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Problem Set 6: Solutions

1 Circulation

Problem: We want to analyze the circulation, Γ, for a flow in a two-dimensional channel. The velocity
profile for the channel flow is

u(y) = um

[
1− 4

(y
h

)2
]
,

where um is the maximum velocity, as shown in Figure 1 (note that y = 0 is at the center of the channel).

Figure 1: See problem 1.

(a) Calculate the circulation of the flow, Γ, along the dashed rectangular contour shown in Figure 1.
(b) Calculate the circulation of the flow, Γ, along a rectangular contour that extends from the bottom wall
of the channel to the centerline (i.e. the bottom half of the dashed contour in Figure 1).
(c) Compute the vorticity (ω = ∇× u) and, noting that Γ =

∫∫
ω dxdy where ω is the vorticity component

normal to the xy-plane, explain the results of parts (a) and (b).

Solution: (a) We evaluate the line integral along the dashed line in the counterclockwise direction indicated
in Figure 1:

Γ =

∮
u · ds =

∫ x0+∆x

x0

u(x,−h/2) · (̂idx) +
∫ h/2

−h/2

u(x0 +∆x, y) · (̂jdy)

+

∫ x0+∆x

x0

u(x, h/2) · (−̂idx) +

∫ h/2

−h/2

u(x0, y) · (−ĵdy).

The piecewise integrals along the same dimension are combined to

Γ =

∫ x0+∆x

x0

[u(x,−h/2)− u(x, h/2)] dx

+

∫ h/2

−h/2

[v(x0 +∆x, y)− v(x0, y)] dy.

The first integral is zero because u(−h/2) = u(h/2) = 0 and the second integral is zero because v ≡ 0. Thus,
the circulation is zero:

Γ = 0.

(b) Now, let the closed contour exclude the upper half of the channel so that y ranges from −h/2 to 0. We
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integrate again in counterclockwise direction:

Γ =

∮
u · ds =

∫ x0+∆x

x0

u(x,−h/2) · (̂idx) +
∫ 0

−h/2

u(x0 +∆x, y) · (̂jdy)

+

∫ x0+∆x

x0

u(x, 0) · (−̂idx) +

∫ 0

−h/2

u(x0, y) · (−ĵdy)

=

∫ x0+∆x

x0

[u(x,−h/2)− u(x, 0)] dx+

∫ 0

−h/2

[v(x0 +∆x, y)− v(x0, y)] dy

=

∫ x0+∆x

x0

[
um

(
1− 4

1

4

)
− um (1− 0)

]
dx+ 0 = [−um x]

x0+∆x
x0

.

In this case we find a non-zero circulation:
Γ = −um∆x.

(c) In general, the vorticity for planar flow in the xy-plane is

ω =

(
∂v

∂x
− ∂u

∂y

)
k̂ = − ∂

∂y

[
um

(
1− 4

y2

h2

)]
k̂ = 8

umy

h2
k̂.

So, the vorticity is positive above the centerline (ω > 0 for y > 0) and negative below (ω < 0 for y < 0). If
the circulation Γ has equal contributions from the upper and the lower part, they cancel. That is,

Γ =

∫∫
A

ω · k̂ dA =

∫ x0+∆x

x0

∫ h/2

−h/2

8
umy

h2
dy dx =

8um∆x

h2

[
y2

2

]h/2
−h/2

= 0.
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2 Tornado

Problem: A tornado may be modeled as the circulating flow shown in Figure 2, with vr = vz = 0 and vθ(r)
such that

vθ =

ωr r ≤ R
ωR2

r
r > R

Determine whether this flow pattern is irrotational in either the inner or the outer region. Using the r-
momentum equation (see the last page of this exercise sheet), determine the pressure distribution p(r) in the
tornado, assuming p = p∞ as r → ∞. Find the location and magnitude of the lowest pressure.

Figure 2: See problem 2.

Solution: We compute the vorticity ξ⃗ of the given flow using its definition in cylindrical coordinates (see

the last page), where we use the short notation ξ⃗ = (ξr, ξθ, ξz) = ξr êr + ξθ êθ + ξz êz:

ξ⃗(r, θ, z) =

(
−∂vθ
∂z

, 0,
1

r

∂

∂r
(r vθ)

)
.

The azimuthal velocity only depends on r and we find for inner and outer region:

r ≤ R : ξz =
1

r

∂

∂r
ωr2 = 2ω = const.

r > R : ξz =
1

r

∂

∂r
ωR2 = 0.

Thus, the inner region is rotational (solid body rotation) and the outer region is irrotational (free vortex ).
The pressure is found by integrating the r-momentum equation

−1

r
v2θ = −1

ρ

∂p

∂r
or

∂p

∂r
=
ρ v2θ
r
.

For the two regions we find

r ≤ R : pinner(r) = ρω2

∫
r dr = ρω2 r

2

2
+ Cinner,

r > R : pouter(r) = ρω2

∫
R4

r3
dr = −ρω

2R4

2r2
+ Couter.

The boundary conditions

BC1: pouter(r = ∞) = p∞,

BC2: pinner(r = R) = pouter(r = R),

determine the integration constants

Couter = p∞,

Cinner = p∞ − ρω2R2.
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We find the pressure fields

r ≤ R : pinner(r)= p∞ +
ρω2

2
(r2 − 2R2),

r > R : pouter(r)= p∞ − ρω2 R
4

2r2
,

with a minimum pressure at the origin r = 0:

min(p(r)) = min(pinner(r)) = p(r = 0) = p∞ − ρω2R2.

The pressure minimum at the center makes the “eye” of a tornado, that is a potential sink which sucks in
the surrounding air. The strength of this sink depends on the rotation rate ω and the size of the core R.
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3 Velocity potential and stream functions

Problem: The velocity field for a 2D flow is given by:

u = C
[
(x2 − y2) î− 2xy ĵ

]
,

where C is a constant.
(a) Calculate the velocity potential for the flow, ϕ(x, y), given the boundary condition ϕ(x = 0, y = 1) = 0.
Is the flow irrotational?
(b) Calculate the stream function for the flow, ψ(x, y), given the boundary condition ψ(x = 1, y = 0) = 0.
Is the flow incompressible?
(c) If C = 1, plot the streamlines and equipotential lines for the flow in the following region: −10 ≤ x ≤ 10
and −10 ≤ y ≤ 10.

Solution: (a) The flow is irrotational if curl(u) = 0:

∇× u = C

(
∂

∂x
(−2xy)− ∂

∂y
(x2 − y2)

)
k̂ = C(−2y + 2y)k̂ = 0.

Therefore, we can find a velocity potential ϕ. Recall that u = ∇ϕ which means

u =
∂ϕ

∂x
and v =

∂ϕ

∂y
,

We integrate along x and introduce a y-dependent integration constant

ϕ(x, y) =

∫
u dx =

∫
C(x2 − y2) dx = C

(
1

3
x3 − xy2

)
+ f(y).

The function f(y) is determined by differentiating ϕ with respect to y and setting it equal to v:

∂ϕ

∂y
= v ⇒ − C2xy + f ′(y) = −C2xy

⇒ f ′(y) = 0

⇒ f(y) = A,

where A is a constant along x and y and can be determined by the boundary condition

ϕ(0, 1) = A = 0 ⇒ ϕ(x, y)= C

(
1

3
x3 − xy2

)
.

(b) The flow is incompressible if ∇ · u = 0:

∇ · u = C

(
∂

∂x
(x2 − y2)− ∂

∂y
(2xy)

)
= C(2x− 2x) = 0.

Therefore, we can find a stream function ψ. Recall that the stream function defines the velocity fields as

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

We integrate along y and introduce an x-dependent integration constant

ψ(x, y) =

∫
u dy =

∫
C(x2 − y2) dy = C

(
x2y − 1

3
y3
)
+ f(x)

The function f(x) is determined by differentiating ψ with respect to x and setting it equal to −v:

∂ψ

∂x
= −v ⇒ C2xy + f ′(x) = C2xy

⇒ f ′(x) = 0

⇒ f(x) = B,
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where B is a constant along x and y and can be determined by the boundary condition

ψ(1, 0) = B = 0 ⇒ ψ(x, y) = C

(
x2y − 1

3
y3
)
.

(c) Equipotential lines and stream lines are plotted for C = 1 in Figure 3. We use the MATLAB function
fcontour() here, but you can choose other plotting methods. The plot illustrates that the contour lines of
ϕ and ψ are always orthogonal on each other.

Figure 3: Equipotential lines (constant ϕ) and streamlines (constant ψ). See problem 3c.

6



Equations of motion in cylindrical coordinates:

The equations of motion of an incompressible Newtonian fluid are given here in cylindrical coordinates:

Continuity:

1

r

∂

∂r
(rvr) +

1

r

∂

∂θ
(vθ) +

∂

∂z
(vz) = 0

The r-momentum equation:

∂vr
∂t

+ vr
∂vr
∂r

+
1

r
vθ
∂vr
∂θ

+ vz
∂vr
∂z

− 1

r
v2θ =

− 1

ρ

∂p

∂r
+ gr + ν

(
1

r

∂

∂r

(
r
∂vr
∂r

)
+

1

r2
∂2vr
∂θ2

+
∂2vr
∂z2

− vr
r2

− 2

r2
∂vθ
∂θ

)

The θ-momentum equation:

∂vθ
∂t

+ vr
∂vθ
∂r

+
1

r
vθ
∂vθ
∂θ

+ vz
∂vθ
∂z

+
1

r
vrvθ =

− 1

ρr

∂p

∂θ
+ gθ + ν

(
1

r

∂

∂r

(
r
∂vθ
∂r

)
+

1

r2
∂2vθ
∂θ2

+
∂2vθ
∂z2

− vθ
r2

+
2

r2
∂vr
∂θ

)

The z-momentum equation:

∂vz
∂t

+ vr
∂vz
∂r

+
1

r
vθ
∂vz
∂θ

+ vz
∂vz
∂z

=

− 1

ρ

∂p

∂z
+ gz + ν

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

)

Vorticity:

Using the short notation ξ⃗ = (ξr, ξθ, ξz) = ξr êr + ξθ êθ + ξz êz:

ξ(r, θ, z) =

(
1

r

∂vz
∂θ

− ∂vθ
∂z

,
∂vr
∂z

− ∂vz
∂r

,
1

r

∂

∂r
(rvθ)−

1

r

∂vr
∂θ

)
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