

Problem Set 7: Navier-Stokes Equations

1 Uniform flow with a sink

1.1 Mathematics

Consider a flow that consists of a sink of strength M located at the origin and a uniform flow, as shown in Figure 1. Infinitely far away from the origin, the flow is parallel to the x -axis with a uniform velocity, U , and pressure, p_∞ . The density of the fluid is ρ , which is constant.

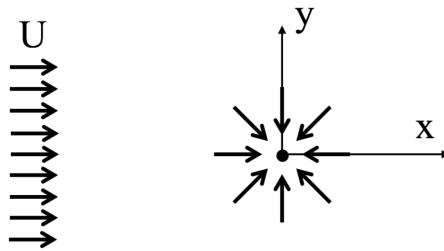


Figure 1: See problem 1.1.

- (a) Using superposition, determine the stream function, $\psi(r, \theta)$, and velocity potential, $\phi(r, \theta)$, for this system.
- (b) Calculate the velocity field for the flow.
- (c) Identify the location of any stagnation point in the flow.
- (d) Determine the equation for the stagnation streamline.
- (e) Determine the pressure along the line $y = 0$ (i.e. calculate $p(x)$ along $y = 0$). Does anything unusual happen to the pressure at $x = 0$? Explain.
- (f) Find the value of x at which the pressure along the line $y = 0$ is maximized.

1.2 Flow into a slit

Water flows over a flat surface at 1.2 m/s as shown in Figure 2. A pump draws off water through a narrow slit at a volume rate of $0.01 \text{ m}^3/\text{s}$ per meter length of the slit. Assume that the fluid is incompressible and inviscid and can be represented by the combination of a uniform flow and a sink. How far above the surface, H , must the fluid be so that it does not get sucked into the slit? Use the results from 1.1.

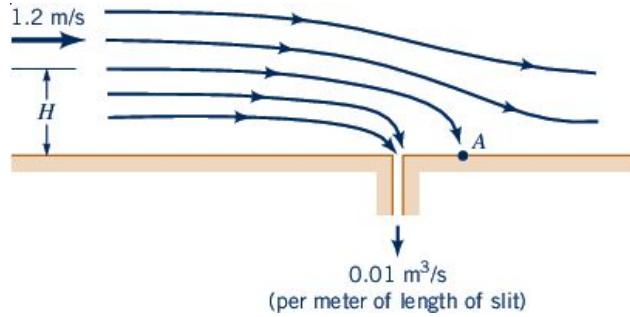


Figure 2: See problem 1.2.

2 Quonset hut

Wind at velocity U_∞ and pressure p_∞ flows past a Quonset hut which is a half-cylinder of radius a and length L (Figure 3). The internal pressure is p_i . Derive an expression for the upward force on the hut due to the difference between p_i and p_s .

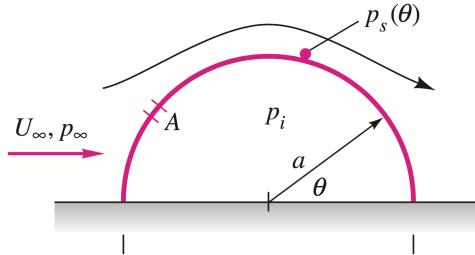


Figure 3: See problem 2.

3 Rotating shaft in a pipe

Consider the fully developed flow of an incompressible fluid with viscosity μ and density ρ enclosed between two concentric cylinders of radii R_1 and R_2 , ($R_1 < R_2$), as shown in Figure 4. The outer pipe is held stationary, while the inner pipe rotates slowly with a constant angular velocity ω . Due to the symmetry of the system, the pressure gradient only varies spatially in the radial direction; that is, $p = p(r)$.

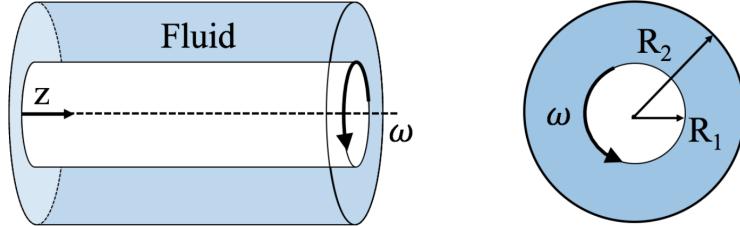


Figure 4: Rotating shaft in a pipe. See problem 3.

- (a) Simplify the Navier-Stokes equations to derive the flow's equation of motion. State your assumptions.
- (b) What are the boundary conditions for the flow?
- (c) Calculate the velocity profile of the flow.
- (d) If the pressure at $r = R_1$ is p_0 , what is the pressure distribution in the fluid, $p(r)$?

Hint: The general form of the incompressible Navier-Stokes equations in cylindrical coordinates was given on the last exercise sheet.

4 Pulled shaft in a pipe

An incompressible Newtonian fluid flows steadily between two infinitely long, concentric cylinders as shown in Figure 5. The outer cylinder is fixed, but the inner cylinder moves with a longitudinal velocity V_0 as shown. The pressure gradient in the axial directions is $-\Delta p/l$ where $\Delta p > 0$ is the magnitude of the pressure difference between two sections of distance l . For what value of V_0 will the drag on the inner cylinder be zero? Assume that the flow is laminar, axisymmetric and fully developed.

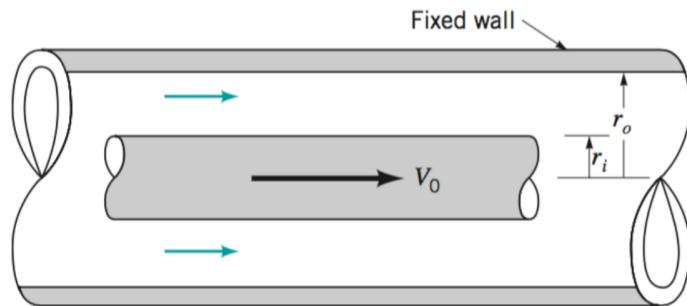


Figure 5: See problem 4.

5 Time-dependent channel flow

A section of a water channel is shown in Figure 6. It is $l = 0.5 \text{ m}$ long and $d = 1 \text{ cm}$ wide. The water is incompressible and has a dynamic viscosity of $\mu = 10^{-3} \text{ Ns/m}^2$. The fluid is initially at rest but at time $t = 0$, a pump is switched on and the fluid becomes subject to a pressure difference of $\Delta p = p_{in} - p_{out} = 0.01 \text{ kPa}$ along the channel in x -direction. Due to *no slip* boundary conditions the velocity at the channel walls is zero: $\mathbf{U}(y = 0, t) = \mathbf{U}(y = d, t) = 0$.

(a) Simplify the Navier-Stokes Equations for the planar velocity $\mathbf{U}(\mathbf{x}, t) = U(y, t) \hat{\mathbf{i}}$.
 Then, solve the time-dependent problem of the vertical velocity profile $U(y, t)$ by calculating
 (b) the steady state solution,
 (c) the time-dependent solution for the deviations from the steady state.

Hint: Follow the same solution strategy as in the diffusion exercises in problem set 3 and 4.

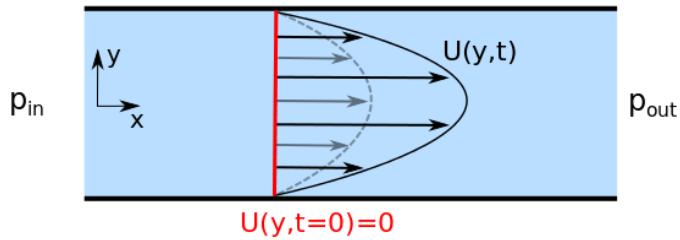


Figure 6: Pressure driven channel flow. See problem 5.