavantage pratique cependant est la présence d'un
nombre infini d’échantillons dans le passé et le futur avec une infinité de contributions a prendre en

compte conformément a la formule de reconstruction.

2.7 Transformée en 7

Définition 2.4. (TRANSFORMEE BILATERALE EN Z) Soit une suite d’échantillons {h(k)|k € Z}. La

fonction

H(z)= Y h(k)z*

k=—o00

est appelée la transformée bilatérale en z de la suite {h(k)|k € Z}.

Il en existe pour les signaux discrets qui sont nuls pour k£ < 0. Elle est appelée la transformée en z

unilatérale. Elle est utilisée en réglage automatique.

Définition 2.5. (LA TRANSFORMEE UNILATERALE EN Z) Soit une suite d’échantillons {h(k)|k €

N}. La fonction

o0

H(z) =) h(k)z*

k=0

est appelée la transformée unilatérale en z de la suite {h(k)|k € Z}.

On remarque une similitude avec la transformée de Laplace unilatérale d’un signal.

2.8 Transformée de Fourier et transformée de Laplace

La transformée de Fourier est obtenue en évaluant la transformée de Laplace bilatérale sur ’axe
imaginaire.

Soit G(s) la transformée de Laplace de g(t) et G(f) la transformée de Laplace.
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Théoréme 2.3. Si le domaine de convergence de l'intégrale de Laplace (valeur de s pour laquelle
Uintégrale de la transformée de Laplace converge) contient l'aze imaginaire s = 2mwj f, alors la trans-

formée de Fourier est en relation de celle de Laplace par la relation

G(f) = G(2mjf)
La démonstration est technique a cause des notions de convergence, mais le résultat intuitivement

évident (car il s’agit de la méme intégrale).

2.9 Transformée de Fourier discrete

Soit le quantum de fréquence (résolution fréquentielle)

1
V==

ou h est la période d’échantillonnage.

Définition 2.6. La transformée de Fourier discréte d’une suite d’échantillons {x(k)|k € Z} est

donnée par la série

o0

X(n) = Z x(k) e I NERh

k=—00
00

= Z w(k) e IR "k (7)

k=—o00

Pour une suite d’échantillons, on a la définition suivante.

Définition 2.7. (TFD, TRANSFORMEE DE FOURIER DISCRETE) La tranformée de Fourier discréte

de l’ensemble fini d’échantillons {x(k)|k = 0,1,... N—1} est définie par la collection finie d’échantillons
N—

- 27
X(n)=> a(k)e?~"F  n=0,...N-1

k=0

[y

Définition 2.8. (TFDI, TRANSFORMEE DE FOURIER DISCRETE INVERSE)

N2y

1 -

x(k) = N Z z(n)eti? R
N

n=—=45

Remarque : Comme le spectre est périodique, suite a la discrétisation, on retrouve a intervalle régulier
la partie négative du spectre. Il est donc également possible de changer les indices de la somme pour

tirer avantage de cette propriété.

N—

—_

1
N

n=

a:(n)eJ“j%an

z(k) =
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1
0 100 200 300 400 500 600

FI1GURE 15 — Signal dans le domaine temporel.

3 Expériences numériques avec des séries de Fourier

>> h = 0.01;
>> N = 512;
>> freq = 4;

>> signal = sin((1:N)*h*2xpixfreq) + 0.2% cos(2x(1:N)*h*2xpixfreq)+...
2xsin (3% (1:N) *h*2xpixfreq) ;

>> ffsignal = fft(signal);

>> plot(abs(ffsignal))

>> figure(2)

>> plot(signal)
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0 100 200 300 400 500 600

FIGURE 16 — Module de la transformée de Fourier discrete du signal

>> plot(abs(fft(signal.*blackman(N)’)))

160 |- 4
140 g
120 g
100 .
80 .
60 - .

40 §

2:- hh . . . . Lh. |

0 100 200 300 400 500 600

FIGURE 17 — Module de la transformée de Fourier discrete du signal apres prémultiplication tempo-

relle par la fenétre de Blackman.

>> plot(abs(fft(signal.*hann(N)’)))

>> plot(abs(fft(signal.*hamming(N)’)))
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FIGURE 18 — Module de la transformée de Fourier discrete du signal apres prémultiplication tempo-

relle par la fenétre de Hann.

250 T T T T T

200 - B

150 - q

A1) T 1|

0 100 200 300 400 500 600

FIGURE 19 — Module de la transformée de Fourier discrete du signal apres prémultiplication tempo-

relle par la fenétre de Hamming.
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4 Expériences numériques avec un sinus échantillonné

Soit la commande MATLAB/SysQuake

sig = sin(0.02%(1:1024));

plot(sig)

qui consiste a échantillonner un sinus sur 1024 échantillons. La fréquence de ce sinus dépend de la

période d’échantillonnage.

l_l T T T T T T T N T T T T T v T T T T T T_ ]

05}

05}

0 200 400 600 800 1000

Nous supposerons que la fréquence d’échantillonnage est

h=001 [s]

Soit t la durée complete des échantillons.

£=1024-0.01 = 1024 3]

La fréquence du sinus contenu dans le signal échantillonné que nous venons de construire est ainsi

déterminé par la relation

sin(27 f ¢) = sin(0.02 - 1024)

ce qui donne

~0.02-1024  0.02-1024

_ = = 0. H
ot or 1024 08183 [

f
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4.1 Résolution spectrale (quantum fréquentiel)
4.1.1 Fréquence maximale détectable

La fréquence d’échantillonnage est

1 1
fezzzmzloo [HZ]

et elle induit que (par le théoreme de I’échantillonnage cf. théorie) la fréquence maximale détectable

(si on part de 0 [Hz]) est de

4.1.2 Module du spectre discret

En dessinant le module du spectre discret (module de la transformée de Fourier discrete du signal

échantillonné généré) avec la commande
plot(abs(fft(sig)))

on constate que celui-ci comporte une partie symétrique a partir du milieu du graphique. Ceci est
du au repliement fréquentiel et la conséquence est la limitation a la moitié de toutes les fréquences
disponibles (i.e. en absence du repliement on aurait 100 [Hz]) a la moitié de la fréquence théorique

maximale qui est la fréquence d’échantillonnage.

a0
300 — —
200 — —
100 — —

T ]

0 200 400 600 800 1000

Ceci conduit ainsi a la résolution spectrale ou "quantum de fréquence” qui est

1
AVZWZAJC

fe 100
N 1024 0.09766 [Hz]
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4.2 Maximum du module des coefficients de la TFD

Déterminons le maximum du module des coefficients de la tansformée de Fourier discrete (TFD). En

utilisant la commande fft calcule la série (la somme)

=2

F(nV) = F(n) — f(k? h)e_27rkan

=
Il

conformément a la théorie. En d’autres termes, la correspondance entre ffta(n-1) et sum(sig. *reg)

est obtenue et donc 'annulation de la différence de ces quantités suite aux instructions suivantes :

ffta = fft(sig);
reg = exp(-2*%pixi*(0:N-1)/N*n);

ffta(n-1) - sum(sig.*reg)

quel que soit n

Déterminons n qui donne le module maximum

Il faut détecter la maximum du module de la TFD. Ceci est facile avec la commande max :
[ma,id] = max(abs(fft(sig)))

et n sera donné par id - 1.

Pour N=1024 on trouve id = 4 et donc n=3.

Fréquence estimée

La fréquence estimée f est donnée par

jonl_ 3 1
N h 1024 0.01

Vérifions que cette estimée est bien dans I'intervalle déterminée par I'incertitude fréquentielle (moyen-

=0.293  [H]

nant la résolution spectrale déterminée ci-dessus) :

F € [0.203— Af; 0.293 + Af]
F € [0.293 — 0.098; 0.293 + 0.098]

f € [0.195; 0.391]
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REMARQUE : Avec cette résolution spectrale la précision n’est pas tres grande. On constate que
la vraie fréquence f = 0.318 st bien dans l'intervalle obtenu méme si I'estimée f = 0.293 n’est pas

d’une grande précision.

4.3 Battements et repliement spectral

Un phénomene bien connu est celui du battement. C’est le constat de ’apparition d’une modulation
en basse fréquence lorsque deux signaux sinusoidaux ont des fréquences tres proches I'une de 'autre.
L’expérience numérique suivante consiste a comparer le modulation réelle basse fréquence de deux

sinus par rapport a deux sinus de fréquences élevée mais proches I'une de l'autre.

time = linspace(0,20,3000);

signal = sin(2%pi*40*time)+0.2%sin(2*pi*42*xtime) ;
et
signal2 = sin(2*pi*40*time)+0.2*sin(2*pi*2*time) ;

On constate que les deux signaux sont difficillement reconnaissables en examinant le comportement

temporel de ceux-ci (cf. figure 20).

15

! ! ! ! ! ! ! ! ! 1. ! ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

FIGURE 20 — A gauche, I'addition d'une basse fréquence et d'une hauter et a droite le phénomene
de battement correspondant a l'addition de deux signaux de fréquence proches. Les deux signaux

paraissent identiques dans le domaine temporel.

Par contre, en dessinant les spectres de ces signaux a 'aide des commandes
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plot(abs(fft(signal.*blackman(length(signal))’)))
et
plot(abs(fft(signal2.*blackman(length(signal2))’)))

Iemplacement fréquentiel du signal sinusoidal faible est facilement détectable (cf. figure 21). On

remarque également qu’en absence de fenétrage,
plot(abs(fft(signal))’)

il y a plus ”d’étalement” des fréquences autour des fréquences caractéristiques (moins bonne résolution
spectrale).

1400 T T r - - 1400

1200 - = 1200 -
1000 — 1000 (-
800 - — 800 [
600 |- R 600 |
400 . 400

200 ’- 200 L
0 L ! L L L L

s L s L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

700 T T T T T 700

600 ki 600 [
500 ki 500
400 - ki 400
300 - Bl 300 |
200 Bl 200 |

100 H |— 100 |-

0 5(;0 1 0‘00 1 5‘00 2000 2500 3000 0 560 1 0‘00 15‘00 20‘00 25‘00 3000
FIGURE 21 — L’analyse fréquentielle permet de rapidement faire la disctinction entre un sinus modulé

en basse fréquence (& gauche) et le phénomene de battement (a droite). Les figures du haut sont

obtenues en absence de fenétrage.
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5 Un paradoxe?... non, c’est I’étalement spectral

Le lecteur attentif constatera une sorte de contradiction avec la théorie du fenétrage. Cette théorie
indique que le pic fréquentiel associé avec la fenétre est le moins large lorsque la fenétre est rectangu-
laire. A titre illustratif, on a représenté le logarithme du module de trois fenétre, celle rectangulaire

(le pic le plus étroit, mais pics secondaire mal amorti), celle de Hamming et celle de Blackman a la

figure 22.

log [W|

4 \

!

0 -
- [\ A

ol

4l
0 20 40 60 80 100

FIGURE 22 —log |WW(n)|, autrement dit le logarithme du module de la transformé de Fourier discrete
de trois fenétres {w(n)}. Le pic principal de la fenétre rectangulaire est le plus étroit parmis toutes
les fenétres possibles. La fenétre de Hamming et celle de Blackmann donnent un pic principal plus

large, mais les pics secondaires sont mieux amortis.

Ainsi, on aurait du obtenir un pic plus fin en absence du fenétrage de Blackman. En d’autres termes,
les pics obtenus a la figure 16 devraient étre plus fins que ceux de la figure 17. Or il n’en est rien.
D’ou provient ce paradoxe ?

La réponse réside dans la compréhension de ce que calcule réellement la transformée de Fourier
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discrete. Ce n’est pas le signal échantillonné et limité a seulement N échantillons qui est le signal
sur lequel s’opere l'interprétation fréquentielle obtenue par la transformée de Fourier discrete, mais
le signal périodisé qui comporte une infinité d’échantillons.

Or le signal initial que I'on a généré ne correspond pas en durée a un multiple de sa période fondamen-
tale, de telle sorte que son périodisé (signal périodique obtenu en répliquant le signal a l'identique
par concacténation de celui-ci) comporte une transition violente au point de périodisation. Cette
transition ajoute des fréquences élevées dans la série de Fourier du signal continu périodisé associé
au signal périodisé discret. Toutes ces fréquences sont bien au dela de la fréquence d’échantillonnage
et se replient donc en basse fréquence contribuant a élargir les pics associés aux trois harmoniques
fondamentales.

On comprend alors le paradoxe et la raison pour laquelle le fenétrage améliore ’estimation en
rétrécissant la largeur des pics associés aux trois harmoniques. Le fenétrage diminiue I'amplitude
des échantillons aux deux bords de la suite finie de ceux-ci. Le signal discret périodisé ne comporte
plus de transition violente. En conséquence, les hautes fréquences issues de ces transitions aux points
de périodisation contaminent peu, par repli fréquentiel, les trois harmoniques. Les pics sont moins
larges qu’en absence de fenétrage (ou fenétrage rectangulaire implicite).

[llustrons ceci avec une expérience numérique similaire a la précédante mais en prenant soin de

garantir un signal parfaitement périodique lors de la périodisation du signal initial.

T = 20;
N = 512;
h = T/N;
nn = (0:N-1);

sig = sin(2*pi*nn) + 0.2%sin(2*pi*nn) + 3*sin(2*pi*nn);

figure(1)
plot(abs(fft(sig)));

figure(2)
plot(abs(fft(sig.*blackman(N)’)));

Dans le cas sans fenétrage, on obtient la représentation fréquentielle de la figure 23
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FIGURE 23 — Avec un signal dont le périodisé est continu, les pics sont les plus étroits en absence

de fenétrage (fenétrage rectangulaire de larageur égale au nombre d’échantillons).
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FIGURE 24 — Fenétrage de hamming du signal associé a la figure 23.
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6 Interpolation et suréchantillonnage

En introduisant des zéros aux bons endroits ("zero padding”), on peut augmenter le nombres
d’échantillons artificiellement (au sens de ne pas introduire plus d’information que le nombre d’échantillons
initial). C’est parfois nécessaire pour ajuster la taille des blocks ou pour ”deviner” la valeur entre les
échantillons.

On présente deux techniques. La premiere consiste a agrandir le domaine de Fourier et d’introduire
des zeros en haute fréquence. Ceci ne change pas la décomposition en composante fréquentielles
initiales mais permet d’augmenter la période déchantillonnage artificiellement. La conséquence est
I'interpolation entre deux échantillons.

La seconde consiste a augmenter le nombres de "périodes” du signal initial en copiant plusieurs fois
I’ensemble des échantillons. On double ainsi le nombre de points. La conséquence est la présence de
zéros entre deux échantillons de la transformée de Fourier.

Le contenu fréquentiel est dans les deux cas rigoureusement identique. La présence de zéros soit a la

fin en un block ou entre les coefficients de la décomposition de Fourier distinguent les deux cas.

6.1 ”Zero padding” a la fin de la TFD

L’application est I'interpolation entre les échantillons intiaux. Bien que ’on modifie le signal initial, il
ne faut pas se baser sur les valeurs entre les échantillons pour augmenter la résolution temporelle ou
fréquetielle. Elle demeure la méme puisqu’elle dépend que du nombre d’échantillons et de la période
d’échantillonnage.

Prenons un signal composé de trois harmoniques

x(t) = sin(2m t) + 0.25 cos (27 3t) 4+ 0.12 cos(27 4t)

En effectuant un échantillonnage de N = 32 échantillons sur une durée de 1 [s]|, on obtient le signal

discret représenté a la figure 25.
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FIGURE 25 — Un signal composé de trois harmoniques est échantillonnés de telle sorte a avoir N = 32

échantillons.

Si on prend un échantillonnage plus fin, Ny, = 64, le résultat est donné a la figure 26.

Tk | L A A R B L L B R R T T T T T T T ]
1 (;% i

I fTT F ?T

-05

FIGURE 26 — Un signal composé de trois harmoniques est échantillonnés de telle sorte a avoir N = 64

échantillons.

Pour interpoler a partir du signal échantillonné avec 32 échantillons pour doubler le nombre d’échantillons
et arriver a 64, on introduit des zéros dans les hautes fréquences de la transformée de Fourier discrete

et on double les coefficients associé aux basse fréquence.
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La raison du doublement provient du facteur % dans la transformée de Fourier inverse. Dans le
premier cas c’est 1/32 et aprés doublement c’est 1/64. La composante continue est donnée par le

coefficient X (0) dans les deux cas. Ainsi pour ne pas perdre d’amplitude, il faut ajuster les coefficients

64

par un facteur 2 = 2.

Lorsque le nombre d’échantillons est impairs, il n’y a pas de de complication, car disons la composante
complexe X (n) des phaseurs des fréquences positives et négatives sont exactement complexe conjugés
des composantes des phaseurs de fréquence négative. Seule la composante constante qui est en position
n = 0 et est réelle.

Lorsque le nombre d’échantillons est paire, il y a deux composantes purement réelle, celle X (0)

(donnant la composante continue, constante), et X (% + 1). Il faut poser

(3e)=x(z+)

Ensuite les coefficients des phaseurs de fréquence positive s’associe un a un avec les coefficients des
phaseurs de fréquence négative respective, comme dans le cas d’'un nombre déchantillons impair. Cela

conduit a la procédure

% zero padding a la fin de la transformee de Fourier.

N = 32;
xk = sin(2*pi*2*(1:N)/N) + 0.25*cos(2*pi*3*(1:N)/N) + 0.12%cos(2xpix4*(1:N)/N);

plot(xk,Stems=true);

N2 = 64;
xk2 = sin(2xpix2*(1:N2)/N2) + 0.25xcos(2%pi*3*(1:N2)/N2) + 0.12*cos(2*pi*4*(1:N2)/N2);
figure

plot(xk2,Stems=true);
fxk = fft(xk);

% construisons 1’interpolation dans le cas N pair
% le phaseur du milieu, phaseur reel doit rester au milieu

fxk64 = zeros(1,N2);
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fxk64(1:N/2) = fxk(1:N/2); Y%debut

fxk64(N2/2+1) = fxk(N/2+1); Ymilieu

fxk64 (N2-(N/2-2) :end) = fxk(N/2+2:end); %fin

% il faut egalement mettre a 1l’echelle les energies, ici le facteru N2/N

xkinter = real (ifft(N2/N*xfxk64)) ;

figure

plot(xkinter, Stems=true);

Tk | A L L B R e o UL R R R R R R L
1k (-ngb i
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F1GURE 27 — L’interpolation avec 64 échantillons a partir du signal de 32 échantillons.

)

La figure (27), bien que similaire, n’est pas identique a la figure (26). L’interpolation "ne devinne’
pas exactement les vraies valeurs, mais elle ”fait au mieux”.
Reprenons la procédure avec peu d’échantillons juste pour mieux comprendre la technique.

Prenons N = 6, et

xk = 1:6;
fxk = fft(xk)

donne

21.00, -3.0 + 5.1962j, -3.0 + 1.7321j, -3.0, =-3.0 - 1.7321j, -3.0 - 5.1962]
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On remarque bien deux valeurs rélles et 4 valeurs complexes qui sont complexes conjuguees les unes
des autre par paire. Pour avoir une interpolation entre les échantillons afin de doubler et avoir 12

échantillons a I’arrivée, on effectue les commandes suivantes :

fxk2 = zeros(1,12);
fxk2(7) = fxk(4);
fxk2(1:3) = fxk(1:3);
fxk2(11:12) = fxk(5:6);
xkinter = ifft(2*fxk2);

Le signal résultant de l'interpolation est bien réel

1.0 1.2679 1.0 3.2679 3.00 4.0 3.0 4.7321 5.0
6.7321 5.0 4.0

mais il ne correspond pas a ce que I’on pourrait s’attendre 1 a 6 de maniere progressive par pas de 0.5.
Cet artefact est a nouveau la manifestation de I'étalement spectral diit au brusque changement lors
de la périodisation du signal initial. On constate que le nouveau signal ne passe pas nécesairement
par les points initiaux, ni ne devinne la valeur (moyenne des échantillons successifs initials) entre les

échantillons intiaux! Il faut donc utiliser cette technique avec précaution !

6.2 7Zero padding” entre les échantillons de la TFD

Une application est le doublement du nombre d’échantillons sans changer le contenu temporel. On
rend ainsi possible une utilisation d’une transformée ayant des blocks plus grands sans changer la
nature du signal initial.

L’idée est d’introduire un zéro entre chaque coefficient de la transformée de Fourier discrete.

Un exemple avec peu d’échantillons illustre le concept :

xk = 1:6

fxk = fft(xk)

fxk2 = zeros(1,12);

for i=1:6
fxk2(i*2-1)=fxk(i);

end;

xk2 = real (ifft(2*xfxk2));

39



et on obtient la répétition du signal initial.

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

7 Annexe : fichier experiences.m

% creation d un signal de trois frequences harmoniques

N = 512;
h = 0.01;
freq = 4;

signal = sin((1:N)*h*2*pi*freq) + 0.2% cos(2*(1:N)*h*2*pixfreq)+ 2*sin(3*(1:N)*h*2*pi*freq);

% calcul de la Transformee de Fourier Discrete (TFD)
ffsignal = fft(signal);

figure(1)

plot(signal)

title(’signal dans le temps’)

xlabel (’echantillon’);

ylabel (C£(i)’);

% represenation graphique sans fenetrage
figure(2)

plot(abs(ffsignal));

title(’Module de la TFD’);
xlabel(’echantillon’);

ylabel(’abs(F)’);

% fenetrage de Blackman
figure(3)
blackffsignal = fft(signal.*blackman(N)’);
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plot(abs(blackffsignal));
title(’Module de la TFD apres fenetrage de Blackman’);
xlabel(’echantillon’);

ylabel(’abs(F)’);

% examen de la phase

figure(4)

plot (unwrap(angle(fft(signal.*blackman(N)’))));
title(’Phase de la TFD apres fenetrage de Blackman’);
xlabel (’echantillon’);

ylabel (Carg(F)’);

% un peu de filtrage
[num,den]=butter(3,0.5);

signalOut = filter(num,den,signal);
figure(5);

subplot(211);

plot(signal);

subplot (212);

plot(signalQut) ;

% un peu de filtrage
[num,den]=butter(3,0.5);

signalOut = filter(num,den,signal);
figure(5);

subplot(211);

plot(signal);

subplot(212);

plot(signalOut);

%% Fonction de Weierstrass, derivable nulle-part
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NN = 800;
time = (1:NN)*0.5/NN;

series = zeros(1,NN);

b =0.5;
a = 3;
for n=1:6;

series = series + b n*cos(a"nxpixtime);
end;
figure(6);

plot(time,series);

%% train d’onde triangulaire

NN = 800;

time = (1:NN)*20/NN;

series = zeros(1,NN);

for n=1:40;

series = series + 2/n*sin(n*time);
end;

figure(7);

plot(time,series);

%% train d’onde carre

NN = 800;

time = (1:NN)*20/NN;

series = zeros(1,NN);

for n=1:40;

series = series + 2/(pi*n)*(1-(-1)"n)*sin(n*time);
end;

figure(8);

plot(time,series);
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[tout,xout] = ode45(’penduleSimple’, [0,90],[2.8%pi/3,0.1]);
figure(9);

subplot(211);

plot(tout,xout);

fxout = fft(blackman(length(tout)) .*xout(:,1));
subplot(212);

plot(abs(fxout(1:40)));

0:0.01:90;

tout

xout = ode3(’penduleSimple’,tout, [2.9%pi/3;0.1]);
figure(10);

subplot(211);

plot(tout,xout);

fxout = fft(blackman(length(tout)).*xout(:,1));
subplot(212);

plot(abs(fxout(1:40)));

oo oo oo o

% deux sinus un dominant 1’autre faible

time = linspace(0,20,3000);

signal = sin(2%pi*40*time)+0.2%sin(2*pi*42*xtime) ;
figure(11)

plot(time,signal)

% difficile de le percevoir dans le diagramma sans fenetrage
figure(12)

subplot (211)

plot(abs(fft(signal))’)

subplot (212)
plot(abs(fft(signal.*blackman(length(signal))’)));
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%par contre, avec la fenetre de Blackman, cela s’ameliore quelque peu

signal2 = sin(2*pi*40*time)+0.2*sin(2*pi*2*time) ;
figure(13)

plot(time,signal?)

figure(14)

subplot (211)

plot(abs(fft(signal2))’)

subplot (212)
plot(abs(fft(signal2.*blackman(length(signal2))’)))
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FIGURE 28 — Discontinuité et convergence de la série de Fourier associée. Le cas d’'un train d’onde

carré.
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FIGURE 29 — Représentation de Zi:f:o 2% cos(3"mt) pour N = 3,4,5,6,7. Bien qu'il s’agisse d