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Vol. 108, No. 960 The American Naturalist March—April 1974

DISPERSION AND POPULATION INTERACTIONS*
SmioN A. LEVIN

Section of Ecology and Systematics,
Department of Theoretical and Applied Mechanics, and Center for Applied Mathematics,

Cornell University, Ithaca, New York 14850

The distribution of a species over its range of habitats is a fundamental
and inseparable aspect of its interaction with its environment, and no com-
plete study of population dynamies can afford to ignore it. This point was
emphasized over 20 years ago by Skellam (1951) and Hutchinson (1951);
and yet, until recently, the mathematical theory of population dynamics
has largely ignored spatial considerations. The rise of the theory of island
biogeography has given rise, however, to a renewed interest in such ques-
tions, particularly with reference to the coexistence of species in a patchwork
environment of similar habitats (Cohen 1970; Levins and Culver 1971;
Horn and MacArthur 1972; Slatkin, in preparation). The general approach
of these investigators is to focus attention simply on the number of patches
in which each species is found, intentionally ignoring both the densities of
the species within individual patches and the identities of occupied patches.
Horn and MacArthur (1972) extend the approach of Levins and Culver
(1971) to consider competition between two species over a mosaic of patches
of two habitat types, labeled 1 and 2, developing for that purpose the
equations

d

;; = q1[ (M1 — e1) — mugs — e1p1] + maig2(1 — 1)

das 1)
prak @2l (Mmga — e2) — Moaqs — Cops] + Myaqi (1 — @o)

for the respective fractions, ¢; and ¢o, of available patches actually oceupied
by species 2. Analogous equations apply for species 1 and its occupation
fractions, p; and pe. Here, my; is a coefficient governing the rate of coloniza-
tion of habitat j by individuals coming from patches of habitat ¢, so that, for
example, m12q; (1 — q2) is the rate of colonization of patches of habitat 2 by
individuals from habitat 1. Further, ¢; is the rate of local extinetion in type
¢ patches in the absence of interspecific competition, and ¢;p; the increase in
that rate due to competition. Horn and MacArthur (1972) introduce c;
through the statement ‘‘species 1 outcompetes species 2 in a fraction ¢; of
the habitats of type 1 that both species co-occupy,’’ and later identify e¢;
= 1 with the situation when species 2 always loses in habitat 1. This some-

* This manuseript is dedicated to the memory of the late Robert H. MaecArthur,
whose ingenious efforts in stimulating the development of a mathematical ecology were
unsurpassed. He will be sorely missed.
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208 THE AMERICAN NATURALIST

what misstates ¢;’s true role, as a decay rate which must bear reference to a
time scale, but the confusion is not central to their main points.
Horn and MacArthur (1972) further restrict their attention to the case

Mooy = M12M2y, (2)

since their model is based on random colonization of patches. Little would
be lost, however, in extending their results to the more general case when
there is no restriction on the my; or when, say, colonization of type ¢ patches
might conceivably be most likely to oceur by colonists from type ¢ patches.
In the latter case, the weakened restriction becomes simply

M11Ma2 2 MmyaMay. 3)

Such a relaxation of the model would be particularly relevant if the patches
were not randomly intermingled but tended to be clumped according to
type. Similarly, habitat selection in a coarse-grained environment would
necessitate a condition such as (3) in place of (2).

The model discussed above ignores direct reference to the sizes of the
individual colonies or the numbers of habitable patches, these variables by
implication exerting their influence through the various colonization and
extinetion parameters.

The main result of the work of Horn and MacArthur (1972) is the criterion
for species 2 to be able to invade a patchwork in which species 1 is already

present in equilibrial occupancy fractions ; and .. That condition is given
as the inequality

miy Ma2
—+ =
€1+ c1P1 62 -+ cupe

If either term on the left exceeds unity by itself, species 2 could invade a
habitat made up entirely of patches of the one corresponding type; but
otherwise, it is the existence of both sets of patches which permits the
invasion.

Note that the potential ecoexistence does not depend on the fact that there
are two types of patches. What condition (4) requires is simply that the
colonization coefficients my; and mgy be sufficiently high with respect to
e1 + ¢1p1 and ez + c2P2. Indeed, in an environment in which there is no
ecological distinction between the two types of patches and the labeling is
an arbitrary classification which labels half of the patches type 1 and half
type 2, it will be the case that mj; = Mmas, €1 = €3, and ¢; = C2. Assuming
D1 = P2, (4) becomes simply mq1 > 4 (e1 + ¢191), whereas the appropriate
condition when only the type 1 patches are habitable is the more stringent
M1 > e; 4 ¢1P;. Since type 1 patches are ecologically identical to type 2
patches, the only altered ingredient when type 2 patches are present is
that there are twice as many patches. What this means is that coexistence
may become possible simply due to a doubling of the number of patches,
leading to a doubling of the colonization rates through a doubling of the

> 1. (4)
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DISPERSION AND POPULATION INTERACTIONS 209

number of potential colonists. There is no real connection to the existence
of two types of patches. The result is more a kind of Allee effect (Allee
1939) in that invasion of a region is only possible if sufficient numbers of
supportive colonies of the species are present to reinforce and replace
colonies lost to extinction. When the species is low in numbers, growth is
slow because recolonization is slow. As it expands, so does the recolonization
rate and hence the overall growth rate.

Condition (4) appears at first glance to be independent of the inter-type
colonization coefficients m;2 and mg;; but this is an artifact caused by as-
sumption (2). Without (2), (4) is replaced by the condition that either
my1/ (€1 4 ¢151) > 1 or maz/ (€3 + c2P2) > 1 (species 2 can persist in one
patch type alone) or else

My Moo _ <1 + 7)1,11771'2:), el 7)3/1277112{:_—. (5)
(51'*-01@1 € - CaD» (61 -+ 01P1>(02+02p2)
Thus, if inter-type colonization for the invader (species 2) is reduced
without a corresponding increase in intra-type colonization, invasion be-
comes more difficult, again due to a reduction in the overall recolonization
rates. Condition (5) is however not dependent on condition (3).

Note that a general lowering of the barriers to migration for both species
will not necessarily make the task easier for an invader, since it is to be
expected that such a lowering of the barriers would lead to an increase in
the equilibrial values $; and Ps. Success in invasion by species 2 is thus
indirectly related to differential colonization, that is, to the colonization
rate of species 2 relative to that of species 1.

Slatkin (in preparation), in reconsidering the problem analyzed by
Levins and Culver (1971), has made points which apply equally well to
model (1). He points out that the model assumes the probability of extine-
tion, say, of species 2 in patches of a particular type to be related to inter-
specific competition directly through the fraction p of patches of that type
occupied by species 1. Slatkin argues correctly that a more appropriate
scheme is an extension of Cohen’s approach (Cohen 1970), which considers
four possible states for each pateh: with or without species 1 and with or
without species 2.

It is worthwhile to rephrase and examine in more detail the point raised
by Slatkin. Denote by (¢,4) the four possible states of a patch, where
1,j == 0 or 1. [Here, (1, 0) indicates the presence of species 1 alone; (0, 1),
only species 2; (1, 1), both; (0, 0), neither.] Slatkin’s objection would not
be important if the covariance D — E(ij) — E(i)E(j) were zero. In
general, however, this is not the case, and such an assumption, in fact, is
not consistent with the premises of the model. Henece, the objection cannot
be easily dismissed. Indeed, D is undergoing directed change and may be
expected to stabilize in the negative region, facilitating coexistence. Model
(1) is valid for the consideration of invasion, the case of most interest to
Horn and MacArthur (1972), since the random colonization hypothesis
implies that initially D = 0. For the question of coexistence, however, a
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210 THE AMERICAN NATURALIST

modified description is necessary which includes consideration of the D
values for the two habitats. The problem suggests very strongly an analogy
with the population genetics problem of the consideration of two-locus
gametic frequencies, with, for example, the ‘‘gamete’’ Ab corresponding to
patches in state (1, 0). In the context of this general approach, the fraction
of patches with both species present will be pg -+ D, species 1 alone
p(1 —gq) — D, species 2 alone ¢g(1 — p) — D, neither species (1 —q)
(1 —p) 4+ D. The existence of two types of patches as in the Horn and
MacArthur (1972) model, of course, would add a further minor complica-
tion.

‘When the modifications suggested are made, the general approach de-
seribed above presents some striking potential advantages. For example, it
allows one to confront the question of extinction, a stochastic event at the
level of the individual pateh, and to treat it deterministically by considera-
tion of a large aggregate of patches. Thus, whereas individual patches may
be constantly entertaining new tenants, including ‘‘fugitives’’ whose
survival depends on rapid dispersal and effective recolonization, the over-
all species densities for the mosaic should be more predictable and may
indeed reach steady state. These ideas are not restricted to the fugitive
from competition, such as the insect Coriza dentipes cited by Hutchinson
(1959). They apply equally well in other contexts, for example, to the
‘‘fugitive’’ prey mites in Huffaker’s laboratory predator-prey system
(Huffaker 1958) or to the prickly pear Opuntia in its flight from the
herbaceous moth Cactoblastis cactorum (Dodd 1940, 1959 ; Nicholson 1947).
Huffaker’s experiments provide a classic example of the role of differential
dispersal abilities in allowing two species to coexist.

Although the coexistence described above is based on a balance between
local extinctions and recolonizations, complete obliteration of local demes
is not a requirement. The essential element is the temporal fluctuation of
local population densities, which translates into fluctuation in the environ-
ment facing the various species. Moreover, it is not a concept restricted to
discrete environments, being equally relevant in continuous ones. The only
analytical modification necessary when local fluctuations, rather than ex-
* tinetions, provide the means for coexistence is the replacement of the gross
‘‘occupancy fraction’’ by some more general spatial average. The fugitive
survives simply due to its ability to take advantage of local fluctuations in
interspecies pressures, fluctuations which the fugitive’s own movements
may help maintain. A spatially uniform ‘‘equilibrium’’ would mean ex-
tinction of the fugitive.

In the patch occupancy models, population density variations within a
pateh are ignored. Indeed, what is being assumed is that over the short run,
the densities within each patech will reach an equilibrium which can be
entirely characterized by the presence or absence of the various species.
On the slower time scale, equilibrium is viewed as a balance between
colonization and extinction. The technique, when valid, simplifies what may
be a very complicated mathematical problem when population densities
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DISPERSION AND POPULATION INTERACTIONS 211

are considered. For example, when one is dealing with fugitive species,
consideration of the equations which are directed to the ‘‘fast’’ time scale,
and thus to the transient dynamics of the intrapatch densities of the in-
dividual species, must involve the difficult search for stable nonconstant
solutions (e.g., limit eycles). On the slower time scale, however, equilibrium
can be attained in terms of the fraction of patches occupied, although the
specific dispersion patterns will necessarily vary with time. For such cases,
therefore, this approach has real advantages. It has apparent advantages
as well for the consideration of invasion by introduced species, especially
in situations where the sizes of individual colonies are relatively unim-
portant. When, however, the specific dispersal pattern is crucial, as would
be the case if migration rates between patches depended on geographical
proximity, a different approach is mandated. This might not be a difficulty
for the type of epidemic problems considered by Cohen (1970) where in-
dividuals (or perhaps families or communes) are highly mobile patches
without fixed geographical position. However, for infestation problems as
posed for example by the gypsy moth, the geographical spread is of es-
sential importance.

The migration-extinction approach is similarly not adequate when the
possible equilibrium colonies may have more than the limited number of
characterizations indicated, nor obviously when interest must be focused
on the fast time scale. Moreover, even when the approach is valid, it
represents a simplification of the full equations, that is, those which allow
for consideration of intrapateh densities. For all of these reasons, I now
discuss the full equations.

GENERAL FORMULATION

The approach described in this section is the classical one used in dealing
with ‘‘diffusion-reaction’’ systems in many applied contexts; and similar
‘‘diffusion equations’’ may be found in Skellam’s work (Skellam 1951).
Further, the understanding of the integration of spatial and temporal or-
ganization is one of the central problems of theoretical biology and the
subject of much current research (e.g., Goodwin and Cohen 1969; Keller
and Segel 1970; Othmer and Secriven 1971, 1973; Karlin and McGregor
1972; Gierer and Meinhardt 1972). Much current work (Keller and Segel
1970; Othmer and Scriven 1971, 1973; Gierer and Meinhardt 1972) has
taken inspiration from the seminal paper of Turing (1952), which was an
attempt to explain the breakdown of symmetry in morphogenesis.

In the form developed by Othmer and Seriven (1971), the equations are
very general and serve as a starting point for the development given here.
Consider n species distributed over an interconnected network of m patches.
The density of species? (1 =1,...,%) in patch p (n=1,...,m) is denoted
z#. Within pateh p, ignoring migrations between patches, the overall growth
rate of species 7 is labeled f#(x*), where x# is the vector (.4, ..., z.*) of
densities of all species in patch p. The functions fi# are arbitrary, except that
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212 THE AMERICAN NATURALIST

they are assumed to be defined and continuously differentiable on an open set
containing the biologically realistic region B (z# == 0 for all ¢), and further
that on R, f#(x#) = 0 if 2# = 0. The last condition is common sense, stating
simply that a nonexistent species is in no danger of declining. Migrations
into the patch from outside the network, however, might establish the
species there, so that fi#*(x*) need not be zero. The net migration of species ¢
from other patches to pateh u is denoted J.

In the simplest case, the net exchange from patch v to patch p is propor-
tional to x# — x#, a passive migration with nonnegative.constant of pro-
portionality D/# (D#* is arbitrarily defined as zero for all p). With this
simplification, J;* takes the form

m
Tt = ZDt"’* (2 — z#). (6)

v==1
More generally, if for example predators do not diffuse randomly, but
rather in response to a prey gradient, or if fugitive species do not colonize
randomly, but are able to seek out unoccupied areas, then a different form
of (6) would result (see [8] and [9]). This would similarly be true in the
important case when emigration is density-dependent. However, if (6)
were to be employed, the governing equations for the system would become

mn (7)
dop/dt = F@(X, D) = fo(as) + I = f(w8) + D Dov(zy — a),

y=1

where¢=1,...,nandp=1,...,m, and where
X = (a1, a2, ..., 2m)
and
D= (D",...,D/m,...,Dm . . Dm . Dmmy,

Thus, the form of the equations denotes the dependence of the growth rates
not only on the species densities but on the parameters D#* as well. The
analogous discrete versions were considered by Karlin and MeGregor
(1972) ; results obtained below are continuous analogues of their results.

More generally, the governing equations of the system are given com-
pactly by

dzp/dt = Fr(X, D), . (8)
where Fi#(X,0) = fi#(x#). Here 0 is the zero vector in the nm? parameter

space. Note further that the assumptions previously made on the funections
f#* and the nonnegativity of the elements of D guarantee that

F#(X,D)>0if o =0and X R, | (9)

and the F# are continuously differentiable. ‘
Equations (8) and (9) summarize the' essential properties of the dy-
namies. Moreover, as indicated earlier, (8) and (9) deseribe a much more
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DISPERSION AND POPULATION INTERACTIONS 213

general framework not tied, for example, to the colonization assumptions
underlying (6). :

Using this framework, two questions of biological interest are assessed
in succeeding sections: (i) To what extent does the spatial component of
the environment lead to the coexistence of species which could not coexist
within a single patch? (ii) To what extent is the behavior of the system
affected by migration rates?

COMPETITION IN PATCHY ENVIRONMENTS

The outcome of interspecies interactions may not be completely deter-
minate but may depend in an essential way on initial densities (Park 1962;
Slobodkin 1961). Species which are able to reach and colonize areas first
may be able to establish themselves and thereby resist invasions by species
that might otherwise exclude them. Indeed, the possibility of such a situa-
tion is inherent in even the simplest of competition models, provided only
that parameters are properly chosen. It occurs, for example, in the Lotka-
Volterra competition equations, rewritten as

dz/dt = (B — ax — by),
ay/dt = y(8 — cx — dy),
provided interspecific competition outweighs intraspecifie :
a/c < R/8 < b/d. (10)

Here © and y represent species densities. Note that in this formulation,
the “‘saturation values’’ (Slobodkin 1961) are R/a and §/d respectively,
and the ‘‘coefficients of competition’’ are respectively b/a and c¢/d. The
situation is also present in much more general models and, indeed, will
oceur whenever the defining equations are of the form

dw;/dt = fi(x), 1=1...,n (11)

and possess- more than one stable equilibrium (or, more generally, more
than one stable attractor).

Consider then a network of m initially identical patches, in each of which
considered alone one or more of the n species would become extinet but in
each of which every species has the potential to survive given a sufficient
lead. Then, for any specified collection of species, there exists a number N
such that, if the number of patches m exceeds N and if there is no migration
between patches, a stable configuration is possible with all of those species
present. (Below I show that the ‘‘no migration’’ condition can be relaxed.)
In particular, if m > N, then a stable arrangement would be possible with,
say, species 1 (and perhaps othér species) established in patch 1 (and
perhaps elsewhere), spéeies 2 in pateh 2, ete.

If some migration is now allowed between patches (D 40 but D ““close
to’’ 0), a perturbation theorem (Appendix 1) applies and a new equilibrium
results ‘with all species present. In this casé, the equilibrium number of
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species in the mosaic is dependent on initial densities and the connected-
ness D of the network. In particular, if the matrix A; = (d#*) is irreducible
(Gantmakher 1959), then species ¢ will at equilibrium be represented in
every patch. In general, in a patchy environment, individual patches (or
islands) may be expected to vary substantially in their species lists
(Simberloff and Wilson 1969, 1970; Root 1973 ; Paine, personal communica-
tion).

The above results correspond to similar results derived in the discrete
time system by Karlin and MeGregor (1972).

Assuming that extinctions of local populations due to external factors
oceur on a slower time scale than that of intrapateh dynamies, the individ-
ual patches may be reasonably regarded as ‘‘equilibrium patches,’’ in
equilibria which track the changes in external factors, and a colonization-
extinetion approach to the expected equilibrium number of species becomes
relevant. The theory presented in this section may be considered as directed
to the fast time scale and would be complemented by a colonization-
extinetion approach to the colonization-extinction equilibrium. Such an
approach in general would have to consider the distributions in sizes and
relative geographic locations (through D) of the various equilibrium patches
and would seek the correlation between communities as a function of dis-
tance, as did Kimura and Weiss (1964), Weiss and Kimura (1965), and
others in considering stepping-stone models of genetic correlation.

In summary, coexistence is made possible in a patchy environment be-
cause of a scenario whereby initially identical patches subject to random
colonization diverge in species lists, through a kind of founder principle,
culminating in.a ‘‘linked’’ joint equilibrium in which a much higher
diversity results than would be possible in a single patch. Diversity (num-
ber of species) generally increases as the number of patches increases until
it reaches its maximum possible value. However, since in some sense perfect
mixing (equivalently, a single homogeneous patch) is the limiting case as
the interpatch elements of D become infinite, diversity eventually may be
expected to decrease as migration increases beyond some critical threshold.
This result needs to be made more precise, however, and computer studies
of the relation of the equilibrium number of species to D would be very
enlightening.

As pointed out elsewhere (Levin 1970), stable coexistence is only pos-
sible provided the effective number of limiting factors is as great as the
number of species. When, for example, two species are limited by a single
resource, no stable equilibrium exists. A patchy environment may, however,
increase the number of limiting factors, say by increasing the number of
resource or prey species, and further by making relevant local densities
within patehes rather than overall densities. Though the environment may
have been uniform initially, it becomes heterogeneous (in the sense of
Smith [1972]) as a result of what may be random initial disturbances.
Obviously, this scenario depends neither ¢n the initial uniformity nor on
the randomness of disturbances. What is striking is that it ean occur even
in the face of these.
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DISPERSION AND POPULATION INTERACTIONS 215

Note that in this example coexistence occurs because of the spatial com-
ponent of the environment but is not dependent on fluctuations in local den-
sities. Further, higher migration rates tend to homogenize the system and
to reduce the potential for coexistence. This contrasts with coexistence due
to fugitive strategies, where high migration rates do not homogenize (quite
the contrary) and coexistence is the result of sustained fluctuations in the
environment. Patchiness does not require the existence of multiple types
of patches. The above results were derived under the assumption that all
patches were identical, precisely to emphasize this point. If, however, patches
are of a variety of types, the perturbation theorem still applies; that is,
small amounts of migration do not destabilize an arrangement which is
stable without migrations, To quote Karlin and McGregor (1972), ‘‘complex
systems when combined with slight migration between them produce even
more complex systems with more possibilities and representations of stable
polymorphisms.’’

COMPETITION BETWEEN TWO SPECIES OVER TWO PATCHES

To exemplify the general results just given, this section deals with the
simplest case, two species in competition in two pateches which differ only
with regard to the species denmsities. For simplicity of illustration, the
dynamies introduced earlier,

dz/dt = z(R — axz — by),
(12)
dy/dt =y(8 — cx — dy),

are assumed within each patch. (Again, the qualitative results do mot
depend on such oversimplified equations.) Equivalence of the two patches
means that the same parameters E, 8, @, b, ¢, and d apply in each patch.
Assume further that a/¢c < R/S < b/d, condition (10). This means that
coexistence is not possible within a single patech but that either species can
establish itself given a sufficient lead.

As is well known, the system (12) has four equilibria (fig. 1), stable
ones at (B/a, 0) and (0, §/d) and unstable ones at O = (0, 0) and

(Rd—Sb —Rc—}-Sa)
ad —be’ ad—be /°

When the two patches are considered together, and migration is passive,
the corresponding equations take the form

dz;/dt = z,(R — ax; — by:) + D,(z; — =),

(13)
dyi/dt = yi(8 — ez, — dy;) + Dy(y; —y1), 4,j= 1,215,

where D, and D, are the species-specific migration rates between patches.
In the completely symmetric case, when the species behave identically

except for the (symmetric) effects of interspecific competition, R =8,

a=d, b=c¢, and D,=D,. Congeneric species might reasonably be ex-

This content downloaded from 128.178.183.162 on Fri, 29 Mar 2013 05:36:13 AM
All use subject to JISTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

216 THE AMERICAN NATURALIST

s/dg

v

Rv/a
F1a. 1.—The four equilibria for the system (12)

pected to approximate this behavior, if sufficiently close, but the choice is
made here simply for ease of illustration. In this case, the system becomes

dzy/dt = z,(B — az; — by;) 4 D (x; — 1),
(14)
ayi/dt = yi(B — bxy — ays) + D(y;— i), 5,5 =1,2; i5%j,

where the subscript on D has been dropped. Equation (10) becomes simply
a<b. (15)

For small D, the qualitative behavior of (14) is the same as that for (13),
but the symmetry makes arithmetic calculation a great deal simpler. Hence,
(14) will be analyzed in closer detail.

Note first that the uncoupled equations
dz/dt = 2 (R — azx — by)
dy/dt = y(BR — bz — ay)

have four possible equilibria (see fig. 2) :

I: 2=0, y=0, (0)
II: =0, y=R/a,
III: z=R/a, y=0,
IV:z=R/(a+Db), y=R/(a+b). (U)
In light of (15), only IT and III are stable, and correspond to the exclusion

of one or the other species. Moreover, almost every solution tends either
to state IT or to ITI, depending on which species is initially more abundant.
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A
I,
(O,R/)?
Basin of
attraction
for I
Ir Basin of
(R/a+b,R/a+b) aftraction
for I
I o A4 g
(0,0 pii
(R/a,0)

Fie. 2.-~The four possible equilibrium states for the system & =xz(R — ax — by),
5 = y (& — bx — ay), with basins of attraction shown.

Only the thin ridge # = ¥ of initial conditions does not lead to II or III
being perched precariously between the two basins of attraction. .

‘When D = 0, the system (14) clearly has 16 possible equilibrium states,
since it is still uncoupled and each patch has four possible equilibria. How-
ever, only four of these, denoted (II, IT), (II, III), (III, II),and (III, III),
are stable. When D > 0, the four homogeneous equilibrium states (I, I),
(11, IT), (IIX, III), and (IV, IV) remain and with the same stability char-
acteristics as previously, respectively unstable, stable, stable, and unstable.
The coupling destroys 10 of the other equilibria not under the protection
of the perturbation theorem, since they were initially unstable, but the
remaining two, (II, III) and (III, II), are the most interesting of all. Due
to the symmetry, it suffices to consider just (II, ITII).

‘When there is no coupling, the system (14) as stated permits an equilib-
rium at (II, IIT), that is, at

T = 0, Y1 =R/a, 2 :R/a, Ya = 0.

This equilibrium is shown in figure 3a¢, where I denotes the equilibrium
in pateh 1, 2 the equilibrium in patch 2; and again in figure 8b. In short,
the equilibrium discussed is one in which species 2 alone prevails in pateh 1,
and species 1 in pateh 2.

When D >0 and is small, the perturbation theorem (Appendix 1)
guarantees that the equilibrium (II, IIT) does not disappear. Rather, it
moves slightly off the axes. To be precise, for
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F16. 3.—a, The equilibrium (II, IIT) for the system (14) when D = 0. b, An alternate
representation of the equilibrium in a. Circles indicate individuals of species 2; diamonds,
individuals of species 1.

B b—a
os<ng—- 16
SPsy o (16)
(14) has an equilibrium at
R—2D 1 b+a
T1 =Y = —_—— R —2D R —2D 3
2a 2a b—a
(17)
R—2D 1 b+a
To= 1Y) = —— L — R—2D)\R—2D .
2a 2a b—a

It is easy to check, using (15) and (16), that these values are real and
(for D > 0) positive. Furthermore, as D tends to 0, the equilibrium clearly
tends to (II, III), that is, to £y =y2=0 and z» =y, — R/a, as pre-
dicted by the perturbation theorem. Finally, note that as D tends to
(B/2) - (b—a)/(b+ a), the equilibrium tends to the homogeneous one
(IV, IV), that is, to

Ty=Yo=x2=y1=RK/(b+a),

which explains condition (16).

The perturbation theorem does not guarantee that (17) remains stable
but only that it does so for D small enough. Condition (16) is not sufficient
to guarantee this, and in fact it may be shown (Appendix 2) that the
equilibrium is stable for

b—a
2b+a

R
0<D<E' (18)
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but unstable for

E. b—a‘ Dgﬁ_.b—a.
2 2b+4a 2 b+4a
The entire situation is summed up in figure 4. In figure 4a, as D increases
from 0 toward the threshold value (R/2) * (b —a)/(b - a), the points
(21, ¥1) and (z2, ¥a), representing the equilibrium densities within the two
patches, move symmetrically toward each other along the hyperbola
az? - 2bzy 4+ ay? — Rz — Ry =0,

finally coalescing when D hits the value (EB/2) - (b—a)/(b+a). The
joint equilibrium is stable only until D reaches the value (R/2) - (b—a)/
(26 4 a), which corresponds to the equilibrium

E b2 i

(19)

= - NGETT
Y e Sa(eb Ly VL T2
ppmy = 020, E mon

% 2b4ta ' 2a(2b+a)

In summary, when there are at least two patches in the environment,
coexistence of two species that would otherwise exclude each other is pos-
sible. Bach establishes itself in one patch sufficiently to withstand invasion,
and each is found in the other pateh due to sustained migration from the
favored territory. When the migration is too high (eondition 19), mixing
is rapid enough that there is effectively only a single patch, and coexistence
is no longer possible.

Global analysis for this case has been performed by the author and
L. E. Payne and will be published separately.

3

O
o ¢ . 0
R/ae O OOO OOO o
0 Q¢
'0) OO | o 0
o © o o %o
o ¢
2O @) O
R/a PATCH | PATCH 2
a b

F16. 4.—a, The nonhomogeneous competitive coexistence equilibrium for the system
(14) when D > 0 and is small. b, An alternate representation of the equilibrium in a.
Circles indicate individuals of species 2; diamonds, individuals of species 1.

(R/a+b,R/a+b)
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THE DEVELOPMENT OF SPATIAL AND SPATIO-TEMPORAL PATTERNS

Opportunities for movement and habitat diversification provided by the
spatial aspect of environment make possible in a variety of ways coexistence
of species which could not otherwise survive together. If the environment
is heterogeneous, different combinations of species are likely to be favored
in the various local regions and maintained elsewhere principally by dis-
persal from more favored regions, and this will act to increase the overall
species richness. This spatial heterogeneity in environment may be externally
imposed, consisting principally of variation in weather, climate, edaphic
factors, ete., or, as shown earlier, it may arise as a result of a divergence
between subregions or patches due to an essentially random variation with
respect to colonization. In any case, such spatial patterns are steady state,
and are not related to temporal fluctuations in local densities.

‘When species life history patterns are such that local populations have
periodic dispersal episodes, or when the environment varies in time, a
premium is placed on how fast species can get to and utilize choice areas.
In this case, opportunity exists for species which would otherwise become
extinet to survive as fugitives, distributed according to spatio-temporal
patterns involving consistently fluctuating local population densities. As
with the steady-state strategy, the fugitive strategy can arise in an initially
spatially uniform environment, since the spatio-temporal fluctuations in
environment may be strongly coupled in a feedback relationship to the
fluctuations in species densities. Such situations may be studied by seeking
stable nonconstant solutions to (7) or continuous analogues of it, typically

of the form
02}‘
Pk filx, 3) + V - (D:Vz),

where VV/ denotes the gradient with respect to the spatial variables, z. Such
models, diserete or continuous, provide as well the starting point for the
computation of the spatially nonuniform but steady-state distributions
described previously. This computation is a difficult mathematical problem,
but an elegant beginning to its solution may be found in Othmer and
Seriven (1973).

Such spatial patterns, both steady state and temporally varying, may
arise in a variety of ways. They may be, as stated earlier, determined by the
patterns of initial colonization in newly available areas. Alternatively, they
may arise simply due to invasion episodes of sufficient intensity to allow the
invader to become established in some locale or through a fugitive strategy.
Finally, they may arise through a change in either the species densities or
in the basic interactions between species, when the change is sufficient to
destabilize a previously unmiform coexistence pattern. One particularly
striking example, owing in motivation to Turing (1952), is that in which
an increase in the ability to migrate by some species can destabilize the
system. This phenomenon may be termed diffusive or dissipative instability
(Segel and Jackson 1972). Many results discussed below parallel results
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discovered in the spatially continuous case by Segel and Jackson (1972). As
with fugitive species, the lack of perfect mixing (over the spatial region)
is responsible, since this effectively introduces a destabilizing time lag.

Basically, diffusive instabilities arise when diffusion or migration de-
stabilizes an otherwise stable situation, in contrast to one’s usual intuitions
concerning the effects of diffusion. The theory has been explored by Turing
(1952), Othmer and Seriven (1971, 1973), Keller and Segel (1970), Segel
and Jackson (1972), and others, principally in developmental contexts.
The effect of such instabilities is that, for example, a predator-prey relation-
ship which permits stable coexistence when migration rates are low might
become destabilized when the ability to migrate increases. The two species
might still coexist, but in an oscillatory pattern similar to that caused by
the fugitive species or in a steady-state but spatially nonuniform distribu-
tion such as discussed above. Although the prey could persist even without
oscillations, there is clear advantage to individual prey to migrate to escape
predation, and this may lead to evolutionary pressures toward destabiliza-
tion. From the ‘‘viewpoint’’ of the predator population, inereased migration
becomes a necessity to stabilize an otherwise unstable situation and allow
survival.

Diffusive instabilities do not arise in purely competitive systems. Further,
they only arise in predator-prey systems when one species is rare enough
that an Allee effect is applicable; that is, they arise only when the per capita
rate of growth of the rare species is an increasing funetion of density due,
say, to an increased ability to find mates. The Allee effect is inconsistent
with stability in the purely competitive case.

By way of example, consider the interaction between an abundant prey
and a rare predator, deseribed near equilibrium by modified Lotka-Volterra
equations:

dz/dt = (K — ez — by),

dy/dt = y(—L + cz + dy).
These differ from the usual Lotka-Volterra predator-prey equations only in
the sign of d, which reflects the Allee effect.
These equations permit a stable equilibrium at
_Lb—Kd _Ke—La
“bo—ad VT bo—ad’

provided ad < be and
f..b'l'd—-i _g_.bc—ad
d atc¢ ¢ '¢d atc

The corresponding system over two patches, with differential migration
coefficients p, v included,

dz,/dt = z(K — az; — byy) + w(z; — z),

a K
7<-f< (20)

(21)
dy/dt = yi(—L + ez + dy) +v(y; — w0), §419,
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obviously permits the equilibrium
Lb — Kd Kc— La

== Y =¥ =—
' be—ad’ bc—ad’

but (Appendix 3) this equilibrium is unstable for large p and small v, that

is, for
afl ( d@—jl ) —-bc:il'yl
(“"’ 2 ) Vo) ST

This inequality defines a region in (p, v)-space with boundary the hyper-

bola
afl) ( dgl) . —bez,
(H— 2 YT T T

The regions of stability and instability are illustrated in figure 5.

Thus, an inerease in mobility of the prey, expressed as increased migration
u, will lead to a destabilization of the balance between predator and prey.
However, no rate of migration by the prey is too great for the predator to
overcome through increased ability to migrate on its own part. In partieunlar,
if v > dy./2, the system is always stable.

This linear approach to the destabilization of the predator-prey system
does not distinguish between the alternatives which result: (i) attainment
of a new steady state, very possibly spatially nonuniform, (ii) limit cycle
oscillations, in which predator and prey undergo their familiar coupled
temporal oscillations, and (iii) extinetion of the system. Moreover, it is not
clear how common this phenomenon is in nature. It is, however, an in-
triguing possibility which lends itself to laboratory testing.

Finally, cooperative effects similar in effect to the Allee effect may be more
common in prey than in predator, as increasing prey population size may
decrease the per capita predation load (Rosenzweig and MacArthur 1963;
Rosenzweig 1969). Results similar to those discussed in this section are found
for systems in which these effects occur (Segel and Jackson 1972).

1 Region of _
R e I AP

stability
/Reglon of msfcby

Fia. 5.—Stability diagram for the homogeneous equilibrium in the predator-prey
system (21).
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SUMMARY

The spatial component of environment, often neglected in modeling of
ecological interactions, in general operates to increase species diversity. This
arises due to the heterogeneity of the environment, but such heterogeneity
can arise in an initially homogeneous environment due to what may be
random initial events (e.g., colonization patterns), effects of which are
magnified by species interactions. In this way, homogeneous environments
may become heterogeneous and heterogeneous environments even more so.
In patchy environments, distinet patches are likely to be colonized initially
by different species, and thereby a kind of founder effect results whereby
individual patches evolve along different paths simply as a consequence
of initial colonization patterns. Species which would be unable to invade
may nevertheless survive by establishing themselves early and will moreover
be found in lower densities in other areas as overflow from their ‘‘safe’’
areas. Spatially continuous environments may evolve toward essentially
patchy ones by this kind of process. Overall species richness is expected to
be higher in patchy environments but to decrease as the ability of species to
migrate becomes large. These results are due to patchiness per se and do not
depend on the existence of several kinds of patches, a situation which will
‘tend to reinforce these effects.

Diversity is also increased in such environments with spatial extent due
“to the opportunities for fugitive-type spatio-temporal strategies. In these,
local population oscillations provide the salvation for species which are for
example competitively inferior or easy victims to predation but which can
survive by superior migratory ability and (in patchy environments) talent
for recolonization. Again, dependence is on spatial heterogeneity, in addition
to temporal heterogeneity; again, this may be externally imposed or the
result largely of internal processes.

Some gross statistics for these processes, principally patch occupancy
fractions, may prove useful for a simplified treatment of colonization-
extinetion equilibria, as in the approaches of Cohen (1970), Levins and
Culver (1971), Horn and MacArthur (1972), and Slatkin (in preparation).
For such considerations, however, one cannot assume independence of dis-
tributions ; and the approach of Cohen (1970) and Slatkin (in preparation),
which allows for consideration of covariance, is favored.
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APPENDIX 1
PERTURBATION THEOREM

The theorem below is mathematically quite intuitive and is an analogue of one
proved in Karlin and McGregor (1972) in the discrete time case. As they point
out, its implications for population dynamies are substantial.

Theorem: Assume that F#(X, D) =0 when x4 =0 and X >0, and that the
system dz#/dt — F#(X,Dy) has o stable equilibrium (the ezgewvalues of the
Jacobian matriz have negative real parts) at X =X, > 0. Then for D sufficiently
close to Dy, the system dzp/dt — F#(X,D) has a stable equilibrium at some
point Xp = 0, where Xp tends to Xy as D tends to D,.

The notation X >0 means that all components of X are nonnegative. The
quantity F# is assumed to be continuously differentiable in X and D.

The proof of the perturbation theorem is given in Levin (in preparation) and
rests on the condition F#(X, D) = 0 when z# — 0, which assures that trajectories
do not cross the coordinate plane into the negative region.

APPENDIX 2
STaBILITY ANALYSIS FOR (17)

Here I prove that (17) is stable if D < (R/2) (b — a)/(2b 4 a) and unstable
if D > (R/2) (b — a)/(2b + a). For clarity, the bar notation denotes equilibrium
values to free x4, y;, s, and yo for more general usage. Thus,

o522 o o) (),

o ta(E-w) (- 0).
Tp=Th=——=F— —2D )| R — 2D
= 20 +2a, B2 ( b—a

Setting
Xy — 51
% Y1 — ’.11_1
Y2 — Y2
Lo — 52
and linearizing (14) about the equilibrium, one obtains the system of equations
dii
—_(12®]—|—DK®K)u+ (22)
Here
I (1 0) X (0 1)
= \o 1/ —\1 o/
J (R — 20%; — by — D —bZ, )
- —b7 R — b%; — 2ay, — D
(R —_— big —_— 2dy2 —D —b% )
- —b%, ° R—2&—by,—D

and (X) denotes the tensor product of two matrices. (For an excellent introduction
to this notation and the methods used in this Appendix, see Othmer and Secriven
[1971].) Since the matrices I, and K are self-adjoint with common spectral repre-
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sentation, a theorem of Friedman (1956) applies. The stability of (22) is deter-
mined by the eigenvalues of I (¥ J +4- DK (¥) K, which are the eigenvalues of the
matrices J == DK. But
R-—2a,51-—-by'1—D iD—bEl )

+ D — by R — b%;, — 209y — D
The four eigenvalues of these two matrices will all have negative real parts if and

only if the (common) trace I of these matrices is negative and the determinants
positive. But

]iDK_—_—(

T=2R— (2¢a+b)(Z:1+¥) —2D

—2D

= 9R — (20 + 1)~ —2D

——i-R+~<b+a>
a a

o0 [, 2(2)]

Thus, by (16), T is always negative.
Finally, the determinants will be positive if and only if

(B — 20T, — bY1 — D) (R — bTy — 2a¥1 — D) > (D + bZ1) (D + b¥1),
that is, if and only if
[(B — 2a%,) — (b§ + D)1 [(B — 2a51) — (b7, + D)]
> (D 4 b%,) (D + b¥1).

This condition simplifies to
(R — 2a%,) (R — 2ay1) > (b7 + D) (R — o) + (b%1 + D) (R — 2a71),
and further to
R? — 24R(Z, + %1) -+ 40°Z1y: > 2DR +
(Rb — 2aD) (T1 + 1) — 2ab(Z:% + 712).
Simplifying further, one obtains
B(R —2D) + [2aD — R (b + 20) ] (Z1 :+ 71)
> — 2ab(Z1 + %1)2 + 4a(b — @) FaYr.
Substituting
R —2D __D(R—2D)

T Y= TP = ——————————
1+y1 P 3 1Y1 a(b——a) 3

one gets

R(R —2D) + [2aD — R(b +2a)]R —azp

> — 205 E=2D? | 4p(r —2D).
u
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Since B — 2D > 0, this becomes
b
R +—1—[2aD —R(b+22)] > — 27(1% —2D) 44D,
a

that is,

R(b;—a) >D2(a—‘11—2b).

Thus, the equilibrium is stable if
BE b—a
D<=
< 2 a-+2b

and unstable if

E b—a
D —_—
>2 a-+2b

APPENDIX 3
STABILITY ANALYSIS FOR PREDATOR-PREY EQUATIONS

The stability of the homogeneous equilibrium
Lb — Kd K¢ — La
Ty = Tg = m——— T = TYp — ————— (23)
! 2~ bc —ad’ Yr="u bc — ad
for the system (21) depends on the eigenvalues having negative real parts for the
equilibrium Jacobian matrix:

—aZ; —p —b7, ® 0
M= Cg]_ ' df]l —V 0 v
- n 0 — az, — | — b7,
0 v ¢ dyr — v

i ® (—aa-;l --b:Tv'l) (—-1 1) (p O)
7 T dz'/’1+ 1—1) ®\o +/:
Using the theorem of Friedman (1956) employed in Appendix 2, one finds that the
eigenvalues of M are the eigenvalues of the matrices

(-m —b:ﬁ) (—m — o —bm )
_ _ ) and _ _ .
¢y di: ¢ dijs — 2v

By the stability of the equilibrium when p —=v =0, the criterion when p, vs40,

0 reduces to
051) ( wy1) —b0§1g1
— v — ——— .——_——-,
(u + 5 5 > 2
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