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1

Diagramme de Bode

1.1 Introduction et objectifs

Nous avons vu dans le chapitre sur la transformée de Laplace que la variable clé dans le domaine image était

la variable complexe s ∈ C. La variable s peut prendre n’importe quelle valeur dans le plan complexe. Un des

grands avantages de la transformée de Laplace est le traitement des conditions initiales.

En automatique tout comme en traitement du signal, il est parfois suffisant de ne retenir que l’information

lorsque la variable complexe s est limitée à l’axe imaginaire s = iω. Ceci conduit au régime harmonique comme

il a été discuté dans le chapitre sur le diagramme de Nyquist. Le régime harmonique est fortement lié à la

représentation d’un signal par la transformée de Fourier. Toutefois, il est erronné de penser que de restreindre

une tranformée de Laplace en égalant s = iω donne la transformée de Fourier. Ceci n’est pas le cas, car la

représentation de Fourier représente des signaux qui commencent en t = −∞ et termine en t = +∞ et donc ne

sont pas forcément nul pour t < 0 alors que la transformée de Laplace est définie en forçant tout signal à valoir

0 pour tout t < 0.

En particulier, on constate les correspondances

cos(ω0t)
F←→ 1

2
δ(ω + ω0) +

1

2
δ(ω − ω0)

mais

{cos(ω0t)}
L←→ s

s2 + ω2
0

Il faut ainsi remarquer l’importance des accolades dans {cos(ωt)} qui forcent le signal cos(ωt) à être nul pour

t < 0.

La transformée de Fourier utilise uniquement la représentation par la valeur de l’axe imaginaire du plan complexe

iω, ω ∈ R (1 dimension). Elle représente la représentation d’un signal (fonction de la variable réelle du temps t)

comme une somme de signaux harmoniques, c’est-à-dire comme une somme de sinus d’une amplitude donnée

avec une phase donnée.

Dans le cas de la série de Fourier, le signal initial est périodique et la représentation comporte une somme

infinie mais dénombrable de sinus d’amplitude et de phase fonction du nombres d’harmonique (multiplicité de

la fréquence fondamentale correspondant à la période du signal initial périodique). Dans le cas d’un signal non

périodique, la représentation comporte une somme infinie non dénombrable d’harmoniques. La période peut en

quelque sorte être assumée être infinie.

Remarque 1. Dans ce chapitre, la variable imaginaire i =
√
−1 est également désignée par j (i.e. j =

√
−1).

Il existe un théorème d’analyse complexe qui permet de retrouver l’expression d’une fonction de la variable com-

plexe connaissant la valeur de la fonction le long d’un lasso fermé du plan complexe. En somme, en extrapolant

les valeurs à partir de la connaissance de l’image de la fonction pour un esemble de départ restraint au lasso, il

est possible de connâıtre toute la fonction quel que soit la valeur du point du plan complexe (Le théorème de

Cauchy en est une conséquence.)
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Deux points de vue sont utilisés en automatique, d’une part le placement de singularités (pôles) dans le plan

complexe dans son ensemble, et, d’autre part, la considération uniquement le l’axe fréquentiel, sculptage de

G(jω). Nous avons vu qu’il est possible de se concentrer sur la structure des pôles et de changer ceux-ci par

rétroaction. On agit en quelque sorte sur la fonction de transfert vu comme une fraction rationnelle de deux

polynômes en s ∈ C. On synthétise en quelque sorte la fonction de transfert pour tout s ∈ C.

Un autre point de vue et déjà abordé au chapitre de Nyquist, est de s’intéresser uniquement à l’axe imaginaire

de l’ensemble source, l’axe jω, ω ∈ R. Nous avons vu qu’il était possible de déterminer la stabilité de la fonction

de transfert en boucle fermée Gbf (s) pour s ∈ C.

En se fondant sur le théorème qui permet d’obtenir Gbf (s) en ne connaissant que G(jω), il est possible d’ef-

fectuer un ”sculptage” en se concentrant uniquement sur la réponse harmonique en boucle ouverte G(jω) et de

déterminer les propriété de Gbf (s) pour s ∈ C.

Parmis les propriétés importantes, il s’agit de la stabilité (comme pour le chapitre Nyquist), mais également de

la vitesse de réponse, du rejet des perturbations, de la sensibilité aux bruits de mesure haute fréquence de la

boucle fermée.

Afin de permettre une synthèse en se fondant sur G(jω) qui est un nombre complexe qui varie pour chaque

valeur de ω ∈ R, il est utile de bien distingué le module (facteur d’amplitude à la fréquence prescrite) de la phase

(angle correspondant au retard angulaire à la fréquence prescrite). Bien que ces deux données soient lisibles

dans le diagramme de Nyquist (amplitude et phase sont celles du nombre complexe associé), le diagramme de

Nyquist souffre du fait que la pulsation (fréquence) ω n’est pas explicite. La courbe tracée dans le plan complexe

perd sa paramétrisation par la pulsation ω. Pour faire apparâıtre explicitement les valeurs de la pulsation, il

faut deux courbes, chacune paramétrée par la pulsation, une donnant le module en fonction de la pulsation et

une autre représentant la phase en fonction de la pulsation.

Le diagramme de Bode est une solution à la représentation du module et de la phase en dépendance de la

pulsation. Une propriété clé de ce diagramme est la capacité d’additionner les diagrammes lorsqu’on effectue un

produit de réponses harmoniques suite à la mise en série des fonctions de transferts. L’argument d’un nombre

complexe conduisant à la phase est naturellement additionné lors de la mise en série. Ceci n’est pas le cas avec

le module. Pour remédier à cet inconvénient, on représente le logarithme du module. Ceci permet d’additionner

les diagrammes lors de la mise en série.

Pour des raisons historiques concernant l’unité adoptée, à savoir le décibel, et pour des liens avec l’acoustique,

l’échelle du module est représenter par cette unité symbolisés par [dB]. Pour avoir une correspondance il s’agit

de multiplier le logarithme en base 10 par un facteur de 20.

1.2 Le régime harmonique

On appelle régime harmonique, l’équilibre en régime oscillatoire d’un système dynamique lorsque l’entrée est

un sinus (une seule fréquence), i.e. u(t) = sin(ωt). La sortie est alors également oscillatoire à la même fréquence

(le système est linéaire). Si le système est instable, il est nécessaire de le placer dans les conditions initiales

appropriées. Si le système est BIBO stable, le régime harmonique s’établira quelles que soient les conditions

initiales, après un transitoire. La sortie, après transitoire sera y(t) = ŷ sin(ωt + φ) et sera soit amplifiée ou

diminuée par rapport à l’entrée (facteur ŷ ∈ R) et déphasée (quantité φ ∈ R). Ceci s’apparente au comportement

de l’oscillateur masse-ressort simple, forcé : la solution ŷ sin(ωt+ φ) est une solution particulière de l’équation

différentielle mass-ressort.

Remarque 2. La pulsation ω est la même pour la sortie que celle de l’entrée et peut prendre n’importe quel

valeur dans l’intervalle ω ∈] −∞; +∞[. L’amplitude de la sortie ŷ et la phase φ sont fonction de ω. On aurait

pu ainsi écrire ŷ(ω) et φ(ω).

Exemple 1.

G(s) =
1

s+ 2
{u(t)} = {sin(ωt)}
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En appliquant la théorie du chapitre sur la transformée de Laplace, on obtient la sortie en procédant par

décomposition en éléments simples. En détails, cela donne :

G(s)U(s) =
1

s+ 2

ω

s2 + ω2
= Y (s) =

Aω

s2 + ω2
+

Bs

s2 + ω2
+

C

s+ 2

avec

C = lim
s→−2

ω

s2 + ω2
=

ω

4 + ω2

et en égalant les numérateurs

ω = (Aω +Bs)(s+ 2) +
ω

4 + ω2
(s2 + ω2)

cela donne

A =
2

4 + ω2

et

B = − ω

4 + ω2

En prenant la transformée de Laplace inverse

y(t) =
2

4 + ω2
sin(ωt)− ω

4 + ω2
cos(ωt) +

ω

4 + ω2
e−2t (1.1)

Remarque 3. Le dernier terme de (1.1) décroit asymptotiquement (à cause de e−2t en facteur, et donne lieu ainsi

au transitoire mentionné précédemment) et disparâıt pour laisser place au régime harmonique donné par les

deux premiers termes. Il est possible de grouper ces deux premiers termes pour constituer ŷ = sin(ωt+ φ)

Le régime harmonique est donné par

y(t) =
2

4 + ω2
sin(ωt)− ω

4 + ω2
cos(ωt) = ŷ sin(ωt+ φ) (1.2)

Remarque 4. On utilise un certain abus de notation en désignant par y(t) à la fois la réponse à condition initiale

nulle donnée par (1.1) et la réponse harmonique. Ceci est possible s’il n’y a pas de confusion possible. Ici (1.1)

est introduit pour justifier la réponse harmonique.

Si on considère à nouveau

G(s) =
1

s+ 2
=
Y (s)

U(s)

mais sous forme de quotient de convolution à l’aide de l’opérateur de dérivation d

1

d + 2
=
{y(t)}
{u(t)}

on a la relation entrée sortie

{y(t)} ∗ (d + 2) = (d + 2) ∗ {y(t)} = {u(t)}

Si la valeur des signaux est considérée nulle pour tout t < 0, on a la relation d{u(t)} = { ddtu(t)}+ u(0).

En présence du régime harmonique, tout est sinusöıdal, et il est possible de considérer tous les signaux comme

définis pour les valeurs du temps t < 0. Il n’est plus nécessaire de considérer les conditions initiales et l’opérateur

d est remplacé par la simple dérivée d
dt et de supprimer les accolades. Vérifions que c’est bien le cas sur l’exemple

précédent.

(
d

dt
+ 2

)
y(t) =
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(
2ω

4 + ω2
cos(ωt) +

ω2

4 + ω2
sin(ωt)

)
+ 2

(
2

4 + ω2
sin(ωt)− ω

4 + ω2
cos(ωt)

)
=

(
ω2

4 + ω2
+

4

4 + ω2

)
sin(ωt)

=
ω2 + 4

4 + ω2
sin(ωt)

= sin(ωt)

= u(t)

1.2.1 Régime harmonique complexe

En introduisant les signaux complexes y(t) ∈ C, il est possible de simplifier les calculs de manière subséquente.

De plus, cela permet d’obtenir le régime harmonique à partir de la fonction de transfert par simple remplacement

de la variables s par jω. Contrairement à un signal où cela n’était pas possible à cause du comportement pour

t < 0 (rappelons la différence entre {cos(ωt)} et cos(ωt), (cf. chapitre sur la convolution et les signaux entrée-

sortie et également l’ introduction de ce chapitre), la restriction à l’axe imaginaire s = jω de la transformée de

Laplace G(s) ∈ C donne un nombre complexe qui donne à la fois le gain en amplitude et le déphasage d’un

signal sinusoidal pour une pulsation ω donnée.

L’expression G(jω) est appelée la fonction de transfert harmonique.

Définition 1. La réponse harmonique complexe est la réponse en équilibre dynamique d’un système dynamique

linéaire stationnaire causal y(t) = ŷejωt+φ lorsque l’entrée est un un phaseur complexe u(t) = ejωt.

Remarque 5. Comme pour le cas réel, la réponse harmonique complexe est le comportement asymptotique quelles

que soient les conditions initiales pour un système BIBO stable. Pour les systèmes instables, c’est un équilibre

dynamique oscillatoire qui apparâıt que pour des conditions initiales spécifiques.

Reprenons l’exemple de

G(s) =
1

s+ 2

En prenant la transformée de Laplace de l’entrée

u(t) = ejωt ↔ 1

s− jω
= U(s)

la transformée de Laplace de la sortie devient

Y (s) = G(s)U(s) =
1

s+ 2

1

s− jω
=

A

s+ 2
+

B

s− jω

A = lim
s→−2

1

s− jω
=

1

−2− jω
et

B = lim
s→jω

1

s+ 2
=

1

jω + 2

ce qui conduit à

Y (s) =
1

−2− jω
1

s+ 2
+

1

s− jω
En prenant la transformée de Laplace inverse

y(t)↔ − 1

2 + jω
e−2t +

1

jω + 2
ejωt (1.3)

Lorsque t→∞ le premier terme s’annule et il ne reste que le régime harmonique complexe, avec le même abus

de notation de désigner (1.3) et (1.4) par y(t).
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y(t) =
1

jω + 2
ejωt (1.4)

Remarque 6. On constate que le régime harmonique est obtenu lorsque la variable s est ramplacée par jω. En

effet le facteur devant ejωt dans (1.4) est bien G(jω) = 1
jω+2 .

Définition 2. On appelle G(jω) la fonction de transfert harmonique. C’est un nombre complexe pour ω ∈ R.

Theorem 1. Lorsque le système est BIBO stable, le régime harmonique complexe asymptotiqe est donné par

y(t) = G(jω)ejωt

quelles que soient les conditions initiales.

Démonstration : Il suffit d’effectuer la décomposition en éléments simples. On procède comme dans l’exemple

conduisant à partir de (1.3) d’établir (1.4).

1.3 Le diagramme de Bode

On représente G(jω) par deux graphiques. Un graphique qui représente le module de G(jω) en échelle loga-

rithmique (avec en abscisse le logarithme des pulsations logω, ou ω en échelle logarithmique). Et un deuxième

graphique qui représente l’argument de la réponse harmonique. Ceci donne par exemple pour l’immeuble avec

deux étages les graphiques suivants :

Module

0.4 0.2 0.2 0.4

40

30

20

10

10

20 log |G(jω)|

logω

Phase

0.4 0.2 0.2 0.4

9

8

7

6

5

4

3

logω

arg G(jω)

1.3.1 Lien entre le diagramme de Bode et le diagramme de Nyquist

Le gain de la fonction de transfert harmonique |G(jω)| donne un nombre réel qui est le facteur d’amplification.

Ce nombre correspond à un cercle dans le diagramme de Nyquist et à une ligne horizontale dans le diagramme

de Bode en module.
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Module constant dans Bode

-10 -8 -6 -4 -2

-30

-20

-10

Module constant dans Nyquist

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

1.4 Esquisse asymptotique du diagramme de Bode

1.4.1 Les systèmes non résonants, pôles réels simples

Dans un premier temps on peut calculer le gain statique G(0) si celui-ci est bien défini, autrement dit en absence

de pôles à l’origine. Si c’est le cas le diagramme de Bode asymptotique commence par une droite horizontale à

la hauteur −20 log10G(0) en [dB].

Lors la présence de pôles à l’origine (effet intégrateur), on compte le nombre de ceux-ci (le nombre d’intégrateurs),

disons l. Le diagramme de Bode commence par une pente négative de l × 20 [dB/decade], ce qui signifie une

pente de −20× l [dB] chaque fois que la pulsation est multipliée par 10. Pour déterminer le point de départ, il

suffit de calculer une fois 20 log10 |G(jω0)| avec ω0 la pulsation du début du dessin. La valeur ω0 est toujours

différente de 0, car l’échelle horizontale est logarithmique et la pulsation ω0 correspond donc à l’abscisse −∞.

Pour la suite du dessin, la fonction de transfert est factorisée pour faire apparâıtre les zéros et les pôles. Dans

ce paragraphe ceux-ci sont considérés tous réels. En conséquence,

G(s) =
γ(s− z1)(s− z2) · · · (s− zm)

sl(s− p1)(s− p2) · · · (s− pn)

On considère également que le système est causal, c.-à-d. n ≥ m. Une fois la factorisation effectuée, on classe les

pôles et les zéros ensembles par ordre des valeurs absolues en commençant par la plus petite vers la plus grande

valeur absolue, et on représente le résultat sous la forme d’un tableau. On laisse une colonne vide entre les

zéros/pôles. Dans la colonne vide, on indique +20 [dB/dec] si on se trouve à droite d’un zéro, et −20 [dB/dec]

si on se situe à droite d’un pôle. Par exemple, pour un système avec m = 2 et n = 3 avec

|p1| < |z1| < |p2| < |z2| < |p3|

cela donne le tableau

|p1| |z1| |p2| |z2| |p3|
nb integ. −20 [dB/dec] +20 [dB/dec] −20 [dB/dec] +20 [dB/dec] −20 [dB/dec]

L’idée de ce tableau revient à examiner l’effet de la pulsation juste après l’apparition d’un pôle/zéro.

Par exemple, supposons un zéro zi réel ou négatif, et examinons l’effet de

jω − zi
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lorsque ω varie entre ω = |zi et ω >> |zi|. On constate que l’on ajoute 20 [dB] chaque fois que l’on multiple par

10 la pulsation ω1 = |zi| à cause du logarithme et du fait que le zéro se situe au numérateur de la fonction de

transfert.

Lors d’un pôle, on examine l’effet de
1

jω − pi
avec pi réel positif ou négatif. Lorque ω varie entre ω = |pi| et ω >> |pi|. On constate que l’on soustrait 20 [dB]

chaque fois que l’on multiplie par 10 la pulsation ωi = |pi| à cause du logarithme et du fait que le pôle se trouve

au dénominateur de la fonction de transfert.

On prend les valeurs absolues des pôles/zéros car on se place du point de vue de ω.

Pour tracer le diagramme asymptotique en module, on dessine des traits penchés ou droits en commençant par

une droite horizontale si le gain statique est défini (absence d’intégrateur) ou par une droite de pente négative

(en présence d’intégrateurs). On progresse ensuite dans le tableau en corrigeant les pentes de la quantités qui

apparaissent dans la colonne qui suit le pôle/zéro correspondant en reportant le changement de pente pour ω

correspondant à la valeur absolue du pôle/zéro et en augmantant la pente si cést un zéro ou en diminuant la

pente si c’est un pôle.

Par exemple pour

G(s) =
(s− 10)(s+ 4000)

(s− 1)(s+ 250)(s− 50000)

On aboutit au tableau

1 10 250 4000 50000

nb integ. −20 [dB/dec] +20 [dB/dec] −20 [dB/dec] +20 [dB/dec] −20 [dB/dec]

Pour dessiner le diagramme asymptotique, comme il n’y a pas de pôle en 0 (pas d’intégrateur), on commence par

une droite horizontale. Lorsque ω = 1 [rad/s] on trace une droite qui descend avec une pente de −20 [dB/dec].

Arrivé en ω = 10 [rad/s] on remonte la pente de 20 [dB/dec] ce qui donne une droite horizontale jusqu’en

ω = 250, et on continue de la sorte en respectant le tableau. Le résultat est illustré ci-après.

1 10 100 1000 10
4

10
5

-100

-90

-80

-70

-60

-50

ω [rad/s]
[dB]

Figure 1.1. Diagramme de Bode en module. En rouge, le diagramme asymptotique. En noir, le diagramme exact. A
chaque fréquence de coupure (coude), le diagramme réel est séparé du diagramme asymptotique de ±3 [dB].

Les 3 [dB] provient du calcul

20 log10

∣∣∣∣ 1

j + 1

∣∣∣∣ = 20 log10

1√
2

= −3 [dB]
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obtenu à partir de l’élément simple normalisé
1

s+ 1

et en posant s = jω et ω = 1 est la pulsation de coupure associée.

1.4.2 Les systèmes résonants, pôles complexes conjugués

Pour tracer le diagramme de Bode de systèmes comportants des pôles complexes conjugué, on procède de

manière similaire aux pôles réels simples, sauf que l’on groupe les pôles complexes conjugués par paires et on

trace un diagramme par paire de pôles complexes. Autrement dit la factorisation de la fonction de transfert est

effectuée de la manière suivante :

G(s) =
γ(s− z1)(s− z − 2) · · · (s− zp)(s2 + a1s+ b1)(s2 + a2 + b2) · · · (s2 + aqs+ bq)

sl(s− p1) · · · (s− pr)(s2 + α1s+ β1) · · · (s2 + αss+ βs)

Avec, par exemple, (s2 + α1s + β1) qui représente (s − zq+1)(s − z∗q+1) le produit correspondant aux pôles

complexes conjugués zq+1 et z∗q+1.

Examinons la fonction de transfert normalisée (β = 1, la fréquence de coupure autour de laquelle la fréquence

de résonance apparâıt est normalisée à ω = 1)

Gn(s) =
1

s2 + αs+ 1
(1.5)

Cette fonction de transfert servira de template pour tous les pôles complexes conjugués et il est donc bien de se

familiariser avec avec une représentation précise des différents cas du paramètre α. La figure suivante illustre le

diagramme de Bode en amplitude pour les valeurs

α = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5,

La valeur α = 0.01 correspond à la résonance la plus marquée et la valeur α = 0.9 correspond à la quasi

disparition de la résonance. La valeur α = 2 (non représentée) correspond à la disparition des parties imaginaires

car alors le dénominateur se factorise s2 + 2s+ 1 = (s+ 1)(s+ 1) pour faire apparâıtre une paire de pôles réels

au même endroit à la pulsation ω = 1 et on peut traiter ce cas par la méthode des pôle réels. On obtiendra alors

deux droites, la première horizontale jusqu’à ω = 1 et ensuite une droite de pente -40 [dB/dec] passé ω = 1. La

courbe réelle sera alors à -6 [dB].

La phase est représentée à la figure 1.3. Le changement de phase entre 0 [rad] pour ω = 0 et −π [rad] pour

ω →∞ est le plus abrupte lorsque la résonance est forte (α = 0.01) et la transition est moins appuyée lorsque

α augmente (résonance moins marquée).

Les diagrammes de Bode en module ne permettent pas de distinguer les systèmes stables des systèmes instables

en boucle ouverte. Prenons par exemple les systèmes normalisés instables suivants

Gni =
1

s2 − αs+ 1

associés aux systèmes stables donnés par Gn(s) formule (1.5) avec les mêmes α > 0. Les diagrammes en module

seront rigoureusement identiques à ceux représentés à la figure 1.2. Par contre, la phase progresse dans le sens

inverse de ω = 0 vers ω = +∞. L’angle est positif cette fois et les phases sont représentées à la figure 1.4.

En ce qui concerne les zéros, il suffit d’effectuer une réflexion symétrique selon l’axe horizontal pour obtenir les

diagrammes de Bode en module et en phase. En effet, l’utilisation du logarithme dans l’expression du module

transforme la division en une soustraction (ce qui correspond à une réflexion symétrique selon l’axe horizontal).

En ce qui concerne la phase, la division conduit à une soustraction des phases, ce qui correspond également à

une réflexion symétrique. Le diagramme en module de la fonction de transfert
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-40
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20

40

ω [rad/s]

[dB]

Figure 1.2. Diagramme de Bode en amplitude de la fonction de transfert Gn(s) = 1
s2+αs+1

pour les valeurs α =
0.01, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.2, 1.5.

0.5 1 5 10

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

ω [rad/s]

[rad]

Figure 1.3. Diagramme de Bode en phase de la fonction de transfert stable Gn(s) = 1
s2+αs+1

pour les valeurs
α = 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.2, 1.5. Le flanc correspond à α = 0.01 et la courbe la moins infléchie à α = 1.5.
Toutes les courbes se coupent pour ω = 1 et donne −π

2
[rad] à ce moment là. La phase indique mieux la pulsation de

coupure que le diagramme de Bode en module.

Gnz(s) = s2 + αs+ 1 =
1

Gn(s)

est donné à la figure 1.5 et la phase correspondante à la figure 1.6.

Le traçage des diagrammes procèdents de manière similaire à la section précédente concernant les pôles réels

simples, en groupant chaque élément du second ordre ensemble et en utilisant la propriété du logarithme

d’additionner les éléments simples correspondants lorsqu’ils sont multipliés. Il s’agit donc d’utiliser le diagramme

normalisé correspondant et de le translater horizontalement pour obtenir la bonne pulsation de coupure et

verticalement pour s’aligner avec l’asymptote de l’élément précédent (ou simplement d’ajuster le module pour

être à la bonne hauteur).
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0.5 1 5 10
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[rad]

Figure 1.4. Diagramme de Bode en phase de la fonction de transfert instable Gni(s) = 1
s2−αs+1

pour les valeurs
α = 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.2, 1.5. Le flanc correspond à α = 0.01 et la courbe la moins infléchie à α = 1.5. Toutes
les courbes se coupent pour ω = 1 et donne +π

2
[rad] à ce moment là. La phase indique mieux la pulsation de coupure

que le diagramme de Bode en module.
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-40

-20

20

40

ω [rad/s]

[dB]

Figure 1.5. Diagramme de Bode en module de la fonction de transfert Gnz(s) = s2 + αs+ 1 pour les valeurs α =
0.01, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.2, 1.5.

L’étape clé est de trouver la bonne courbe normalisée. Un exemple suffira pour illustrer la méthode. Considérons

l’élément simple suivant

G1(s) =
100

s2 + 2s+ 100

Pour déterminer l’élément normalisé procédons à une mise en échelle de la pulsation en posant

Ω =
ω

10

En posant s = 10w cela donne
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Figure 1.6. Diagramme de Bode en phase de la fonction de transfert Gnz(s) = s2 + αs+ 1 pour les valeurs α =
0.01, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.2, 1.5. Le flanc correspond à α = 0.01 et la courbe la moins infléchie à α = 1.5. Toutes les
courbes se coupent pour ω = 1 et donne +π

2
[rad] à ce moment là. La phase indique mieux la pulsation de coupure que

le diagramme de Bode en module.

G1(w) =
100

100w2 + 20w + 100
=

1

w2 + 0.5w + 1

on obtient la courbe normalisée correspondant à α = 0.5 du diagramme normalisé. Il suffit alors de translater

cette courbe pour centrer la pulsation de coupure et de la placer à ω = 10 ce qui correspond à la pulsation

normalisée Ω = 1. Le résulat est donné à la figure 1.7.

5 10 50 100

-40

-30

-20

-10

10

ω [rad]

[dB]

Figure 1.7. Diagramme de Bode de la fonction de transfert 100
s2+2s+100

La phase est obtenue de manière similaire en translatant la phase normalisée correspondant au bon α vers la

pulsation de coupure.
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En résumé, pour le diagramme de Bode pour des éléments à paire complexes conjuguée, on introduit dans

le colonnes du diagramme asymptotique, les pulsations de coupure associées ainsi que le facteur α correspon-

dant au diagramme normalisé. Cela permet de tracer le diagramme de manière approximative en superposant

(additionnant) les diagrammes individuels.

1.5 Synthèse dans le diagramme de Bode

1.5.1 Diagramme de Bode des régulateurs simples

Diagramme de Bode du régulateur PI

Module 20 log10 |G(jω)|

-4 -3 -2 -1 0 1 2

10

20

30

40

50

60

p

Argument arg G(jω)

-4 -3 -2 -1 1 2

-1.5

-1.0

-0.5

Diagramme de Bode du régulateur PD

Module 20 log10 |G(jω)|

-4 -3 -2 -1 1 2

10

20

30

40

50

60

ω

Argument argG(jω)

-4 -3 -2 -1 1 2

0.5

1.0

1.5

Les diagrammes asymptotiques en module sont dessinés en rouge fin dans les diagramme en module. Pour le

PI, la droite descend de −20 dB/decade jusqu’a ω = 1
Ti

puis continue tout droit. La valeur asymtptotique est

20 log10Kp. Pour le PD, la droite est horizontale pour les petites pulsations et égal à 20 log10 Kp jusquà ω = 1
Td

,

puis suit une droite de +20 dB/decade. Le trait vertical rouge coupe la courbe réelle à ±3 dB, +3 dB pour le

PI, et −3 dB pour le PD.

En ce qui concerne le diagramme asymptotique en phase pour le PI (non représenté), il est constant et égal à

−π2 pour ω < 1
Ti

, constant et égal à 0 pour ω > 1
Ti

. Il est égal à −π4 uniquement et exactement pour ω = 1
Ti

.

Quelque chose de similaire a lieu pour le diagramme asymtptotique en phase du PI (non représenté), il est

constant et égal à 0 pour ω < 1
Td

, constant et égal à π
2 pour ω > 1

Td
. Il est égal à +π

4 exactement pour ω = 1
Td

.

1.5.2 La règle d’or fondée sur le critère de Nyquist simplifié

Synthèse en asservissement dans le diagramme de Bode

Fondé sur le critère de Nyquist simplifié (le système est donc stable en boucle ouverte) l’idée est d’avoir un

système proche d’un intégrateur en boucle ouverte autour du module unité, ce qui promet :

— la stabilité en boucle fermée
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— une bonne marge de phase

— une bonne marge de gain

à condition que le module soit monotone décroissant à partir de la pulsation de croisement ωx (la pulsation

telle que |G(jωx)| = 1, module unité) et que le gain soit suffisament grand pour les pulsations inférieures à la

pulsation de croisement.

Une illustration de ce critère est de considérer un gain K = k ∈ R avec un intégrateur

G(s) =
1

s

Le diagramme de Bode en module de la boucle couverte kG(s) = k
s est une droite de pente -20 dB/decade et

qui coupe l’axe des 0 dB (module 1) à la pulsation ω = k (car alors |k/(jk)| = 1).

Un tel système en boucle ouverte corresond à la fonction de transfert d’asservissement en boucle fermée

kG

1 + kG
=

k
s

1 + k
s

=
k

s+ k

ce qui correspond à un premier ordre stable k > 0, sans statisme G(0) = 1. En ce qui concerne la régulation,

G

1 + kG
=

1
s

1 + k
s

=
1

s+ k

et les perturbations asymptotiques sont rejetées car la valeur asymptotique est multipliée par 1
k , et avec un k

suffisament élevé, les perturbations asymptotiques sont fortement atténuées.

La marge de phase est de π
2 car Arg

(
k
jω

)
= −π2 , ∀ω, et π − π

2 = π
2 .

La marge de gain est infinie pour un intégrateur, car il est impossible de croiser le point −1 quel que soit k.

Pour un système autre qu’un premier ordre, la règle consiste donc à se rapprocher le plus possible à un intégrateur

en boucle ouverte autour de la pulsation de croisement ωx, de garantir un grand gain avant la pulsation de

croisement et que le gain chute rapidement après la pulsation de croisement. Ceci est illustré à la figure suivante

avec ωx = 2 [rad/s].

-5 5

-100

-50

50

100

equence

En basse fréquence il faut un grand gain pour supprimer le statisme et rejeter les perturbations. Le diagramme

de Bode en module doit se situer au dessus de la première zone verte à partir de la gauche.

En haute fréquence pour atténuer les bruits et les dynamiques négligées, il faut un petit gain. Le diagramme de

Bode en module doit se situer en dessous de la deuxième zone verte.
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La pulsation de croisement ωx fixe la vitesse de réponse (la constante de temps dominante τ = 1
ωx

).

1.6 Exemple

Nous allons illustrer la règle d’or ainsi que la compensation d’un pic de résonance Prenons l’immeuble à quatre

étages décrits par la représentation d’état

A =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−2k k 0 0 −b 0 0 0

k −2k k 0 0 −b 0 0

0 k −2k k 0 0 −b 0

0 0 k −k 0 0 0 −b


B =



0

k

0

0

0

0

0

0


(1.6)

C =
(

0 0 0 1 0 0 0 0
)

Avec comme valeurs numériques k = 20, b = 0.5.

Les valeurs propres sont calculées avec la commande Matlab

>> eig(A)

ans =

-0.2500 + 8.4011i

-0.2500 - 8.4011i

-0.2500 + 6.8471i

-0.2500 - 6.8471i

-0.2500 + 4.4651i

-0.2500 - 4.4651i

-0.2500 + 1.5329i

-0.2500 - 1.5329i

On constate que les oscillations seront toutes amorties car la partie réelle −0.25 est strictement négative. Les

parties imaginaires donnent les pulsations des oscillations. Il y a quatre modes, ω1 = 1.5329, ω2 = 4.4651,

ω3 = 6.8471 et ω4 = 8.4011. Ces quatres pulsations peuvent représenter des fréquences de résonance en fonction

de l’allure du diagramme de Bode autour de ces pulsations. Si le diagramme de Bode en module présente un

maximum autour de ces fréquences, alors il y a une résonance à la fréquence correspondant au maximum. Le

facteur d’amplification sera donné par la valeur maximum du diagramme de Bode en amplitude.

La fonction de transfert se calcule par

G(s) = C(sI −A)−1B

La commande Matlab associée est

[num1,den1]=ss2tf(A,B,C,0)

>> num1

num1 =
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1.0e+05 *

0 0 0 0 0 0.0800 0.0800 3.2200 1.6000

>> den1

den1 =

1.0e+05 *

0.0000 0.0000 0.0014 0.0021 0.0611 0.0602 0.8150 0.4000 1.6000

On peut entrer quelque chose de similaire à la main par

num = 160000;

den = [1 2 141.5 210.5 6105 6017.5 81500 40000 160000];

G = tf(num,den);

>> roots(den1)

ans =

-0.2500 + 8.4011i

-0.2500 - 8.4011i

-0.2500 + 6.8471i

-0.2500 - 6.8471i

-0.2500 + 4.4651i

-0.2500 - 4.4651i

-0.2500 + 1.5329i

-0.2500 - 1.5329i

>> roots(den)

ans =

-0.2500 + 8.4014i

-0.2500 - 8.4014i

-0.2499 + 6.8468i

-0.2499 - 6.8468i

-0.2500 + 4.4653i

-0.2500 - 4.4653i

-0.2500 + 1.5329i

-0.2500 - 1.5329i

Et on constate que la fonction de transfert G(s) contient les mêmes valeurs des pôles que les valeurs propres de

la matrice A.

Pour constituer le régulateur, on va placer une paire de zéros complexes conjuguées sur le premier mode de

résonance.
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En lisant le diagramme de Bode en amplitude (et par calcul des valeurs propres) on a déterminé ω1 ≈ 1.533

[rad/s] avec

20 log1 0|G(jω1)| ≈ 11.7 [dB]

Le deuxième mode est ω2 = 4.4653 avec un module ≈ 9.39 [dB], donc plus atténué.

Pour placer la paire de zéros complexes conjuguées qui va compenser le premier mode, on choisit un polynôme

du numérateur de la forme

s2 + αs+ (ωr)
2

avec ωr proche et ajusté par rapport à ω1. Au dénominateur on choisira

s2 + βs+ (ωr)
2

Lorsque α = 0 on aura une antirésonance très marquée puisque les zéros seront purement imaginaires. En

augmentant α cela diminue le creux. Le paramètre β sera toujours choisit supérieur à α. Si ce n’est pas le cas,

au lieu d’un creux pour compenser la résonance, il y aura une bosse et donc cela amplifiera la résonance. Les

paramètres α et β seront choisis pour un compromis entre l’élargissement du pic et l’atténuation de la résonance.

Un approche itérative par essai/erreur est illustrée ci-après.

bode([1 0.053 1.56^2],[1 0.2 1.56^2])

K = tf([1 0.053 1.56^2],[1 0.2 1.56^2]);

bode(K*G)

K = tf([1 1.5*0.053 1.56^2],[1 1.5*0.2 1.56^2]);

bode(K*G)

K = tf([1 3*0.053 1.56^2],[1 3*0.2 1.56^2]);

bode(K*G)

K = tf([1 5*0.053 1.56^2],[1 5*0.2 1.56^2]);

bode(tf([1 5*0.053 1.56^2],[1 5*0.2 1.56^2])* G)

bode(tf([1 8*0.053 1.56^2],[1 8*0.2 1.56^2])* G)

Finalement, le dernier essai donne la bonne compensation. Il faut maintenant fixer la bonne constante de temps

en boucle fermée en ajoutant un premier ordre pour avoir la règle d’or −20 [dB/dec].

K = tf([1 8*0.053 1.56^2],[1 8*0.2 1.56^2])*tf(0.01,[1 0.01]);

figure(2)

bode(K*G)

Le gain constant est ensuite choisi pour avoir un croisement à −20 [dB/dec] à la pulsation requise pour avoir

une constante de temps en 1/ωx ou ωx est la pulsation de croisement à 0 [dB]. Dans cet exemple, on choisit un

gain constant égal à +30 [dB], et donc

K = 31.6228*tf([1 8*0.053 1.56^2],[1 8*0.2 1.56^2])*tf(0.01,[1 0.01]);

figure(2)

bode(K*G)

figure(3)

step(feedback(K*G,1))

hold on

step(G)

1.7 Exemple supplémentaire

Soit le système en boucle ouverte donné par sa fonction de transfert
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Figure 1.8. Représentation du diagramme de Bode du système à régler (immeuble) avec plusieurs régulateurs différents
qui atténue le premier mode en ω = 1.5329. Le régulateur type est également représenté (la courbe avec une valeur
asymptotique horizontale).
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Figure 1.9. Représentation du diagramme de Bode du système réglé (immeuble + régulateur) avec un régulateur qui
place un pôle réel autour de 7× 10−3. On distingue les trois derniers modes à ω2 = 4.4651 [rad/s],ω3 = 6.8471 [rad/s] et
ω4 = 8.4148 [rad/s]. Seul le premier pic à ω1 = 1.5329 à été compensé. Les trois pics suivants sont suffisament amortis
par le régulateur pour ne pas devoir être compensés. On remarque la descente en −20 dB/decade autour de 0 dB. On
satisfait bien à la règle d’or.

G(s) =
150

s3 + 2s2 + 20s
(1.7)

On a représenté à la figure 1.11 le diagramme de Bode du module de la fonction de transfert à la figure 1.12 la

phase de ce même diagramme de Bode. Un diagramme de Nyquist de G est donné à la figure 1.13.

On a également dimensionné un régulateur de la forme
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Figure 1.10. En orange, la réponse indicielle de l’immeuble en boucle ouverte sans la structure anti-sysmique. En bleu,
la réponse indicielle de l’immeuble en boucle fermée avec la structure anti-sysmique.

10

0

20

Figure 1.11. Diagramme de Bode du module en [dB] de la fonction de transfert donnée en (1.7). On a indiqué 10 [rad/s]
sur l’axe horizontal et 0 et 20 [dB] sur l’axe vertical.

K(s) =
s+ a

s+ b
(1.8)

avec a < b. On a représenté avec le diagramme de Bode de G, celui du produit KG, en module, à la figure 1.14,

et en phase, à la figure 1.15.

On demande :

1. Compléter les échelles sur tous les diagrammes.

2. Est-ce que le gain K = 1 au lieu du K proposé stabilise G en boucle fermée ?
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10

-3

Figure 1.12. Diagramme de Bode en phase de la fonction de transfert donnée en (1.7). On a indiqué 10 [rad/s] sur l’axe
horizontal et -3 [rad] sur l’axe vertical.

0

0

Figure 1.13. Diagramme de Nyquist de la fonction de transfert donnée en (1.7).

3. Déterminer a et b du régulateur K proposé cf. (1.8).

4. Est-ce que le K donné en (1.8) stabilise G en boucle fermée ?

5. Donner la fonction de transfert en boucle fermée d’asservissement résultant de K donné en (1.8).

Corrigé du problème supplémentaire

1. Echelles sur les diagrammes.

Les diagrammes sont représentés avec les échelles correspondantes.

Pour la Figure 1, le 10 indiqué est en [rad/s] ainsi pour trouver l’amplitude, il suffit de remplacer s par j 10

dans la fonction de transfert, cela donne en échelle logarithmique
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0

20

10

Figure 1.14. Diagramme de Bode en module ([dB]) de G et de KG avec K donné par (1.8).

10

-3

Figure 1.15. Diagramme de Bode en phase de G et de KG avec K donné par (1.8).

20 log10(|G(j10)|) = 20 log10

∣∣∣∣ 150

−j 1000− 200 + 200j

∣∣∣∣
= 20 log10

(
150√

(200− 1000)2 + 2002

)

= 20 log10 0.1819 = −14.8 [dB]

Ensuite pour obtenir les différentes abscisses, il faut extraire l’intégrateur de la fonction de transfert. Cet

intégrateur domine en basse fréquence et il est responsable de -20 [dB] par décade. A basse pulsation, on peut
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factoriser la fonction de transfert de la manière suivante

G(s) =
150

s3 + 2s2 + 20s
=

150

20s

20

s2 + 2s+ 20
≈ 150

20s

Cette approximation a comme module 1 exactement lorsque ω = 150
20 = 7.5 [rad/s]. On a reporté à la figure

1.16 un trait vertical qui vient coupé l’approximation de la fonction de tranfert 150
20s (intégrateur) exactement à

0 [dB]. On a également illustré le résultat précédent ainsi que les valueur verticales pour ω = 1, 0.1, 0.01. Les

valeurs en décibels de 150
20 jω pour ces pulsations sont données dans le tableau

ω [rad/s] 20 log10 | 150
20 jω |

7.5 0 [dB]

1 20 log10

(
150
20

)
= 17.5 [dB]

0.1 20 log10

(
150
2

)
= 37.5 [dB]

0.01 20 log10

(
150
0.2

)
= 57.5 [dB]

On a représenté des traits verticaux allant depuis 0 [dB] jusqu’aux valeurs données par le tableau aux pulsations

correspondantes (cf. Figure 1.16). Ceci permet de compléter l’échelle en ordonnée en y inscrivant 20, 40, -20,

-40 [dB], etc.

0.01 0.1 1 10

-40

-20

0

20

40

Figure 1.16. En plus de 20 log10 |G(jω)| (dont on remarque la bosse correspondant à une résonance), On a représenté

l’intégrateur 20 log10

∣∣∣ 150jω ∣∣∣ ainsi que des traits verticaux aux pulsations ω = 0.01, 0.1, 1, 7.5, 10 [rad/s]. On a une pente

de -20 [dB/decade]. On a également reporté les −14.8 [dB] que l’on a calculé pour la fonction de transfert G(s) à la
pulsation ω = 10 [rad/s]. ω = 7.5 [rad/s] correspond au 0 [dB] de l’intégrateur 150

20s
qui domine le comportement en basse

fréquence dans la fonction de transfert G(s).

En ce qui concerne la phase, on a deux indications, en abscisse 10 [rad/s] et en ordonnée −3 mais sans unité.

On soupçonne des [rad]. Pour confirmer ceci calculons la phase pour ω = 10 [rad/s]

argG(j 10) = arg
150

−j1000− 200 + 200j
= − arg−800j − 200

= −(π + arctan(4)) = −(π + 1.325817) = −4.46741 [rad]

Calculons également la phase pour ω = 1 [rad/s]
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argG(j1) = arg
150

−j − 2 + 20j
= 0− arg(19j − 2)

= 0− π + arctan

(
19

2

)
= −π + 1.465919388

= −1.67567 [rad]

Pour les basses pulsations on a l’argument d’un intégrateur

argG(jω) ≈ arg
150

20jω
= −π

2
= −1.5708 [rad]

On a représenté les quantités calculée sur la figure 1.17 ce qui permet de compléter l’échelle horizontale en

échelle logarithmique faisant apparâıtre ω = 1 (pour l’angle −1.67567 calculé) et ensuite de proche en proche

par facteur de 10, à savoir ω = 0.1 et ω = 0.01. La valeur −3 indique bien des [rad].

0.01 0.1 1 10

-4

-3

-2

Figure 1.17. Diagramme de phase de G(s). On a représenté l’argument argG(j10) = −4.46741 ainsi que argG(j1) =
−1.67567 calculé à partir de G(s) = 150

s3+2s2+20s
. On également représenté un trait horizontal supérieur à −1.5708. Toutes

les unités sur l’ordonnée sont ainsi confirmées être des radians.

En ce qui concerne le diagramme de Nyquist, il faut par exemple déterminer le point avec une partie imaginaire

nulle. Ce point est ainsi l’intersection sur l’axe réel avec l’ordonnée nulle.

0 = =G(jω) = =
(

150

−jω3 − 2ω2 + 20ωj

)

0 = = ((20ω − ω3)j − 2ω2)

= ω(20− ω2)

On trouve ω = 0 avec comme valeur infinie et

ω = ±
√

20 = ±2
√

5 ≈ ±4.47 [rad/s]

La valeur de du transfert à cette pulsation est purement réelle et donnée par
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G(j 2
√

5) =
150

−2× 20
= −15

4
= −3.75

On peut donc inscrire cette valeur sur le graphique et compléter ainsi les échelles en abscisse et ordonnée. Ceci

est représenté dans la figure 1.18.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 1.18. Le point d’intersection avec l’axe réel négatif a lieu lorsque ω = ±2
√

5 ≈ ±4.47. La valeur correspondante
est G(±j2

√
5) = −3.75. On a représenté des traits hachurés rectilignes pour mettre en évidence ce résultat. Il permet

de compléter les échelles en x et en y. La courbe est complétée avec la courbe hachurée qui correspond aux pulsations
négatives, ω < 0

2. Stabilité avec rétroaction unité.

Si un gain proportionnel pur de K = 1 est appliqué, cela conduira à un comportement en boucle fermée instable.

En effet, on applique le critère de Nyquist simplifié. En regardant la figure 1.18, on constate que le contoure

complet encercle le point −1 qui est représenté avec une croix.

Remarque 7. On remarque que le pôle en s = 0 n’est pas compté comme un pôle dans le demi plan droit de

la boucle ouverte. La justification est que l’on peut prendre une petite modification du contour initial qui est

l’axe imaginaire lorsqu’on applique le critère de Nyquist. Tout se passe donc comme si la fonction de transfert

est stable en boucle ouverte avec aucun pôle dans le demi-plan droit. On applique donc le critère de Nyquist

simplifié.

3. Valeurs de a et b pour le régulateur proposé.

Il faut utiliser la figure 4 où est représenté le produit KG qui est sous la courbe de G. Le régulateur atténue

donc en basse pulsation ainsi b > a. On remarque également que l’atténuation est environ de 15 [dB]. On en

déduit
a

b
= 10−15/20 = 0.1778

On pose donc a = 0.1178 b. On utilise ensuite le diagramme de phase de la Figure 5 avec les échelles en radians

que l’on a établit. On s’intéresse à la différence de phase la plus marquée. Par exemple pour ω = 10 [rad] la

différence est bien prononcée. On peut donc utiliser cette information pour déterminer b.

Nous avons obtenu la phase de −4.46741 [rad] en calculant celle-ci pour ω = 10 [rad/s], i.e. arg(G(j10)) =

−4.46741. En observant la figure 5, le produit KG a une phase valant approximativement −3.78 ce qui donne

argK(j10) = arg(K(j10)G(j10))− arg(G(j10)) = −3.78− (−4.46741) = 0.68741
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Autrement dit, en posant α = 0.1778 et β = 0.68741

arg
j10 + α b

j10 + b
= β

arg
−(j10 + α b)(j10− b)

100 + b2
= β

arg(100− α b 10 j + b 10 j + α b2) = β

et en faisant le rapport de la parti imaginaire sur la partie réelle

tan(0.68741) =
10b(1− α)

100 + αb2

ce qui conduit à la quadratique en l’inconnue b

α tan(β) b2 − 10(1− α) b+ 100 tan(β) = 0

et donc

b =
10(1− α)±

√
100(1− α)2 − 400α tan2(β)

2α tan(β)

≈ 8.222±
√

19.6645

0.2919
=

{
43.36

12.975

on a ainsi soit b ≈ 13 soit b ≈ 43 et donc deux choix possibles pour K :

K1 =
s+ 2.31

s+ 13

K2 =
s+ 7.7

s+ 43

4. Est-ce que K stabilise la boucle fermée ?

Il s’agit de vérifier que le point −1 n’est pas encerclé par le diagramme de Nyquist. L’ordinateur étant indispo-

nible pendant l’examen, on se contente d’obtenir les marges de phase et de gain en examinant les figures 4 et

5.

Marge de phase.

La courbe inférieure dans le diagramme de la figure 4 coupe 0 [dB] en grosso modo deux valeurs. Une première

fois juste après la première graduation aprè 1 [rad/s] et une seconde à la deuxième graduation juste avant

10 [rad/s]. En donnant 51 unité entre 1 [rad/s] et 10 [rad/s], la deuxième graduation est située à la fraction

36/54 ≈ 0.666.

ω = 1036/54 ≈ 4.64 [rad/s]

En examinant alors la figure 5, on trouve la phase

argK(j4.64)G(j4.64) ≈ −2.8 [rad]

La marge de phase

φ = π − 2.8 = 0.34 [rad]
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ce qui donne en degré

φ = 0.34
180

π
≈ 19.57 [deg.]

Marge de gain.

Il faut cette fois se placer un peu après -3 sur le graphique de la figure 5 et remonter ensuite examine se qui se

passe sur la figure 4. Comme π = −3.14 < −3 < −2.8 et que la courbe supérieure de la figure 4 est monotone

décroissante à partir de −2.8 [rad/s], on garantit de s’écarter et de ne pas encercler le point −1.

Le système est stabilisé en boucle fermée par le régulateur proposé.

On peut confirmer ceci à l’aide de l’ordinateur. La figure 1.19 donne le diagramme de Bode en module du

système en boucle ouverte G ainsi que la boucle ouverte K1G (trait bleu plein) et K2G (trait bleu traitillé). Le

régulateur proposé dans l’énoncé ressemble plus à K1 qu’à K2. La phase est représentée à la figure 1.20 et le

diagramme de Nyquist à la figure 1.21. On confirme que le point −1 n’est pas encerclé dans les deux cas.
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Figure 1.19. Illustration des résultats obtenus dans le diagramme de Bode en module [dB]. En trait bleu continu K1G
et en bleu traitillé K2G, avec K1 = (s+ 2.31)/(s+ 13) et K2 = (s+ 7.7)/(s+ 43).



30 1 Diagramme de Bode

0.01 0.1 1 10 100
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Figure 1.20. Illustration des résultats obtenus dans le diagramme de Bode en phase [rad]. En trait bleu continu K1G
et en bleu traitillé K2G, avec K1 = (s+ 2.31)/(s+ 13) et K2 = (s+ 7.7)/(s+ 43).
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Figure 1.21. Illustration des résultats obtenus dans le diagramme de Nyquist. En trait bleu continu K1G et en bleu
traitillé K2G, avec K1 = (s+ 2.31)/(s+ 13) et K2 = (s+ 7.7)/(s+ 43).
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Figure 1.22. Illustration de la réponse indicielle en boucle fermée avec un gain unité K = 1. Le système est instable
comme prévu avec le critère de Nyquist.
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Réponse indicielle avec k=(s+2.31)/(s+13)

Figure 1.23. Illustration de la réponse indicielle en boucle fermée avec le régulateur K = s+2.31
s+13

. La réponse est stable.
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Figure 1.24. Illustration de la réponse indicielle en boucle fermée avec le régulateur K = s+7.7
s+43

. La réponse est stable et
légèrement moins oscillante que pour le graphique précédant à cause de la plus grande marge de phase que par rapport
au régulateur K = s+2.31

s+13
.
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pôles, 102

salle chauffée, 102
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approximation d’un retard pur, 173

diagramme

Nyquist, 181

dimensionnement des régulateure P, PI et PID
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système linéaire continu, 14
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table

de correspondance des opérateurs, 63
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