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Vol. 108, No. 960 The American Naturalist March-April 1974 

DISPERSION AND POPULATION INTERACTIONS* 

SIMON A. LEVIN 

Section of Ecology and Systematics, 
Department of Theoretical and Applied Mechanics, and Center for Applied Mathematics, 

Cornell University, Ithaca, New York 14850 

The distribution of a species over its range of habitats is a fundamental 
and inseparable aspect of its interaction with its environment, and no com- 
plete study of population dynamics can afford to ignore it. This point was 
emphasized over 20 years ago by Skellam (1951) and Hutchinson (1951); 
and yet, until recently, the mathematical theory of population dynamics 
has largely ignored spatial considerations. The rise of the theory of island 
biogeography has given rise, however, to a renewed interest in such ques- 
tions, particularly with reference to the coexistence of species in a patchwork 
environment of similar habitats (Cohen 1970; Levins and Culver 1971; 
Horn and MacArthur 1972; Slatkin, in preparation). The general approach 
of these investigators is to focus attention simply on the number of patches 
in which each species is found, intentionally ignoring both the densities of 
the species within individual patches and the identities of occupied patches. 
Horn and MacArthur (1972) extend the approach of Levins and Culver 
(1971) to consider competition between two species over a mosaic of patches 
of two habitat types, labeled 1 and 2, developing for that purpose the 
equations 

dq1. 
= ql[(ll - ell) - rnllql - clP] + rn21q2(- ql) 

dq2 (1) 
(1= q2[ (M22 - e2) - M222- 2P2] + M12q (1- q2) dt 

for the respective fractions, q1 and q2, of available patches actually occupied 
by species 2. Analogous equations apply for species 1 and its occupation 
fractions, Pi and P2. Here, mij is a coefficient governing the rate of coloniza- 
tion of habitat j by individuals coming from patches of habitat i, so that, for 
example, M12q1 (1 - q2) is the rate of colonization of patches of habitat 2 by 
individuals from habitat 1. Further, et is the rate of local extinction in type 
i patches in the absence of interspecific competition, and capj the increase in 
that rate due to competition. Horn and MacArthur (1972) introduce cs 
through the statement "species 1 outcompetes species 2 in a fraction cl of 
the habitats of type 1 that both species co-occupy," and later identify cl 
- 1 with the situation when species 2 always loses in habitat 1. This some- 

* This manuscript is dedicated to the memory of the late Robert H. MacArthur, 
whose ingenious efforts in stimulating the development of a mathematical ecology were 
unsurpassed. He will be sorely missed. 
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208 THE AMERICAN NATURALIST 

what misstates el's true role, as a decay rate which must bear reference to a 
time scale, but the confusion is not central to their main points. 

Horn and MacArthur (1972) further restrict their attention to the case 

-2211 -= M12M21, (2) 

since their model is based on random colonization of patches. Little would 
be lost, however, in extending their results to the more general case when 
there is no restriction on the mnj or when, say, colonization of type i patches 
might conceivably be most likely to occur by colonists from type i patches. 
In the latter case, the weakened restriction becomes simply 

11m22 > M12m21. (3) 

Such a relaxation of the model would be particularly relevant if the patches 
were not randomly intermingled but tended to be clumped according to 
type. Similarly, habitat selection in a coarse-grained environment would 
necessitate a condition such as (3) in place of (2). 

The model discussed above ignores direct reference to the sizes of the 
individual colonies or the numbers of habitable patches, these variables by 
implication exerting their influence through the various colonization and 
extinction parameters. 

The main result of the work of Horn and MacArthur (1972) is the criterion 
for species 2 to be able to invade a patchwork in which species 1 is already 
present in equilibrial occupancy fractions j and 12. That condition is given 
as the inequality 

n11 M22 
--+ >1 (4) 

el + c1pe c*!-f + C.,3 

If either term on the left exceeds unity by itself, species 2 could invade a 
habitat made up entirely of patches of the one corresponding type; but 
otherwise, it is the existence of both sets of patches which permits the 
invasion. 

Note that the potential coexistence does not depend on the fact that there 
are two types of patches. What condition (4) requires is simply that the 
colonization coefficients in11 and 22 be sufficiently high with respect to 
e1 + c13i and e2 + c2 32. Indeed, in an environment in which there is no 
ecological distinction between the two types of patches and the labeling is 
an arbitrary classification which labels half of the patches type 1 and half 
type 2, it will be the case that ini, = in22, el = e2, and cl = C2. Assuming 
P1 ==P2, (4) becomes simply in1l > -1 (e1 + ciiX), whereas the appropriate 
condition when only the type 1 patches are habitable is the more stringent 
MI > el + elp1. Since type 1 patches are ecologically identical to type 2 
patches, the only altered ingredient when type 2 patches are present is 
that there are twice as many patches. What this means is that coexistence 
may become possible simply due to a doubling of the number of patches, 
leading to a doubling of the colonization rates through a doubling of the 
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DISPERSION AND POPULATION INTERACTIONS 209 

number of potential colonists. There is no real connection to the existence 
of two types of patches. The result is more a kind of Allee effect (Allee 
1939) in that invasion of a region is only possible if sufficient numbers of 
supportive colonies of the species are present to reinforce and replace 
colonies lost to extinction. When the species is low in numbers, growth is 
slow because recolonization is slow. As it expands, so does the recolonization 
rate and hence the overall growth rate. 

Condition (4) appears at first glance to be independent of the inter-type 
colonization coefficients M12 and Mn21; but this is an artifact caused by as- 
sumption (2). Without (2), (4) is replaced by the condition that either 
ml,/(el + cl1ap) > 1 or M22/(e2 + C2i32) > 1 (species 2 can persist in one 
patch type alone) or else 

Bull n122 VlhIII22 - M2M21 
+ .1 + --. (5) 

l + Cl P 1 i + c.p2 (e1 + c 1 1) (2 A C c2 , 2) 

Thus, if inter-type colonization for the invader (species 2) is reduced 
without a corresponding increase in intra-type colonization, invasion be- 
comes more difficult, again due to a reduction in the overall recolonization 
rates. Condition (5) is however not dependent on condition (3). 

Note that a general lowering of the barriers to migration for both species 
will not necessarily make the task easier for an invader, since it is to be 
expected that such a lowering of the barriers would lead to an increase in 
the equilibrial values P1 and P2. Success in invasion by species 2 is thus 
indirectly related to differential colonization, that is, to the colonization 
rate of species 2 relative to that of species 1. 

Slatkin (in preparation.), in reconsidering the problem analyzed by 
Levins and Culver (1971), has made points which apply equally well to 
model (1). He points out that the model assumes the probability of extinc- 
tion, say, of species 2 in patches of a particular type to be related to inter- 
specific competition directly through the fraction p of patches of that type 
occupied by species 1. Slatkin argues correctly that a more appropriate 
scheme is an extension of Cohen's approach (Cohen 1970), which considers 
four possible states for each patch: with or without species 1 and with or 
without species 2. 

It is worthwhile to rephrase and examine in more detail the point raised 
by Slatkin. Denote by (i, j) the four possible states of a patch, where 
i, j - 0 or 1. [Here, (1, 0) indicates the presence of species 1 alone; (0, 1), 
only species 2; (1, 1), both; (0, 0), neither.] Slatkin's objection would not 
be important if the covariance D =E(ij) - E(i)E(j) were zero. In 
general, however, this is not the case, and such an assumption, in fact, is 
not consistent with the premises of the model. Hence, the objection cannot 
be easily dismissed. Indeed, D is undergoing directed change and may be 
expected to stabilize in the negative region, facilitating coexistence. Model 
(1) is valid for the consideration of invasion, the case of most interest to 
Horn and MacArthur (1972), since the random colonization hypothesis 
implies that initially D -0. For the question of coexistence, however, a 
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210 THE AMERICAN NATURALIST 

modified description is necessary which includes consideration of the D 
values for the two habitats. The problem suggests very strongly an analogy 
with the population genetics problem of the consideration of two-locus 
gametic frequencies, with, for example, the "gamete" Ab corresponding to 
patches in state (1, 0). In the context of this general approach, the fraction 
of patches with both species present will be pq + D, species 1 alone 
p(1 - q) - D, species 2 alone q(1 - p) - D, neither species (1 - q) 
(1 - p) + D. The existence of two types of patches as in the Horn and 
MacArthur (1972) model, of course, would add a further minor complica- 
tion. 

When the modifications suggested are made, the general approach de- 
scribed above presents some striking potential advantages. For example, it 
allows one to confront the question of extinction, a stochastic event at the 
level of the individual patch, and to treat it deterministically by considera- 
tion of a large aggregate of patches. Thus, whereas individual patches may 
be constantly entertaining new tenants, including " fugitives " whose 
survival depends on rapid dispersal and effective recolonization, the over- 
all species densities for the mosaic should be more predictable and may 
indeed reach steady state. These ideas are not restricted to the fugitive 
from competition, such as the insect Cori=a dentipes cited by Hutchinson 
(1959). They apply equally well in other contexts, for example, to the 
"fugitive " prey mites in Huffaker 's laboratory predator-prey system 
(Huffaker 1958) or to the prickly pear Opuntia in its flight from the 
herbaceous moth Cactoblastis cactorum (Dodd 1940, 1959; Nicholson 1947). 
Huffaker's experiments provide a classic example of the role of differential 
dispersal abilities in allowing two species to coexist. 

Although the coexistence described above is based on a balance between 
local extinctions and recolonizations, complete obliteration of local demes 
is not a requirement. The essential element is the temporal fluctuation of 
local population densities, which translates into fluctuation in the environ- 
ment facing the various species. Moreover, it is not a concept restricted to 
discrete environments, being equally relevant in continuous ones. The only 
analytical modification necessary when local fluctuations, rather than ex- 
tinctions, provide the means for coexistence is the replacement of the gross 
"occupancy fraction" by some more general spatial average. The fugitive 
survives simply due to its ability to take advantage of local fluctuations in 
interspecies pressures, fluctuations which the fugitive 's own movements 
may help maintain. A spatially uniform "equilibrium" would mean ex- 
tinction of the fugitive. 

In the patch occupancy models, population density variations within a 
patch are ignored. Indeed, what is being assumed is that over the short run, 
the densities within each patch will reach an equilibrium which can be 
entirely characterized by the presence or absence of the various species. 
On the slower time scale, equilibrium is viewed as a balance between 
colonization and extinction. The technique, *hen valid, simplifies what may 
be a very complicated mathematical problem when population densities 
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DISPERSION AND POPULATION INTERACTIONS 211 

are considered. For example, when one is dealing with fugitive species, 
consideration of the equations which are directed to the "fast" time scale, 
and thus to the transient dynamics of the intrapatch densities of the in- 
dividual species, must involve the difficult search for stable nonconstant 
solutions (e.g., limit cycles). On the slower time scale, however, equilibrium 
can be attained in terms of the fraction of patches occupied, although the 
specific dispersion patterns will necessarily vary with time. For such cases, 
therefore, this approach has real advantages. It has apparent advantages 
as well for the consideration of invasion by introduced species, especially 
in situations where the sizes of individual colonies are relatively unim- 
portant. When, however, the specific dispersal pattern is crucial, as would 
be the case if migration rates between patches depended on geographical 
proximity, a different approach is mandated. This might not be a difficulty 
for the type of epidemic problems considered by Cohen (1970) where in- 
dividuals (or perhaps families or communes) are highly mobile patches 
without fixed geographical position. However, for infestation problems as 
posed for example by the gypsy moth, the geographical spread is of es- 
sential importance. 

The migration-extinction approach is similarly not adequate when the 
possible equilibrium colonies may have more than the limited number of 
characterizations indicated, nor obviously when interest must be focused 
on the fast time scale. Moreover, even when the approach is valid, it 
represents a simplification of the full equations, that is, those which allow 
for consideration of intrapatch densities. For all of these reasons, I now 
discuss the full equations. 

GENERAL FORMULATION 

The approach described in this section is the classical one used in dealing 
with "diffusion-reaction" systems in many applied contexts; and similar 
"diffusion equations" may be found in Skellam's work (Skellam 1951). 
Further, the understanding of the integration of spatial and temporal or- 
ganization is one of the central problems of theoretical biology and the 
subject of much current research (e.g., Goodwin and Cohen 1969; Keller 
and Segel 1970; Othmer and Scriven 1971, 1973; Karlin and McGregor 
1972; Gierer and Meinhardt 1972). Much current work (Keller and Segel 
1970; Othmer and Scriven 1971, 1973; Gierer and Meinhardt 1972) has 
taken inspiration from the seminal paper of Turing (1952), which was an 
attempt to explain the breakdown of symmetry in morphogenesis. 

In the form developed by Othmer and Scriven (1971), the equations are 
very general and serve as a starting point for the development given here. 
Consider n species distributed over an interconnected network of m patches. 
The density of species i (i = 1, . n. , n) in patch [t ([t = 1, ... , m) is denoted 
xA. Within patch ,t, ignoring migrations between patches, the overall growth 
rate of species i is labeled fA(x), where x1 is the vector (X11a, .. . .,xn) of 
densities of all species in patch st. The functions fig are arbitrary, except that 
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212 THE AMERICAN NATURALIST 

they are assumed to be defined and continuously differentiable on an open set 
containing the biologically realistic region R (xi > 0 for all i), and further 
that on R, fg' (X/h) > 0 if xji - 0. The last condition is common sense, stating 
simply that a nonexistent species is in no danger of declining. Migrations 
into the patch from outside the network, however, might establish the 
species there, so that fiAf (XA') need not be zero. The net migration of species i 
from other patches to patch , is denoted Ji.A. 

In the simplest case, the net exchange from patch v to patch [t is propor- 
tional to xi," - xA, a passive migration with nonnegative constant of pro- 
portionality Diat (Dew'ul is arbitrarily defined as zero for all [X). With this 
simplification, Jja takes the form 

Ju E DillD (xi, -d xie). (6) 
v'=> 

More generally, if for example predators do not diffuse randomly, but 
rather in response to a prey gradient, or if fugitive species do not colonize 
randomly, but are able to seek out unoccupied areas, then a different form 
of (6) would result (see [8] and [9]). This would similarly be true in the 
important case when emigration is density-dependent. However, if (6) 
were to be employed, the governing equations for the system would become 

91n (7) 
dxiP/dt - Fi(X, D) - fill(xA) + JjA = f4A (xA) + - .Dt"(xiP - 

1 

where i=1, .. ., n and , ..., ,and where 

= (X', x2 Use) 

and 

D _(Djlll .. Ditnl . . .,I D11"m . .. I Dltmp.. Dn MM). 
Thus, the form of the equations denotes the dependence of the growth rates 
not only on the species densities but on the parameters DvAl as well. The 
analogous discrete versions were considered by Karlin and McGregor 
(1972) ; results obtained below are continuous analogues of their results. 

More generally, the governing equations of the system are given com- 
pactly by 

dxjI/dt = Age (X, D ), (8) 
where PFg'(X, 0) fin (xg). Here 0 is the zero vector in the rnM2 parameter 
space. Note further that the assumptions previously made on the functions 
fig and the nonnegativity of the elements of D guarantee that 

F,(X, D) > O if x O and X e X, (9) 

and the Fig are continuously differentiable. 
Equations (8) and (9) summarize the' essential properties of the dy- 

namics. Moreover, as indicated earlier, (8) and (9) describe a touch more 
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DISPERSION AND POPULATION INTERACTIONS 213 

general framework not tied, for example, to the colonization assumptions 
underlying (6). 

Using this framework, two questions of biological interest are assessed 
in succeeding sections: (i) To what extent does the spatial component of 
the environment lead to the coexistence of species which could not coexist 
within a single patch? (ii) To what extent is the behavior of the system 
affected by migration rates ? 

COMPETITION IN PATCHY ENVIRONMENTS 

The outcome of interspecies interactions may not be completely deter- 
minate but may depend in an essential way on initial densities (Park 1962; 
Slobodkin 1961). Species which are able to reach and colonize areas first 
may be able to establish themselves and thereby resist invasions by species 
that might otherwise exclude them. Indeed, the possibility of such a situa- 
tion is inherent in even the simplest of competition models, provided only 
that parameters are properly chosen. It occurs, for example, in the Lotka- 
Volterra competition equations, rewritten as 

dxldt = x (B ax by), 

dy/dt =y(S- cx -dy), 
provided interspecific competition outweighs intraspecific: 

a/c < R/S < b/d. (10) 
Here x and y represent species densities. Note that in this formulation, 
the "saturation values" (Slobodkin 1961) are R/a and S/d respectively, 
and the "coefficients of competition" are respectively b/a and c/d. The 
situation is also present in much more general models and, indeed, will 
occur whenever the defining equations are of the form 

dxi/dt=fi(x), i =n (11) 

and possess more than one stable equilibrium (or, more generally, more 
than one stable attractor). 

Consider then a network of m initially identical patches, in each of which 
considered alone one or more of the n species would become extinct but in 
each of which every species has the potential to survive given a sufficient 
lead. Then, for any specified collection of species, there exists a number N 
such that, if the number of patches m exceeds N and if there is no migration 
between patches, a stable configuration is possible with all of those species 
present. (B elow I show that the "no migration " condition can be relaxed.) 
In particular, if m > N, then' a stable arrangement would be possible with, 
say, species 1 (and perhaps other species) established in patch 1 (and 
perhaps elsewhere),, species 2 in patch 2, etc. 

If some migration is now allowed between patches (D74 0 but D "close 
tot" 0), a perturbation theorem (Appendix 1) applies and a new equilibrium 
results with all species present. In this case, the equilibrium number of 
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214 THE AMERICAN NATURALIST 

species in the mosaic is dependent on initial densities and the connected- 
ness D of the network. In particular, if the matrix Ai = (de") is irreducible 
(Gantmakher 1959), then species i will at equilibrium be represented in 
every patch. In general, in a patchy environment, individual patches (or 
islands) may be expected to vary substantially in their species lists 
(Simberloff and Wilson 1969, 1970; Root 1973; Paine, personal communica- 
tion). 

The above results correspond to similar results derived in the discrete 
time system by Karlin and McGregor (1972). 

Assuming that extinctions of local populations due to external factors 
occur on a slower time scale than that of intrapatch dynamics, the individ- 
ual patches may be reasonably regarded as "equilibrium patches," in 
equilibria which track the changes in external factors, and a colonization- 
extinction approach to the expected equilibrium number of species becomes 
relevant. The theory presented in this section may be considered as directed 
to the fast time scale and would be complemented by a colonization- 
extinction approach to the colonization-extinction equilibrium. Such an 
approach in general would have to consider the distributions in sizes and 
relative geographic locations (through D) of the various equilibrium patches 
and would seek the correlation between communities as a function of dis- 
tance, as did Kimura and Weiss (1964), Weiss and Kimura (1965), and 
others in considering stepping-stone models of genetic correlation. 

In summary, coexistence is made possible in a patchy environment be- 
cause of a scenario whereby initially identical patches subject to random 
colonization diverge in species lists, through a kind of founder principle, 
culminating in. a "linked " joint equilibrium in which a much higher 
diversity results than would be possible in a single patch. Diversity (num- 
ber of species) generally increases as the number of patches increases until 
it reaches its maximum possible value. However, since in some sense perfect 
mixing (equivalently, a single homogeneous patch) is the limiting case as 
the interpatch elements of P become infinite, diversity eventually may be 
expected to decrease as migration increases beyond some critical threshold. 
This result needs to be made more precise, however, and computer studies 
of the relation of the equilibrium number of species to D would be very 
enlightening. 

As pointed out elsewhere (Levin 1970), stable coexistence is only pos- 
sible provided the effective number of limiting factors is as great as the 
number of species. When, for example, two species are limited by a single 
resource, no stable equilibrium exists. A patchy environment may, however, 
increase the number of limiting factors, say by increasing the number of 
resource or prey species, and further by making relevant local densities 
within patches rather than overall densities. Though the environment may 
have been uniform initially, it becomes heterogeneous (in the sense of 
Smith [1972]) as a result of what may be random initial disturbances. 
Obviously, this scenario depends neither 6n the initial uniformity nor on 
the randomness of disturbances. What is striking is that it can occur even 
in the face of these. 
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DISPERSION AND POPULATION INTERACTIONS 215 

Note that in this example coexistence occurs because of the spatial com- 
ponent of the environment but is not dependent on fluctuations in local den- 
sities. Further, higher migration fates tend to homogenize the system and 
to reduce the potential for coexistence. This contrasts with coexistence due 
to fugitive strategies, where high migration rates do not homogenize (quite 
the contrary) and coexistence is the result of sustained fluctuations in the 
environment. Patchiness does not require the existence of multiple types 
of patches. The above results were derived under the assumption that all 
patches were identical, precisely to emphasize this point. If, however, patches 
are of a variety of types, the perturbation theorem still applies; that is, 
small amounts of migration do not destabilize an arrangement which is 
stable without migrations. To quote Karlin and McGregor (1972), "complex 
systems when combined with slight migration between them produce even 
more complex systems with more possibilities and representations of stable 
polymorphisms. " 

COMPETITION BETWEEN TWO SPECIES OVER TWO PATCHES 

To exemplify the general results just given, this section deals with the 
simplest case, two species in competition in two patches which differ only 
with regard to the species densities. For simplicity of illustration, the 
dynamics introduced earlier, 

dx/dt =x(R-ax-by), 
(12) 

dy/dt _ y(S -x-dy), 
are assumed within each patch. (Again, the qualitative results do not 
depend on such oversimplified equations.) Equivalence of the two patches 
means that the same parameters R, S, a, b, c, and d apply in each patch. 
Assume further that a/c < R/S < b/d, condition (10). This means that 
coexistence is not possible within a single patch but that either species can 
establish itself given a sufficient lead. 

As is well known, the system (12) has four equilibria (fig. 1), stable 
ones at (R/a, 0) and (0, S/d) and unstable ones at 0 = (O, 0) and 

(Rd-Sb -Rc+Sa 
U ad-bc' ad-be b 

When the two patches are considered together, and migration is passive, 
the corresponding equations take the form 

dxi/dt = xi(R - axi - byi) + D(xj -x), 
(13) 

dyildt = yj (S - xi dyi) + Dy(yj - y), i, j=1, 2; i:& j 

where D, and D1, are the species-specific migration rates between patches. 
In the completely symmetric case, when the species behave identically 

except for the (symmetric) effects of interspecific competition, R = $, 
a - d, b = c, and D, = Dv. Congeneric species might reasonably be ex- 

This content downloaded from 128.178.183.162 on Fri, 29 Mar 2013 05:36:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


216 THE AMERICAN NATURALIST 

S/d 

\OU 

C > 
R/a 

FIG. 1.-The four equilibria for the system (12) 

pected to approximate this behavior, if sufficiently close, but the choice is 
made here simply for ease of illustration. In this case, the system becomes 

dx/dt = xi(R - ax -bye) + D(xj - ), 
(14) 

dyi/dt= y(R- bxi -ay)+D(yj- y), i, j=l,2; i =/j, 

where the subscript on D has been dropped. Equation (10) becomes simply 

a < b. (15) 

For small D, the qualitative behavior of (14) is the same as that for (13), 
but the symmetry makes arithmetic calculation a great deal simpler. Hence, 
(14) will be analyzed in closer detail. 

Note first that the uncoupled equations 

dx/dt=x(R-ax-by) 

dy/dt = y(R - bx-ay) 
have four possible equilibria (see fig. 2): 

I: x-O. y O0 (0) 
II: x 0, y R/a, 

III: x =R/a, y =0, 
IV: x-R/(a + b), y = R/(a + b). (U) 

In light of (15), only II and III are stable, and correspond to the exclusion 
of one or the other species. Moreover, almost every solution tends either 
to state II or to III, depending on which species is initially more abundant. 
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(OR/o) 
Basin of 
attraction 
for : 

Basin of 
/(Ra+bR/a+b) attraction 

for m 

(0,0) E 
( R/o,Q) 

FIG. 2.-The four possible equilibrium states for the system x = -ax - by), 
p p i-( bx - ay), with basins of attraction shown. 

Only the thin ridge x - y of initial conditions does not lead to II or III 
being perched precariously between the two basins of attraction. 

When D - 0, the system (14) clearly has 16 possible equilibrium states, 
since it is still uncoupled and each patch has four possible equilibria. How- 
ever, only four of these, denoted (II, II), (II, III), (III, II), and (III, III), 
are stable. When D > 0, the four homogeneous equilibrium states (I, I), 
(II, II), (IIT, III), and (IV, IV) remain and with the same stability char- 
acteristics as previously, respectively unstable, stable, stable, and unstable. 
The coupling destroys 10 of the other equilibria not under the protection 
of the perturbation theorem, since they were initially unstable, but the 
remaining two, (II, III) and (III, II), are the most interesting of all. Due 
to the symmetry, it suffices to consider just (II, III). 

When there is no coupling, the system (14) as stated permits an equilib- 
rium at (II, III), that is, at 

X1 , Y1 =- Ra, X2 = R/a, Y2 = 0. 

This equilibrium is shown in figure 3a, where 1 denotes the equilibrium 
in patch 1, 2 the equilibrium in patch 2; and again in figure 3b. In short, 
the equilibrium discussed is one in which species 2 alone prevails in patch 1, 
and species 1 in patch 2. 

When D > 0 and is small, the perturbation theorem (Appendix 1) 
guarantees that the equilibrium (II, III) does not disappear. Rather, it 
moves slightly off the axes. To be precise, for 
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00 000 0K 0 

0 000 0 
00 0 
0 0~ 0 
0 0 00 0 

0 
2/ ~~~0 0 0 

PATCH I PATC H 2 a b 
FIG. 3.-a, The equilibrium (II, III) for the system (14) when D = 0. b, An alternate 

representation of the equilibrium in a. Circles indicate individuals of species 2; diamonds, 
individuals of species 1. 

0 D <:, 2 * b+ 
- 

a(16) 
2 b+a' 

(14) has an equilibrium at 

R 2D 1 If b+a 
Xi Y2 - -l R-2DJIR- 2D __ 

2a 2a / a 

R- 2D 1 b+a (17) 
X2 Y -+ B- D -2D V 

2a 2a / - a 
It is easy to check, using (15) and (16), that these values are real and 
(for D > 0) positive. Furthermore, as D tends to 0, the equilibrium clearly 
tends to (II, III), that is, to x1 - Y2 - 0 and X2 - 1 R/a, as pre- 
dicted by the perturbation theorem. Finally, note that as D tends to 
(R/2) * (b -a)/(b +a), the equilibrium tends to the homogeneous one 
(IV, IV), that is, to 

X1 =Y2 = X2y R/(b + a), 

which explains condition (16). 
The perturbation theorem does not guarantee that (17) remains stable 

but only that it does so for D small enough. Condition (16) is not sufficient 
to guarantee this, and in fact it may be shown (Appendix 2) that the 
equilibrium is stable for 

R b-a 
2 2b +a (18) 
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but unstable for 
R b a<D b-a (19) 
2 2b+a 2 b+a 

The entire situation is summed up in figure 4. In figure 4a, as D increases 
from 0 toward the threshold value (R/2) * (b -a)/ (b +a), the points 
(xi, yi) and (X2, Y2), representing the equilibrium densities within the two 
patches, move symmetrically toward each other along the hyperbola 

ax2 + 2bxy + ay2 - Rx Ry =0, 
finally coalescing when D hits the value (R/2) (b - a)/(b + a). The 
joint equilibrium is stable only until D reaches the value (R/2) * (b -a)/ 
(2b + a), which corresponds to the equilibrium 

R b?2a 1? 72A1 

2a 2b+a 2a(2b + a) -p, 

X2 1 
R b + 2a + R V b+ 2ab. 
2a 2b+a 2a(2b+a) 

In summary, when there are at least two patches in the environment, 
coexistence of two species that would otherwise exclude each other is pos- 
sible. Each establishes itself in one patch sufficiently to withstand invasion, 
and each is found in the other patch due to sustained migration from the 
favored territory. When the migration is too high (condition 19), mixing 
is rapid enough that there is effectively only a single patch, and coexistence 
is no longer possible. 

Global analysis for this case has been performed by the author and 
L. E. Payne and will be published separately. 

, O 

X ,,, O o o o 

R/be 0R/ab2Ra b 

0 

b R/0 PATCH I PATCH 2 

a b 
FIG. 4.-a, The nonhomogeneous competitive coexistence equilibrium for the system 

(14) when D > 0 and is small. b, An alternate representation of the equilibrium in a. 
Circles indicate individuals of species 2; diamonds, individuals of species 1. 
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THE DEVELOPMENT OF SPATIAL AND SPATIO-TEMPORAL PATTERNS 

Opportunities for movement and habitat diversification provided by the 
spatial aspect of environment make possible in a variety of ways coexistence 
of species which could not otherwise survive together. If the environment 
is heterogeneous, different combinations of species are likely to be favored 
in the various local regions and maintained elsewhere principally by dis- 
persal from more favored regions, and this will act to increase the overall 
species richness. This spatial heterogeneity in environment may be externally 
imposed, consisting principally of variation in weather, climate, edaphic 
factors, etc., or, as shown earlier, it may arise as a result of a divergence 
between subregions or patches due to an essentially random variation with 
respect to colonization. In any case, such spatial patterns are steady state, 
and are not related to temporal fluctuations in local densities. 

When species life history patterns are such that local populations have 
periodic dispersal episodes, or when the environment varies in time, a 
premium is placed on how fast species can get to and utilize choice areas. 
In this case, opportunity exists for species which would otherwise become 
extinct to survive as fugitives, distributed according to spatio-temporal 
patterns involving consistently fluctuating local population densities. As 
with the steady-state strategy, the fugitive strategy can arise in an initially 
spatially uniform environment, since the spatio-temporal fluctuations in 
environment may be strongly coupled in a feedback relationship to the 
fluctuations in species densities. Such situations may be studied by seeking 
stable nonconstant solutions to (7) or continuous analogues of it, typically 
of the form 

ax, = f4(X, z) +V (DjVxi), at 
where V denotes the gradient with respect to the spatial variables, Z. Such 
models, discrete or continuous, provide as well the starting point for the 
computation of the spatially nonuniform but steady-state distributions 
described previously. This computation is a difficult mathematical problem, 
but an elegant beginning to its solution may be found in Othmer and 
Scriven (1973). 

Such spatial patterns, both steady state and temporally varying, may 
arise in a variety of ways. They may be, as stated earlier, determined by the 
patterns of initial colonization in newly available areas. Alternatively, they 
may arise simply due to invasion episodes of sufficient intensity to allow the 
invader to become established in some locale or through a fugitive strategy. 
Finally, they may arise through a change in either the species densities or 
in the basic interactions between species, when the change is sufficient to 
destabilize a previously uniform coexistence pattern. One particularly 
striking example, owing in motivation to Turing (1952); is that in which 
an increase in the ability to migrate by some species can destabilize the 
system. This phenomenon may be termed diffusive or dissipative instability 
(Segel and Jackson 1972). Many results discussed below parallel results 
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discovered in the spatially continuous case by Segel and Jackson (1972). As 
with fugitive species, the lack of perfect mixing (over the spatial region) 
is responsible, since this effectively introduces a destabilizing time lag. 

Basically, diffusive instabilities arise when diffusion or migration de- 
stabilizes an otherwise stable situation, in contrast to one's usual intuitions 
concerning the effects of diffusion. The theory has been explored by Turing 
(1952), Othmer and Scriven (1971, 1973), Keller and Segel (1970), Segel 
and Jackson (1972), and others, principally in developmental contexts. 
The effect of such instabilities is that, for example, a predator-prey relation- 
ship which permits stable coexistence when migration rates are low might 
become destabilized when the ability to migrate increases. The two species 
might still coexist, but in an oscillatory pattern similar to that caused by 
the fugitive species or in a steady-state but spatially nonuniform distribu- 
tion such as discussed above. Although the prey could persist even without 
oscillations, there is clear advantage to individual prey to migrate to escape 
predation, and this may lead to evolutionary pressures toward destabiliza- 
tion. From the "viewpoint" of the predator population, increased migration 
becomes a necessity to stabilize an otherwise unstable situation and allow 
survival. 

Diffusive instabilities do not arise in purely competitive systems. Further, 
they only arise in predator-prey systems when one species is rare enough 
that an Allee effect is applicable; that is, they arise only when the per capita 
rate of growth of the rare species is an increasing function of density due, 
say, to an increased ability to find mates. The Allee effect is inconsistent 
with stability in the purely competitive case. 

By way of example, consider the interaction between an abundant prey 
and a rare predator, described near equilibrium by modified Lotka-Volterra 
equations: 

dx/dt =x(K - ax-by), 

dy/dt =y(-L+cx+dy). 

These differ from the usual Lotka-Volterra predator-prey equations only in 
the sign of d, which reflects the Allee effect. 

These equations permit a stable equilibrium at 

Lb- Kd Ko-La 
bc ad' Y be-ad' 

provided ad < be and 

a K a b+d= a a bec-ad 
< < = + * ~~~~~~~~(20) c L d a+c c ed a+c 

The corresponding system over two patches, with differential migration 
coefficients ,u, v included, 

dx/dt = x(K - axm - bye) + I(x - ), 
(21) 

dyi/dt = y, (-L + cxi + dye) + v(y - yj), j = i, 
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obviously permits the equilibrium 

Lb-Kd _ _ Kc -La 
xl $2 - 

be - d 1 = Y2 be- a bc-ad' bc-adt 

but (Appendix 3) this equilibrium is unstable for large ,u and small v, that 
is, for 

2F+-) (v- 2 ) < 4 

This inequality defines a region in (pa, v) -space with boundary the hyper- 
bola 

+ ax , dyl bcZ191 
2 2 ~~~~4 

The regions of stability and instability are illustrated in figure 5. 
Thus, an increase in mobility of the prey, expressed as increased migration 

,u, will lead to a destabilization of the balance between predator and prey. 
However no rate of migration by the prey .is too great for the predator to 
overcome through increased ability to migrate on its own part. In particular, 
if v > d51/2, the system is always stable. 

This linear approach to the destabilization of the predator-prey system 
does not distinguish between the alternatives which result: (i) attainment 
of a new steady state, very possibly spatially nonuniform, (ii) limit cycle 
oscillations, in which predator and prey undergo their familiar coupled 
temporal oscillations, and (iii) extinction of the system. Moreover, it is not 
clear how common this phenomenon is in nature. It is, however, an in- 
triguing possibility which lends itself to laboratory testing. 

Finally, cooperative effects similar in effect to the Allee effect may be more 
common in prey than in predator, as increasing prey population size may 
decrease the per capita predation load (Rosenzweig and MacArthur 1963; 
Rosenzweig 1969). Results similar to those discussed in this section are found 
for systems in which these effects occur (Segel and Jackson 1972). 

Region of 
stability 

Region of instability 

FIG. 5.-Stability diagram for the homogeneous equilibrium in the predator-prey 
system (21). 
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SUMMARY 

The spatial component of environment, often neglected in modeling of 
ecological interactions, in general operates to increase species diversity. This 
arises due to the heterogeneity of the environment, but such heterogeneity 
can arise in an initially homogeneous environment due to what may be 
random initial events (e.g., colonization patterns), effects of which are 
magnified by species interactions. In this way, homogeneous environments 
may become heterogeneous and heterogeneous environments even more so. 
In patchy environments, distinct patches are likely to be colonized initially 
by different species, and thereby a kind of founder effect results whereby 
individual patches evolve along different paths simply as a consequence 
of initial colonization patterns. Species which would be unable to invade 
may nevertheless survive by establishing themselves early and will moreover 
be found in lower densities in other areas as overflow from their "safe" 
areas. Spatially continuous environments may evolve toward essentially 
patchy ones by this kind of process. Overall species richness is expected to 
be higher in patchy environments but to decrease as the ability of species to 
migrate becomes large. These results are due to patchiness per se and do not 
depend on the existence of several kinds of patches, a situation which will 
tend to reinforce these effects. 

Diversity is also increased in such environments with spatial extent due 
to the opportunities for fugitive-type spatio-temporal strategies. In these, 
local population oscillations provide the salvation for species which are for 
example competitively inferior or easy victims to predation but which can 
survive by superior migratory ability and (in patchy environments) talent 
for recolonization. Again, dependence is on spatial heterogeneity, in addition 
to temporal heterogeneity; again, this may be externally imposed or the 
result largely of internal processes. 

Some gross statistics for these processes, principally patch occupancy 
fractions, may prove useful for a simplified treatment of colonization- 
extinction equilibria, as in the approaches of Cohen (1970), Levins and 
Culver (1971), Horn and MacArthur (1972), and Slatkin (in preparation). 
For such considerations, however, one cannot assume independence of dis- 
tributions; and the approach of Cohen (1970) and Slatkin (in preparation), 
which allows for consideration of covariance, is favored. 
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APPENDIX 1 

PERTURBATION THEOREM 

The theorem below is mathematically quite intuitive and is an analogue of one 
proved in Karlin and McGregor (1972) in the discrete time case. As they point 
out, its implications for population dynamics are substantial. 

Theorem: Assume that FsiL(X, D) > 0 when xl, - 0 and X >, 0, and that the 
system dx~i'/dt = FPt(X, Do) has a stable equilibrium (the eigenvalues of the 
Jacobian matrix have negative real parts) at X X0 > 0. Then for D sufficiently 
close to Do, the system dxe"/dt Fe (X, D) has a stable equilibrium at some 
point XD , 0, where XD tends to X0 as D tends to Do. 

The notation X) 0 means that all components of X are nonnegative. The 
quantity Fig is assumed to be continuously differentiable in X and D. 

The proof of the perturbation theorem is given in Levin (in preparation) and 
rests on the condition Fg(X, D) > 0 when xe = 0, which assures that trajectories 
do not cross the coordinate plane into the negative region. 

APPENDIX 2 
STABILITY ANALYSIS FOR (17) 

Here I prove that (17) is stable if D < (R/2) * (b - a)/(2b + a) and unstable 
if D > (R/2) (b - a)/(2b + a). For clarity, the bar notation denotes equilibrium 
values to free x1, Yl, x2, and y2 for more general usage. Thus, 

R 2D .1 II' b+a 
Y1= 112 = 2 - UR -2D BR- 2D~ 2 2a 2 aJ b- a)' 

BR- 2D 1 I \ a 
+-JI -2DJIR-- 2D___ $2 =Y1- 2a + 2a - b - a 

Setting 

Y(1-1 \ 
U = I 

Y2- J2 
(X2 - 2 

and linearizing (14) about the equilibrium, one obtains the system of equations 

d-^- (12 T)J+ DK (s) K) U + ...............(22) 
dt 

Here 

12-(0 1) K_ (1 0) 

} -R 201 - by, D- xA 

\ byl R bxl-~, -2aV, - DJ 

(R-b2 -2a2-D ? -bV2 D 
-by2 )r - 2aZ2 - b2 DJ 

and ? denotes the tensor product of two matrices. (For an excellent introduction 
to this notation and the methods used in this Appendix, see Othmer and Scriven 
[1971].) Since the matrices 12 and K are self-adjoint with common spectral repre- 
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sentation, a theorem of Friedman (1956) applies. The stability of (22) is deter- 
mined by the eigenvalues of 12 ? J + DK ? K, which are the eigenvalues of the 
matrices J ? DK. But 

J~~~~ -D = 2( by, -D +D- bXI 

The four eigenvalues of these two matrices will all have negative real parts if and 
only if the (common) trace T of these matrices is negative and the determinants 
positive. But 

T = 2R - (2a + b) (Y, + Yg) - 2D 

212R?- (2a+b) -2D 
a 

b 2D 
a a 

2(b+a) _ b 

a 2 b+a 
Thus, by (16), T is always negative. 

Finally, the determinants will be positive if and only if 

(R- 2a51-b1 -D) (R - bi - 2ag1 -D) > (D + by1) (D + byi), 

that is, if and only if 

[(R-2ax1) - (by,+?D) [(R-2a-y) - (b7I+D)] 

> (D + bY,) (D + by,). 
This condition simplifies to 

(R - 2aX1) (R -2a1) > (b1 +?D) (R-axl) + (by, + D) (R-2ady), 
and further to 

R2 - 2aR(x1 + Y,) + 4a2x1g1 > 2DR + 

(Rb - 2aD) (x1 + Y1) - 2ab(X12 + V72). 

Simplifying further, one obtains 

R(R -2D) + [2aD- R(b+2a)](x1+l1) 

>- 2ab (Y. + pl)2 + 4a(b -a) Yl. 
Substituting 

R - 2D D(R -2D) 
XI + Y1= -, xy 

a a(b- a) 
one gets 

R (R-2D) + [2aD-R (b +2a) ] R2D 

> -2ab (R-2D) + 4D(R-2D) 
a2 
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Since R - 2D > 0, this becomes 

R+-[2aD-- B(b+2a)] >-2-(R-2D) +4D, 
a a 

that is, 

R(b ) > D (? + -) 
aa 

Thus, the equilibrium is stable if 

<R b-a 
D<-. 

2 a+2b 
and unstable if 

R b -a 
2 a+2b 

APPENDIX 3 

STABILITY ANALYSIS FOR PREDATOR-PREY EQUATIONS 

The stability of the homogeneous equilibrium 

Lb-Kd _ - -La 
bc-ad ~be-ad X.,= X 

=be - ad 
=I 

b -ad23 
for the system (21) depends on the eigenvalues having negative real parts for the 
equilibrium Jacobian matrix: 

Mz: = | iCY dyg 
- 

0 0 V 

tt 0 -ay., -t - bx I 
0 V C~l dy, - v 

- 2 
- 

( 
ax, -bxl + ( 1 

I 
(t , 

Using the theorem of Friedman (1956) employed in Appendix 2, one finds that the 
eigenvalues of M are the eigenvalues of the matrices 

-a1 -bXj \ ( -a 2,u - 2[t -bY1 
\ cy dy1 kn cyl dy1 - 2v/ 

By the stability of the equilibrium when A - v 0 the criterion when iz, v 7L 0, 
O reduces to 

as was t dylo -brv 
tt + 2Jv 2 > 

as was to be proved. 

LITMATURE CITED 

Allee, W. C. 1939. The social life of animals. Heinemann, London. 293 pp. 
Cohen, J. E. 1970. A Markov contingency table model for replicated Lotka-Volterra 

systems near equilibrium. Amer. Natur. 104:547-559. 

This content downloaded from 128.178.183.162 on Fri, 29 Mar 2013 05:36:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DISPERSION AND POPULATION INTERACTIONS 227 

Dodd, A. P. 1940. The biological campaign against prickly pear. Communications 
Prickly Pear Board, Brisbane, Queensland. 
1959. The biological control of prickly pear in Australia. Pages 565-577 in 
A. Keast, R. L. Crocker, and C. S. Christian, eds. Biogeography and ecology 
in Australia. Mongr. Biol. 8. 

Friedman, B. 1956. An abstract formulation of the method of separation of variables. 
Pages 209-226 in J. B. Diaz and L. E. Payne, eds. Proceedings of the Con- 
ference on Differential Equations. University of Maryland Bookstore, College 
Park, Maryland. 

Gantmakher, F. R. 1959. The theory of matrices. Vol. 1. Chelsea, New York. 374 + x pp. 
Gierer, A., and H. Meinhardt. 1972. A theory of biological pattern formation. 

Kybernetic 12:30-39. 
Goodwin, B. C., and M. H. Cohen. 1969. A phase-shift model for the spatial and 

temporal organization of developing systems. J. Theoret. Biol. 25:49-107. 
Horn, H., and R. H. MacArthur. 1972. Competition among fugitive species in a 

harlequin environment. Ecology 53:749-752. 
Huff aker, C. B. 1958. Experimental studies on predation: dispersion factors and 

predator-prey oscillations. Hilgardia 27:343-383. 
Hutchinson, G. E. 1951. Copepodology for the ornithologist. Ecology 32:571-577. 

1959. Homage to Santa Rosalia, or why are there so many kinds of animals? 
Amer. Natur. 93:145-159. 

Karlin, S., and J. McGregor. 1972. Polymorphisms for genetic and ecological systems 
with weak coupling. Theoret. Pop. Biol. 3 :210-238. 

Keller, E. F., and L. A. Segel. 1970. Initiation of slime mold aggregation viewed as 
an instability. J. Theoret. Biol. 26:399-415. 

Kimura, M., and G. H. Weiss. 1964. The stepping stone model of population structure 
and the decrease of genetic correlation with distance. Genetics 49:561-576. 

Levin, S. A. 1970. Community equilibria and stability, and an extension of the com- 
petitive exclusion principle. Amer. Natur. 104:413-423. 

Levins, R., and D. Culver. 1971. Regional coexistence of species and competition between 
rare species. Proc. Nat. Acad. Sdi. 68:1246-1248. 

Nicholson, A. J. 1947. Fluctuations of animal populations. Rep. 26th Mtg. ANZAAS, 
Perth, Western Australia. 

Othlmer, H. G., and L. E. Scriven. 1971. Instability and dynamic pattern in cellular 
networks. J. Theoret. Biol. 32:507-537. 
1973. Nonlinear aspects of dynamic pattern in cellular networks. J. Theoret. 
Biol. (in press). 

Park, T. 1962. Beetles, competition and populations. Science 138:1369-1375. 
Root, R. B. 1973. Organization of a plant-arthropod association in simple and diverse 

habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95-124. 
Rosenzweig, M. L. 1968. Why the prey curve has a hump. Amer. Natur. 103:81-87. 
Rosenzweig, M. L., and R. H. MacArthur. 1963. Graphical representation and stability 

conditions of predator-prey interactions. Amer. Natur. 97:209-223. 
Segel, L. A. and J. L. Jackson. 1972. Dissipative structure: an explanation and an 

ecological example. J. Theoret. Biol. 37:545-559. 
Simberloff, D. S., and E. 0. Wilson. 1969. Experimental zoogeography of islands: the 

colonization of empty islands. Ecology 50:278-296. 
1970. Experimental zoogeography of islands: a two-year record of colonization. 
Ecology 51:934-937. 

Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38: 
196-218. 

Slobodkin, L. B. 1961. Growth and regulation of animal populations. Holt, Rinehart 
& Winston, New York. 184 pp. 

This content downloaded from 128.178.183.162 on Fri, 29 Mar 2013 05:36:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


228 THE AMERICAN NATURALIST 

Smith, F. E. 1972. Spatial hetergogeneity, stability, and diversity in ecosystems. Pages 
309-335 in E. S. Deevey, ed. Growth by intussusception: ecological essays in 
honor of G. Evelyn Hutchinson. Connecticut Academy of Arts and Sciences, 
New Haven, Conn. 443 pp. 

Turing, A. 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B237:37- 
72. 

Weiss, G. H., and M. Kimura. 1965. A mathematical analysis of the stepping-stone 
model of genetic correlation. J. Appl. Probability 2:129-149. 

This content downloaded from 128.178.183.162 on Fri, 29 Mar 2013 05:36:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216
	p. 217
	p. 218
	p. 219
	p. 220
	p. 221
	p. 222
	p. 223
	p. 224
	p. 225
	p. 226
	p. 227
	p. 228

	Issue Table of Contents
	The American Naturalist, Vol. 108, No. 960 (Mar. - Apr., 1974), pp. 145-246
	Front Matter [pp. ]
	Polymorphism in Patchy Environments [pp. 145-151]
	Sufficient Conditions for Polymorphism with N Niches and M Mating Groups [pp. 152-156]
	Sufficient Conditions for Protected Polymorphism in a Subdivided Population [pp. 157-166]
	Evolution of the Herbivore-Plant, Predator-Prey, and Parasite-Host Systems: A Theoretical Model [pp. 167-180]
	Mortality Rates and Survival of Birds [pp. 181-192]
	The Oil Content of Seeds: An Ecological Perspective [pp. 193-206]
	Dispersion and Population Interactions [pp. 207-228]
	Letters to the Editors
	Beak-Mark Frequency as an Index of Seasonal Predation Intensity on Common Butterflies [pp. 229-232]
	The Fundamental and Realized Niche of a Solitary Population [pp. 232-235]
	Bird Species Diversity in Patagonia: A Critique [pp. 235-236]
	Mallard Tail-Wagging: Punctuation for Animal Communication? [pp. 236-238]
	Vole Cycles: Another Hypothesis [pp. 238-245]

	Back Matter [pp. ]



