
ME-280: Fluid Mechanics Released: 05.03.2025
Tobias Schneider Exercise Class: 12.03.2025

Solutions: 12.03.2025

Problem Set 2: Solutions

1 Archimedes

Problem: The homogeneous timber AB in Figure 1 has a cross section of 0.15m by 0.35m. Determine the
specific weight of the timber and the tension in the rope.

Figure 1: see problem 1

Solution:

Figure 2: see problem 1

The timber has a length L = 10m and volume

V = (0.15m× 0.35m× 10m) = 0.525m3.

The submerged part has length Lsub = 8m and volume

Vsub = (0.15m× 0.35m× 8m) = 0.420m3.

The forces on the timber are the weight
W = γV,

(where γ is the specific weight of the timber), the buoyancy force

FB = γH2OVsub,

(where γH2O = ρH2Og = 9.80 kN/m3 is the specific weight of water) and the tension force T .
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The timber is at equilibrium and does not move. Consider first the torque balance of the timber. Since T is
unknown, it is easiest to consider the torque around point A,

0 =
∑

MA = W cosα× L

2
− FB cosα× Lsub

2
,

where weight and buoyancy are projected onto the timber-normal direction and multiplied with the length
of the lever. Canceling out the cosα-terms and using the expressions for W and FB gives

γ = γH2O
VsubLsub

V L
= 9.80

kN

m3

(0.420m3)(8m)

(0.525m3)(10m)
= 6.27

kN

m3
.

Now that the specific weight of the timber is known, the tension force can be calculated from the force balance
in the vertical direction, i.e. normal to the water surface,∑

Fvertical = FB −W − T = 0.

The tension in the rope is

T = FB −W =
(
0.420m3

)(
9.80

kN

m3

)
−
(
0.525m3

)(
6.27

kN

m3

)
= 0.824 kN = 824N.

2 Hydrostatic pressure

2.1 Blood pressure

Problem: (a) Determine the change in hydrostatic pressure in a giraffe’s head as it lowers its head from
eating leaves 6m above the ground to getting a drink of water at ground level (Figure 3). Assume that the
absolute pressure in the giraffe’s heart does not change, and the specific gravity of blood is SG = 1.

(b) Blood pressure is measured by two numbers in units of millimeters of mercury (mmHg): The first number,
called systolic pressure, measures the blood pressure in the arteries when the heart beats; and the second
number, called diastolic pressure, measures the pressure in the arteries when the heart rests between beats.
What systolic blood pressure is considered high for our hearts? Express the pressure difference calculated in
part (a) in units of mmHg, and compare it to a high blood pressure in human’s heart.

(See also “Giraffe’s blood pressure”, Section 2.3.1. in Munson et al.)

Figure 3: see problem 2.1

Solution: (a) Since we know the specific weight of water by heart (γH2O = 9.80 kN/m3) and assume for
blood SG = 1, the hydrostatic pressure change is simply given by the height difference

∆p = γ∆h =

(
9.80

kN

m3

)
(6m) = 58.8

kN

m2
= 58.8 kPa.

Note that we assumed both states of the giraffe, with the head up and the head down, belong to a single
system, and then wrote the hydrostatic relation for this system between a point in the up head and a point
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in the down head. We are allowed to do this because the pressure in the giraffe’s heart is assumed to be the
same in both states of the animal, namely eating leaves and drinking water. As a result of this assumption,
the giraffe’s heart with constant pressure and a fixed height can be considered as a reference point in the
system with respect to which the blood pressure can be determined in the head. Therefore, calculation of
the pressure difference in the head between the two cases is really like calculation of the pressure difference
between two heads in different positions in a single system.
(b) To compare with the pressure in a human heart, we convert the pressure from (a) to mmHg (millimeters
of Mercury). Using the specific weight of mercury γHg = 133 kN/m3, the conversion of units is

58.8
kN

m2
= γHghHg =

(
133

kN

m3

)
hHg,

giving an equivalent height of mercury column of

hHg = 0.442m,

or pressure of ∆p = 442mmHg.
Thus, the pressure change in the giraffe’s head is 442mmHg. The normal blood pressure in human’s heart
ranges from 90/60mmHg to 120/80mmHg, and a blood pressure above 140/90mmHg is considered high.
The 442mmHg change of blood pressure in giraffe’s head is more than 3 times larger than a high systolic
blood pressure in our arteries. How do giraffes’ bodies stand such a high pressure?

2.2 Manometry

Problem: (a) A mercury manometer is connected to a large reservoir of water as shown in Figure 4.
Determine the ratio, hw/hm, of the heights hw and hm indicated in the figure (SGm = 13.56).
(b) Determine the elevation difference, ∆h, between the water levels in the two open tanks shown in Figure
5.
(c) Why is the water not flowing from the left to the right tank? How can you change the setup to make the
water flow?
Solution:
(a)

Figure 4: see problem 2.2a

The height ratio is calculated by summing the individual parts of the pressure head. Note the sign change
when you change the direction along the tube. The pressure between point 1 and 2 (see Figure 4) relates as

P1 + (hw + hm)γw − 2hmγHg = P2.

Since both fluid surfaces are at atmospheric pressure, we have P1 = P2 and thus

hw + hm

hm
= 2

γHg

γw
→ hw

hm
+ 1 = 2

γHg

γw
.
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The specific gravity of mercury is given and we can substitute γHg/γw = SGHg to obtain the height ratio
between water and mercury at atmospheric pressure

hw

hm
= 2SGHg − 1 = 2× 13.56− 1 = 26.12.

(b)

Figure 5: see problem 2.2b/c

Like in part (a) we sum up the individual elements of the pressure head (mind again the sign!)

P1 − γH2Oh+ (SG)γH2O(0.4m) + γH2O(h− 0.4m) + γH2O(∆h) = P2.

The variable height h is indicated in Figure 5. Again, both fluid surfaces are at atmospheric pressure, thus
P1 = P2. With the given specific gravity of SG = 0.9 we find a height difference of

∆h = 0.4m− (0.9)(0.4m) = 0.040m.

(c) There is no movement of water because the pressure gradient along the connecting tube is compensated
by the hydrostatic pressure difference caused by the other fluid. If this fluid is substituted with water, no
equilibrium will be possible for different water levels in the two tanks, and the water will flow from the left
tank to the right one until the free surfaces reach an equal level. This explains why you need to get the air
out of a tube, in order to use the tube to move water from one bucket of water into another by exploiting
only hydrostatic pressure.

2.3 Water dam

Problem: (a) The concrete dam in Figure 6 weighs 23.6 kN/m3 and rests on a solid foundation. Determine
the minimum coefficient of friction between the dam and the foundation required to keep the dam from
sliding at the water depth shown. Assume no fluid uplift pressure along the base. Base your analysis on a
unit length of the dam.
(b) Determine the horizontal hydrostatic force on the 2309m long Three Gorges Dam when the average
depth of the water against it is 175m. (See also “The Three Gorges Dam”, Section 2.8. in Munson et al.)
(c) If all of the 6.4 billion people on Earth were to push horizontally against the Three Gorges Dam, could
they generate enough force to hold it in place? Support your answer with appropriate calculations.
Solution: (a) In this problem we must consider two force balance equations. The first is a horizontal balance
ΣFx = 0 of the “pushing” force by the water load and the “resisting” friction force

FR sin θ = Ff = ηN,

where η is the friction coefficient. The second force balance is in the vertical direction, ΣFy = 0, and defines
the ground normal force N

N = W + FR cos θ.

Here, W = (γconcrete)V is the weight of the dam and V = 20m3 is the volume of the analyzed dam segment.
The angle θ is obtained from the geometry of the dam

tan θ =
5m

4m
→ θ = 51.3◦.
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Figure 6: see problem 2.3

Figure 7: see problem 2.3

Both force balance equations depend on FR which is the wall-normal pressure force due to the water behind
the dam. It is

FR = γhcA,

where A = (4m/ sin 51.3◦) (1m) is the area and hc = 4m/2 is the height of the centroid of the submerged
surface. This gives FR as

FR =

(
9.80

kN

m3

)(
4m

2

)(
4m

sin 51.3◦

)
(1m) = 100 kN.

With this information we first solve for the vertical force N :

N =

(
23.6

kN

m3

)(
20m3

)
+ (100 kN) cos 51.3◦ = 534 kN,

which can then be used in the horizontal force balance to calculate the friction coefficient η

η =
FR sin θ

N
=

(100 kN) sin 51.3◦

534 kN
= 0.146.

(b) Having done part (a), this calculation is straightforward:

FR,horizontal = γhcAprojected =

(
9.80

kN

m3

)(
175m

2

)
(2309m)(175m) ≈ 3.5× 108 kN.

(c) Each person should cover a force equal to

3.5× 108 kN

6.4× 109 person
= 0.055

kN

person
= 55

N

person
.

55N is equal to the weight of a 5.6 kg object. Therefore, the world population can generate sufficient force
to hold the dam in place.
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3 Water supply

Problem: Water flows from the faucet on the first floor of the building shown in Figure 8 with a maximum
velocity of 6m/s. For steady inviscid flow, determine the maximum water velocity from the basement faucet
and from the faucet on the second floor when all three faucets are open (assume each floor is 3.6m in height).

Figure 8: see problem 3

Solution: The problem assumes a steady and inviscid flow through pipes. The slow flow rate makes the
assumption of incompressibility reasonable. If we trace a streamline along the pipes, we can use Bernoulli,
which is here divided by the specific weight compared to the form given in the lecture:

p

γ
+

v2

2g
+ z = constant,

where z is the elevation above ground. We compare the faucet velocities v1, v2, v3 on the three floors with
the velocity v0 and pressure p0 in the inlet pipe. A direct comparison between the faucets is not possible
because there is no flow between them and thus, no streamline. All faucets are open and the inlet pipe feeds
all three faucets with constant velocity and pressure. The inlet conditions are the same for the streamlines
leading to each faucet. Setting up Bernoulli for each faucet gives

p1
γ

+
v21
2g

+ z1 =
p0
γ

+
v20
2g

+ z0,

p2
γ

+
v22
2g

+ z2 =
p0
γ

+
v20
2g

+ z0,

p3
γ

+
v23
2g

+ z3 =
p0
γ

+
v20
2g

+ z0,

with z1 = −2.4m, z2 = 1.2m, z3 = 4.8m, v2 = 6m/s, and p1 = p2 = p3 = 0 (free jet). The values in the inlet
pipe remain unknown, but since they are the same for each streamline, the velocities on the different floors
can be related. Inserting the numerical values and rearranging the equation gives the unknown maximum
velocity in the basement

(6m/s)
2

2 (9.81m/s2)
+ 1.2m =

v21
2 (9.81m/s2)

+ (−2.4m) → v1 = 10.3
m

s
.

For the 2nd floor, we again compare with the 1st floor (could also compare with the basement):

(6m/s)
2

2 (9.81m/s2)
+ 1.2m =

v23
2 (9.81m/s2)

+ 4.8m → v3 =
√
62 − 2(9.81)(3.6)

m

s
=

√
−34.6

m

s
.
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The value under the square root is negative, meaning that no (real) velocity can be found that produces flow
through the 2nd floor faucet. Notice that by writing the Bernoulli equation we implicitly assumed that a
streamline exists between the inlet pipe and the 2nd floor faucet and thus water does reach the 2nd floor.
The calculation showed that this assumption is not valid, and the inlet pressure is not high enough for the
water to reach the 2nd floor. Now that water does not reach the 2nd floor, can we calculate where the free
surface of the water column is?

4 Siphon

Problem: Water is siphoned from a large tank and discharges into the atmosphere through a 5.08 cm
diameter tube as shown in Figure 9. The end of the tube is 0.9m below the tank bottom, and viscous effects
are negligible.
(a) Determine the volume flow rate from the tank.
(b) Determine the maximum height, H, over which the water can be siphoned without cavitation occurring.
Atmospheric pressure is 101.3 kPa, and the water vapor pressure is 1.8 kPa.

Figure 9: see problem 4

Solution: (a) To find the flowrate, we compare the two points of the setup which are both at atmospheric
pressure and apply the Bernoulli equation. The two points are the surface of the tank (1) and the outlet of
the siphon (2):

p1
γ

+
v21
2g

+ z1 =
p2
γ

+
v22
2g

+ z2.

We choose p1 = p2 = 0 (free surface/jet) and also v1 = 0. The second assumption is justified because the
tank is very large compared to the amount of fluid in the siphon. Mass conservation implies that the height
of the fluid surface, with a large area A1 ≫ A2, changes with velocity v1 = (A2/A1)v2 ≪ v2. Thus, we can
set v1 = 0 which makes this problem quasi-steady because the fluid level remains approximately at height
2.7m. Only steady problems can be solved with Bernoulli! The remaining terms become

z1 =
v22
2g

+ z2,

or

v2 =
√
2g(z1 − z2) =

√
2(9.81m/s2)(2.7m+ 0.9m) = 8.4m/s.

Hence, the volume flow rate is

Q = A2v2 =
π

4
(5.08 cm)2

(
1m

100 cm

)2

(8.4m/s) = 0.017m3/s.
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(b) Cavitation happens when the fluid pressure is below the vapour pressure of the fluid. Bubbles will form -
the fluid is boiling. This effect is undesired in many engineering applications. In this example, the engineer
must take care that the height H remains below a threshold which (s)he obtains again from the Bernoulli
equation (Here, between point 2 and 3. Comparing 1 and 3 is also possible.)

p3
γ

+
v23
2g

+ z3 =
p2
γ

+
v22
2g

+ z2,

where v2 = v3 because mass conservation tells us Q = A2v2 = A3v3 and A2 = A3. Inserting the height
difference z3 − z2 = H + 3.6m (see Figure 9) and the specific weight of water γ = 9.8 kN/m3 into the
remaining balance

p3 + γ(z3 − z2) = p2,

we get with the given pressure values p2 = 101.3 kPa and p3 = 1.8 kPa:(
9.8

kN

m3

)
(H + 3.6m) = 101.3 kPa− 1.8 kPa,

or

H = 6.6m.

The height of the siphon must not exceed H = 6.6m. Note that this part of the problem uses absolute
pressure (relative to perfect vacuum), while in part (a) we chose to use gauge pressure (zero-referenced
against ambient air pressure). Make sure that you never mix the two definitions within one problem.

5 Soda bottle

Problem: Soda (with the same properties as water) flows from a 10.16 cm diameter soda container that
contains three holes as shown in Figure 10. The diameter of each fluid stream is 0.38 cm and the distance
between holes is 5.08 cm. If viscous effects are negligible and quasi-steady conditions are assumed, determine
the time at which the soda stops draining from the top hole. Assume the soda surface is 5.08 cm above the
top hole when t = 0. (The final integral can be evaluated numerically.)

Figure 10: see problem 5

Solution: Write the Bernoulli equation for streamlines that connect the surface s with one of the holes i

ps
ρ

+
v2s
2

+ gzs =
pi
ρ

+
v2i
2

+ gzi.

We assume free surface/jet and set ps = pi = 0. The surface at time t = 0 is chosen to be at zs = 0. Now we
make, like in exercise 4, a quasi-steady assumption which is vs ≪ vi. This assumption is again crucial because
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it makes the left hand side of the above equation zero and allows us to obtain the velocities of the three jets
vi =

√
2ghi with i = 1, 2, 3 from the Bernoulli equation. These velocities can be used in the conservation of

mass balance

Q = Q1 +Q2 +Q3 = −As
dh

dt
,

where we now allow the height h(t) to vary in time. The volume flow rates are Qi = viAi =
√
2ghiAi (i =

1, 2, 3) with

A1 = A2 = A3 =
π

4
(0.0038m)2 = 1.13× 10−5 m2,

As =
π

4
(0.1016m)2 = 8.1× 10−3 m2.

We simplify √
2gA1

[√
h1 +

√
h2 +

√
h3

]
= −As

dh

dt
,

where we now need to relate the heights hi to the surface at zs = 0. We set h1 = h, h2 = h+L, h3 = h+2L
with L = 0.0508m. We now have an ordinary differential equation (ODE) for h(t) which can be solved by
separation of variables:

−
√
2gA1

As

∫ T

0

dt =

∫ 0

L

dh(√
h+

√
h+ L+

√
h+ 2L

) ,
where T is the time it takes for the free surface to reach the upper hole (h = 0):

T =
As√
2gA1

∫ L

0

dh(√
h+

√
h+ L+

√
h+ 2L

)
=

8.1× 10−3 m2

[2(9.81m/s2)]
1/2

(1.13× 10−5 m2)

∫ L

0

dh

(
√
h+

√
h+ L+

√
h+ 2L)

.

We are left with

T =
(
162

s

m1/2

)∫ L

0

dh(√
h+

√
h+ L+

√
h+ 2L

) ,
where L = 0.0508m. Note that with L in meters, this equation gives T in seconds. This integral should be
evaluated numerically. For example you can ask www.wolframalpha.com what is
162*Integrate[1/(sqrt[h]+sqrt[h+0.0508]+sqrt[h+2*0.0508]),{h,0,0.0508}]

The numerical value of the integral is 0.06622 with physical unit of m1/2. Therefore, the time T is

T =
(
162

s

m1/2

)(
0.06622m1/2

)
= 10.7 s.

6 Normal to a Streamline

Problem: Water flows around the vertical two-dimensional bend with circular streamlines and constant
velocity as shown in Figure 11. If the gauge pressure is 40 kPa at point (1), determine the pressure at points
(2) and (3). Assume that the velocity profile is uniform as indicated.
Solution: In this problem, we consider streamlines with varying radius of curvature. For the same assump-
tions as for the Bernoulli equation, we have an equation of motion along the normal direction of streamlines

−γ
dz

dn
− dp

dn
=

ρv2

R
,
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Figure 11: see problem 6

where the streamline normal direction n⃗ is indicated in Figure 11. At point (1) we find n⃗ aligned with the
z-direction, i.e. dz/dn = 1. The velocity is constant v = 10m/s and the radius is R(n) = R1 − n, where
R1 = 6m is the radius at (1). Rearranging the equation for the pressure change, we find

dp

dn
= −γ − ρv2

R1 − n
.

To determine the pressure values, we need to integrate this equation along n from n = 0 to the point n∗ we
are interested in: ∫ n∗

n=0

dp

dn
dn = −

∫ n∗

n=0

γdn−
∫ n∗

n=0

ρv2dn

R1 − n

Since the specific weight γ and the velocity v are constants, we can take them out of the integral and have

p− p1 = −γn∗ − ρv2
∫ n∗

n=0

dn

R1 − n
.

The integral has a closed-form solution, which gives

p = p1 − γn∗ − ρv2 ln

(
R1

R1 − n∗

)
.

Now, with the properties of water γ = 9.80 kN/m3 and ρ = 103 kg/m3, we can insert the pressure at point
(1), p1 = 40 kPa, to find the pressure at point (2) located at n∗ = n2 = 1m:

p2 = 40 kPa−
(
9.80

kN

m3

)
(1m)−

(
103

kg

m3

)(
10

m

s

)2

ln

(
6

5

)(
1 kPa

1000Pa

)
= 12 kPa.

The pressure at point (3) located at n∗ = n3 = 2m is

p3 = 40 kPa−
(
9.80

kN

m3

)
(2m)−

(
103

kg

m3

)(
10

m

s

)2

ln

(
6

4

)(
1 kPa

1000Pa

)
= −20.1kPa

Remember that pressure here will usually be given as gauge pressure (relative to atmospheric pressure),
where negative values of a few kPa don’t represent a problem.

7 Vaporizer

Problem: Air flows through the device shown in Figure 12. If the flow rate is large enough, the pressure
within the constriction will be low enough to draw the water up into the tube. Determine the flow rate, Q,
and the pressure needed at section (1) to draw the water into section (2). Neglect compressibility and viscous
effects.
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Figure 12: see problem 7

Solution: We want to know velocity and pressure at point (1). The velocity of the flow is unknown in the
entire tube but we know the pressure at the outlet (point (3) in Figure 12) where we have a free jet with
p3 = 0. Therefore, we compare a steady flow along a streamline between point (2) and (3)

p2
γa

+
v22
2g

+ z2 =
p3
γa

+
v23
2g

+ z3,

where we use the specific weight of air as γa = 12N/m3. We find z2 = z3 and from mass conservation
A2v2 = A3v3. Thus, the velocities relate through the ratio of squared diameters given in the problem:

v2 =

(
D3

D2

)2

v3 =

(
50mm

25mm

)2

v3 = 4v3.

Since p3 = 0 we get a balance between p2 and one of the velocities, e.g. v3:

p2
γa

=
v23 − v22

2g
=

−15v23
2g

.

The pressure p2 defines the height of the water column in the vertical tube below point (2). From hydrostatics
(see the Manometry exercises) we know

p2 = p0 − γwh = −γwh,

where p0 = 0 is the atmospheric pressure, γw = 9.80×103 N/m3 is the specific weight of water and h = 0.3m
is the required height for the water to enter the tube (see Figure 12). Inserting the hydrostatic pressure p2
into the Bernoulli balance, we can solve for the velocity

v23 =
2

15
gh

γw
γa

=
2

15

(
9.81

m

s2

)
(0.3m)

9.80× 103
N

m3

12
N

m3

= 320.46
m2

s2
.

Thus, the outlet velocity is

v3 = 17.9
m

s
.

The flow rate must be the same along the duct (from mass conservation). Therefore,

Q1 = Q3 = A3v3 =
π

4
(0.050m)2(17.9

m

s
) = 0.0351

m3

s
.

To obtain the pressure at (1), we use again Bernoulli along a streamline

p1
γ

+
v21
2g

+ z1 =
p3
γ

+
v23
2g

+ z3,
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where v1 = (A3/A1)v3 = v3 and z1 = z3 which implies p1 = p3, and consequently

p1 = 0Pa;

pressure at (1) matches the atmospheric pressure at (3). This is, of course, possible under the assumption
that the fluid is inviscid. (Why equal pressure at the inlet and outlet of the device could not be possible if
the fluid had a non-negligible viscosity?)

8 Ball in a funnel

Problem: Observations show that it is not possible to blow the table tennis ball from the funnel shown in
Figure 13a. In fact, the ball can be kept in an inverted funnel, Figure 13b, by blowing through it. The harder
one blows through the funnel, the harder the ball is held within the funnel. Explain this phenomenon (no
explicit calculation is required).

Figure 13: see problem 8

Solution: The ball is held in the funnel by the pressure difference between the gap and the surrounding
atmosphere. In the Bernoulli equation along a streamline we can neglect the effect of gravity because of the
little weight of air (which is a common assumption in gas flows). We, therefore, have

p+
1

2
ρv2 = constant.

Consequently, large v means small p. The flow field around the ball looks like the figure below:

Figure 14: Streamlines past the ball in a funnel. See problem 8.

The net effect is a pressure force upward that can balance the weight of the ball. Note that we can apply
the Bernoulli equation along streamlines between (1) and (2), but not across the streamlines from (1) to (3).
The reason is the detachment of the flow from the ball which happens at large flow velocities.
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