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Résumé

L’approche fréquentielle est présentée par l’entremise des séries de Fourier et de la trans-

formée de Fourier continue et discrète. L’échantillonnage et ces liens avec la représentation

fréquentielle y est égalment présenté. Ce document sert de support à la partie pratique qui se

déroule en laboratoire. La théorie est illustrée par divers exemples en relation avec la partie

pratique. L’objectif est d’attirer l’attention sur les restrictions de la cadence d’échantillonnage

et du nombre limité des échantillons à disposition. Une attention particulière est portée sur

la détection de la fréquence d’ondes sinusöıdales échantillonnées en utilisant la transformée de

Fourier discrète. Les signaux déterministes sont traités dans la première partie et les signaux

aléatoires dans la seconde partie. On présente la fonction de corrélation, le théorème de Wiener-

Khinchin qui relie la corrélation à la densité spectrale. Quelques techniques d’estimation non

paramétriques sont présentées et illustrées par des exemples. L’estimation du contenu fréquentiel

est dans le cas d’un signal aléatoire soumis à une incertitude qui se caractérise par un biais et une

variance. Les techniques ont toutes un compromis entre le biais et la variance et ce phénomène

est illustré par les expériences numériques.
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9.1 Bruit blanc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.2 Mouvement brownien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.3 Bruit de grenaille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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10.8 Estimation de la fonction de corrélation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.9 L’estimateur spectral adouci dit de Blackman-Tukey . . . . . . . . . . . . . . . . . . . 70

11 Formulaire 73

12 Annexe : Tables 75

13 Ouvrages conseillés 79

Première partie

Signaux déterministes

1 Série de Fourier et transformée de Fourier

Les fréquences fondamentales jouent un rôle prépondérant dans les systèmes dynamiques et on ren-

contre dans beaucoup de systèmes des phénomènes de résonance caractéristique. Ces phénomènes

sont mieux compris lorsqu’ils sont analysés dans le domaine fréquentiel. L’analyse de Fourier permet

d’introduire les harmoniques et d’effectuer une analyse de celles-ci. On distingue la décomposition

en série de Fourier lorsqu’on examine les signaux périodiques. La transformée de Fourier est alors

vue comme un cas particulier lorsque la période tend vers l’infini. Ainsi un signal avec des propriétés

convenables, afin de garantir l’existence et la convergence des intégrales de définition, admet une

transformée de Fourier.

1.1 Signaux périodiques

Soit {x(t)} un signal.
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Définition 1.1. (signal périodique) Le signal {x(t)} est périodique de période T , si et seulement

si

x(t+ k T ) = x(t) ∀t ∈ R ∀k ∈ Z

-1.0 -0.5 0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

t [s]

x

Figure 1 – Un signal périodique comporte une partie qui se répète à intervalles réguliers. Le plus

petit intervalle pour lequel ceci se produit est la période T .

Cette définition signifie que le signal comporte une répétition périodique (indice k ∈ Z) et qu’il

est suffisant de le connâıtre sur une durée T . Il est important de souligner que la connaissance

du signal peut commencer à n’importe quel instant t, ainsi l’intervalle de temps nécessaire pour la

détermination du signal complet est [t, t+ T [, quel que soit t ∈ R.

1.2 Série de Fourier

La plupart des signaux périodiques admettent une décomposition en harmoniques successives ap-

pelées série de Fourier. Des précautions sont nécessaires en ce qui concerne le type de continuité

afin que la série de Fourier reflète fidèlement le signal de départ. Lorsque le signal est discontinu,

il est également possible que la série de Fourier converge (selon le type de convergence tel que la

convergence presque partout, celle en moyenne, absolue, etc.), mais ce n’est pas toujours le cas.

D’autre phénomènes surprenants peuvent avoir lieu. On sait qu’un sinus ou cosinus est dérivable une

infinité de fois. Ils sont parfaitement réguliers. Ainsi, lorsqu’on somme un nombre fini de sinus, le

signal résultant conserve cette propriété d’être différentiable une infinité de fois. Par contre, lorsqu’une
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somme infinie de sinus est effectuée, il est possible de perdre la propriété de dérivabilité (cf. les signaux

discontinus ayant une série de Fourier convergeante). Et il peut même y avoir des cas encore plus

sévères où toute la régularité est perdue. Des sommes infinies de sinus donnent une fonction dérivable

en aucun point.

Définition 1.2. (Série de Fourier) Soit {x(t)} un signal périodique de période T . Sa série de

Fourier est définie par les formules

x̂(t) =
+∞∑

k=−∞

ck e
j 2π k
T
t

avec ck ∈ C des coefficients complexes donnés par

ck =
1

T

∫ T
2

t=−T
2

x(t)e−j
2π k
T
t dt

1.2.1 Fonctions discontinues

Un grand nombre d’exemples de fonctions périodiques discontinues sont représentables par des séries

de Fourier convergeantes. Nous donnons deux exemples, une onde carrée et une onde triangulaire.

Le train d’ondes carré. La série de Fourier correspondante est

x̂(t) =
∞∑
n=0

2

πn
[1− (−1)n] sin(2π n t)
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Figure 2 – A gauche, le signal, et à droite, la somme
∑50

n=0
2
πn

[1 − (−1)n] sin(2π n t), c.-à-d. celle

obtenue à partir des 50 premiers coefficients de la série de Fourier. On illustre le phénomène de Gibbs

qui fait apparâıtre des oscillations aux points de discontinuité de la fonction d’origine.

6



Le train d’ondes triangulaire. La série de Fourier associée est

x̂(t) =
∞∑
n=0

2

n
sin(n t)

1.2.2 Fonction dérivable nulle-part

Weierstrass a mis en évidence des classes de fonctions ayant des séries de Fourier parfaitement bien

définies mais dérivables en aucun point. Un exemple est la fonction

x(t) =
∞∑
n=0

bn cos(anπt)

Avec les paramètres b = 1
2

et a = 3 la fonction devient ”fractale” bien que chaque fonction de base

apparaissant dans chacun des termes de la série soit un cosinus (le cosinus est parfaitement régulier).

1.3 Transformée de Fourier

1.3.1 Période qui tend vers l’infini

Lorsque la période T d’un signal périodique {x(t)} augmente, les contributions xn à la série de

Fourier interviennent à des fréquences de plus en plus rapprochées les unes des autres. Un signal non

périodique peut être interprété comme un signal périodique de période infinie. Dans un tel cas, les

contributions fréquentielles ne sont plus séparées les unes des autres et la série (de Fourier) fait place

à une intégrale (car les contributions fréquentielles sont espacées infiniment prêt les unes des autres).

Définition 1.3. (transformée de Fourier) La transformée de Fourier {X(f)} du signal {x(t)}

est définie par

X(f) =

∫ +∞

−∞
x(t) e−j 2π f t dt

1.3.2 Transformée de Fourier des signaux périodiques

La transformée de Fourier d’un signal périodique de p ’eriode T est non-nulle uniquement aux

fréquences n/T conformément au résultat suivant.

Théorème 1.1. (TF de signaux périodiques et série de Fourier) Si {x(t)} est périodique

de période T alors la transformée de Fourier {X(f)} est non nulle uniquement aux fréquences n
T

et
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s’exprime à partir des coefficients xn de sa série de Fourier (notés cn auparavant) par la formule

X(f) =
+∞∑

n=−∞

xn δ

(
f − n 1

T

)
Démonstration:

En partant de la définition de la transformée de Fourier et en y introduisant la série de Fourier du

signal périodique, nous obtenons successivement

X(f) =

∫ +∞

−∞
x(t) e−j 2π f t dt =

∫ +∞

−∞

(
∞∑

n=−∞

xn e
j2π n

T
t

)
e−j 2π f t dt

=
+∞∑

n=−∞

xn

(∫ +∞

−∞
e−j 2π(f− n

T
)t dt

)

=
+∞∑

n=−∞

xn δ
(
f − n

T

)
où nous avons utilisés

1 ↔ δ(f)

δ(f) =

∫ +∞

−∞
e−j 2π f t dt

CQFD.

1.4 Peigne de Dirac

Définition 1.4. Un peigne de Diract est une série d’impulsions de Dirac équiséparées.

δT (t) :=
∞∑

k=−∞

δ(t− kT )
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Figure 3 – Un peigne de Dirac est une succession d’impulsions de Dirac équiséparées

1.5 Transformée de Fourier d’un peigne de Dirac

La transformée d’un peigne de Dirac est à nouveau un peigne de Dirac mais dont l’espacement est

inversément proportionnel à l’espacement du peigne de Dirac initial. Pour obtenir l’expression de

cette transformée on utilise le théorème du décalage. Le résultat de cette section est utile lorsqu’il est

associé à la convolution. On explique ainsi la périodicité de la représentation fréquentielle d’un signal

échantillonné. Ceci fournit un autre regard sur le résultat déjà obtenu à l’aide d’un calcul direct de

la transformée de Fourier associée à la série de Fourier d’un signal périodique.

1.5.1 Transformée de Fourier d’un signal décalé dans le temps

Soit {g(t)} un signal et {G(f)} sa transformée de Fourier. Déterminons la relation {G(f)} et la

transformée de Fourier de {g(t− α)}.

Théorème 1.2. (du décalage)

g(t− α)↔ e−j2πf αG(f)

Démonstration :

On applique la définition de la transformée de Fourier ainsi que le changement de variable t̄ = t− α∫ +∞

−∞
g(t− α) e−j2πft dt =

∫ +∞

−∞
g(t̄) e−j2πf(t̄+α) dt̄ =∫ +∞

−∞
g(t̄) e−j2πft̄ e−j2πfα dt̄ = e−j2π α

∫ +∞

−∞
g(t)e−2πftdt = e−j2πf αG(f) (1)

9



CQFD.

En ce qui concerne le peigne de Dirac, il y a deux façons de déterminer sa transformée de Fourier, soit

en invoquant le thm. du décalage, soit en considérant que c’est un signal périodique et en évaluant

sa série de Fourier.

1.5.2 TF du peigne de Dirac en se basant sur le thm. du décalage

Théorème 1.3. (TF du peigne de Dirac (1))

+∞∑
k=−∞

δ(t− k T )↔
+∞∑

k=−∞

e−j2π kT f (2)

Démonstration : Ceci résulte de

δ(t)↔ 1

et de l’application de (1).

CQFD.

1.5.3 TF du peigne de Dirac en se basant sur la série de Fourier

Théorème 1.4. (TF du peigne de Dirac)

+∞∑
k=−∞

δ(t− k T )↔ 1

T

+∞∑
n=−∞

δ

(
f − n 1

T

)
(3)

Démonstration : Les coefficients de la série de Fourier du signal périodique de période T que représente

le peigne de Dirac {δT (t)} sont donnés par

ck =
1

T

∫ T
2

−T
2

δT (t) e−j
2π
T
t dt

=
1

T

∫ T
2

−T
2

δ(t) e−j
2π
T
t dt

=
1

T
(4)

de telle sorte que la série de Fourier devienne

1

T

∞∑
k=−∞

ej
2πk
T
t ↔ 1

T

+∞∑
n=−∞

δ

(
f − n 1

T

)
en utilisant à nouveau le théorème du décalage.

CQFD.
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1.6 Convolution et transformée de Fourier

Définition 1.5. (Convolution)

f ∗ g =

∫ +∞

τ=−∞
f(τ) g(t− τ) dτ

Ce produit admet un élément neutre.

Théorème 1.5. (Elément neutre pour la convolution) L’impulsion de Dirac est l’élément

neutre pour la convolution

g(t) ∗ δ(t) = g(t) ∀g(t)

Démonstration:(g ∗ δ)(t) =
∫ t

0
g(τ)δ(t− τ)dτ = g(t) CQFD.

Ce produit est commutatif et associatif

Théorème 1.6. (Commutativité et associativité de la convolution)

1. f ∗ g = g ∗ f

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h

dont la démonstration est un exercice de changement de variables. On peut également montrer qu’il

n’y a pas de diviseur de zero (Th. Titchmarsh) et donc les signaux constituent les éléments d’un

anneau intègre dont le produit est la convolution et l’addition est la somme des signaux.

Théorème 1.7. (Produit de convolution et produit simple des transformées) Il existe

une correspondance entre le produit de convolution dans le domaine temporel et le produit simple des

transformations de Fourier dans le domaine fréquentiel.

f ∗ g → F (f) ·G(f)

f(t) · g(t) ← F ∗ G

2 Fenêtrage et échantillonnage

En pratique, nous aurons affaire à un nombre limités d’échantillons du signal. Une fonction du

temps est convertie en suite de nombre par le système d’acquisition (échantillonnage) et stocké dans

l’ordinateur en tant qu’un ensemble fini de valeurs. Nous aurons affaire ainsi à la restriction du signal

d’origine par une fenêtre. Le signal est non seulement discrétisé dans le temps mais également limité

dans le temps.
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2.1 Effet de la limitation dans le temps

La limitation dans le temps d’un signal a une conséquence importante sur sa transformée de Fourier.

Soit f(t) le signal illimité dans le temps et soit g(t) le signal limité entre −T
2

et T
2
.

g(t) =


0 |t| > T

2

f(t) |t| ≤ T
2

-2 -1 1 2

-5

5

t [s]

f

-2 -1 1 2

-5

5

t [s]

g

Figure 4 – Le signal {f(t)} (à gauche) et sa restriction sur un intervalle {g(t)} (à droite).

Soit la fenêtre rectangulaire

rT (t) =


0 |t| > T

2

1 |t| ≤ T
2
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Figure 5 – La fonction rT (t) est une fonction symétrique par rapport à l’origine égale à un sur un

intervalle de durée T et nulle partout ailleurs.

Calculons la transformée de Fourier de la fenêtre rectangulaire

R(f) =

∫ ∞
−∞

r(t) e−j2πft dt =

∫ T
2

−T
2

r(t) e−j2πft dt

=

∫ T
2

−T
2

e−j2πft dt = − 1

j2πf
e−j2πft

∣∣∣∣T2
−T

2

= − 1

j2πf

(
e−j2πf

T
2 − e+j2πf T

2

)
=

sin(π f T )

π f
= T sinc(f T )
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Figure 6 – La fonction sinus cardinal est la transformée de Fourier d’une signal rectangulaire. Elle

est définie comme sinc(f) = sin(πf)
πf

.

2.2 Fonction gaussienne

La fonction Gaussienne préserve sa forme par transformée de Fourier mais ”sa largeur” est en cor-

respondance inverse après transformée.

Théorème 2.1. (Transformée de Fourier d’une gaussienne)

e−at
2 ↔

√
πe−

π2f2

4a

√
a

Comme illustration, considérons le signal x(t) = e−(2πt)2 sin(2π10t) qui est représenté à la figure 7.
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Figure 7 – Le signal e−(2πt)2 sin(2π10t) est un sinus de fréquence 10 modulé par une gaussienne.

Le signal x(t) étant le produit d’un sinus par une fonction gaussienne, la transformée de Fourier X(f)

sera la convolution de la transformée du sinus (deux impulsions de Dirac en −10 et 10), autrement

dit

x(t) = sin(2π10 t) · e−(2πt)2

l l

X(f) =

(
−j 1

2
δ(f − 10) + j

1

2
δ(f + 10)

)
∗ 1

2
√
π
e−

f2

4

= −je
− f

2

4
−25 sinh(5f)

2
√
π
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Figure 8 – Le module de la transformée de Fourier X(f) du signal sin(2π10t)e−(2πt)2 . On constate

les deux lobes à la fréquence 10 et −10 correspondants aux Diracs de la transformée du sinus. Les

Diracs ont été ”étalés” à cause de la multiplication par la Gaussienne. La gaussienne a fenêtré le

sinus et localisé celui-ci dans le temps. La conséquence est une perte le localisation dans le domaine

des fréquences.
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Figure 9 – Le signal sin(2π10t)e−(2πt)2 est restreint par multiplication par une fenêtre rectangulaire

r0.8/2/π(t).
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Figure 10 – Le module de la transformée du signal sin(2π10t)e−
2

après restriction par la fenêtre

rectangulaire r0.8/2/π(t) correspond à la convolution des deux lobes gaussiens par un sinus cardinal. Le

sinus cardial entrâıne de légères oscillations et un ”étalement” supérieur dû à la perte de localisation

fréquentielle.

On peut comparer graphiquement le résultat au fenêtrage direct du sinus par la fenêtre rectangulaire.

x(t) = sin(2π10t) · r0.8/2/π(t)

l l

X(f) =

[
−j 1

2
δ(f − 10) + j

1

2
δ(f + 10)

]
∗ 0.8

2π
sinc

(
0.8

2π
f

)
= −j 0.8

4π
sinc

(
0.8

2π
(f − 10)

)
+ j

0.8

4π
sinc

(
0.8

2π
(f + 10)

)

17



-0.3 -0.2 -0.1 0.1 0.2 0.3

-1.0

-0.5

0.5

1.0

t [s]

x

Figure 11 – Le signal sin(2π10t) est multiplié directement par la fenêtre rectangulaire r0.8/2/π(t).
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Figure 12 – La transformée de Fourier r0.8/2/π(t) · sin(2π10t) est la convolution entre les Diracs du

sinus et les sinus cardinaux de la transformée du signal rectangulaire. Les sinus cardinaux sont donc

additionnés aux emplacements des Diracs, c.-à-d. en −10 et 10. Le graphique représente le module

de la transformée de Fourier. Les lobes sont plus prononcés que dans le cas du prétraitement par la

gaussienne.
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2.3 Echantillonneur parfait

Un échantillonneur parfait, à période d’échantillonnage h, produit à partir d’un signal continu {u(t)}

un signal {y(t)} de la variable continue t mais dont l’énergie est concentrée dans des points discrets

de l’axe temporel. En d’autres termes, des quantums d’énergie sont contenus à des instants discrets.

Chaque quantum d’énergie est proportionnel à la valeur du signal {u(t)} à l’instant d’échantillonnage

t = k h. Le quantum d’énergie est donné par une impulsion de Dirac δ(t− k h).

Définition 2.1. (Echantillonneur parfait) Un échantillonneur prend un signal d’entrée {u(t)}

et produit un signal de sortie {y(t)} donné par

y(t) =
+∞∑

k=−∞

u(kh) δ(t− k h)

1 2 3 4
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Figure 13 – Un échantillonneur parfait constitue un signal ayant une successions d’impulsions

de Dirac dont le poids correspond à la valeur du signal échantillonné à l’instant d’échantillonnage

correspondant.

Remarque : il ne faut pas confondre la suite des échantillons donné par l’ensemble

{u(kh)|k ∈ Z} (5)

du signal {y(t)} donné ci-dessus et qui comporte des impulsions de Dirac.
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Figure 14 – Les échantillons ne forment qu’un ensemble discrets de valeurs et, contrairement à une

série de Dirac équiséparée et pondérée par les échantillons, ne véhiculent pas d’énergie.

REMARQUE : Le signal {y(t)} appartient aux signaux à énergie non nul bien que y(t) soit localement

confiné sur un point de l’axe temporel. L’impulsion de Dirac δ(t) a une énergie unité car∫ +∞

t=−∞
δ(t)dt = 1

Par contre, la suite des échantillons (5) ne posséde par d’énergie et n’en véhicule pas.

2.4 Signal à bande limitée

Définition 2.2. (Signal à bande limitée) Une bande de fréquence [B1, B2] ou un ensemble de

fréquences f telles que

B1 ≤ f ≤ B2

est donnée. Un signal {x(t)} est dit être à bande limitée dans [B1;B2] si sa transformée de Fourier

est nulle lorsque f 6∈ [B1;B2].

2.5 Théorème d’échantillonnage

Théorème 2.2. (de l’échantillonnage) Si un signal {x(t)} est à bande limitée [−B;B], il peut

être reconstruit sans erreur à partir de ses échantillons x(tn) aux instants tn = n
2B

.

Démonstration :
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Comme X(f) = 0, ∀f , |f | > B, nous pouvons développer cette fonction en série de Fourier (en

fréquence) exactement comme pour un signal limité dans le temps :

X(f) =
+∞∑

n=−∞

x̄n e
−j2π n

2B
f

où x̄n est donné par

x̄n =
1

2B

∫ +B

−B
X(f)ej2π

n
2B
f df (6)

(Série de Fourier en fréquence). Comme X(f) = 0, ∀|f | > B,

x(t) =

∫ +∞

−∞
X(f)ej2πftdf =

∫ B

−B
X(f)ej2πftdf

par la définition de la transformée de Fourier, et donc, comme tn = n
2B

, nous avons

x(tn) =

∫ +B

−B
X(f)ej2πf

n
2B df

et en comparant avec (6), on a

x̄n =
1

2B
x(tn)

et le théorème d’échantillonnage est ainsi démontré. En effet, connaissant x(tn) nous avons

x̄n =
1

2B
x(tn)

et donc X(f) à partir de (6). Après une transformée de Fourier, on reconstruit sans erreur x(t).

CQFD.

2.6 Formule de reconstruction

Soit la transformée inverse

x(t) =

∫ B

−B
X(f)ej2πftdf

En utilisant (6) dans la formule précédante, on arrive à

x(t) =
+∞∑

n=−∞

(
x(tn)

1

2B

∫ +B

−B
ej2πf(t−

n
2B )
)
df

L’intégrale est la TF de r2B(f) (signal rectangulaire de largeur 2B en fréquence) dont la transformée

de Fourier inverse (TFI) est sinc(2B) = sin(π 2B)
π 2B

ce qui donne
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Définition 2.3. (Formule de reconstruction)

x(t) =
+∞∑

n=−∞

x(tn)sinc(2B(t− tn))

EXPLICATIONS : La connaissance des échantillons x(tn) permet de reconstruire sans erreur le signal

initial {x(t)} à condition que ce dernier soit à bande limitée. La formule de reconstruction donne

exactement la manière de le reconstruire. Un désavantage pratique cependant est la présence d’un

nombre infini d’échantillons dans le passé et le futur avec une infinité de contributions à prendre en

compte conformément à la formule de reconstruction.

2.7 Transformée en Z

Définition 2.4. (transformée bilatérale en z) Soit une suite d’échantillons {h(k)|k ∈ Z}. La

fonction

H(z) =
∞∑

k=−∞

h(k) z−k

est appelée la transformée bilatérale en z de la suite {h(k)|k ∈ Z}.

Il en existe pour les signaux discrets qui sont nuls pour k < 0. Elle est appelée la transformée en z

unilatérale. Elle est utilisée en réglage automatique.

Définition 2.5. (La transformée unilatérale en z) Soit une suite d’échantillons {h(k)|k ∈

N}. La fonction

H(z) =
∞∑
k=0

h(k) z−k

est appelée la transformée unilatérale en z de la suite {h(k)|k ∈ Z}.

On remarque une similitude avec la transformée de Laplace unilatérale d’un signal.

2.8 Transformée de Fourier et transformée de Laplace

La transformée de Fourier est obtenue en évaluant la transformée de Laplace bilatérale sur l’axe

imaginaire.

Soit G(s) la transformée de Laplace de g(t) et Ĝ(f) la transformée de Laplace.
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Théorème 2.3. Si le domaine de convergence de l’intégrale de Laplace (valeur de s pour laquelle

l’intégrale de la transformée de Laplace converge) contient l’axe imaginaire s = 2πjf , alors la trans-

formée de Fourier est en relation de celle de Laplace par la relation

Ĝ(f) = G(2πjf)

La démonstration est technique à cause des notions de convergence, mais le résultat intuitivement

évident (car il s’agit de la même intégrale).

2.9 Transformée de Fourier discrète

Soit le quantum de fréquence (résolution fréquentielle)

ν = ∆f =
1

N h

où h est la période d’échantillonnage.

Définition 2.6. La transformée de Fourier discrète d’une suite d’échantillons {x(k)|k ∈ Z} est

donnée par la série

X(n) =
∞∑

k=−∞

x(k) e−j2π
n
N h

kh

=
∞∑

k=−∞

x(k) e−j
2π
N
nk (7)

Pour une suite d’échantillons, on a la définition suivante.

Définition 2.7. (TFD, transformée de Fourier discrète) La tranformée de Fourier discrète

de l’ensemble fini d’échantillons {x(k)|k = 0, 1, . . . N−1} est définie par la collection finie d’échantillons

X(n) =
N−1∑
k=0

x(k) e−j
2π
N
nk n = 0, . . . N − 1

Définition 2.8. (TFDI, transformée de Fourier discrète inverse)

x(k) =
1

N

N/2
− 1∑

n=−N
2

x(n)e+j2π nk
N

Remarque : Comme le spectre est périodique, suite à la discrétisation, on retrouve à intervalle régulier

la partie négative du spectre. Il est donc également possible de changer les indices de la somme pour

tirer avantage de cette propriété.

x(k) =
1

N

N−1∑
n=0

x(n)e+j2π nk
N
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Figure 15 – Signal dans le domaine temporel.

3 Expériences numériques avec des séries de Fourier

>> h = 0.01;

>> N = 512;

>> freq = 4;

>> signal = sin((1:N)*h*2*pi*freq) + 0.2* cos(2*(1:N)*h*2*pi*freq)+...

2*sin(3*(1:N)*h*2*pi*freq);

>> ffsignal = fft(signal);

>> plot(abs(ffsignal))

>> figure(2)

>> plot(signal)
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Figure 16 – Module de la transformée de Fourier discrète du signal

>> plot(abs(fft(signal.*blackman(N)’)))
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Figure 17 – Module de la transformée de Fourier discrète du signal après prémultiplication tempo-

relle par la fenêtre de Blackman.

>> plot(abs(fft(signal.*hann(N)’)))

>> plot(abs(fft(signal.*hamming(N)’)))

25



0 100 200 300 400 500 600
0

50

100

150

200

250

Figure 18 – Module de la transformée de Fourier discrète du signal après prémultiplication tempo-

relle par la fenêtre de Hann.
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Figure 19 – Module de la transformée de Fourier discrète du signal après prémultiplication tempo-

relle par la fenêtre de Hamming.
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4 Expériences numériques avec un sinus échantillonné

Soit la commande MATLAB/SysQuake

sig = sin(0.02*(1:1024));

plot(sig)

qui consiste à échantillonner un sinus sur 1024 échantillons. La fréquence de ce sinus dépend de la

période d’échantillonnage.
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Nous supposerons que la fréquence d’échantillonnage est

h = 0.01 [s]

Soit t̄ la durée complète des échantillons.

t̄ = 1024 · 0.01 = 10.24 [s]

La fréquence du sinus contenu dans le signal échantillonné que nous venons de construire est ainsi

déterminé par la relation

sin(2πf t̄) = sin(0.02 · 1024)

ce qui donne

f =
0.02 · 1024

2πt̄
=

0.02 · 1024

2π · 10.24
= 0.3183 [Hz]
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4.1 Résolution spectrale (quantum fréquentiel)

4.1.1 Fréquence maximale détectable

La fréquence d’échantillonnage est

fe =
1

h
=

1

0.01
= 100 [Hz]

et elle induit que (par le théorème de l’échantillonnage cf. théorie) la fréquence maximale détectable

(si on part de 0 [Hz]) est de
fe
2

= 50 [Hz]

4.1.2 Module du spectre discret

En dessinant le module du spectre discret (module de la transformée de Fourier discrète du signal

échantillonné généré) avec la commande

plot(abs(fft(sig)))

on constate que celui-ci comporte une partie symétrique à partir du milieu du graphique. Ceci est

dû au repliement fréquentiel et la conséquence est la limitation à la moitié de toutes les fréquences

disponibles (i.e. en absence du repliement on aurait 100 [Hz]) à la moitié de la fréquence théorique

maximale qui est la fréquence d’échantillonnage.
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100
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Ceci conduit ainsi à la résolution spectrale ou ”quantum de fréquence” qui est

∆ν =
1

hN
= ∆f =

fe
N

=
100

1024
= 0.09766 [Hz]
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4.2 Maximum du module des coefficients de la TFD

Déterminons le maximum du module des coefficients de la tansformée de Fourier discrète (TFD). En

utilisant la commande fft calcule la série (la somme)

F (nν) = F (n) =
N−1∑
k=0

f(k h)e−2π k n
N
j

conformément à la théorie. En d’autres termes, la correspondance entre ffta(n-1) et sum(sig.*reg)

est obtenue et donc l’annulation de la différence de ces quantités suite aux instructions suivantes :

ffta = fft(sig);

reg = exp(-2*pi*i*(0:N-1)/N*n);

ffta(n-1) - sum(sig.*reg)

quel que soit n

Déterminons n qui donne le module maximum

Il faut détecter la maximum du module de la TFD. Ceci est facile avec la commande max :

[ma,id] = max(abs(fft(sig)))

et n sera donné par id - 1.

Pour N=1024 on trouve id = 4 et donc n=3.

Fréquence estimée

La fréquence estimée f̂ est donnée par

f̂ =
n

N
· 1

h
=

3

1024
· 1

0.01
= 0.293 [Hz]

Vérifions que cette estimée est bien dans l’intervalle déterminée par l’incertitude fréquentielle (moyen-

nant la résolution spectrale déterminée ci-dessus) :

f ∈ [0.293−∆f ; 0.293 + ∆f ]

f ∈ [0.293− 0.098; 0.293 + 0.098]

f ∈ [0.195; 0.391]
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REMARQUE : Avec cette résolution spectrale la précision n’est pas très grande. On constate que

la vraie fréquence f = 0.318 st bien dans l’intervalle obtenu même si l’estimée f̂ = 0.293 n’est pas

d’une grande précision.

4.3 Battements et repliement spectral

Un phénomène bien connu est celui du battement. C’est le constat de l’apparition d’une modulation

en basse fréquence lorsque deux signaux sinusöıdaux ont des fréquences très proches l’une de l’autre.

L’expérience numérique suivante consiste à comparer le modulation réelle basse fréquence de deux

sinus par rapport à deux sinus de fréquences élevée mais proches l’une de l’autre.

time = linspace(0,20,3000);

signal = sin(2*pi*40*time)+0.2*sin(2*pi*42*time);

et

signal2 = sin(2*pi*40*time)+0.2*sin(2*pi*2*time);

On constate que les deux signaux sont difficillement reconnaissables en examinant le comportement

temporel de ceux-ci (cf. figure 20).
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Figure 20 – A gauche, l’addition d’une basse fréquence et d’une hauter et à droite le phénomène

de battement correspondant à l’addition de deux signaux de fréquence proches. Les deux signaux

paraissent identiques dans le domaine temporel.

Par contre, en dessinant les spectres de ces signaux à l’aide des commandes
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plot(abs(fft(signal.*blackman(length(signal))’)))

et

plot(abs(fft(signal2.*blackman(length(signal2))’)))

l’emplacement fréquentiel du signal sinusöıdal faible est facilement détectable (cf. figure 21). On

remarque également qu’en absence de fenêtrage,

plot(abs(fft(signal))’)

il y a plus ”d’étalement” des fréquences autour des fréquences caractéristiques (moins bonne résolution

spectrale).
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Figure 21 – L’analyse fréquentielle permet de rapidement faire la disctinction entre un sinus modulé

en basse fréquence (à gauche) et le phénomène de battement (à droite). Les figures du haut sont

obtenues en absence de fenêtrage.
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5 Un paradoxe ?... non, c’est l’étalement spectral

Le lecteur attentif constatera une sorte de contradiction avec la théorie du fenêtrage. Cette théorie

indique que le pic fréquentiel associé avec la fenêtre est le moins large lorsque la fenêtre est rectangu-

laire. A titre illustratif, on a représenté le logarithme du module de trois fenêtre, celle rectangulaire

(le pic le plus étroit, mais pics secondaire mal amorti), celle de Hamming et celle de Blackman à la

figure 22.
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Figure 22 – log |W (n)|, autrement dit le logarithme du module de la transformé de Fourier discrète

de trois fenêtres {w(n)}. Le pic principal de la fenêtre rectangulaire est le plus étroit parmis toutes

les fenêtres possibles. La fenêtre de Hamming et celle de Blackmann donnent un pic principal plus

large, mais les pics secondaires sont mieux amortis.

Ainsi, on aurait du obtenir un pic plus fin en absence du fenêtrage de Blackman. En d’autres termes,

les pics obtenus à la figure 16 devraient être plus fins que ceux de la figure 17. Or il n’en est rien.

D’où provient ce paradoxe ?

La réponse réside dans la compréhension de ce que calcule réellement la transformée de Fourier
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discrète. Ce n’est pas le signal échantillonné et limité à seulement N échantillons qui est le signal

sur lequel s’opère l’interprétation fréquentielle obtenue par la transformée de Fourier discrète, mais

le signal périodisé qui comporte une infinité d’échantillons.

Or le signal initial que l’on a généré ne correspond pas en durée à un multiple de sa période fondamen-

tale, de telle sorte que son périodisé (signal périodique obtenu en répliquant le signal à l’identique

par concacténation de celui-ci) comporte une transition violente au point de périodisation. Cette

transition ajoute des fréquences élevées dans la série de Fourier du signal continu périodisé associé

au signal périodisé discret. Toutes ces fréquences sont bien au delà de la fréquence d’échantillonnage

et se replient donc en basse fréquence contribuant à élargir les pics associés aux trois harmoniques

fondamentales.

On comprend alors le paradoxe et la raison pour laquelle le fenêtrage améliore l’estimation en

rétrécissant la largeur des pics associés aux trois harmoniques. Le fenêtrage diminiue l’amplitude

des échantillons aux deux bords de la suite finie de ceux-ci. Le signal discret périodisé ne comporte

plus de transition violente. En conséquence, les hautes fréquences issues de ces transitions aux points

de périodisation contaminent peu, par repli fréquentiel, les trois harmoniques. Les pics sont moins

larges qu’en absence de fenêtrage (ou fenêtrage rectangulaire implicite).

Illustrons ceci avec une expérience numérique similaire à la précédante mais en prenant soin de

garantir un signal parfaitement périodique lors de la périodisation du signal initial.

T = 20;

N = 512;

h = T/N;

nn = (0:N-1);

sig = sin(2*pi*nn) + 0.2*sin(2*pi*nn) + 3*sin(2*pi*nn);

figure(1)

plot(abs(fft(sig)));

figure(2)

plot(abs(fft(sig.*blackman(N)’)));

Dans le cas sans fenêtrage, on obtient la représentation fréquentielle de la figure 23
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Figure 23 – Avec un signal dont le périodisé est continu, les pics sont les plus étroits en absence

de fenêtrage (fenêtrage rectangulaire de larageur égale au nombre d’échantillons).
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Figure 24 – Fenêtrage de hamming du signal associé à la figure 23.

34



6 Interpolation et suréchantillonnage

En introduisant des zéros aux bons endroits (”zero padding”), on peut augmenter le nombres

d’échantillons artificiellement (au sens de ne pas introduire plus d’information que le nombre d’échantillons

initial). C’est parfois nécessaire pour ajuster la taille des blocks ou pour ”deviner” la valeur entre les

échantillons.

On présente deux techniques. La première consiste a agrandir le domaine de Fourier et d’introduire

des zeros en haute fréquence. Ceci ne change pas la décomposition en composante fréquentielles

initiales mais permet d’augmenter la période déchantillonnage artificiellement. La conséquence est

l’interpolation entre deux échantillons.

La seconde consiste à augmenter le nombres de ”périodes” du signal initial en copiant plusieurs fois

l’ensemble des échantillons. On double ainsi le nombre de points. La conséquence est la présence de

zéros entre deux échantillons de la transformée de Fourier.

Le contenu fréquentiel est dans les deux cas rigoureusement identique. La présence de zéros soit à la

fin en un block ou entre les coefficients de la décomposition de Fourier distinguent les deux cas.

6.1 ”Zero padding” à la fin de la TFD

L’application est l’interpolation entre les échantillons intiaux. Bien que l’on modifie le signal initial, il

ne faut pas se baser sur les valeurs entre les échantillons pour augmenter la résolution temporelle ou

fréquetielle. Elle demeure la même puisqu’elle dépend que du nombre d’échantillons et de la période

d’échantillonnage.

Prenons un signal composé de trois harmoniques

x(t) = sin(2π t) + 0.25 cos(2π 3t) + 0.12 cos(2π 4t)

En effectuant un échantillonnage de N = 32 échantillons sur une durée de 1 [s], on obtient le signal

discret représenté à la figure 25.
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Figure 25 – Un signal composé de trois harmoniques est échantillonnés de telle sorte à avoir N = 32

échantillons.

Si on prend un échantillonnage plus fin, N2 = 64, le résultat est donné à la figure 26.
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Figure 26 – Un signal composé de trois harmoniques est échantillonnés de telle sorte à avoir N = 64

échantillons.

Pour interpoler à partir du signal échantillonné avec 32 échantillons pour doubler le nombre d’échantillons

et arriver à 64, on introduit des zéros dans les hautes fréquences de la transformée de Fourier discrète

et on double les coefficients associé aux basse fréquence.
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La raison du doublement provient du facteur 1
N

dans la transformée de Fourier inverse. Dans le

premier cas c’est 1/32 et après doublement c’est 1/64. La composante continue est donnée par le

coefficient X(0) dans les deux cas. Ainsi pour ne pas perdre d’amplitude, il faut ajuster les coefficients

par un facteur 2 = 64
32

.

Lorsque le nombre d’échantillons est impairs, il n’y a pas de de complication, car disons la composante

complexe X(n) des phaseurs des fréquences positives et négatives sont exactement complexe conjugés

des composantes des phaseurs de fréquence négative. Seule la composante constante qui est en position

n = 0 et est réelle.

Lorsque le nombre d’échantillons est paire, il y a deux composantes purement réelle, celle X(0)

(donnant la composante continue, constante), et X
(
N
2

+ 1
)
. Il faut poser

X

(
N2

2
+ 1

)
= X

(
N

2
+ 1

)
Ensuite les coefficients des phaseurs de fréquence positive s’associe un à un avec les coefficients des

phaseurs de fréquence négative respective, comme dans le cas d’un nombre déchantillons impair. Cela

conduit à la procédure

% zero padding a la fin de la transformee de Fourier.

N = 32;

xk = sin(2*pi*2*(1:N)/N) + 0.25*cos(2*pi*3*(1:N)/N) + 0.12*cos(2*pi*4*(1:N)/N);

plot(xk,Stems=true);

N2 = 64;

xk2 = sin(2*pi*2*(1:N2)/N2) + 0.25*cos(2*pi*3*(1:N2)/N2) + 0.12*cos(2*pi*4*(1:N2)/N2);

figure

plot(xk2,Stems=true);

fxk = fft(xk);

% construisons l’interpolation dans le cas N pair

% le phaseur du milieu, phaseur reel doit rester au milieu

fxk64 = zeros(1,N2);
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fxk64(1:N/2) = fxk(1:N/2); %debut

fxk64(N2/2+1) = fxk(N/2+1); %milieu

fxk64(N2-(N/2-2):end) = fxk(N/2+2:end); %fin

% il faut egalement mettre a l’echelle les energies, ici le facteru N2/N

xkinter = real(ifft(N2/N*fxk64));

figure

plot(xkinter, Stems=true);
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Figure 27 – L’interpolation avec 64 échantillons à partir du signal de 32 échantillons.

La figure (27), bien que similaire, n’est pas identique à la figure (26). L’interpolation ”ne devinne”

pas exactement les vraies valeurs, mais elle ”fait au mieux”.

Reprenons la procédure avec peu d’échantillons juste pour mieux comprendre la technique.

Prenons N = 6, et

xk = 1:6;

fxk = fft(xk)

donne

21.00, -3.0 + 5.1962j, -3.0 + 1.7321j, -3.0, -3.0 - 1.7321j, -3.0 - 5.1962j
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On remarque bien deux valeurs rélles et 4 valeurs complexes qui sont complexes conjuguèes les unes

des autre par paire. Pour avoir une interpolation entre les échantillons afin de doubler et avoir 12

échantillons à l’arrivée, on effectue les commandes suivantes :

fxk2 = zeros(1,12);

fxk2(7) = fxk(4);

fxk2(1:3) = fxk(1:3);

fxk2(11:12) = fxk(5:6);

xkinter = ifft(2*fxk2);

Le signal résultant de l’interpolation est bien réel

1.0 1.2679 1.0 3.2679 3.00 4.0 3.0 4.7321 5.0

6.7321 5.0 4.0

mais il ne correspond pas à ce que l’on pourrait s’attendre 1 à 6 de manière progressive par pas de 0.5.

Cet artefact est à nouveau la manifestation de l’étalement spectral dû au brusque changement lors

de la périodisation du signal initial. On constate que le nouveau signal ne passe pas nécesairement

par les points initiaux, ni ne devinne la valeur (moyenne des échantillons successifs initials) entre les

échantillons intiaux ! Il faut donc utiliser cette technique avec précaution !

6.2 ”Zero padding” entre les échantillons de la TFD

Une application est le doublement du nombre d’échantillons sans changer le contenu temporel. On

rend ainsi possible une utilisation d’une transformée ayant des blocks plus grands sans changer la

nature du signal initial.

L’idée est d’introduire un zéro entre chaque coefficient de la transformée de Fourier discrète.

Un exemple avec peu d’échantillons illustre le concept :

xk = 1:6

fxk = fft(xk)

fxk2 = zeros(1,12);

for i=1:6

fxk2(i*2-1)=fxk(i);

end;

xk2 = real(ifft(2*fxk2));
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et on obtient la répétition du signal initial.

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

7 Annexe : fichier experiences.m

% creation d un signal de trois frequences harmoniques

N = 512;

h = 0.01;

freq = 4;

signal = sin((1:N)*h*2*pi*freq) + 0.2* cos(2*(1:N)*h*2*pi*freq)+ 2*sin(3*(1:N)*h*2*pi*freq);

% calcul de la Transformee de Fourier Discrete (TFD)

ffsignal = fft(signal);

figure(1)

plot(signal)

title(’signal dans le temps’)

xlabel(’echantillon’);

ylabel(’f(i)’);

% represenation graphique sans fenetrage

figure(2)

plot(abs(ffsignal));

title(’Module de la TFD’);

xlabel(’echantillon’);

ylabel(’abs(F)’);

% fenetrage de Blackman

figure(3)

blackffsignal = fft(signal.*blackman(N)’);
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plot(abs(blackffsignal));

title(’Module de la TFD apres fenetrage de Blackman’);

xlabel(’echantillon’);

ylabel(’abs(F)’);

% examen de la phase

figure(4)

plot(unwrap(angle(fft(signal.*blackman(N)’))));

title(’Phase de la TFD apres fenetrage de Blackman’);

xlabel(’echantillon’);

ylabel(’arg(F)’);

% un peu de filtrage

[num,den]=butter(3,0.5);

signalOut = filter(num,den,signal);

figure(5);

subplot(211);

plot(signal);

subplot(212);

plot(signalOut);

% un peu de filtrage

[num,den]=butter(3,0.5);

signalOut = filter(num,den,signal);

figure(5);

subplot(211);

plot(signal);

subplot(212);

plot(signalOut);

%% Fonction de Weierstrass, derivable nulle-part
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NN = 800;

time = (1:NN)*0.5/NN;

series = zeros(1,NN);

b = 0.5;

a = 3;

for n=1:6;

series = series + b^n*cos(a^n*pi*time);

end;

figure(6);

plot(time,series);

%% train d’onde triangulaire

NN = 800;

time = (1:NN)*20/NN;

series = zeros(1,NN);

for n=1:40;

series = series + 2/n*sin(n*time);

end;

figure(7);

plot(time,series);

%% train d’onde carre

NN = 800;

time = (1:NN)*20/NN;

series = zeros(1,NN);

for n=1:40;

series = series + 2/(pi*n)*(1-(-1)^n)*sin(n*time);

end;

figure(8);

plot(time,series);
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[tout,xout] = ode45(’penduleSimple’,[0,90],[2.8*pi/3,0.1]);

figure(9);

subplot(211);

plot(tout,xout);

fxout = fft(blackman(length(tout)).*xout(:,1));

subplot(212);

plot(abs(fxout(1:40)));

tout = 0:0.01:90;

xout = ode3(’penduleSimple’,tout,[2.9*pi/3;0.1]);

figure(10);

subplot(211);

plot(tout,xout);

fxout = fft(blackman(length(tout)).*xout(:,1));

subplot(212);

plot(abs(fxout(1:40)));

%%%%%%%%

% deux sinus un dominant l’autre faible

time = linspace(0,20,3000);

signal = sin(2*pi*40*time)+0.2*sin(2*pi*42*time);

figure(11)

plot(time,signal)

% difficile de le percevoir dans le diagramma sans fenetrage

figure(12)

subplot(211)

plot(abs(fft(signal))’)

subplot(212)

plot(abs(fft(signal.*blackman(length(signal))’)));
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%par contre, avec la fenetre de Blackman, cela s’ameliore quelque peu

signal2 = sin(2*pi*40*time)+0.2*sin(2*pi*2*time);

figure(13)

plot(time,signal2)

figure(14)

subplot(211)

plot(abs(fft(signal2))’)

subplot(212)

plot(abs(fft(signal2.*blackman(length(signal2))’)))
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Figure 28 – Discontinuité et convergence de la série de Fourier associée. Le cas d’un train d’onde

carré.
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Figure 29 – Représentation de
∑N

n=0
1

2n
cos(3n π t) pour N = 3, 4, 5, 6, 7. Bien qu’il s’agisse d’une

somme de cosinus, plus le nombre N de termes est grand, plus grande parâıt l’irrégularité.
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Deuxième partie

Signaux aléatoires (signaux

stochastiques)

Un signal aléatoire est un signal qui n’est pas déterminé par un ensemble fini de conditions initiales

de manière prévisible. Un signal continu déterministe que nous avons présenté dans la première

partie est gouverné, par exemple, par un ensemble d’équations différentielles et peut donc être prédit

connaissant l’ensemble des conditions initiales sur un horizon court avec une grande détermination.

De même, un signal discret décrit par des équations aux différences est prévisible sur un horizon

court de manière prévisible avec une grande précision. Si les équations différentielles sont linéaires

et bien conditionnées, l’horizon de prédiction avec une grande précision peut être très grand. Pour

les systèmes non-linéaires déterministes, cet horizon peut être petit, mais il existe tout de même

une prédiction avec grande précision sur cet intervalle de temps, raison pour laquelle le signal est

déterministe.

Dans les signaux présentés ci-après, cet horizon de prédiction avec grande précision n’existe plus, et

on ne peut plus décrire le signal avec des équations différentielles ordinaires et/ou avec des équations

aux différences. Les conditions initiales sont insuffisantes pour prédire et caractériser le signal. Le

signal est connu et prévisible que par l’entremise de stastiques et de lois de probabilité.

Un exemple simple est le signal produit par une série de lancé d’une pièce de monnaie pile ou face.

Quoi que soit le passé du lancé de la pièce, il est impossible de prédire le lancé suivant avec exactitude.

On ne peut que caractériser la probabilité d’obtenir pile ou face, qui est de 0.5 dans chaque cas si le

lancé et la pièce ne sont pas truqués.

Pour caractériser l’aspect aléatoire, il est nécessaire d’introduire le concept d’espace probabilisé Ω,

la distribution de probabilité p, et la fonction de répartition F .

Dans le cas d’un dé non pipé, l’espace probabilisé Ω est consituté d’un ensemble de six éléments

(symboles). La distribution de probabilité est une fonction de Ω, constante et valant 1/6 pour chacun

des symboles. La fonction de distribution F est la somme cumulée jusqu’au symbole correspondant.

Ceci nécessite un ordre sur les symboles qui est dans le cas du dé donné par l’ordre des entiers

croissants de 1 à 6.
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8 Variable aléatoire et processus stochastique

Dans cette section, on présente la variable aléatoire et ensuite une série de variables aléatoires or-

données donnant lieu à un processus stochastique.

Pour commencer, il est important de donner plus de détails concernant l’espace probabilsé Ω et la

distribution de probabilité p.

Un espace probablisé Ω est un ensemble pour lequel on peut attribuer un ”poids”, une ”masse”, à un

sous ensemble ω de Ω (noté ω ⊂ Ω). Cette ”masse” est une mesure (au sens mathématique) et elle

est proportionnelle à la ”chance” d’obtenir l’évènement (au sens mathématique et usuel) caractérisé

par le sous ensemble ω. La distribution de probabilité p est intégrée pour obtenir la probablité de

cet évèneement :

pω =

∫
ω

p(x)dx

Les sous-ensembles de Ω ont des axiomes de telle sorte à former une algèbre. Des ensembles disjoints

représentent des évènements dont la probabilité d’observer l’un ou l’autre des évenement est la somme

des probabilité d’en observer un ou l’autre individuellement. Et il existe toute une série d’axiomes

pour former une théorie des proabilités dont les sous-ensembles représentent un évènement aléatoire

possible. Nous donnons une définition un peu sommaire. Pour aller plus loin et être plus précis il

faudrait donner une définition plus précise des sigmas algègbres et des axiomes de Kolmogorov.

Définition 8.1. Un espace probabilisé est un espace Ω mesurable pour lequel il existe une fonction

de distribution p (appelée probabilité) pour lequel∫
Ω

p(x) dx = 1

8.1 Variable aléatoire

Une variable aléatoire est une fonction de l’espace probailisé vers un ensemble rélle R ou vers Z ou

vers un autre ensemble. La plupart du temps, lorsque le phénomène observé est continu (par exemple

un signal sonore non-discrétisé tel que le champ d’un oiseau) on utilise R ou lorsqu’il est enregistré

par digitalisation il est Z.

Pour illustré avec l’exemple du dé, on peut introduire l’espace probalisé Ω comme celui constitué des

6 symboles {A,B,C,D,E, F}, la distribution de probabilité comme la fonction qui associé chaque
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lettre avec la quantité 1/6, et la variable aléatoire comme la fonction qui associé la position de la

lettre de l’alphabet par exemple A → 1 et F → 6. On a donc dans ce cas un sous-ensemble de Z

comme choix possible de l’ensemble d’arrivée.

On note la variable aléatoire par la lettre x. Un lancé d’un dé est le résulat du lancé correspondant

par exemple x = 3.

Définition 8.2. Une variable aléatoire est une fonction

x : Ω→

 R continu

Z quantifié

8.2 Processus stochastique

Un processus stochastique est un ensemble de variables aléatoires {Xt} indexées par rapport à une

variable continue t ∈ R. On peut également envisger un ensemble dénombrable discret indexé par un

entier {Xn}, n ∈ Z. La collection des variables aléatoires seront considérées dans ce qui suit comme

régies par la même fonction de distribution p quel que soit l’index t on n. En toute généralité, ceci

ne peut pas être le cas, comme par exemple lors de processus stochastiques instationnaires.

Formellement (par exemple ch. 12 de [12] ou [13] p.179)

Définition 8.3. (processus stochastique) Un processus stochatique x est une fonction de deux

variables t et ω, t ∈ [0, T ] et ω ∈ Ω avec Ω un espace probabilisé avec une fonction de probabilité p

telle que x(t, .) pour chaque t soit une fonction mesurable sur Ω.

8.3 Moyenne et variance

Pour chaque index t ou n on peut définir les grandeurs associées aux variables aléatoires que sont la

moyenne et l’écart-type (écart moyen centré quadratique).

En posant X = xt ou X = x(n) on a

Définition 8.4. (moyenne)

m = E[X] = E[xt] =

∫
Ω

xt p(xt)dxt

Définition 8.5. (écart-type)

σ2 = E{[X − E(X)]2}
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9 Exemple de signaux aléatoires

9.1 Bruit blanc

Un signal aléatoire à temps discret (dorénavant on désignera ce signal simplment ”signal áléatoire

discret”) avec 10 échantillons est généré par la commande Matlab/SysQuake

> rand(1,5)

ans =

0.2769 0.6632 0.5316 0.0946 0.6807

Il s’agit d’une collection de nombre ∈ R compris entre 0 et 1 et manière équidistribuée.

Pour illustré ceci soit la commande

sum(max(rand(1,6000)<0.63,0)/6000)

ans =

0.6365

En théorie, si on augment le nombre d’échantillons (ici 6000) la réponse 0.6365 tendera vers 0.63 si

la répartition est équidistribuée entre 0 et 1.

Une série d’échantillon d’un tel signal est donné à la figure 30. Les commandes associées en SysQuake

sont

xk = rand(1,1000);

plot(xk);

scale([0,1000,-0.5,1.5]);
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Figure 30 – En abscisse, l’indice k de l’échantillon xk et en ordonnée la valeur de la variable aléatoire

xk ∈ [0, 1]. Les valeurs sont équidistribuées dans l’intervalle [0, 1].

9.2 Mouvement brownien

Le mouvement brownien est un modèle mathématique du mouvement d’une particule en suspension

sur un liquide sans force extérieur. Le botaniste Brown a remarqué un mouvement erratique de la

particule sous l’effet microscopique du liquide. Un modèle d’un tel processus est un déplacement

infinitésimal dx dans une direction angulaire arbitraire dans l’intervalle ]0; 2π] à chaque instant. En

prenant un déplacement petit, il est possible de faire une simulation d’un tel mouvement aléatoire

avec le code suivant :

N = 7000;

xk = rand(1,N);

angle = 2*pi*xk;

xb = zeros(1,N);

yb = zeros(1,N);

dd = 0.01;

for i=1:N-1,

xb(i+1) = xb(i) + dd*cos(angle(i));

yb(i+1) = yb(i) + dd*sin(angle(i));

end;
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plot(xb,yb);

scale(’equal’,[-0.4,0.4,-0.4,0.4]);

Mathématiquement, on peut écrire le mouvement sous la forme

dx = cos(θ(t)) dt

dy = sin(θ(t)) dt

où θ(t) est une fonction aléatoire continue qui prend les valeurs entre 0 et 2π selon une distribution

uniforme. Le résultat est illustré à la figure 31.
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Figure 31 – Illustration du mouvement Brownien discret avec un pas constant et un angle de

déplacement uniformément distribué entre 0 et 2π.

Lorsque plusieurs réalisations du même mouvement Brownien sont dessinées simultanément, le résultat

est une densification qui finit par couvrir tout le rectangle d’observation comme illustré à la figure

32. Cela ressemble à ce que l’on pourrait observé soujs un arbre en été avec un feuillage dense et

avec fort contraste.
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Figure 32 – Lorsque plusieurs mouvements browniens issus de la même condition initiales sont

superposés, cela recouvre de manière dense la zone de représentation.

Si on représente une des deux coordonnées, par exemple x, le résultat obtenu est illustré à la figure 33.

On obtient une courbe qui ressemble également à une valeur cotée en bourse sous fortes fluctuations.
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Figure 33 – Coordonnée x du mouvement Brownien discret

.
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9.3 Bruit de grenaille

Un bruit de grenaille est un bruit de fond caractérisé par de petites ”explosions” aléatoires. C’est ce

que l’on entend sur les vieux gramophones sujet à de la poussière sur les disques lorsque le disque

est en bout de course. Il n’y a plus de musique et l’aiguille du gramophone enregistre le bruit de la

poussière. Le bruit de grenaille est également présent par émission électronique lorsqu’un électron

dans un tube à vide rencontre une plaque et détache une émission électronique supplémentaire

(deuxième émission électronique). Il est également présent dans d’autres situations physiques.

Sa modélisation mathématique consiste en une suite de réponses impulsionnelles avec un instant

initial aléatoire. Le signal est alors la superposition de ces réponses impulsionnelles. Il est possible

de maintenir la réponse impulsionnelle constante en amplitude quelle quel que soit l’instant initial,

ou alors de modifier l’amplitude de celle-ci de manière aléatoire également.

Voici un exemple de génération d’un bruit de grenaille discret :

N = 30;

space = rand(1,N);

grT = [];

for i=1:N

gr = zeros(1,40);

gr(round(space(i)*30)+1) = 1;

grT = [grT,gr];

end;

brGren = filter(1, [1, -0.8], grT);

plot(brGren);

et correspond à des réponse impulsionnelle de la fonctiond e transfert en z

H(z) =
1

z − 0.8

et son illustration à la figure 34.
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Figure 34 – Le bruit de grenaille est une superposition de réponses impulsionnelles à des instants

aléatoires. La fonction de transfert associée à la réponse impulsionnelle comporte une seul pôle réel

à l’intérieur du cercle unité en 0.8.

Un autre exemple en prenant la fonction de transfert

H(z) =
1

z3 − 2.3z2 + 2.11z − 0.765

qui est obtenue avec la modification du code précédant en utilisant la ligne

brGren = filter(1, poly([0.9, 0.7+0.6j, 0.7-0.6j]), grT);

est donné à la figure 35.
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Figure 35 – Le bruit de grenaille est une superposition de réponses impulsionnelles à des instantes

aléatoires. Ici, la réponse impulsionnelle est oscillatoire amortie avec une paire de pôle complexes

conjuguées et un pôle réel tous dans le cercle unité.

9.4 Sinus noyé dans du bruit

Soit un signal harmonique avec du bruit gaussien. Deux cas caractéristiques sont à remarquer. Le

premier est lorsque le signal sinusöıdal est fort vis-à-vis du bruit.

xk = 0.2vk +
√

2 sin

(
2π
f0

N
k

)
xk = 0.2*randn(1,2048) + sqrt(2)*sin(2*pi*(1:2048)*40/2048);

Ici f0 = 40, N = 2048 échantillons.
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Figure 36 – Signal harmonique corrompu par un bruit blanc gaussien faible. Le signal sinusoidal

est facilement reconnaissable.

Le second cas est lorsque le bruit est tellement fort que le sinus n’est plus reconnaissable au niveau

temporel

xk = 4vk +
√

2 sin

(
2π
f0

N
k

)
xk = 4*randn(1,2048) + sqrt(2)*sin(2*pi*(1:2048)*483/2048);

Ici f0 = 483 et N = 2048 échantillons.
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Figure 37 – Signal harmonique corrompu par un bruit blanc gaussien fort. Le signal sinusoidal

n’est pas reconnaissable.

9.5 Bruit blanc filtré, ou bruit coloré

Lorsque la représentation fréquentielle (cf. densité spectrale de la section suivante) est uniforme quelle

que soit les fréquences, le signal est appelé bruit blanc par analogie à la lumière blanche qui est la

superposition de toutes les couleurs, de toutes les ondes comprises dans le spectre visible du rouge

au violet (les infra-rouges et les ultra-violets sont invisibles).

Lorsque la représentation fréquentielle n’est plus uniforme, au sens que le signal comporte des contri-

butions fréquentielles non uniformes, de différentes intensités, le signal est appelé bruit coloré. Par

exemple, en passant un bruit blanc dans un filtre passe-bas de Tchebychev

H(z) =
0.0154z3 + 0.0462z2 + 0.0462z + 0.0154

z3 − 1.99z2 + 1.5715z − 0.4583

à l’aide des commandes

(num,den) = cheby1(3,0.5,0.2);

rand(’seed’,777);

xk = filter(num,den, randn(1,2048));

on obtient un bruit représenté à la figure 38.
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Figure 38 – Le bruit coloré est un bruit qui n’a pas une représentation fréquentielle uniforme. La

figure représente le résultat de passer un bruit blanc gaussien dans un filtre passe bas.

10 Analyse spectrale non paramétrique

10.1 Fonction de covariance et de corrélation

La solution d’une équation différentielle ordinaire montre qu’une condition initiale donnée permet

de prédire avec une grande précision la solution sur un intervalle de temps pas trop grand. Lorsque

le signal provient d’un phénomène aléatoire, il est bien difficile de donner autant de précision entre

l’observation de la valeur du signal disons à l’instant t1 et celle à un instant t2.

Les fonctions de covariance et de corrélation permet de caractériser au premier ordre l’influence entre

deux instant sur la prévisibilité du phénomène.

Définition 10.1. (corrélation instationnaire) La fonction de corrélation pour deux signaux

aléatoires de moyenne nulle est définie comme l’espérence mathématique du produit des valeurs du

signal entre deux instants. Lors de signaux discrets, la corrélation est définie pour deux signaux

discrets complexes avec xk = x(k) ∈ C et yk = y(k) ∈ C de moyenne nulle comme

γxy(k, l) = E{x∗(k)y(k)}

et dans le cas continu par

γxy(t1, t2) = E{x∗(t1)y(t2)}
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Définition 10.2. (fonction de covariance instationnaire) dans le cas de deux signaux

discrets complexes instationnaires de moyenne mx et my, la fonction de covariance est définie par

γxy(k, l) = E{(x(k)−mx)
∗(y(k)−my)}

et dans le cas continu par

γxy(t1, t2) = E{(x(t1)−mx)
∗(y(t2)−my)}

L’espérance mathématique est prise sur un ensemble infini de réalisation du signal aléatoire (sur une

infinité de réalisations du processus stochastique).

10.1.1 Stationarité

Sous hypothèse de stationarité, la fonction de corrélation ne dépend pas de l’instant k et on peut

définir

Définition 10.3. (fonction de corrélation stationnaire)

γxy(k) = E{x∗(l)y(l + k)}

Définition 10.4. (fonction de covariance stationnaire)

cxy(k) = E{(x(l)−mx)
∗(y(l + k)−my)}

Comme précédemment l’espérance mathématique est prise sur un ensemble infini de réalisation du

signal aléatoire (sur une infinité de réalisations du processus stochastique).

Si on considère le signal {y(k)} comme identique au signal {x(k)}, on obtient la fonction d’auto-

corrélation.

Définition 10.5. (fonction d’auto-corrélation) La fonction d’auto-corrélation d’un signal

stationnaire aléatoire discret à valeurs complexes de moyenne nulle est définie par

γx(k) = E{x∗(l)x(l + k)} (8)

Définition 10.6. (fonction d’auto-covariance) La fonction d’auto-covariance d’un signal

discret stationnaire complexe est définie par

cx(k) = E{(x(l)−mx)
∗(x(l + k)−mx)}
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10.1.2 Ergodicité

Les espérances mathématiques des définitions à la section précédente sont prises sur un ensemble

infini de réalisations du processus stochastique générant le signal aléatoire.

Pour une grande partie de signaux aléatoires et de processus stochastiques, il est possible de prendre

l’espérance mathématique comme la moyenne sur un signal donné. Les hypothèses qui rendent ceci

possible sont les hypothèses dites d’ergodicité. On obtient alors les relations suivantes

Théorème 10.1. (sous hypothèse d’ergodicité )

γxy(k) = lim
N→∞

1

2N + 1

N∑
l=−N

x∗(l)y(k + l)

γx(k) = lim
N→∞

1

2N + 1

N∑
l=−N

x∗(l)x(k + l)

Remarque : Toutes les formules où apparaissent l’espérance mathématique E{.} sont à remplacer

par celles utilisant la moyenne temporelle limN→∞
1

2N+1

∑N
−N(.).

Remarque : Les fonctions de covariance et de corrélation (auto-corrélation, etc.) sont tous des signaux

déterministes et se représentent comme des fonctions bien définies de leur argument. Il n’est plus

question de réalisation du processus aléatoire.

10.2 Théorème de Wiener-Khinchin

10.2.1 Densité spectrale de puissance

La densité spectrale de puissance représente la distribution de la puissance selon les fréquences qui

existent dans un signal aléatoire. Cette relation est démontrée dans ce paragraphe.

Définition 10.7. (énergie d’un signal aléatoire) L’énergie d’un signal est définie par

E =

∫ ∞
−∞
|x(t)|2dt

Pour une vaste classe de signaux aléatoires (bruit blanc par exemple) cette énergie est infinie et ne

peut pas être calculée à l’aide de cette formule. En effet, le signal aléatoire n’a pas la tendance à

s’évanouir avec le temps rendant cette intégrale infinie.

Une manière de s’en sortir est d’utiliser les bonnes propriétés d’évanouissement de la fonction

de corrélation même lorsque le signal n’admet pas de tranformée de Fourier. La fonction d’auto-

corrélation est un signal déterministe qui admet une transformée de Fourier avec des propriétés

intéressantes.
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10.3 Energie et fonctions de corrélation

Le théorème de Wiener-Khinchin donne la relation entre un processus stochastique et sa fonction de

corrélation. Pour être plus précis, si on donne une fonction arbitraire déterministe ayant les propriétés

que la fonction de corrélation possède, il est possible de construire un processus stochastique ayant

précisément cette fonction de corrélation. C’est loin d’être évident philosophiquement ! A l’inverse, si

on se donne un processus stochastique de fonction de répartition donnée, la fonction de corrélation

peut-être obtenue par la transformée de Fourier-Stieltjes de la fonction de répartition probabiliste.

Donnons le théorème sous la forme continue :

Théorème 10.2. (de Wiener-Khinchin) Pour qu’une fonction γx(t) soit une fonction de d’auto-

corrélation d’un processus stochastique continu et stationnaire, il est nécessaire et suffisant qu’elle

puisse s’écrire sous la forme

γx(t) =

∫ ∞
−∞

cos(tx) dF (x)

avec F (x) la fonction de répartition du processus stochastique.

L’intégrale est une intégrale de Stieltjes.

En ce qui nous concerne, pour les processus stochastiques envisagés, on a le résultat simple suivant,

qui dit simplement que la transformée de Fourier de la fonction de corrélation donne la densité

spectrale.

Sx(f) =

∫ ∞
−∞

γx(t)e
−j2πft

En discret, on a le même résultat

Sx(f) =
+∞∑

k=−∞

γx(k)e−j2πfkh

Remarque : Les instants tk = kh du signal sont discrets, mais l’ensemble des fréquences est continu,

une variable continue f . Dans le cas discret, la densité spectrale est périodique de période 1
h
.

10.4 Formule équivalente de la densité specrale

Le théorème de Wiener-Khichin donne

Sx(f) =
+∞∑

k=−∞

γx(k)e−j2πfk (9)
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Pour l’estimation spectrale il est plus judicieux de trouver une expression équivalente en posant

k = 2M et en prenant la limite M → ±∞ et d’utiliser la propriété

lim
M→+∞

(
1− |k|

2M + 1

)
= 1

Ainsi

Sx(f) = lim
M→∞

2M∑
k=−2M

γx(k)e−j2πfk

= lim
M→∞

2M∑
k=−2M

(
1− |k|

2M + 1

)
γx(k) e−j2πfk

= lim
M→∞

2M∑
k=−2M

(2M − 1− |k|)γx(k) e−j2πfk (10)

En considérant γx(m− n) comme l’entrée (m,n) d’une matrice de dimension (2M + 1)× (2M + 1)

on arrive à la relation

2M∑
−2M

(2M + 1− |k|)γx(k) =
M∑

m=−M

M∑
n=−M

γx(m− n)

ce qui permet d’écrire (10) sous la forme

Sx(f) = lim
M→

1

2M + 1

M∑
m=−M

M∑
n=−M

γx(m− n) e−j2π(m−n)

En partant de la définition de la fonction d’auto-corrélation (8), il est possible de sortir l’opérateur

d’espérence mathématique car e−j2πfn n’est pas aléatoire.

Sx(f) = lim
M→

1

2M + 1

M∑
m=−M

M∑
n=−M

E{x(m)x∗(n)} e−j2π(m−n)

= lim
M→

1

2M + 1
E

{
M∑

m=−M

M∑
n=−M

x(m)x∗(n) e−j2π(m−n)

}
(11)

et on arrive à la formule équivalente pour la densité spectrale où l’espérance mathématique est prise

sur le carré du module de la transformée de Fourier discrète.

Sx(f) = lim
M→∞

E

 1

2M + 1

∣∣∣∣∣
M∑

k=−M

x(k)e−j2πfk

∣∣∣∣∣
2
 (12)

On reconnait le module de la transformée de Fourier du signal qui est une fonction aléatoire à

cause du caractère aléatoire du signal (et non celui du phaseur e−j2πfk). La densité spectrale est un
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signal déterministe par l’entremise de l’espérance mathématique. Il ne s’agit pas d’une transformée

de Fourier discrète car la variable f est continue,

Remarque : On constate l’apparition du carré du module des coefficients de la tranformée de Fourier

d’un signal discret. Dans le cas de la transformée de Fourier d’un signal continu, et en admettant

cette transformée de Fourier comme étant bien définie, il est possible de démontrer le théorème de

Parseval qui donne la relation suivante∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
|X(f)|2df (13)

et qui connecte les composantes de l’énergie par unité de temps à celle par unité de fréquence donne

l’équivalence énergétique entre la représentation temporelle et fréquentielle. Ainsi, la formule (12)

avec la conséquence de (13) montrent bien que la densité spectrale, définie comme la transformée

de Fourier de la fonction d’auto-corrélation (9), représente la distribution de puissance selon les

fréquences dans un signal aléatoire.

10.5 Filtrage linéaire des signaux aléatoires

On considère le filtrage d’un signal par un filtre linéaire donné par sa fonction de transfert G(f) ou

par sa transformée en Z, H(z). La réponse impulsionnelle sera notée {g(k)} pour un signal discret

par analogie à {g(t)} la réponse impulsionnelle d’un filtre linéaire à une impulsionde dirac {δ(t)}. On

pourrait également la noter {h(k)} en relation avec H(z). La linéarité (principe de superposition)

conduit à la relation du produit de convolution entre un signal d’entrée discret {x(k)} et sa sortie

{y(k)}

y(k) = x(k) ∗ g(k) = g(k) ∗ x(k) =
+∞∑
l=−∞

x(l)g(k − l) =
+∞∑
l=−∞

g(l)x(k − l) (14)

Etablissons la relation entre la fonction d’auto-corrélation de l’entrée γx(k) et celle de la sortie γy(k).

Ceci est possible en utilisant la convolution (14) et le fait que la réponse impulsionnelle est un signal

déterministe ce qui perment de l’extraitre de l’opération de l’espérance mathématique :

γy(k) = E{y∗(l)y(l + k)}

= E

{(
+∞∑

u=−∞

g∗(u)x(l − u)

)(
+∞∑
v=−∞

g∗(v)x(l + k − v)

)}

=
+∞∑

u=−∞

g∗(u)
+∞∑
v=−∞

g(v)E{x∗(l − u)x(l + k − v)}
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On va supposer x(k) stationnaire de telle sorte à pouvoir dćaler de u échantillons, et en faisant

changement de variable m = v − u

E{x∗(l − u)x(l + k − v)} = E{x∗(l)x(l + k + u− v)} = γx(k + u− v)

γy(k) =
+∞∑

u=−∞

g∗(u)
+∞∑

m=−∞

g(u+m) γx(k −m)

=
+∞∑

m=−∞

γx(k −m)

(
+∞∑

u=−∞

g∗(u)g(u+m)

)
(15)

On peut récrire le dernier facteur entre paranthèses de (15) sous la forme

+∞∑
u=−∞

g∗(u)g(u+m) =
+∞∑
v=−∞

g∗(m− v)g(v) = g(m) ∗ g∗(m)

qui est la convolution de la réponse impulsionnelle avec le complexe conjugué de la réponse impul-

sionnelle. La formule (15) devient alors une simple convolution et conduit au résultat

γy(k) = γx(k) ∗ g(k) ∗ g∗(k)

En passant dans le domaine fréquentiel

Sy(f) = Sx(f)G(f)G∗(f)

= |G(f)|2 Sx(f)

10.6 L’estimateur spectral simple ou périodogramme

Définition 10.8. (estimateur spectral simple ou périodogramme) L’estimateur spectral

repose sur la définition équivalente (12) en négligeant l’espérance mathématique et en ne prenant que

le nombre d’échantillons à disposition

Ŝx(f) =
1

N

∣∣∣∣∣
N−1∑
k=0

x(k) e−j2πfk

∣∣∣∣∣
2

(16)

Soit {x(k)} le signal aléatoire. On commence donc par calculer la TFD (en utilisant une FFT par

exemple)

X(n) =
N−1∑
k=0

x(k)e−j2πk n N = 0, . . . , N − 1 (17)
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(les bornes de la formule (16) peuvent être modifiées pour arriver à (17) car le signal est supposé

par défaut être périodique lorsqu’on prend la TFD) et ensuite on obtient l’estimateur spectral simple

donné par

Ŝx(n) =
1

N
X(n)X∗(n) n = 0, . . . , N − 1

Remarque : les valeurs entre N/2 et N − 1 représente les fréquence négatives comme dans le cas

déterministe. Les signaux discrets entrâınent une périodicité de la transformée de Fourier qui donne

une représentation multiple de la partie associée aux fréquences négatives.

Le code pour appliquer l’estimateur spectral simple est le suivant :

% estimateur spectral simple

K = 2048;

Xf = fft(xk(1:K));

Sx = 1/K*Xf.*conj(Xf);

figure

scale(’linlog’,[0,0.5,1e-4,10]);

plot((1:K/2)/K,Sx(1:K/2));

Par exemple, pour le bruit coloré par un filtre de Tchebycheff construit par les commandes

use filter;

(num,den) = cheby1(3,0.5,0.2);

rand(’seed’,777);

xk = filter(num,den, randn(1,2048));

dont le spectre théorique est
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Figure 39 –

Le résultat de l’estimateur spectral simple est donné à la figure 40.
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Figure 40 – Résultat de l’estimateur spectral simple pour N = 2048 échantillons du bruit coloré par

le filtre de Tchebychev. Le résultat montre une variance significative autour de la valeur théorique

du spectre. La période d’échantillonnage est normalisée à h = 1. .
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10.7 L’estimateur spectral moyenné

Pour diminuer la variance, l’estimateur moyenné utilise la tranformée de plusieurs sections successives

du signal à analyser et effectue un estimateur spectral simple.

L’estimateur moyenné est alors obtenu en effectuant la moyenne des estimateurs simples.

% estimateur spectral moyenné, cas général

K = 2048;

M = 256;

L = 8;

Sxl = zeros(L,M);

for l=1:L

Sxl(l,:) = fft(xk((l-1)*M+1:l*M));

Sxl(l,:) = 1/M*Sxl(l,:).*conj(Sxl(l,:));

end;

Sx = Sxl(1,:);

for l=2:L

Sx = Sx+Sxl(l,:);

end;

Sx = 1/L*Sx;

figure

scale(’linlog’,[0,0.5,1e-4,10]);

%scale linlog

plot((1:M/2)/M,Sx(1:M/2));

Prenons successivement plusieurs sections du signal. La cas de deux sections est représenté à la figure

41. On constate une diminution de la variance par rapport à l’estimateur simple.
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Figure 41 – Avec N = 2048 échantillons (période d’échantillonnage normalisée à h = 1), et en

prenant la moyenne de L = 2 sections d’échantillons de longueur M = 1024, la variance est réduite

par rapport au cas de l’estimateur spectral simple.

Lorsqu’on augmente le nombre de sections, par exemple au nombre de 4 à la figure 42 et 8 à la figure

43, bien que la variance diminue considérablement, ceci se fait au détriment du biais, bien visible

dans la partie haute fréquence du graphique à la figure 43.
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Figure 42 – Illustration du casN = 2048 avec la moyenne de L = 4 sections deM = 512 échantillons

chacun. La variance diminue mais le bias augmente.
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Figure 43 – N = 2048, L = 8, M = 256. Le biais est très conséquent.

10.8 Estimation de la fonction de corrélation

En pratique, il n’y a qu’un nombre limité d’échantillons à disposition pour évaluer les caractéristiques

du signal. Il n’est pas possible d’appliquer la définition de la fonction d’auto-corrélation car elle

comporte un nombre infini de ces échantillons (définition en utilisant l’ergodicité).

Par contre, il est possible d’appliquer la formule en effectuant uniquement une moyenne sur les

échantillons à disposition.

Définition 10.9. (estimateur de la fonction d’auto-corrélation) Un estimateur de la

fonction de corrélation, noté γ̂x(k) pour une fonction aléatoire discrète complexe (pour le cas réel, il

suffit de supprimer le complexe conjugué de la formule) stationnaire est défini par la formule

γ̂x(k) =

 1
N

∑N−1−k
l=0 x∗(l)x(l + k) k = 0, 1, . . . , N − 1

γ̂∗x(−k) k = −(N − 1),−(N − 2), . . . ,−1
(18)

10.9 L’estimateur spectral adouci dit de Blackman-Tukey

On va montrer que l’estimateur spectral simple peut s’écrire à l’aide de l’estimateur de la fonction

d’auto-corrélation γ̂x(k) comme

Ŝx(f) =
N−1∑

k=−(N−1)

γ̂x(k)e−j2πfk (19)
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Avant de démontrer ceci, on constate que cette formule indique une des raisons des performances

modestes de l’estimateur spectral simple. Par exemple, en considérant l’estimation de γx(N−1), cette

valeur est estimée à l’aide d’un seul échantillon le produit x∗(0)x(N − 1)/N de la formule (18). Ce

produit est très variable (pas d’effet de moyennisation sur ce terme, pas d’espérance mathématique).

Remarque : La formule (19) donne une fonction continue par rapport à la variable f tout comme la

formule (12). Toutefois le nombre d’échantillons est différents. Dans (19), il y a 2N − 1 échantillons

de l’estimée de la fonction d’auto-corrélation γ̂x(k), et dans (12) il y a N échantillons du signal

aléatoire x(k). Ceci aura un grande importance lorsque la variable f est discrétisée par l’entremise

de la transformée de Fourier discrète, et il faut être prudent pour donner les équivalents entre (19)

et (12) lorsqu’on utilise la TFD.

Montrons l’équivalence de (19) et (12). Il s’agit de montrer l’équivalence entre

Ŝx(f) =
N−1∑
k=0

(
1

N

N−1−k∑
n=0

x∗(n)x(n+ k)

)
e−j2πfk

+
−1∑

k=−(N−1)

(
1

N

N−1+k∑
n=0

x(n)x∗(n− k)

)
e−j2πfk (20)

et

Ŝx(f) =
1

N

∣∣∣∣∣
N−1∑
k=0

x(k)e−j2πfk

∣∣∣∣∣
2

(21)

Sans perte de généralité, montrons cette équivalence avec N = 3 et isolons chaque terme en k des

deux sommes d’indice k apparaissant dans (20)

k = 0 1
3

(x∗(0)x(0) + x∗(1)x(1) + x∗(2)x(2)) e0

k = 1 1
3

(x∗(0)x(1) + x∗(1)x(2)) e−j2πf

k = 2 1
3

(x∗(0)x(2)) e−j4πf

k = −2 1
3

(x(0)x∗(2)) e+j4πf

k = −1 1
3

(x(0)x∗(1) + x(1)x∗(2)) e+j2πf
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On peut alors regrouper les termes et factoriser

1

3
(x∗(0)x(0) + x∗(1)x(1) + x∗(2)x(2))

+
1

3
(x∗(0)x(1) + x∗(1)x(2)) e−2πf

+
1

3
(x(0)x∗(1) + x(1)x∗(2)) e+2πf

+
1

3
x∗(0)x(2)e−j4πf

+
1

3
x(0)x∗(2)e+j4πf

=
1

3

(
x(0) + x(1)e−j2πf + x(2)e−j4πf

) (
x∗(0) + x∗(1)ej2πf + x∗(2)ej4πf

)
=

1

3

(
x(0) + x(1)e−2πf + x(2)e−4πf

) (
x(0) + x(1)e−2πf + x(2)e−4πf

)∗
=

1

3

(
3∑

k=0

x(k)e−j2πfk

)(
3∑

k=0

x(k)e−j2πfk

)∗

=
1

3

∣∣∣∣∣
3∑

k=0

x(k)e−j2πfk

∣∣∣∣∣
2

Cette démonstration montre que plus les instants des échantillons sont séparés dans chaque produit,

par exemple x∗(0)x(2) séparés de N − 1 = 2 (le terme x∗(0)x(N − 1)), moins il y a de termes pour

former une moyenne. Il est donc judicieux de ne pas trop mettre de poids sur les échantillons aux

bords de l’estimée de la fonction d’auto-corrélation. Ceci est rendu possible en fenêtrant γ̂x(k).

Définition 10.10. ( estimateur adouci, ou de Blackman-Tukey) Soit w(k) une fenêtre telle

que 0 ≤ w(k) ≤ w(0) = 1, w(−k) = w(k), et w(k) = 0 pour |k| > M

S̃x(f) =
N∑

k=−(N−1)

w(k) γ̂x(k) e−j2πfk
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11 Formulaire

nom définition (signal discret) transformée de Fourier (du signal continu)

rectangulaire w(k) =

 1 |k| ≤M

0 |k| > M
WR(f) = sin(2Mπf)

πf
= 2Msinc(2Mf)

triangulaire w(k) =

 1− |k|
M
|k| ≤M

0 |k| > M
W (f) = 1

M

(
sin(πfM)

πf

)2

Hanning w(k) =

 1
2

+ 1
2

cos πk
M
|k| ≤M

0 |k| > M

W (f) = 1
4
WR

(
f − 1

2M

)
+1

2
WR(f)

+1
4
WR

(
f + 1

2M

)

Hamming w(k) =

 0.54 + 0.46 cos πk
M
|k| ≤M

0 |k| > M

W (f) = 0.23WR

(
f − 1

2M

)
+0.54WR(f)

+0.23WR

(
f + 1

2M

)

Blackman w(k) =


0.042 + 0.5 cos πk

M

+0.08 cos 2πk
M

|k| ≤M

0 |k| > M

W (f) = 0.04WR

(
f − 1

M

)
+0.25WR

(
f − 1

2M

)
+0.042WR(f)

+0.25WR

(
f + 1

2M

)
+0.04

(
f + 1

M

)
Figure 44 – Fenêtres couramment utilisées avec les expressions pour le signal discret et la trans-

formée de Fourier du signal continu (associée au signal). La période d’échantillonnage est normalisée

h = 1.
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nom graphique fenêtre graphique Fourier

rectangulaire
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

-2 -1 1 2

-50

-40

-30

-20

-10

triangulaire
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-80

-60

-40

-20

Hanning

-3 -2 -1 1 2 3

-80

-60

-40

-20

Hamming
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-80

-60

-40

-20

Figure 45 – Représentation graphique des fenêtres avec le choixM = 24. La fréquence est normalisée

de telle sorte que le pic principal de la transformée de Fourier de la fenêtre rectangulalire soit de

largeur 2 [Hz]. Ainsi h = 1
T

= 1
2M

= 1
48

[s].
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12 Annexe : Tables

x(t) X(f)

1 δ(f)

δ(t) 1∑+∞
k=−∞ δ(t− k T ) 1

T

∑+∞
k=−∞ δ

(
f − k 1

T

)
e−j 2πf0t δ(f + f0)

sin(2π f0 t) −j 1
2
δ(f − f0) + j 1

2
δ(f + f0)

cos(2π f0 t)
1
2
δ(f − f0) + 1

2
δ(f + f0)

e−a t
2 √

π
a
e−

π2f2

4a

Table 1 – Transformées de Fourier X(f) =
∫ +∞
−∞ x(t) e−2πft dt.

x(t) X(f)

x(t+ α) ej 2πα f X(f)

e−j 2παtx(t) X(f + α)

x(α t) 1
α

X
(
f
α

)
x(t) ∗ y(t) X(f) · Y (f)

x(t) · y(t) X(f) ∗ Y (f)

x(n)(t) (−j 2π f)nX(f)

Table 2 – Règles des transformées de Fourier
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Linéarité

Z({w1(kh)}+ {w2(kh)}) = Z({w1(kh)}) + Z({w2(kh)})

Z(a{w(kh)}) = aZ(w(kh)) a ∈ C

Décalages temporels

Z(w(kh− dh)) = z−dW (z) d ∈ N

Z(w(kh+ dh)) = zdW (z)−
∑d−1

i=0 z
d−i d ∈ N

Dérivation complexe

Z(khw(kh)) = −hz dW
dz

(z)

Changement d’échelle complexe

Z(akhw(kh)) = W
(
z
ah

)
a ∈ C a 6= 0

Valeurs initiale et finale

w(0) = limz→∞W (z)

limk→∞w(kh) = limz→1(z − 1)W (z) |zi| < 1

Produit de convolution

Z
(∑k

l=0 u(lh)g(kh− lh)
)

= G(z)U(z)

Accumulation

Z
(∑k

l=0w(lh)
)

= z
z−1

W (z)

Différence

Z(w(kh)− w(kh− h)) = z−1
z
W (z)

Table 3 – Tableau de la grammaire de la transformée en Z
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N o w(t) L(w(t)) w(kh) Z(w(kh))

1 δ(t) 1

2 ∆(kh) 1

3 1 1
s

1 z
z−1

4 t 1
s2

kh hz
(z−1)2

5 1
2
t2 1

s3
1
2
(kh)2 h2z(z+1)

2(z−1)3

6 1
(l−1)!

tl−1 1
sl

1
(l−1)!

(kh)l−1 lima→0
(−1)l−1

(l−1)!
· ∂l−1

∂al−1

(
z

z−e−ah

)
7 e−at 1

s+a
e−akh z

z−e−ah

8 t e−at 1
(s+a)2

kh e−akh he−ahz
(z−e−ah)2

9 1
2
t2 e−at 1

(s+a)3
1
2
(kh)2e−akh h2e−ahz(z−e−ah+2e−ah)

2(z−e−ah)3

10 1
(l−1)!

tl−1e−at 1
(s+a)l

1
(l−1)!

(kh)l−1e−akh (−1)(l−1)!

(l−1)!
· ∂l−1

∂al−1

(
z

z−e−ah

)
11 sin(ωt) ω

s2+ω2 sin(ωkh) sin(ωh)z
z2−2 cos(ωh)z+1

12 cos(ωh) s
s2+ω2 cos(ωkh) z(z−cos(ωh))

z2−2 cos(ωh)z+1

13 e−at sin(ωt) ω
(s+a)2+ω2 e−akh sin(ωkh) e−ah sin(ωh)z

z2−2e−ah cos(ωh)z+e−2ah

14 e−at cos(ωt) s+a
(s+a)2+ω2 e−akh cos(ωkh) z(z−e−ah cos(ωh))

z2−2e−ah cos(ωh)z+e−2ah

15 ak z
z−a

16 k ak−1 z
(z−a)2

17 1
2
k (k − 1) ak−2 z

(z−a)3

18 1
(l−1)!

(∏l−2
i=0(k − i)

)
(ak−l+1) z

(z−a)l

Table 4 – Tableau des transformées en Z et de Laplace
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I2n := 1·2···(2n−1)

(4π)n
√

2

Hn(t) :=
∑n

p=0 ap t
p∑n

p=0 ap Ip+q q ≤ n− 1

an
∑n

p=0 ap In+p = 1

Hn(t) := (−1)net
2 dn

dtn
e−t

2∫ +∞
−∞ Hn(t) ·Hm(t) · e−2π t2 dt = 1 m = n∫ +∞
−∞ Hn(t) ·Hm(t) · e−2π t2 dt = 0 m 6= n

x(t) X(f)

Hn(t) e−π t
2

jnHn(f) e−π f
2

Table 5 – Polynômes d’Hermite et leurs propriétés
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13 Ouvrages conseillés

Un livre couvrant la base est [1]. L’aspect numérique est traité dans [2] et [11]. Les autres ouvrages

sont plus avancés et, par ordre de complexité, nous avons [3], [6], [7], [4], et [5]. L’ouvrage théorique [4]

est très intéressant, en particulier pour les polynômes d’Hermite et leurs propriétés par transformée

de Fourier. Le livre [3] est une excellente suggestion pour aller vers plus de théorie tout en conservant

une vue didactique par diverses applications physiques (circuits et radioastronomie). Les ondelettes

sont un incontournable pour tous ceux qui s’intéressent au dilemme temps fréquence dont on a effleuré

la complexité dans ce document. L’aspect stochastique est présent dans [2] et [11] et détaillé dans

[8] et [9]. Pour la partie plus théorique concernant les axiomes des variables aléatoires et la théorie

de la mesure et la définition des processus stochastiques, se référer à, par exemple, [12] et [13].
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