ME-280: Fluid Mechanics Released: 21.05.2025
Tobias Schneider Exercise Class: 28.05.2025
Solutions: 28.05.2025

Problem Set 7: Solutions

1 Uniform flow with a sink

1.1 Mathematics

Problem: Consider a flow that consists of a sink of strength M located at the origin and a uniform flow,
as shown in Figure 1. Infinitely far away from the origin, the flow is parallel to the z-axis with a uniform
velocity, U, and pressure, p. The density of the fluid is p, which is constant.
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Figure 1: See problem 1.1.

(a) Using superposition, determine the stream function, (r,6), and velocity potential, ¢(r,8), for this
system.

(b) Calculate the velocity field for the flow.

(c) Identify the location of any stagnation point in the flow.

(d) Determine the equation for the stagnation streamline.

(e) Determine the pressure along the line y = 0 (i.e. calculate p(z) along y = 0). Does anything unusual
happen to the pressure at x = 07 Explain.

(f) Find the value of x at which the pressure along the line y = 0 is maximized.

Solution: (a) The potential flow system consists of a sink of strength M at the origin and a uniform flow
of strength U in the positive x-direction.
As given in the lecture, the basic solution of a uniform flow is

d(x,y) =Ux or ¢(r,0)=Urcos(d),
Y(x,y) =Uy or (r,0) = Ursin(h).

A sink in cylindrical coordinates is

o(r,0) = —% In(r),
bir,0) = Ly,
2T

with M > 0. Since both ¢ and 1 satisfy the Laplace equation, A¢ = 0 and Ay = 0, which is linear and
homogeneous, we can construct velocity potential and stream function of the system as a superposition of
the two basic flows:
M
¢(r,0)= Urcos(0) — — In(r),

™

¥(r,0)= Ursin(0) — é\—[ﬂ
™



(b) To calculate the velocity field we can use either ¢ or 1. Here we calculate u through the gradient of ¢
in cylindrical coordinates:

_ v (90 100
u= (UT,UQ,O) _v¢_ <6’F’ Taev()) .
? = U cos(f) — 2ﬂ M
" ™o 5 u= <U cos(0) — ) &, — U sin(0)&y.
109 _ —Usin(6) 2mr
roo 7"

(c) A stagnation point occurs in the flow at a point where u = 0. Solving for the values of r and 6 that
cause this for u, and ug, we find that

ug=-Usin(0)=0 = 6=0,+m, £27,..., nw where n is an integer,
M M
= 9) — — - =
u, = U cos(0) pre I 0 = r U (=1)"

The radial component, r, cannot be negative which means n is even. Additionally, if n is an even integer and
we consider that the polar coordinate is only defined for 0 < 6 < 27, then § = 0 . Thus, if we let § = 0, the
position of the only stagnation point of the flow is

M
0=0 d r=—
an r 271’U7
0 and M
or y= allc r= ——.
4 2nU

(d) We evaluate the stream function v constructed in (a) at the stagnation point

The stagnation streamline is defined by 1 = 0 which makes the streamline equation

M
s

(e) In order to calculate the pressure along the line y = 0, we must apply the Bernoulli Equation at a point
on y = 0 relative to a point on y = 0 that is “infinitely” far away. In this case, we will neglect gravity. We are
given that infinitely far away from the origin, the pressure is p,, and the velocity is the free stream velocity,
u=(U,0,0):

1 1
Doo + 5p|u(w — 00,y = 0)]> = p(x) + §p|u(x7y =0)?
1 1
= Poo + 5pU = p(@) + Splule,y = 0).
Evaluating the speed of the flow on the right side of the Bernoulli Equation, we find that

lu(e,y = 0)]* = (uf +uj)

y=0
M M\®
= <U2 cos?(0) — —U cos(f) + () + U? sin2(9)>
mr 2mr y=0
M M \?
— 2 (2 0 2 0)) —— 0
U? (sin®(6) + cos*(0)) 7TTU cos(d) + <27rr) -
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Since we are evaluating the flow along the line y = 0, the radial coordinate is r = |z|. Along y = 0, when
x < 0, the polar coordinate is § = m and we have r = —z. Conversely, when x > 0, the polar coordinate is
f# = 0 and we have r = z. Applying this to the equation above, we can see that the expression for the speed
of the flow squared is the same when x < 0 and when x > 0. Thus, we do not need to examine the pressure
separately for these two regions along y = 0. The speed squared for the flow can therefore be rewritten as:

B 1, , 1 |MU M\
p(r) = poo + ng 2PU TPl (%x)
pM (M
2mx < dmx P

We can see that when we evaluate the pressure at x = 0, the pressure diverges to —oo. This makes sense
because we have idealized the origin as a sink, and a pressure gradient of negative infinity demonstrates how
the fluid is driven into the sink. Therefore, the sink acts as a singularity at (z = 0,y = 0). We can avoid this
problem by saying that the pressure, p(x), is not defined at = 0.

(f) The Bernoulli Equation along y = 0 implies that the pressure is highest where the U? is lowest. Conse-
quently, we know that the maximum pressure occurs at the stagnation point

_ M
x_27rU'

The maximum pressure value can be obtained formally from first and second derivative of the function p(x):

ap 1<MU M2> M2 MU
= p(- =0 <

or ip mx?  2m2x3 om2zd  ma?
- M
r=—.
2nU

We can now apply the second derivative test to check that this critical point is, indeed, a maximum.

9%p 1 (2MU 3M?2 1 2MU 3M?
2 =35P 3 9 2.4 =5p 3~ 7]
Waomge 2 AT 2l Plr(sn) 2 (50)
16m2U4 247202 8m2U?
T TME Mz M
9%p
:> @ <0.

~2x0

Since the second derivative of p(z) evaluated at the critical point is always negative, the pressure is maximized

along y = 0 when
M
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1.2 Flow into a slit

Problem: Water flows over a flat surface at 1.2m/s as shown in Figure 2. A pump draws off water through a
narrow slit at a volume rate of 0.01 m3/s per meter length of the slit. Assume that the fluid is incompressible
and inviscid and can be represented by the combination of a uniform flow and a sink. How far above the
surface, H, must the fluid be so that it does not get sucked into the slit? Use the results from 1.1.

pp———

0.01 m¥s
(per meter of lkength of slit)

Figure 2: See problem 1.2.

Solution: Fluid gets sucked into the slit if it lies below the stagnation streamline which terminates at point
A. Therefore, the height H defines the location of the stagnation streamline in the uniform flow. The
equation of the stagnation streamline was calculated in 1.1d:

M
r sin(f) = ﬁ&
m

Since y = r sin(f), we can express the equation in terms of the vertical coordinate

M

- 27TU9.

Y

To obtain the height y = H in the uniform flow, we take the limit § — 7 so that
M
- 2U°

Note that the given volume rate of drainage through the slit refers only to the space above the flat surface,
while the assumed point sink covers the full space. Consequently, the strength of the sink is twice the given
numerical value

3
0.02 - 2
M=—3 =002—
1m S

m?
0.02 —

= H= 7‘57” = 0.008m.
2x1.2—
s

Compare this exercise with the boundary layer exercise of the previous problem set. It is also possible to
compute H using a control volume approach with mass conservation.



2 Quonset hut

Problem: Wind at velocity Uy, and pressure po, flows past a Quonset hut which is a half-cylinder of radius
a and length L (Figure 3). The internal pressure is p;. Derive an expression for the upward force on the hut
due to the difference between p; and p.

Figure 3: See problem 2.

Solution: The upward force (i.e. the lift) depends on the surface pressure ps on the Quonset hut relative to
the inside pressure p;. Like it was done in the lecture for the flow around a full cylinder, the surface pressure
on the Quonset hut is obtained from the Bernoulli equation once the surface velocity is known. The hut is a
half-cylinder and can be constructed by a superposition of a uniform flow and a doublet. We know that the
given flow geometry has two symmetric stagnation points at # = 0 and 8 = w. Therefore, we do not need a
free vortex to create circulation and change the location of the stagnation points. The streamfunction is

2 .
1/1(7'7 6) = qpuniform + Ydoubtet = UsoT Sin(e) - Umw

2
=Usr <1 - :2) sin(0),

where we consider only the symmetric upper half. The velocity field is given by

1oy a?
vy = i Uso (1 — 7"2) cos(0),

o a?\ .
Vg = _E = _UOO (1 + 7/.2) Sll’l(e).

On the surface where r = a we have
Ups =0,  vgs = —2Ux sin(h).

We obtain the surface pressure ps from the Bernoulli equation which relates to the pressure in the p., in the
uniform flow:

1 1 1
Doo + ipUgo = Ds + ip (Ufs + Ugs) =DPs + §pv33ﬂ
where we neglect gravity effects of the elevation. Inserting vgs we find

Ds = Poo + %pro (1 —4sin*(0)) .

The lift per unit length L is the integrated gauge pressure ps — p;:

Fige _ —/ (ps — p;) sin(8)a db
L 0

T 1
= —/ |:poo + ipUOQO(l — 45sin?(0)) —pi] sin(6)a df
0

1 s
= —(poo —pi)a | sin(f)dl — 5apUgo / sin(6) df + 2apUZ, / sin®(6) d#,
0 0 0



with

(=)

/ " in(0) d = [~ cos(0)]] = 2,
/O7r sin®(0) df = % [cos(30) — 9 cos(8)]y = <.
The lift force is

Fluge = 20L(p: ~ po) — aLpUZ, + SaLoU

= 2aL(p; — pso) + %&Lpro.



3 Rotating shaft in a pipe

Problem: Consider the fully developed flow of an incompressible fluid with viscosity p and density p enclosed
between two concentric cylinders of radii Ry and Ra, (R; < Ra), as shown in Figure 4. The outer pipe is
held stationary, while the inner pipe rotates slowly with a constant angular velocity w. Due to the symmetry
of the system, the pressure gradient only varies spatially in the radial direction; that is, p = p(r).

Fluid

i
u e
\

Figure 4: Rotating shaft in a pipe. See problem 3.

(a) Simplify the Navier-Stokes equations to derive the flow’s equation of motion. State your assumptions.
(b) What are the boundary conditions for the flow?

(c) Calculate the velocity profile of the flow.

(d) If the pressure at r = R; is po, what is the pressure distribution in the fluid, p(r)?

Hint: The general form of the incompressible Navier-Stokes equations in cylindrical coordinates was given
on the last exercise sheet.

Solution: (a) The Navier-Stokes equations in cylindrical coordinate are
Continuity:
10 1 0
gy o) + - 55 (ve) + 5= (v:) =0,

The r-momentum equation:

v =

avr+ % 1 aUT_F %_1
at " mar Tr%%80 TV ez T

_1@4_ + 12 Ay +ia2vr+a2vr_vi_z%
pOr ItV \Gar \or r2 002 022 r2 r290 )’
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_r%+wﬂ(ﬁﬁem> wma*&fne7am)

TE L 2 E
at o
10p 10 ov, 1 0%v, 03,
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We can simplify the equations given the following assumptions. There is no gravity as it is neither mentioned
in the problem description nor indicated in the schematic, so all of those gravity terms vanish. The flow is




steady, so all of the 9()/0t terms vanish. Clearly because the only source of motion is the rotation of the
inner cylinder, the flow is purely in the 6-direction, and by the symmetry, we can see that the velocity does
not vary in the #-direction, thus 9()/96 terms vanish. Additionally, the channel is assumed to be very long
such that all of the 9()/dz terms vanish. Thus, we know that V = vg(r)ép (i.e. all of the terms with v, and
v, vanish). Accordingly, the Navier-Stokes Equations reduce to:

Continuity:
0=0,
The r-momentum equation:
P Op
T
The #-momentum equation:
10 Ovg Vg
il - — =0,
Or or r2
The z-momentum equation:
0=0.

(b) We can see from the §-component of the simplified Navier-Stokes equations that the equation defining vy
is second order, meaning that we will need to implement two boundary conditions to solve for the flow. The
boundary conditions are the no-slip conditions for the flow at the rotating inner cylinder and the stationary
outer cylinder, that is

vg(r = Ry) = wRy,
vo(r = Ry) = 0.

(c) We can solve the equation for vg by finding a simplified form, integrating twice, and solving for the
integration constants by applying the boundary conditions. Doing so, we see that the equation for vy in part
(a) can be simplified to a gradient form:

0 [i;(rve)} 0.

Integrating twice, we find that:

C
vo(r) = Cir + 72

Alternatively, one can expand the equation to the following form:

5 0%vg . %
or? or

—’UgZO,

which is a second order differential equation with non-constant coefficients. This type of ODE is called
Cauchy-Euler equation that allows for solutions of the form Cr™. Replacing vg by Cr™ in the equation we

find n =1 or n = —1. So the general solution to this differential equation is vg(r) = Cir + Cy/r.
In this solution, C; and C5 are constants. When we apply boundary conditions, we find that:
Cy
Ue(Rl) =wR] - wR; =C1R; + R7,
1
Cs
’U@(Rg) =0—-0=C1Ry + —.
Ry



Solving this system of equations, we find that

(d) We can solve for the pressure distribution in the fluid, p(r), by substituting our expression for vg(r) into
the r-component of the Navier Stokes-Equations from part (a):

P2_9p
r 7 ar
Substituting, we find that
2
Op pw? R} (- 2
67’ 2 2 R2
w1 (B
Ry

Integrating this equation, we find that

(r)=A 1 11()+£ +C
P = o2~ R V)T 9RE 0

where A = pw?Rt/(1 - (Ry/ R2)2)2. In this equation, Cy is an integration constant. We can solve for Cj

since we are given that p(r = Ry) = po.

1 2 R?
C() = A < + 71H(R1) - 1) +p0.
°R? | R2 9R}

Substituting this expression into the pressure distribution, we find that:

r? — R? 2 Ry r? — R?
plr) ((2731%%)*1%% “(r)* 2] )“”0’

2 p4 2 2 2 2
N pw” R} re — Rj 2 R, r° — Ry ’
P“)—( PR 2(<2rzgg>+35hl P )T R )T

or




4 Pulled shaft in a pipe

Problem: An incompressible Newtonian fluid flows steadily between two infinitely long, concentric cylinders
as shown in Figure 5. The outer cylinder is fixed, but the inner cylinder moves with a longitudinal velocity
Vo as shown. The pressure gradient in the axial directions is —Ap/l where Ap > 0 is the magnitude of the
pressure difference between to sections of distance [. For what value of Vj will the drag on the inner cylinder
be zero? Assume that the flow is laminar, axisymmetric and fully developed.
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Figure 5: See problem 4.

Solution: The Navier-Stokes equations in cylindrical coordinate are written in the last exercise. In this
problem we can simplify the equations given the following assumptions. There is no gravity. The flow is
steady, so all of the 9()/dt terms vanish. The flow is purely in the 2-direction, and by the symmetry, we can
see that the velocity does not vary in the #-direction, hence all 9()/06 terms vanish. Additionally, the pipe
is assumed to be very long such that all of the 9()/0z terms vanish as well. Thus, we know that V=0, (r)é,
(i.e. all of the terms with v, and vy vanish). Accordingly, the Navier Stokes Equations reduce to:
Continuity:

0=0,
The r-momentum equation:
_op
or’
The #-momentum equation:
0=0,
The z-momentum equation:
10 v, 10p
-——|r =——.
r Or or w0z

Two equations are automatically satisfied and r-momentum only shows that pressure does not depend on 7.
The last equation should be solved to find velocity profile:

L0 () 1o

ror \' or w0z
9 (,0v\ _1rop
or or )  poz
Ov, 12 0p

—>T6T —@@4‘01
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= @& + Cl IH(T) + CQ, (].)

with boundary conditions, v, (r =r,) =0 and v, (r = r;) = V), it follows that:

— U,

rZ Op

OZ@E—FCH]D(TO)—FCQ, (2)
V—ﬁ@+01(»)+0 (3)
0_4}1,(92 1 1073 2-

We subtract equation 2 from 3 to obtain

so that

m
Cy = K -
In (2>
To
The drag on the inner cylinder will be zero if
(Trz)r:ri =0.
Since 7., = p (0v,/0z + v, /Ir), with v, = 0 it follows that
o v,
Tz — 87‘ .

Differentiate equation 1 with respect to r to obtain

e _ 1 (), G
or  2u \ 0z r’

so that at r = r;

1 [/op
L ()6
1 /0 4 ¢ °
(Trz)r:r,y =H ( p) T + o 9z

Thus, in order for the drag to be zero,

1 /op 9 9
i @ r-+VO_4’u<az>(ri_To) 0
2 \0z )" -

or
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5 Time-dependent channel flow

Problem: A section of a water channel is shown in Figure 6. It is [ = 0.5m long and d = 1e¢m wide.
The water is incompressible and has a dynamic viscosity of y = 1073 Ns/m?. The fluid is initially at
rest but at time ¢ = 0, a pump is switched on and the fluid becomes subject to a pressure difference of
AD = pin — Pout = 0.01 kPa along the channel in x-direction. Due to no slip boundary conditions the velocity
at the channel walls is zero: U(y = 0,t) = U(y = d,t) = 0.

(a) Simplify the Navier-Stokes Equations for the planar velocity U(x,t) = U(y,t) i.

Then, solve the time-dependent problem of the vertical velocity profile U(y, t) by calculating

(b) the steady state solution,

(c) the time-dependent solution for the deviations from the steady state.

Hint: Follow the same solution strategy as in the diffusion exercises in problem set 3 and 4.

T_y> -y U(y.t)
—
Pin = T Pout
U(y,t=0)=0

Figure 6: Pressure driven channel flow. See problem 5.

Solution: (a) Navier-Stokes equations are

V.-V
p<—|—V vv) = —Vp+ pg+ uV>v.

For a general velocity field (U, V, W) in Cartesian coordinates, they become

o _ov_ow

ox Oy Oz ’
p(%{+U?+Vaa(;+W(?j)+pr+u<82U 82U ((;222),
(gngmgmwgg) (6‘”/ W 55

In parallel channel flow, V = U(y)i which means V = W = dU/dz = 0U/8z = 0. Assuming that gravity
applies in the y-direction implies that g, = g, = 0. So these equations can be simplified to

0=0,
8U 8p 0*U
- +,U,7,
Por = or Oy?
_ o
0= 7673} + ng,
dp

S0z

The continuity equation is automatically satisfied, and the last two equations only lead to hydrostatic pressure
distribution in the y-direction. The only equation left is the momentum equation in z-direction, thus we

12



need to solve )
o _ oy U
Por = oz 1 oy?’

(b) The steady solution is denoted by U, (y). We know that OU, /0t = 0 and U only depends on y, thus

—@—F d2US
Ox 'udy27

0=

or
dp d?U,
ar M dy? -~
The right hand side is only a function of y while the left hand side does not have any dependency on y so
both sides should be constants; it means that pressure gradient is constant along the channel. Integration of
this equation twice with respect to y gives

10
Us(y) = ﬂa*]; 24+ Cry + Co.

Applying the boundary conditions leads to

Us0)=0—=0=0+0+Cy — Cy =0,

Us(d):0—>0=i%du()ld—ml:—i%d.
Thus,
) = 5 Sty d),
N ) =-L Y (1)
’ 21 Ox d d

(c) U(y,t) can be decomposed into the steady state solution and the deviation from steady state as

Uly,t) = Us(y) + u(y, t).
Inserting the decomposition into the Navier-Stokes equation gives

U  dp U U, du  dp U, u

Por = "oz Mo T Par TPar T Tan THae THape

We know that OU,/dt = 0, and also the steady solution satisfies —9p/0x + pu (0*U,/9y?) = 0. So

ou 9%u

ot~ oyt

Therefore, Navier-Stokes equations for deviation from steady states have been simplified to the diffusion equa-
tion without a source term which makes the problem homogeneous. Initial condition for velocity deviation
can be derived by decomposition of initial condition for U as

)

U(y,0) =0 — u(y,0) + Us(y) = 0 = u(y,0) = —Us(y) = Z%&

The boundary conditions are

13



The diffusion equation with the boundary conditions are linear and homogeneous, so it is possible to express
its solution as a linear combination of the so called base functions that are themselves solutions to the same
PDE with the same boundary conditions:

Opn, aQSDn
ot o2
en(y=10,t) =0,
on(y=d,t) =0.

Using the method of separation of variables, we assume that every base function is a product of a function
that only depends on y and a function that only depends on t (then we try to find such solutions; if we
succeed it means that this assumption is true):

on(y,t) = Yo (y)Tn(t).
By putting this assumption into the diffusion equation:

DYal)Ta(t) _ P (Val)To (1))

ot oy?
dr, %Y,
Ly T T
dt dy?
=Y, T, =vT,Y,
LAn Y
vT, Y,

The left hand side of the above relation is only a function of ¢ while the right hand side is only a function of
y; the equality is only possible if both sides are constants. We call this constant —\,,; the minus sign is only
for convenience. Thus,

17, Y, _ T, + v\ T, =0,

vT, v " Y, + A\ Y, =0.
Thus, the separation ansatz converted one PDE into two ordinary differential equations (ODE) which can
be solved for Y,,(y) and T, (t) independently. The ODE for T,,, which is first order in time, is simply solved
to get:

T,.(t) = exp(—vA,t),

but the ODE for Y,,, which is second order in space, depends on the boundary conditions and the sign of
An. Putting the boundary conditions into the separation of variables assumption, ¢, (y,t) = Y, (y)Tn(t), we
obtain:

Yo.(0)T,(t) =0 — Y,(0) =0,

Y. (d)T,,(t) =0 — Y,(d) = 0.

To solve the ODE for Y,,(y) with above boundary conditions, we consider three cases:

Case i: \, <0
Yo (y) = a1 cosh(v/—\,y) + agsinh(v/—\,y),

— Y, (y) =0.

Yn(O):0—>a1'(1)+a2-(0):0—>a1:O
Y. (d) =0 = agsinh(v—XAd) =0 = a3 =0

Thus in this case, no solution exists except the trivial solution, ¢, =Y,T;, = 0.
Case ii: \,, =0
Yo(y) = a1y + g,

{Yn(O) =0 a;=0

—Y, =0.
Yo(d) =0 — a1 =0 W)

14



In this case also only trivial solution, ¢, = Y, T, = 0, exists.

Case iii: A\, >0

Ya(y) = a1 cos(v/Any) + azsin(v/Auy),

Yn(O):0*)041'(1)4*042'(0):0*)0[1:O,
Yo (d) =0 — agsin(v/A,d) = 0.

For a nontrivial solution sin(y/\,d) should be zero and not as, so

=" =123,
2
S Y, =sin(Vny), An = (%) n=1,23,

Thus, the base functions are

nm\ 2

on(y, 1) = Yo ()T (t) = sin(v/Mny) exp(—vAnt),  Ap = (7) n=1,2,3 ..

and the unsteady solution, that is a linear combination of base functions, becomes
= ZAngan(y,t) = ZA” sin(v/Any) exp(—vAnt), A, = (7) .
n=1 n=1
Setting ¢ = 0 in the solution ansatz and using the initial condition, we get
d? o
u(y ZA sm(Fy)exp —vAp, - 0) ZAnsm (mr ):ﬂ£% (1—%).

To obtain A,,, we multiply the whole expression by sin(v/A,,y) and integrate from 0 to d:
d d 2
. o/mm d® 0
/0 sin (—y) Z A, sin ( ) dy = / sin <7y) (maiz (1 d>> dy.
Since the summation is over n, the integral and sum are commutable:
d 2
mm . /nT B . /mm d“ opy
St [ () s () = [ () (5524 (1= %)

If n # m the integral at the left hand side is 0 and only if n = m it is not zero. So the summation will
collapse to only one term:

A, / Sln sm (%y) dy = /Od sin (%ry) <;izg]sz (1 d>) dy
(o) Lo ()

2 Ou /Od sin? (%Ty) dy
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So we need to evaluate the integrals:

—d ¢

/Od sin (%Ty) (v° —yd)dy = %Tl(y2 — yd) cos (%ﬁy) i | cos (%ﬂy) (2y — d)dy

—o4 L | Ligy_q in(l ) d—d/dQ m(E )d
P > Y o nmJg ® a?)v
d d\* rnm d\’
0+ oo 042 (mr) cos (7y) 0] =2 (mr) (cos(nm) — 1)

d
Thus,
¢ nr 9 a\® n
) _(_W)/O sin (%) (0 = vy (_1%)2(7”) (1" - 1)
B @y B
0 d 2
_ 21— (=1)") 9p
N (nm)3p oz’
and,
= = 2d%(1— (=1)") dp . /nm nm 2
u(y,t) = Z Anpn(y, t) = Z ~ n)®n o sin (731) exp | —v (7> L,
n=1 n=1
and,

d* 9 o 2d%(1 — (=1)") 0 2
U(y,t)=U5+u(y,t):_Z£% (1—Z)+21Waisin(gy)exp (—V (%) t).

By putting the given numbers into this formula and using dp/0x = Ap/Az (“homogeneous in x”) we obtain

~(0.01m)* 10Pa y (1_ Yy )
2-0.001 Pa-s0.5m 0.01m 0.01m

> 2(0.01m)%(1 — (=1)") 10 Pa . nm 0.001 Pa-s / nm \2
- : t),
2 (nm)3-0.001Pa-s 05m (0.01 my) P\ 71000 kg /m3 (0.01 m)

Uly,t) =

n=1

Uy, t) =100 (i) y <1 100 <iL> y)
n i W (%) sin <1oo (;) mry) exp <0.01 (1) (m>2t)_

n=1

or
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