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Tobias Schneider Exercise Class: 14.05.2025
Solutions: 14.05.2025

Problem Set 6: Solutions

1 Circulation
Problem: We want to analyze the circulation, I', for a flow in a two-dimensional channel. The velocity

profile for the channel flow is
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where w,, is the maximum velocity, as shown in Figure 1 (note that y = 0 is at the center of the channel).
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Figure 1: See problem 1.

(a) Calculate the circulation of the flow, I', along the dashed rectangular contour shown in Figure 1.

(b) Calculate the circulation of the flow, T', along a rectangular contour that extends from the bottom wall
of the channel to the centerline (i.e. the bottom half of the dashed contour in Figure 1).

(c) Compute the vorticity (w = V x u) and, noting that I' = [[ w dxzdy where w is the vorticity component
normal to the xy-plane, explain the results of parts (a) and (b).

Solution: (a) We evaluate the line integral along the dashed line in the counterclockwise direction indicated
in Figure 1:
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The piecewise integrals along the same dimension are combined to
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The first integral is zero because u(—h/2) = u(h/2) = 0 and the second integral is zero because v = 0. Thus,

the circulation is zero:
I'=0.

(b) Now, let the closed contour exclude the upper half of the channel so that y ranges from —h/2 to 0. We



integrate again in counterclockwise direction:
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In this case we find a non-zero circulation:
I'= —u,,Ax.

(c) In general, the vorticity for planar flow in the zy-plane is
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So, the vorticity is positive above the centerline (w > 0 for y > 0) and negative below (w < 0 for y < 0). If
the circulation I' has equal contributions from the upper and the lower part, they cancel. That is,
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2 Tornado

Problem: A tornado may be modeled as the circulating flow shown in Figure 2, with v, = v, = 0 and ve(r)
such that
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Determine whether this flow pattern is irrotational in either the inner or the outer region. Using the r-
momentum equation (see the last page of this exercise sheet), determine the pressure distribution p(r) in the
tornado, assuming p = po as r — oo. Find the location and magnitude of the lowest pressure.
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Figure 2: See problem 2.

Solution: We compute the vorticity 5 of the given flow using its definition in cylindrical coordinates (see
the last page), where we use the short notation & = (§.,89,&.) = &8, + & €p + &, &,

- 0 0
&(r,0,2) = < 31;9 0, iar(rvg)>.

The azimuthal velocity only depends on r and we find for inner and outer region:
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r>R: £, =-—wR?=0.
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Thus, the inner region is rotational (solid body rotation) and the outer region is irrotational (free vortex).
The pressure is found by integrating the r-momentum equation
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For the two regions we find
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The boundary conditions

BC1: Pouter (T ) Poos
BC2: pinner( ) Pouter (7“ = R);

determine the integration constants

Couter = Pcos
Cinner = Poo — PWQRz»



We find the pressure fields
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with a minimum pressure at the origin r = 0:
mln(p(r» = min(pinner(r)) - p(T = 0) = Poo — pw2R2.

The pressure minimum at the center makes the “eye” of a tornado, that is a potential sink which sucks in
the surrounding air. The strength of this sink depends on the rotation rate w and the size of the core R.



3 Velocity potential and stream functions
Problem: The velocity field for a 2D flow is given by:
u=_C|(2* —yQ)i—%yﬂ :

where C' is a constant.

(a) Calculate the velocity potential for the flow, ¢(x,y), given the boundary condition ¢(z =0,y =1) = 0.
Is the flow irrotational?

(b) Calculate the stream function for the flow, ¢ (x,y), given the boundary condition ¢ (z = 1,y = 0) = 0.
Is the flow incompressible?

(c) If C =1, plot the streamlines and equipotential lines for the flow in the following region: —10 <z < 10
and —10 <y < 10.

Solution: (a) The flow is irrotational if curl(u) = 0:

Vxu=C <88x(_2xy) - 8%/(:22 - y2)> k=C(—2y+2p)k=0.
Therefore, we can find a velocity potential ¢. Recall that u = V¢ which means
U= % and v = %
Oz oy’

We integrate along x and introduce a y-dependent integration constant

o(z,y) = /ud:r = /C(x2 —y?)dz=C (:1))903 — acyz) + f(y).

The function f(y) is determined by differentiating ¢ with respect to y and setting it equal to v:

0
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where A is a constant along x and y and can be determined by the boundary condition

$0,1)=A=0 = o(z,y)=C (;173 — ary2>.

(b) The flow is incompressible if V- u = 0:

V-u=C (88x<x2 —y?) — %(23:34)) =C(2x —2x)=0.

Therefore, we can find a stream function 1. Recall that the stream function defines the velocity fields as
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We integrate along y and introduce an xz-dependent integration constant
1
W(z,y) = /udy = /C(ﬂc2 —yH)dy=C (ny - 3y3> + f()

The function f(z) is determined by differentiating ¢ with respect to = and setting it equal to —uv:

‘;—Z =-v = C2ay+f(z)=C2y
= fl(z)=0
= f(z) =B,



where B is a constant along x and y and can be determined by the boundary condition
1
$(1,0)=B=0 = (x,y) =C <x2y - 3y3>-

(c) Equipotential lines and stream lines are plotted for C' = 1 in Figure 3. We use the MATLAB function
fcontour () here, but you can choose other plotting methods. The plot illustrates that the contour lines of
¢ and 1 are always orthogonal on each other.
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Figure 3: Equipotential lines (constant ¢) and streamlines (constant ¢). See problem 3c.



Equations of motion in cylindrical coordinates:

The equations of motion of an incompressible Newtonian fluid are given here in cylindrical coordinates:

Continuity:
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Vorticity:
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