
ME-280: Fluid Mechanics Released: 16.04.2025
Tobias Schneider Exercise Class: 30.04.2025

Solutions: 30.04.2025

Problem Set 5: Solutions

1 Vaccination

Problem: A hypodermic syringe (see Figure 1) is used to apply a vaccine. If the plunger is moved forward
at a steady rate of 20mm/s and if vaccine leaks past the plunger at 0.1 of the volume flow rate out of the
needle opening, calculate the average velocity of the needle exit flow. The inside diameters of the syringe
and the needle are 20mm and 0.7mm.
Hint: You can use a deforming or a non-deforming control volume to solve this exercise.

Figure 1: See problem 1.

Solution: Control volume: If we choose a control volume (CV) which coincides with the entire fluid filled
interior of the syringe (see Figure 2), the CV is deforming with the plunger.

Figure 2: See problem 1.

The Reynolds Transport Theorem together with mass conservation is

∂

∂t

∫
CV

ρ dV +

∫
CS

ρv⃗ · n̂dA = 0.

The deformation of the CV gives

ρ
∂

∂t

∫
CV

dV = −ρ vp As,

with vp = 20mm/s being the velocity of the plunger and As = (π/4) 202 mm2 being the cross-sectional area
of the syringe. The mass flux through the control surface is∫

CS

ρv⃗ · n̂dA = ρQleak + ρQout,

where we know that the leakage and the needle out flow rate relate as Qleak = 0.1Qout. Both fluxes are
positive because the velocity points outward of the CV. Combined we have

vp As = 0.1Qout +Qout = 1.1 voutAn,
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with the needle cross-section area An = (π/4) 0.72 mm2. The exit velocity is

vout =
vp As

1.1An
=

(
20

mm

s

)(π
4
202 mm2

)
1.1
(π
4
0.72 mm2

)
= 14.8

m

s
.

If one chooses a non-deforming control volume which is not in contact with the plunger (for example the
control volume indicated in Figure 3), then ∂

∂t

∫
CV

dV = 0. However, the mass flux through the left surface
inside the syringe becomes a combination of leakage and plunger movement∫

CS

ρv⃗ · n̂dA = −ρ vp As + ρQleak + ρQout .

The following calculation is the same as above.

Figure 3: See problem 1.

2 How to anchor a pipe?

Problem: Water flows through a horizontal, 180◦ pipe bend as is illustrated in Figure 4. The flow cross-
sectional area is constant at a value of 9000mm2. The flow velocity everywhere in the bend is 15m/s.
The absolute pressures at the entrance and the exit of the bend are pin = 210 kPa and pout = 165 kPa,
respectively. Calculate the horizontal (x and y) components of the anchoring force needed to hold the
bended pipe in place. To obtain the force on the pipe you need to choose your control volume wisely.
Hint : Think about the role of atmospheric pressure patm = 101 kPa.

Figure 4: See problem 2.

Solution: This analysis is similar to the one of Example 5.12 of your text book.
Control volume: A fixed, non-deforming control volume that contains the water and the pipe between sections
(1) and (2) at an instant is used. This control volume is chosen to find directly the anchoring force FA. If we
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Figure 5: See problem 2.

choose a control volume that only includes the fluid and not the pipe, then the net forces on the fluid will be
found, and in order to find the anchoring force we need to apply Newton’s second law on the pipe separately.
Therefore, using a bigger control volume that includes both the fluid and the pipe simplifies the analysis.

Forces: The horizontal forces acting on the contents of the control volume in the x and y directions are shown
in Figure 5. Note that P1 and P2 refer to gauge pressures at the inlet and outlet and not to the absolute
pressures given. Atmospheric pressure acts from all sides on the control surface so that the forces cancel.
Thus, P1 = Pin − Patm and P2 = Pout − Patm.

The x-direction component of the linear momentum equation for a steady state flow is∫
CS

uρV⃗ · n̂dA = FAx.

At the sections (1) and (2) the flow is in the y direction and therefore u = 0 at both cross sections and

FAx = 0.

From the y-direction component of the linear momentum equation for a steady state flow, we get∫
CS

vρV⃗ · n̂dA = −FAy + P1A1 + P2A2,

with the pressure forces discussed above.
For one-dimensional flow, the surface integral in the above equation is easy to evaluate and this equation
becomes

−ṁ1v1 + ṁ2(−v2) = P1A1 − FAy + P2A2

→ −v1ρv1A1 − v2ρv2A2 = P1A1 − FAy + P2A2.

From mass conservation we know that ṁ1 = ṁ2 or A1v1 = A2v2, so

FAy = ρA1v1(v1 + v2) + P1A1 + P2A2
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Thus,

FAy =

(
999

kg

m3

)
(9000mm2)(
1000

mm

m

)2 (15 m

s

)(
15

m

s
+ 15

m

s

)(
1

N

kg ·m/s2

)

+
(210 kPa− 101 kPa)(9000mm2)(
1000

mm

m

)2( 1

1000

N

m2 · kPa

) +
(165 kPa− 101 kPa)(9000mm2)(
1000

mm

m

)2( 1

1000

N

m2 · kPa

)
= 5603N.

3 How to anchor a plate?

Problem: A horizontal circular jet of air strikes a stationary flat plate as indicated in Figure 6. The jet
velocity is 40m/s and the jet diameter is 30mm. If the air velocity magnitude remains constant as the air
flows over the plate surface in the directions shown, determine:

(a) the magnitude of FA, which is the anchoring force required to hold the plate stationary.

(b) the fraction of mass flow along the plate surface in each of the two directions shown.

(c) the magnitude of FA, the anchoring force required to allow the plate to move to the right at a con-
stant speed of c = 10m/s.

Figure 6: See problem 3.

Solution: Control volume: The non-deforming control volume shown in Figure 7 is used.

Figure 7: See problem 3.

Forces: The forces on the control volume are shown in the sketch. The system is steady and the energy of
the inflow is equal to the energy of the outflow, because the inflow and the outflow have the same velocities,
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pressures and heights. Therefore, there is no energy loss in the system, or in other words, the flow is assumed
to be inviscid which makes the wall friction force zero.

(a) To determine the magnitude of FA we apply the component of the linear momentum equation along the

direction of FA,
∫
CS

vρV⃗ · n̂dA =
∑

Fy. At section (1), v = Vj sin 30
◦ and at sections (2) and (3) velocity

along y is zero, so the surface integral gives a non-zero result only at section (1). Thus, the momentum
equation in y direction is simplified to

FA = ṁjVj sin 30
◦ = ρAjVjVj sin 30

◦ = ρ
πD2

j

4
V 2
j sin 30◦

=

(
1.23

kg

m3

)
π(0.030m)2

4

(
40

m

s

)2
(sin 30◦)

(
1

N

kg ·m/s2

)
= 0.696N.

Note that a choice of coordinates along the inflow would have made the calculation more complicated.

(b) To determine the fraction of mass flow along the plate surface in each of the two directions shown in the
sketch above, we apply the component of the linear momentum equation parallel to the surface of the plate,∫
CS

uρV⃗ · n̂dA =
∑

Fx, to obtain

Ralong plate surface = ṁ2V2 − ṁ3V3 − ṁjVj cos 30
◦.

Ralong plate surface is zero, because the flow is inviscid. Thus, we obtain

ṁ3V3 = ṁ2V2 − ṁjVj cos 30
◦.

Since V3 = V2 = Vj , the above equation becomes

ṁ3 = ṁ2 − ṁj cos 30
◦.

From conservation of mass we conclude that ṁj = ṁ2 + ṁ3, so

ṁ3 = ṁj − ṁ3 − ṁj cos 30
◦

→ ṁ3 = ṁj
1− cos 30◦

2
= ṁj(0.0670),

and
ṁ2 = ṁj − ṁ3 = ṁj(1− 0.0670) = ṁj(0.933)

Thus, ṁ2 contains 93.3% of ṁj , and ṁ3 contains 6.7% of ṁj .

(c) To determine the magnitude of FA required to allow the plate to move to the right at a constant speed
of 10m/s, we use a non-deforming control volume like the one in the sketch above that moves to the right
with a speed of 10m/s. The translation velocity of the control volume enters the linear momentum equation
for a steady flow as

∫
CS

WyρW · n̂dA =
∑

Fy where W is the velocity field relative to the control volume.
This equation leads to

FA = ṁ1w1 sin 30
◦ =

(
ρ
πD2

j

4
w1

)
w1 sin 30

◦ = ρ
πD2

j

4
w2

1 sin 30
◦

=

(
1.23

kg

m3

)
π(0.030m)2

4

(
40

m

s
− 10

m

s

)2
(sin 30◦)

(
1

N

kg ·m/s2

)
= 0.391N.

5



4 Jet ski

Problem: The thrust developed to propel the jet ski shown in Figure 8 is a result of water pumped through
the vehicle and exiting as a high-speed water jet. For the conditions shown in the figure, what flow rate is
needed to produce a 1.3 kN thrust? Assume the inlet and outlet jets of water are free jets.

Figure 8: See problem 4.

Solution: Control volume: We use the control volume shown in Figure 9, that has only one inlet and one
outlet. The flow is steady.

Figure 9: See problem 4.

Force: The only force on the control volume is the force that should be balanced with the thrust.

For this control volume, the x-component of the momentum equation
∫
CS

uρV⃗ · n̂dA =
∑

Fx becomes

(V1 cos 30
◦)ρ(−V1)A1 + V2ρ(+V2)A2 = fx,

where we have assumed that P = 0 on the entire control volume (free jet assumption) and that the exiting
water jet is horizontal. With ṁ = ρA1V1 = ρA2V2, the above equation becomes

fx = ṁ(V2 − V1 cos 30
◦) = ρV1A1(V2 − V1 cos 30

◦). (1)

Also, due to the conservation of mass A1V1 = A2V2, so

V2 =
A1

A2
V1 =

0.016m2

π

4
(0.09m)2

V1 = 2.5V1. (2)

By combining equations 1 and 2
fx = ρV 2

1 A1(2.5− cos 30◦),

→ V1 =

 1.3 kN(
1001.21

kg

m3

)
(0.016m2)(2.5− cos 30◦)


1/2

= 7
m

s
.

Thus,

Q = A1V1 = (0.016m2)
(
7
m

s

)
= 0.112

m3

s
.
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5 Snowplow

Problem: A snowplow mounted on a truck clears a path of 3.6m width through heavy wet snow, as shown
in Figure 10. The snow is 20 cm deep and its density is 160 kg/m3. The truck travels at 48 km/h. The snow
is discharged from the plow at an angle of 45◦ above the horizontal, as shown in Figure 10. Estimate the
force required to push the plow. Note that the problem is two-dimensional.

Figure 10: See problem 5.

Solution: Control volume: The control volume is chosen such that it includes the snowplow and moves with
it. It has only one inlet and one outlet and the relative velocity of the wet snow is normal to the inlet and
outlet surfaces (see Figure 11).

Figure 11: See problem 5.

Force: Force in this problem is unknown.

To estimate the force required to push the snowplow we use the momentum equation for an inertial, moving
control volume that involves steady flow:∫

CS

WρW · n̂dA =
∑

Fcontents of the control volume.

We neglect the friction force between the plow and the road surface. We also neglect any force associated
with the plow deflecting air. We only consider how much force is required to turn wet snow 135◦.
Since there is only one inlet and one outlet and the velocity is uniform across the flow, we get from the
momentum equation:

Fx = ṁ(w1 + w2 cos 45
◦).

Since,
ṁ = ρAw,

we assume w2 = w1, and get
Fx = ρAw2

1(1 + cos 45◦),

then

Fx =

(
160

kg

m3

)
(0.20m)(3.6m)

(
48

km

h
× 1000m

1 km
× 1h

3600 s

)2

(1 + 0.707) = 34959N.
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6 Water power

Problem: Water is to be moved from one large reservoir to another at a higher elevation as indicated in
Figure 12. The loss of available energy associated with Q = 0.07m3/s pumped from section (1) to (2) is
loss l =

(
61 v̄2/2

)
m2/s2, where v̄ is the average velocity of water in the 20 cm inside diameter piping involved.

(a) Select a control volume which allows you to simplify the general energy equation (RTT with first law of
thermodynamics) to a sum over two surfaces which is valid for the steady-in-the-mean flow of this exercise.
State all assumptions which you apply to arrive at a 1-D equation.

(b) Determine the amount of shaft power in the pump required to pump the water from (1) to (2).

Figure 12: See problem 6.

Solution: (a) The control volume is chosen such that it contains all the fluid including the water in the
reservoirs, the tube and the pump. This control volume contains one inlet, which is the water level of the
lower reservoir, and one outlet, which is the water level of the upper reservoir. By the following assumptions,
1D energy equation can be used to solve this problem:

• The flow is steady-in-the-mean (since there is a pump in the system the flow cannot be steady but it
can be cyclical and steady when averaged over a period, and therefore it is called a steady-in-the-mean
flow). Although the water is continuously being pumped from the lower reservoir to the upper one and
it makes the water levels change in both the reservoirs, but this change is negligible, because reservoirs
are large (quasi-steady assumption).

• Flow is one dimensional; it means that pressure, velocity, and height are uniformly distributed along
the inlet or the outlet of the control volume which seems to be the case, because the inlet and the outlet
of the control volume are the water levels of the large reservoirs where pressure is atmospheric, velocity
is assumed to be zero and height is essentially constant.

(b) The 1D energy equation is:

pout
ρ

+
V 2
out

2
+ gzout =

pin
ρ

+
V 2
in

2
+ gzin + wshaft net in − l.

For the flow from section (1) to (2) the above equation leads to:

0 + 0 + gz2 = 0 + 0 + gz1 + wshaft net in − l

→ wshaft net in = g(z2 − z1) + l,

and

Ẇshaft net in = ṁwshaft net in = ρQ [g(z2 − z1) + l] = ρQ

[
g(z2 − z1) +

61 v̄2

2

]
.
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From the volume flow rate we obtain

v̄ =
Q

A
=

Q
π

4
D2

=
0.07

m3

s
π

4
(0.2m)2

= 2.2
m

s
.

Thus,

Ẇshaft net in =

(
999

kg

m3

)(
0.07

m3

s

)[(
9.81

m

s2

)
(15m) +

61

2

(
2.2

m

s

)2]
= 20613.3

N ·m
s

= 20.6 kW.

7 Boundary layer flow

Problem: The flow of a viscous fluid over a plate results in the development of a region of reduced velocity
adjacent to the wetted flat surface as depicted in Figure 13. The region of reduced flow velocity is called
boundary layer. Inside the boundary layer the viscous force is significant but outside of it the flow remains
inviscid. At the leading edge of the plate, the velocity profile may be considered uniformly distributed with a
value U∞. All along the outer edge of the boundary layer, the fluid velocity component parallel to the plate
is also U∞.

Figure 13: See problem 7.

(a) Approximate the x-direction velocity profile u(y, δ(x)) inside the boundary layer by a second order
polynomial. Here, y is the plate normal direction. Determine the polynomial by considering the following
constraints:

• The velocity at the wall is zero.

• The velocity at y = δ is U∞.

• The shear at y = δ is zero.

(b) A streamline that is initially located at height H, after a length x, intersects the boundary layer tip at
height δ. Using mass conservation for an appropriate control volume of unit length along the cross stream
direction z, find a relation between H and δ(x).

(c) Assuming that the only force acting on the flow is wall friction (we assume p = const.), write the
momentum equation for the same control volume to find an integral equation for δ(x).
Hint : Use the relation of (b) to eliminate H.
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(d) Differentiate the equation to find an ODE of the form δ′ = f(x, δ), and solve it by using an appro-
priate boundary condition.

Solution: (a) The second order polynomial to approximate the velocity profile is u(y, δ) = ay2+ by+ c with
three unknowns that should be found by the constraints. Thus,

u(0) = 0 → c = 0,

u(δ) = U∞ → a(δ)2 + b(δ) = U∞,

u′(δ) = 0 → 2a(δ) + b = 0.

Solution of this system of equations gives

a = −U∞

δ2
,

b = 2
U∞

δ
,

c = 0.

Thus,

u(y, δ) = U∞

(
2
y

δ
−
(y
δ

)2)
.

(b) We use the control volume indicated in Figure 14 to solve this problem. The upper edge of the control
volume is along the streamline, so there is no flux through this edge.

Figure 14: See problem 7.

The mass conservation equation for a non-deforming stationary control volume is

∂

∂t

∫
CV

ρ dV +

∫
CS

ρv⃗ · n̂dA = 0.

The flow is steady state so the first integral becomes zero. The second integral becomes zero at the wall
and the upper edge of the control volume. So the above equation is simplified to two simple integrals at the
sections (1) and (2):

−U∞H +

∫ δ

0

u(y)dy = 0

→ −U∞H +

∫ δ

0

U∞

(
2
y

δ
−
(y
δ

)2)
dy = 0

→ −U∞H +
2

3
U∞δ = 0

→ H=
2

3
δ.
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(c) The linear momentum equation for a stationary control volume in direction of the main flow, x, is

∂

∂t

∫
CV

ρudV +

∫
CS

ρuv⃗ · n̂dA =
∑

Fx.

There is no time dependence in the problem and the surface integral gives non-zero results only at the sections
(1) and (2). The only force acting on the control volume is the wall shear force that is a function of x; so the
total force is the integral of the wall shear along the wall. Thus, the above equation leads to

−ρU2
∞H +

∫ δ

0

ρu2dy = −
∫ x

0

τwdx = −
∫ x

0

µ
du

dy

∣∣∣∣
y=0

dx.

Inserting the results of part (a) and (b) into the above equation gives

−2

3
ρU2

∞δ +

∫ δ

0

ρU2
∞

(
2
y

δ
−
(y
δ

)2)2

dy = −
∫ x

0

µ
d

dy

[
U∞

(
2
y

δ
−
(y
δ

)2)]
y=0

dx

→ −2

3
ρU2

∞δ +
8

15
ρU2

∞δ = −
∫ x

0

2µU∞

δ
dx

→ 2

15
ρU2

∞δ =

∫ x

0

2µU∞

δ
dx.

After simplification and reordering we obtain

δ =
15µ

ρU∞

∫ x

0

1

δ
dx.

(d) Differentiation of the integral equation, obtained in part (c), with respect to x gives the ordinary differ-
ential equation for the boundary layer thickness as a function of x:

dδ

dx
=

15µ

ρU∞

1

δ

→ δ
dδ

dx
=

15µ

ρU∞
.

This ode is solved in the following way

δdδ =
15µ

ρU∞
dx

→
∫

δdδ =

∫
15µ

ρU∞
dx

→ 1

2
δ2 =

15µ

ρU∞
x+ C.

The height of the boundary layer is zero at x = 0. Hence,

δ(x = 0) = 0 → C = 0.

and

δ(x)=

√
30µx

ρU∞
.

Therefore, the boundary layer thickness grows with
√
x.
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