
ME-280: Fluid Mechanics Released: 19.03.2025
Tobias Schneider Exercise Class: 26.03.2025

Solutions: 26.03.2025

Problem Set 3: Solutions

1 Diffusion scales

Problem: The diffusion constant, D, of a suspended spherical particle of radius R in a fluid with viscosity
µ is given by the Stokes-Einstein relation

D =
kBT

6πRµ
,

where kB is the Boltzmann’s constant and T is the temperature.

(a) Approximate the diffusion constants in water for the following organisms:

i. a cell of E.coli

ii. an amoeba

iii. a frog

iv. a hippopotamus

v. a blue whale

Use rough orders of magnitude, but state any assumptions that you make.

(b) What is the typical time scale it would take each one of these organisms to diffuse their own body
length? The mean-squared displacement of a diffusing particle in 1D is ⟨x2⟩ = 2Dt for a time period t.

Solution: (a) In this problem we will be using rough orders of magnitude only.

kB ≈ 10−23 J

K
,

T ≈ 300K,

µwater = 10−3 kg

ms
,

D =
kBT

6πRµ
≈

(
10−23 J

K

)
(300K)

(6πR)

(
10−3

kg

ms

) ≈
10−19 m3

s
R

.

E.coli: Approximating a sphere of diameter d ≈ 1.25µm → RE.coli ≈ 10−6 m

D =
10−19 m3

s
10−6 m

= 10−13 m2

s
.

Amoeba: Approximating a sphere of diameter d ≈ 500µm → RAmoeba ≈ 10−4 m

D =
10−19 m3

s
10−4 m

= 10−15 m2

s
.

Frog: Approximating a sphere of diameter d ≈ 5 cm → RFrog ≈ 10−2 m
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D =
10−19 m3

s
10−2 m

= 10−17 m2

s
.

Hippo: Approximating a sphere of diameter d ≈ 2m → RHippo ≈ 1m

D =
10−19 m3

s
1m

= 10−19 m2

s
.

Blue whale: Approximating a sphere of diameter d ≈ 20m → RBluewhale ≈ 10m

D =
10−19 m3

s
10m

= 10−20 m2

s
.

(b) The time period relates to diffusion length scale by

t =
x2

2D
.

E.coli t =

(
10−6 m

)2
2

(
10−13

m2

s

) ≈ 5 s

Amoeba t =

(
10−4 m

)2
2

(
10−15

m2

s

) ≈ 5 · 106 s ≈ 8weeks

Frog t =

(
10−2 m

)2
2

(
10−17

m2

s

) ≈ 5 · 1012 s ≈ 100millenia

Hippo t =
(1m)

2

2

(
10−19

m2

s

) ≈ 5 · 1018 s ≈ 108 millenia

Blue whale t =
(10m)

2

2

(
10−20

m2

s

) ≈ 5 · 1021 s ≈ 1011 millenia
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2 Pain killer

Problem: A sphere of radius R1 is immersed in water. A chemical reaction on the surface of the sphere
produces particles that diffuse into the water with a diffusion constant D. The particles are produced at
a rate of Ṅ particles per second. The concentration of particles in the bath far away from the sphere is
maintained at C0 .

(a) What are the boundary conditions of the problem?

(b) Calculate and sketch the steady state concentration profile of particles between the two boundaries.
(Hint: Write the diffusion equation in suitable coordinates.)

Solution: To take advantage of the rotational symmetry that exists in this problem, it is reasonable to
employ spherical coordinates so that the concentration depends only on the radial distance from the center of
the sphere and derivatives with respect to rotational axes are canceled, and solving the problem is much easier.

(a) On the surface of the sphere particles are produced at a constant rate and go into the surrounding
water, so there is a constant flux of particles at the surface into water of j = Ṅ/4πR2

1 in the normal direc-
tion. Due to the rotational symmetry, the flux must be constant everywhere on the surface. Thus, Fick’s
first law defines one boundary condition

j = −D
∂C

∂r

∣∣∣∣
r=R1

=
Ṅ

4πR2
1

→ ∂C

∂r

∣∣∣∣
r=R1

= − Ṅ

4πR2
1D

.

Also concentration is kept constant far away from the sphere:

C(r → ∞) = C0.

(b) The steady state concentration profile is given by the equation

D∇2C = 0.

Knowing that the concentration depends only on r, the Laplacian in spherical coordinates becomes

D

[
1

r2
∂

∂r

(
r2

∂C

∂r

)]
= 0,

and because D is non-zero we can divide:

∂

∂r

(
r2

∂C

∂r

)
= 0.

Integrating this equation once with respect to r, we obtain

r2
∂C

∂r
= α1,

where α1 is a constant. By rearranging this equation and integrating again, we find that

C(r) = −α1

r
+ α2,

where α2 is also a constant. By applying the boundary conditions to the general solution, we can solve for
α1 and α2 as follows:

C(r → ∞) = α2 = C0 → α2 = C0,

∂C

∂r

∣∣∣∣
r=R1

=
α1

R2
1

= − Ṅ

4πR2
1D

→ α1 = − Ṅ

4πD
.

Thus, the solution to the steady state concentration profile is

C(r) =
Ṅ

4πD

1

r
+ C0.

The concentration profile is plotted in the figure below:
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Figure 1: see problem 2

3 Krogh-Erlang model

Problem: Oxygen diffusion and consumption can be modeled in a one-dimensional, linear tissue. The
original version of this model, called the Krogh-Erlang model, was formulated in cylindrical coordinates. In
this model, blood flows along the z direction in a capillary of radius R1 surrounded by a tissue of radius R2,
as shown in Figure 2 below.

Figure 2: Diffusion of oxygen from a blood vessel into the surrounding tissue. See problem 3.

Oxygen from the blood enters the tissue, diffuses in the radial direction, and is consumed at a constant rate
M . The consumption of oxygen enters the diffusion equation as a sink term:

∂C(r)

∂t
= D∇2C(r)−M.

The oxygen concentration at the capillary wall is C(r = R1) = C0. It is also assumed that no oxygen leaves
the tissue at the outermost region, so the flux of oxygen is zero at r = R2.

(a) Calculate the concentration profile of oxygen in the tissue at steady state, C(r).

(b) Plot (e.g. with MATLAB) the concentration profile C(r). Check that it satisfies the boundary conditions.

Solution: Given the axial symmetry of the problem, we should employ cylindrical coordinates, where the
concentration only varies in the radial direction.

(a) The steady state concentration profile in the tissue, C(r), is defined in the interval R1 ≤ r ≤ R2,
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with the boundary conditions:

C(r = R1) = C0,

∂C

∂r
(r = R2) = 0.

The governing equation for the diffusion of oxygen in the tissue is:

∂C(r)

∂t
= D∇2C(r)−M.

Because we are interested in the steady state solution, the ∂C(r)/∂t term is zero. Also, since concentration
depend only on radial direction, derivatives with respect to axial and rotational axes in the Laplacian are
zero. Therefore, the governing differential equation is:

∇2C(r) =
1

r

∂

∂r

(
r
∂C

∂r

)
=

M

D
.

This equation is solved as follows:

∂

∂r

(
r
∂C

∂r

)
=

M

D
r

⇒ r
∂C

∂r
=

M

2D
r2 + α1

⇒ ∂C

∂r
=

M

2D
r +

α1

r
,

and the general solution is

C(r) =
M

4D
r2 + α1 ln(r) + α2,

where α1 and α2 are integration constants. By applying the boundary conditions:

∂C

∂r
(r = R2) = 0 → M

2D
R2 +

α1

R2
= 0 → α1 = − M

2D
R2

2,

C(r = R1) = C0 → M

4D
R2

1 + α1 ln(R1) + α2 = C0

→ α2 = C0 −
M

4D
R2

1 − α1 ln(R1) = C0 −
M

4D
R2

1 +

(
M

2D
R2

2

)
ln(R1),

so the solution becomes

C(r) =
M

4D
r2 − M

2D
R2

2 ln(r) + C0 −
M

4D
R2

1 +
M

2D
R2

2 ln(R1)

=
M

4D

[
r2 −R2

1 + 2R2
2 ln

(
R1

r

)]
+ C0.

(b) The concentration is plotted in the figure below. The concentration at r = R1 should be C0 and the
slope of the curve should be zero at r = R2.
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Figure 3: see problem 3

4 Unsteady diffusion: the modal approach

Problem: Consider the diffusion equation for the concentration C(x, t),

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
,

in a finite domain x ∈ [0, L] with the boundary conditions

C(0, t) = 0,

C(L, t) = 0,

and the initial condition

C(x, 0) = C0
x

L

(
1− x

L

)
.

(a) Solve the PDE with the boundary conditions and the initial condition by the method of separation of
variables.
Hint : You may need the following indefinite integrals:∫

x sin(ax) dx =
1

a2
[sin(ax)− ax cos(ax)] ,∫

x2 sin(ax) dx =
1

a3
[
(2− a2x2) cos(ax) + 2ax sin(ax)

]
.

(b) Use the result you found in part (a) and plot it for L = 1m, D = 0.5m2/s and C0 = 1m−1 at times
t = 0 s, 0.1 s, 0.2 s, 0.5 s, 1 s and with N = 1, 2, 3 modes. For every N plot the results at the different times
in a single plot and label your plots clearly. Plot also the 3 differences between the 3 solution approximations.
By how much do additional higher modes improve the solution?

Solution: (a) We construct the solution following the steps outlined in class (see recipe). The PDE is
linear and homogeneous. The boundary conditions (BC) are homogeneous. Thus, the general solution can
be expressed as

C(x, t) =

∞∑
n=1

Anφn(x, t)

with
∂φn(x, t)

∂t
= D

∂2φn(x, t)

∂x2
,
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subject to boundary conditions
φn(0, t) = φn(L, t) = 0.

Step 1: Base solution by “separation of variables” ansatz: φn(x, t) = Xn(x)Tn(t):

1

DTn(t)

dTn(t)

dt
=

1

Xn(x)

d2Xn(x)

dx2
= −λn = const.

Time ODE:

dTn(t)

dt
= −λnDTn(t) ⇒

∫
dTn(t)

Tn(t)
= −λnD

∫
dt ⇒ Tn(t) = T0,n e

−λnDt.

Space ODE:
d2Xn(x)

dx2
= −λnXn(x).

The solution of this ODE depends on the sign of λn:
Case λn < 0:

Xn(x) = α1 e
+
√
−λx + α2 e

−
√
−λx.

BCs give α1 = α2 = 0, which is the trivial solution.
Case λn = 0:

Xn(x) = α1 x+ α2.

BCs give α1 = α2 = 0, which is the trivial solution.
Case λn > 0:

Xn(x) = α1 cos(
√

λnx) + α2 sin(
√
λnx).

BC1 : 0 =α1 cos(
√
λn · 0) + α2 sin(

√
λn · 0) ⇒ α1 = 0,

BC2 : 0 =α2 sin(
√
λn L).

The solution is only non-trivial (α2 ̸= 0) for
√
λn L = nπ. Therefore,

λn =
(nπ

L

)2
,

Xn(x) = αn sin
(nπ

L
x
)
.

Integration constants T0,n and αn are absorbed in coefficients An for the general solution expansion

C(x, t) =

∞∑
n=1

An sin
(√

λn x
)
e−Dλnt,

with λn = (nπ/L)
2
. The general solution satisfies the BCs.

Step 2: Calculating the coefficients An from the initial condition (IC):

C(x, t = 0) =

∞∑
n=1

An sin
(nπ
L

x
)
e−D(nπ

L )2·0 = C0

(
x

L
−
( x
L

)2)
.

The exponential term is unity. Multiplication with sin (mπx/L) and integration from 0 to L (“Fourier-Trick”):∫ L

0

sin
(mπ

L
x
) ∞∑

n=1

An sin
(nπ
L

x
)
dx = C0

∫ L

0

(
x

L
−
( x
L

)2)
sin
(mπ

L
x
)
dx
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Sum and integral commute:

∞∑
n=1

An

∫ L

0

sin
(mπ

L
x
)
sin
(nπ
L

x
)

︸ ︷︷ ︸
1
2 [cos((m−n) xπ

L )−cos((m+n) xπ
L )]

dx = C0

∫ L

0

(
x

L
−
( x
L

)2)
sin
(mπ

L
x
)
dx.

Integral is only non-zero for m = n, thus only one term in the sum is left:

An

∫ L

0

sin2
(nπ
L

x
)
dx =

C0

L

∫ L

0

x sin
(nπ
L

x
)
dx − C0

L2

∫ L

0

x2 sin
(nπ
L

x
)
dx.

Evaluation of the three integrals∫ L

0

sin2
(nπ
L

x
)
dx =

∫ L

0

1

2

(
1− cos

(
2
nπ

L
x
))

dx =
1

2

[
x− L

2nπ
sin
(
2
nπ

L
x
)]L

0

=
L

2
,∫ L

0

x sin
(nπ
L

x
)
dx =

(
L

nπ

)2 [
sin
(nπ
L

x
)
− nπ

L
x cos

(nπ
L

x
)]L

0

=

(
L

nπ

)2

(0− 0− nπ cos(nπ) + 0) = − (−1)n L2

nπ
,∫ L

0

x2 sin
(nπ
L

x
)
dx =

(
L

nπ

)3 [(
2−

(nπ
L

)2
x2

)
cos
(nπ
L

x
)
+ 2

nπ

L
x sin

(nπ
L

x
)]L

0

=

(
L

nπ

)3 (
(2− (nπ)

2
)(−1)n − 2 + 0− 0

)
= −L3

nπ
(−1)n +

2L3

(nπ)3
((−1)n − 1)

⇒ An =
4C0

(nπ)3
(1− (−1)n).

The coefficients An are only non-zero if n is odd: An = (2/nπ)
3
C0. If we substitute n = 2n′ − 1, only odd

multiples of π form the series. The final solution reads

C(x, t) =

∞∑
n=1

8C0

((2n− 1)π)3
sin

(
(2n− 1)π

L
x

)
exp

(
−D

(
(2n− 1)π

L

)2

t

)
.

(b) The solution of (a) is plotted in Figure 4. The single mode solution is already a good approxima-
tion and improvements become only apparent for differences. Each additional mode improves the solution
by approximately one order of magnitude.

5 Unsteady diffusion: finite differences approach

Problem: Consider the diffusion equation with the following boundary and initial conditions (same as
problem 2):

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
,

C(0, t) = 0,

C(L, t) = 0,

C(x, 0) = C0
x

L

(
1− x

L

)
.

Calculate the concentration at N equally spaced points in the domain. For equally spaced points, the second
derivative of C for the i-th point can be approximated by

∂2Ci

∂x2
=

Ci+1 − 2Ci + Ci−1

∆x2
,
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Figure 4: Concentration profiles and differences from the solution of problem 4a at given times.

where ∆x is the distance between two successive points.

(a) Apply the approximation of the second derivative to the diffusion equation to obtain a system of or-
dinary differential equations (ODE) for the time variation dCi(t)/dt of concentration Ci at each point i.

(b) How many equations can you set up in this way? How many equations are required to solve this
system uniquely (What is the number of unknowns)?

(c) How can you represent the boundary conditions in the discretized system? Use these to complete the
system of equations.

(d) Solve the system of ODEs numerically with Matlab. (Hint : The function ode45 is well suited for
this integration.)

(e) Plot the result for L = 1m, D = 0.5m2/s and C0 = 1m−1 at times t = 0 s, 0.1 s, 0.2 s, 0.5 s, 1 s
and with N = 3, 5, 11 grid points. For each N plot the results at different times in a single plot and label
your plots clearly. Plot also the 3 differences between the 3 solution approximations. By how much do
additional grid points improve the solution?

(f) Compare your results with the results of problem 2.

Solution: (a) Inserting the given finite difference approximation of the Laplacian into the diffusion equations
gives a system of coupled ODE:

d

dt
Ci(t) =

D

∆x2
(Ci+1(t)− 2Ci(t) + Ci−1(t)) .
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(b) There are (N − 2) ODEs of this form for 2 ≤ i ≤ N − 1. Still we have discretized space with N points
which creates N unknowns Ci for which we need N equations.

(c) The two missing equations are given by the boundary conditions:

C1 = 0,

CN = 0.

(d) There are different implementations in Matlab possible. One is to define a right hand side (RHS) as
an anonymous function

rhs = @(t,C) D*( [0;C(1:end-1)] - 2.0*C + [C(2:end);0] )./dx^2;

and pass it to

[t3,C3] = ode45(rhs,times,initC);

with the given times and initial condition

times=[0 0.1 0.2 0.5 1];

initC = C0*(x11/L - x11.^2/L^2);

(e) The solutions are plotted in Figure 5. The solutions for N = 3 and N = 5 are very coarse. N = 11
captures the curved profile better. The corrections are at about 10% of the solution values.

(f) The relative errors are higher in the finite difference approach than in the modal approach. This is
the case although the number of modes N in problem 2 is smaller than the number of points in problem 3.
The ansatz functions in problem 3 are straight lines between the points while in problem 2 the calculated
modes are global.
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Figure 5: Concentration profiles and differences from finite difference method (Problem 5).
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