ME-280: Fluid Mechanics Released: 02.04.2025
Tobias Schneider Exercise Class: 09.04.2025
Solutions: 09.04.2025

Problem Set 4: Solutions

1 Surface reaction

A beaker is filled with a chemical liquid which starts to react strongly with oxygen at the surface (Figure 1).
The reaction product diffuses from the surface into the liquid with a diffusion constant D. The concentration
of the reaction product C(z,t) depends only on height z and time ¢. At ¢ = 0, the concentration in the liquid
is zero: C(z,t = 0) = 0. At the surface, the reaction creates a constant concentration of C'(z = H,t) = Cs.
Solve the time-dependent problem of the vertical concentration profile C(z,t) by calculating first the steady
state solution (a) and second the time-dependent solution (b). Follow the steps below:

(al) Boundary conditions: What is the boundary condition at z = 0 (bottom)?
(a2) Steady state: Calculate the steady state solution C(z).

(b1) Homogeneous problem: Consider the decomposition of the concentration profile into the steady
state solution C(z) and the time-dependent deviations ¢(z,¢) around the equilibrium:

C(z,t) = C(2) + é(z, t).

Insert this decomposition into the diffusion equation. State the partial differential equation (PDE) of the
deviation ¢&(z,t) and define the boundary conditions for ¢ at z = 0 and z = H. Is the PDE linear and
homogeneous? Discuss the difference between the boundary conditions of C(z,t) and é(z,t).

(b2) General solution: You want to find the time-dependent deviations from the steady state with the
general solution ansatz

Hzt) = Anpn(z,1).

Calculate the base solutions ¢, (z,t) = Z,(2)T,(t) using the method of separation of variables. State the
general solution for C(z,t). (Hint: Choose your solution ansatz such that it does not become imaginary! Use
a series of sines and cosines for the spatial problem.)

(b3) Solution satisfying initial condition: Having found a general solution for the problem, remem-
ber that, so far, it only satisfies the boundary conditions of the concentration profile. Determine the set
of coefficients A,, for general initial conditions of the deviation é(z,t = 0) = éy(z) by using the “Fourier-
Trick”. Insert the given initial conditions and evaluate the integrals to obtain the final expression for the
time-dependent solution of the total concentration profile C(z,t).

Solution: (al) Boundary conditions: Since at the bottom of the beaker there is a wall and in the time
scale of this problem nothing can diffuse into the wall, there is no flux at z = 0 which means:

jlz=0,t) =0— —Dg—f(z =0,t)=0
ocC
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(a2) Steady state: The steady state solution of
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Figure 1: Beaker filled with a substance which reacts at the surface. See problem 1.

does not depend on time, so

92C . d2C
022 dz?

=0—C=az+ a,

with the boundary conditions

—(0)=0—a1=0
dz 0) o ’
C(H)=0Cs = ag = Ck.
Inserting the coefficients into the general form, the steady state solution of this problem is
C(z) =C,.

This means that after damping unsteady parts of a solution the concentration will be constant and equal to
Cy in the whole beaker.

(b1) Homogeneous problem: Applying the decomposition in the diffusion equation gives
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As shown in (a2), the steady state solution satisfies the diffusion equation (0C/0t = D 92C/0z?), so the
terms related to this part can be canceled which gives

ot 022
which is the PDE that should be solved to find deviation from the steady state. In other words, this equation

governs the unsteady part of the total solution. To find the boundary conditions for the unsteady part we
perform the same decomposition on the boundary conditions:

oC+¢), B oc, oe, B

(C+¢)(z=H,t)=Cs - C(z=H)+é&(z = H,t) = Cs.

From part (a) we know that the steady part is a constant, C(z) = C,, thus



oC 0é ¢

Clz=H)+éz=H,t)=Cs = ¢(z = H,t) =0.

(z=0,t) =0,

Therefore, the unsteady part of the solution should also satisfy the diffusion equation that is a linear PDE.
The boundary conditions for the unsteady part are such that the PDE to find this solution is homogeneous
even though the initial PDE to find the total solution is not homogeneous. It means that by decomposition
of the total concentration into the steady and unsteady parts, a linear and homogeneous PDE is obtained
that can be solved by the method of separation of variables.

(b2) General solution: The PDE obtained in part (bl) is linear and homogeneous, and is subject to
homogeneous boundary conditions. Hence, it is possible to express its solution as a linear combination of the
so-called base functions that are themselves solutions of the same PDE with the same boundary conditions:
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W(Z =0,t) =0,

¢n(z = H,t) =0.

Using the method of separation of variables, we assume that every base function is a product of a function
that only depends on z and a function that only depends on ¢ (then we try to find such solutions; if we
succeed it means that this assumption is true):

on(z,t) = Z,(2) Ty ().

By putting this assumption into the diffusion equation:

O Zn(2)Tu(1)) _ 0% (Zn(2)T(1))
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T, 4?7,
Zp—" = DT, —2
"odt " dz?
— Z,T., = DT, Z.
LT, 7,
DT, Z,

The left hand side of the above relation is only a function of ¢ while the right hand side is only a function
of z; it is not possible unless both sides are constants. We call this constant —\,,; the minus sign is only for
convenience. Thus,

1T,  Z, R T, + DX\, T, =0,

DT, Z, " Z, 4+ A Zn = 0.
Thus, the separation ansatz converted one PDE into two ordinary differential equations (ODE) which can
be solved for Z,,(z) and T,,(t) independently. The ODE for T,,, which is first order in time, is simply solved
to get

T (t) = exp(—DAnt).
The ODE for Z,,, which is second order in space, depends on the boundary conditions and the sign of A,,.

Putting the boundary conditions into the separation of variables assumption, ¢,(z,t) = Z,(z)T,(t), we
obtain

0(Z,T,)
0z
(Z,T,)(z=H,t)=0— Z,(H)T,,(t) =0— Z,(H) =0.

(2=0,t) =0— Z,(0)T,(t) =0 — Z,(0) =0,
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To solve the ODE for Z,,(z) with above boundary conditions, we consider three cases:
Case i: \, <0

1/ = sinh(v/=An2) + azv/— A, cosh(v/=Ap2)
=0—= vV (0)Faay/=An-(1)=0— =0
Zn(H)=0— o cosh(mH) =0—=a; =0

— Zn(z) =0.

Thus in this case, no solution exists except the trivial solution, ¢, = Z,T;,, = 0.
Case ii: \,, =0

In this case also only the trivial solution, ¢, = Z,T, = 0, exists.
Case iii: \,, >0

Zn(2) = a1 cos(v/Anz) 4+ azsin(y/An2)

Z;(z) = —a1 v/ A sin(v/An2) + azv/An cos(v/ An2)
Z,(0) =0 = —a1v/ X (0) + a2v/An - (1) =0 = a2 = 0
Zn(H) =0 — ay cos(v/ A H) =0

For a nontrivial solution cos(v/A, H) should be zero and not a1, so
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— Zp =cos(vV Anz), A

Thus, the base functions are

2n—1
2H

On(2,t) = Zn(2)Tp(t) = cos(v/ Anz) exp(—DAnt), A, = < 7r> n=123,..

and the unsteady solution, that is a linear combination of the base functions, becomes

oo o 2n —1 ?
é(z,t) = ZA"”%I'(Z’t) = ZA,,, cos(v/ Anz)exp(—DApt), A, = ( ’;H 77)

n=1 n=1

(b3) Solution satisfying initial condition: First of all we need to find the initial condition of the unsteady
part, c:

C(z,0) =0 — C(z) + &(2,0) = 0,
C(z) = Oy — &(2,0) = —C,.

Setting ¢ = 0 in the solution ansatz obtained in part (b2) and using the initial condition, we get



= Z A, cos(v/Anz) exp(=DA, - 0) = —Cs — Z Ay cos(v/Anz) =
n=1 n=1
To obtain A,,, we multiply the whole expression by cos(v/A,2) and integrate from 0 to H:

H oo H
/0 cos(\//\mz)ZAn cos(v/Anz)dz :/0 cos(v/ Amz)(—=Cs)dz
n=1

Since the summation is over n, the integral and the sum are commutable:

[eS) H H
;An/o cos(\/gz)cos(\/gz)dz:/o cos(v/Amz)(—Cs)dz

Because of the special property of this method (Fourier trick), the integral is 0 if n # m, and it is not zero
only if n = m. So, the summation will collapse to only one term:

H H
An/o cos(v/Anz) cos(v/ Anz)dz = ; cos(/ Anz)(—Cy)dz

H
cos(v/ A\pz)dz
— A, = —C20

cos? (v A\n2)dz

0

So we need to evaluate the integrals:

(VA= L sm(@"—l)ﬂH): 1 Sin((?n—l)w);_(—nn
1
2
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1

0

Thus,
H
(1"
cos(v/ Apz)dz - n
A, = —C /0 ( ) _ o 20D
n s H s H H /)\ ’
2 — n
/0 cos? (v An2)dz B
and,
o0 20, on—1 \°
2 =3 Auon(ent) = 30 28D (A exp(- D), A= ( ”)
n=1 n=1 H\/i 2H
and,
C(z,t)=C+¢ = C4 +Z co%( Anz)exp(—DApt),  Ap = Qn_l?T 2
n=1 H\/7 o ! P nr " 20 .

This is the final time-dependent solution of this diffusion problem.
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Figure 2: Concentration profile C'(z,t), at t = 0 and at later times, for a limited number N of terms ¢,
(the infinite series is hard to plot). The initial condition cannot be well-represented by a small number of
cosine-functions due to the unnatural jump in concentration at z = H (Gibbs phenomenon), so it is not easy
to see that the infinite series fulfills the initial and boundary conditions. At later times, the concentration
is more smooth and can be properly represented by the series of cosine-functions: The solution fulfills the
boundary conditions at all times, and approaches the steady-state solution for long times.

2 Field lines

Problem: Consider an unsteady planar flow field, u = (u, v), given by

u =z,
v=y- (14 2t).
(a) Calculate an expression for the streamline passing through the point (¢, o) at time ¢. Your equation

should be of the form y = f(x, zo, yo, t).

(b) Calculate an expression for the pathline for a fluid element initially located at the position (z,yo)
at time ¢y. Your equation for the pathline should be of the form y = f(z, zo, yo, to).

(c) Calculate the streakline equation at time ¢ for the family of fluid elements that pass through the
point (zg,yo). Your equation for the streakline should be of the form y = f(x, zo, yo, t).

(d) For (xo,y0) = (1,1) and ¢ = 0, plot the streamline, pathline and streakline in the interval (z,y) €
[0:10] x [0:10]. Animate the changing velocity field for t € [0 : 1].

Solution: (a) An explicit description for the streamline can be derived via a separation of variables and
integration from the initial position (zg,yo) to some final location (x,y):

dy v y

= = — = (14+2t)=

dx u (1+ ):v
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(b) The pathline can be determined by separation of variables, separately for x and y:

da
dt

x 1 t _
€T to

x
= 1H<> = t—1
To

= U=

x
<~ t = t0+ln().
Zo
dy
— =v=y-(1+2t
3 —v=y (2
Y1 t o
& —dy = / (1+2t)dt
yo Y to
& ln<y> = (t+t3) — (to +t2)
Yo
=4 y = yoexp(tth?ftoftg).

Entering the equation for ¢ into the relation for y yields

. 2
{0 (2 (o (2))
Lo To

where tp is a time at which the particle passes the point (zg, yo)-

(c) The streakline is determined like the pathline with one essential difference. Since we are searching
for the locations of particles at time ¢ that have been released at various initial times, tg is the variable
integration limit (not ¢ like in (b)). To find the streakline in the xy-plane, we use the = and y relations,
obtained in (b), and eliminate ¢y between them. In other words, we should find t( in the relation for z, and
enter it in the relation for y to find a relation for y in which z is the only variable:

m(z) —t—t0<:>to—t—hl<z> oy =yoexp (t+ 1> —to — 1)
Zo

Z
& y=yoexp ((1 +2t)In (f()) - (hl (;))2)

Comparing the solutions of (b) and (c¢) makes you realize that they only differ in one sign of the exponent.
This essential difference becomes vilsible in the plot in Figure 3.

(d) The three field lines are plotted in Figure 3. Keep in mind that the velocity vector field is a snap-
shot from ¢ = 0.

3 Acceleration in a trough

Problem: Water flows through the slit at the bottom of a two-dimensional water trough as shown in Figure
4. Throughout most of the trough the flow is approximately radial (along rays from O) with a velocity of
V' = ¢/r, where r is the radial coordinate and c is a constant. If the velocity is 0.4m/s when r = 0.1m,
determine the acceleration at points A and B.

Solution: The problem has only radial dependence from the origin O and we seek solutions for the ac-
celerations a(r = rp) and a(r = ra). If we choose to solve the problem in Cartesian coordinates (see
Munson, Chapter 4.2.4, for Streamline coordinates), the acceleration is

W DV((®),y(1).1)
Dt ’
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Figure 4: see problem 3

with x being horizontal and y being vertical. The points of interest, A and B, lie on the central line of

symmetry where we can express the velocity as V = —V§ which makes the material derivative
DV _ _DWy) _ _DVM®).Y) 4y
Dt Dt Dt dt’

with dy/dt = 0 because the unit vector of the coordinate system is time-independent (Note: Here it is obvious
that the unit vector is time independent, but in general it can depend on time). The material derivative of
the velocity field is

DY) _ 0V oVdy oV
Dt ot Oy dt oy’
because the flow is stationary (0V/9t = 0) and dy/dt = —V. The acceleration along ¥ is then simply
ov ov
“=Vay =Var



where we use the fact that the radial coordinate vectors ¥ are aligned with §. Since the velocity is given as
V = ¢/r, we have
2

c ( c ) c
a=—-—-\——7- = ——.
r\ r2 r3
The constant ¢ is defined by the given velocity at r =0.1m: ¢ =Vr = (0.4 ms’l) (0.1m) =4-10"2m?s~1.
Therefore, the accelerations at points A and B are

m2 2
(4.102 ) -
— - i _ -3 m
G/(T—TA)——W——Sl?)lO ;,
2\ 2
(4 1072 ) .
_ _ s _ —1
a(T—TB) ——W =—-2.00-10 ?

4 Oil film

Problem: A layer of oil flows down a vertical plate as shown in Figure 5 with a velocity of V = (Vp/ h?)(2hx—
22)j where Vj and h are constants.

(a) Show that the fluid sticks to the plate and that the shear stress at the edge of the layer x = h is
Z€ro.

(b) Determine the flow rate across the surface AB. Assume the width of the plate is b.

Plate

Figure 5: see problem 4

Solution: (a) Evaluate the velocity profile at the boundaries

dv \%
7(x = h) = p(x = h) = g [2h— 2], = 0.

Hence, the fluid sticks to the plate (no slip BC') and there is no shear stress at the free surface (free slip BC).



(b) The flow rate is the integrated velocity across the plane AB with the normal vector n:
Qap = /v(m)dA: /v(x)-ndA: /v(w) dA
h " Vo
= / v(x)bdr = / ﬁ(2hx —2*)bdx

0 0

h
Vb [, , 1 41" 2
= ﬁ |:h,fl' — gl‘ . = g ()hb.

Note: By revolving the velocity profile shown in Figure 5 around the line z = h, we obtain the velocity profile
for the laminar flow in a pipe with radius h. Can you explain why 7 = 0 along the centerline of the pipe?
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