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Diagramme de Bode

1.1 Introduction et objectifs

Nous avons vu dans le chapitre sur la transformée de Laplace que la variable clé dans le domaine image était
la variable complexe s € C. La variable s peut prendre n’importe quelle valeur dans le plan complexe. Un des
grands avantages de la transformée de Laplace est le traitement des conditions initiales.

En automatique tout comme en traitement du signal, il est parfois suffisant de ne retenir que l'information
lorsque la variable complexe s est limitée a I’axe imaginaire s = iw. Ceci conduit au régime harmonique comme
il a été discuté dans le chapitre sur le diagramme de Nyquist. Le régime harmonique est fortement lié a la
représentation d’un signal par la transformée de Fourier. Toutefois, il est erronné de penser que de restreindre
une tranformée de Laplace en égalant s = iw donne la transformée de Fourier. Ceci n’est pas le cas, car la
représentation de Fourier représente des signaux qui commencent en t = —co et termine en t = +00 et donc ne
sont pas forcément nul pour ¢ < 0 alors que la transformée de Laplace est définie en forcant tout signal a valoir
0 pour tout ¢t < 0.

En particulier, on constate les correspondances

—_

cos(wot) PN —0(w+wp) + %5((.0 — wo)

[\)

mais
s

{cos(wot)} PN m
Il faut ainsi remarquer I'importance des accolades dans {cos(wt)} qui forcent le signal cos(wt) & étre nul pour
t <O0.

La transformée de Fourier utilise uniquement la représentation par la valeur de I’axe imaginaire du plan complexe
iw,w € R (1 dimension). Elle représente la représentation d’un signal (fonction de la variable réelle du temps t)
comme une somme de signaux harmoniques, c¢’est-a-dire comme une somme de sinus d’une amplitude donnée
avec une phase donnée.

Dans le cas de la série de Fourier, le signal initial est périodique et la représentation comporte une somme
infinie mais dénombrable de sinus d’amplitude et de phase fonction du nombres d’harmonique (multiplicité de
la fréquence fondamentale correspondant & la période du signal initial périodique). Dans le cas d’un signal non
périodique, la représentation comporte une somme infinie non dénombrable d’harmoniques. La période peut en
quelque sorte étre assumée étre infinie.

Remarque 1. Dans ce chapitre, la variable imaginaire ¢ = v/—1 est également désignée par j (i.e. j = v/—1).

Il existe un théoreme d’analyse complexe qui permet de retrouver ’expression d’une fonction de la variable com-
plexe connaissant la valeur de la fonction le long d’un lasso fermé du plan complexe. En somme, en extrapolant
les valeurs a partir de la connaissance de 'image de la fonction pour un esemble de départ restraint au lasso, il
est possible de connaitre toute la fonction quel que soit la valeur du point du plan complexe (Le théoréme de
Cauchy en est une conséquence.)
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Deux points de vue sont utilisés en automatique, d’une part le placement de singularités (poles) dans le plan
complexe dans son ensemble, et, d’autre part, la considération uniquement le l'axe fréquentiel, sculptage de
G(jw). Nous avons vu qu’il est possible de se concentrer sur la structure des poles et de changer ceux-ci par
rétroaction. On agit en quelque sorte sur la fonction de transfert vu comme une fraction rationnelle de deux
polynomes en s € C. On synthétise en quelque sorte la fonction de transfert pour tout s € C.

Un autre point de vue et déja abordé au chapitre de Nyquist, est de s’intéresser uniquement & ’axe imaginaire
de ’ensemble source, I'axe jw, w € R. Nous avons vu qu’il était possible de déterminer la stabilité de la fonction
de transfert en boucle fermée Gy (s) pour s € C.

En se fondant sur le théoréme qui permet d’obtenir Gy;(s) en ne connaissant que G(jw), il est possible d’ef-
fectuer un ”sculptage” en se concentrant uniquement sur la réponse harmonique en boucle ouverte G(jw) et de
déterminer les propriété de Gys(s) pour s € C.

Parmis les propriétés importantes, il s’agit de la stabilité (comme pour le chapitre Nyquist), mais également de
la vitesse de réponse, du rejet des perturbations, de la sensibilité aux bruits de mesure haute fréquence de la
boucle fermée.

Afin de permettre une syntheése en se fondant sur G(jw) qui est un nombre complexe qui varie pour chaque
valeur de w € R, il est utile de bien distingué le module (facteur d’amplitude & la fréquence prescrite) de la phase
(angle correspondant au retard angulaire & la fréquence prescrite). Bien que ces deux données soient lisibles
dans le diagramme de Nyquist (amplitude et phase sont celles du nombre complexe associé), le diagramme de
Nyquist souffre du fait que la pulsation (fréquence) w n’est pas explicite. La courbe tracée dans le plan complexe
perd sa paramétrisation par la pulsation w. Pour faire apparaitre explicitement les valeurs de la pulsation, il
faut deux courbes, chacune paramétrée par la pulsation, une donnant le module en fonction de la pulsation et
une autre représentant la phase en fonction de la pulsation.

Le diagramme de Bode est une solution & la représentation du module et de la phase en dépendance de la
pulsation. Une propriété clé de ce diagramme est la capacité d’additionner les diagrammes lorsqu’on effectue un
produit de réponses harmoniques suite a la mise en série des fonctions de transferts. L’argument d’un nombre
complexe conduisant a la phase est naturellement additionné lors de la mise en série. Ceci n’est pas le cas avec
le module. Pour remédier a cet inconvénient, on représente le logarithme du module. Ceci permet d’additionner
les diagrammes lors de la mise en série.

Pour des raisons historiques concernant 1'unité adoptée, a savoir le décibel, et pour des liens avec l'acoustique,
Péchelle du module est représenter par cette unité symbolisés par [dB]. Pour avoir une correspondance il s’agit
de multiplier le logarithme en base 10 par un facteur de 20.

1.2 Le régime harmonique

On appelle régime harmonique, 1’équilibre en régime oscillatoire d’un systéme dynamique lorsque l’entrée est
un sinus (une seule fréquence), i.e. u(t) = sin(wt). La sortie est alors également oscillatoire & la méme fréquence
(le systeme est linéaire). Si le systéme est instable, il est nécessaire de le placer dans les conditions initiales
appropriées. Si le systeme est BIBO stable, le régime harmonique s’établira quelles que soient les conditions
initiales, aprés un transitoire. La sortie, apres transitoire sera y(t) = §sin(wt + ¢) et sera soit amplifiée ou
diminuée par rapport & 'entrée (facteur § € R) et déphasée (quantité ¢ € R). Ceci s’apparente au comportement
de Toscillateur masse-ressort simple, forcé : la solution ¢ sin(wt + ¢) est une solution particuliere de I’équation
différentielle mass-ressort.

Remarque 2. La pulsation w est la méme pour la sortie que celle de 'entrée et peut prendre n’importe quel
valeur dans l'intervalle w €] — 00; 400[. L’amplitude de la sortie § et la phase ¢ sont fonction de w. On aurait
pu ainsi écrire §(w) et (w).

FEzxzemple 1.

G(s) = {u(®)} = {sin(wt)}
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En appliquant la théorie du chapitre sur la transformée de Laplace, on obtient la sortie en procédant par
décomposition en éléments simples. En détails, cela donne :

1 w Aw Bs C

:77:Y =
G(s)U(s) s+ 2824+ w? (s) 52 4+ w? + 52 + w? + 5+ 2

avec

. w w
C7s1—1>1£1252—|—w2 C 44w?

et en égalant les numérateurs

w=(Aw+ Bs)(s+2) + 4+w2(52+w2)
cela donne 5
A= —
4+ w?
et
B __ W
4 4+ w?
En prenant la transformée de Laplace inverse
2 W g
y(t) = m SlIl(wt) — m COS(wt) —+ m@ (11)

Remarque 3. Le dernier terme de (1.1) décroit asymptotiquement (& cause de e~2! en facteur, et donne lieu ainsi
au transitoire mentionné précédemment) et disparait pour laisser place au régime harmonique donné par les
deux premiers termes. Il est possible de grouper ces deux premiers termes pour constituer § = sin(wt + ¢)

Le régime harmonique est donné par

w
t) = —— sin(wt) — —— cos(wt) = ysin(wt + 1.2

U(t) = o () = 1 cos(uwt) = Pin(ut + ) (12)

Remarque 4. On utilise un certain abus de notation en désignant par y(t) & la fois la réponse & condition initiale

nulle donnée par (1.1) et la réponse harmonique. Ceci est possible s’il n’y a pas de confusion possible. Ici (1.1)

est introduit pour justifier la réponse harmonique.

Si on considere a nouveau

1 Y(s)
Gls) = s+2  Uls)

mais sous forme de quotient de convolution a 1’aide de 'opérateur de dérivation

1 )

0+2  {u(®)}

on a la relation entrée sortie
{y@)}=@+2)=0+2)*{y(t)} ={u®)}

Si la valeur des signaux est considérée nulle pour tout ¢ < 0, on a la relation d{u(t)} = {Lu(t)} + u(0).

En présence du régime harmonique, tout est sinusoidal, et il est possible de considérer tous les signaux comme
définis pour les valeurs du temps t < 0. Il n’est plus nécessaire de considérer les conditions initiales et I'opérateur
0 est remplacé par la simple dérivée % et de supprimer les accolades. Vérifions que c’est bien le cas sur 'exemple
précédent.
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2

2 cos(wt) + Y s (wt) ] +2 2 sin(wt) d cos(wt) W + 4 sin(wt)
— ——sin —— sin - =|—=+-——)sin
4+ w? @ 4+ w? v 4+ w? @ 4+ w? @ 44+ w? 44 w? @

|
1]

A
B

=

[

S

= 24
&
=

1.2.1 Régime harmonique complexe

En introduisant les signaux complexes y(t) € C, il est possible de simplifier les calculs de maniére subséquente.
De plus, cela permet d’obtenir le régime harmonique a partir de la fonction de transfert par simple remplacement
de la variables s par jw. Contrairement a un signal ou cela n’était pas possible a cause du comportement pour
t < 0 (rappelons la différence entre {cos(wt)} et cos(wt), (cf. chapitre sur la convolution et les signaux entrée-
sortie et également 1’ introduction de ce chapitre), la restriction & l’axe imaginaire s = jw de la transformée de
Laplace G(s) € C donne un nombre complexe qui donne & la fois le gain en amplitude et le déphasage d’un
signal sinusoidal pour une pulsation w donnée.

L’expression G(jw) est appelée la fonction de transfert harmonique.

Définition 1. La réponse harmonique complexe est la réponse en équilibre dynamique d’un systeme dynamique
linéaire stationnaire causal y(t) = §e’“**¢ lorsque l'entrée est un un phaseur compleze u(t) = e/*t.

Remarque 5. Comme pour le cas réel, la réponse harmonique complexe est le comportement asymptotique quelles
que soient les conditions initiales pour un systeme BIBO stable. Pour les systemes instables, c’est un équilibre
dynamique oscillatoire qui apparait que pour des conditions initiales spécifiques.

Reprenons 'exemple de

1
G =
(8) =3
En prenant la transformée de Laplace de 'entrée
jwt 1
u(t) = e < — =U(s)
5 — jw
la transformée de Laplace de la sortie devient
1 1 A B

et

ce qui conduit a
1 1 1
_|_

Y =
(5) —2—jws+2 s5—jw

En prenant la transformée de Laplace inverse

1 ot L
_ 1 e 1.3
210" w2t (1.3)

y(t) <

Lorsque t — oo le premier terme s’annule et il ne reste que le régime harmonique complexe, avec le méme abus
de notation de désigner (1.3) et (1.4) par y(t).
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1

= — et 1.4
jwt2¢ (14)

y(t)
Remarque 6. On constate que le régime harmonique est obtenu lorsque la variable s est ramplacée par jw. En

effet le facteur devant e/“! dans (1.4) est bien G(jw) = jw1+2'

Définition 2. On appelle G(jw) la fonction de transfert harmonique. C’est un nombre compleze pour w € R.

Theorem 1. Lorsque le systeme est BIBO stable, le régime harmonique complexe asymptotige est donné par
y(t) = G(jw)e’!

quelles que soient les conditions initiales.

Démonstration : Il suffit d’effectuer la décomposition en éléments simples. On procede comme dans ’exemple
conduisant & partir de (1.3) d’établir (1.4).

1.3 Le diagramme de Bode

On représente G(jw) par deux graphiques. Un graphique qui représente le module de G(jw) en échelle loga-
rithmique (avec en abscisse le logarithme des pulsations logw, ou w en échelle logarithmique). Et un deuxiéme
graphique qui représente I’argument de la réponse harmonique. Ceci donne par exemple pour I'immeuble avec
deux étages les graphiques suivants :

Module Phase

201og |G(jw)| arg G(jw)

¢

log w
20;

30+

logw

401 04 02 0.4

1.3.1 Lien entre le diagramme de Bode et le diagramme de Nyquist

Le gain de la fonction de transfert harmonique |G(jw)| donne un nombre réel qui est le facteur d’amplification.
Ce nombre correspond a un cercle dans le diagramme de Nyquist et a une ligne horizontale dans le diagramme

de Bode en module.



10 1 Diagramme de Bode

Module constant dans Nyquist

Module constant dans Bode

L
~10 -8 6 —4 -2

=30

1.4 Esquisse asymptotique du diagramme de Bode

1.4.1 Les systémes non résonants, poles réels simples

Dans un premier temps on peut calculer le gain statique G(0) si celui-ci est bien défini, autrement dit en absence
de pdles a lorigine. Si c’est le cas le diagramme de Bode asymptotique commence par une droite horizontale a
la hauteur —201log;, G(0) en [dB].

Lors la présence de pdles a 1’origine (effet intégrateur), on compte le nombre de ceux-ci (le nombre d’intégrateurs),
disons [. Le diagramme de Bode commence par une pente négative de [ x 20 [dB/decade], ce qui signifie une
pente de —20 x [ [dB] chaque fois que la pulsation est multipliée par 10. Pour déterminer le point de départ, il
suffit de calculer une fois 201log;q |G (jwo)| avec wy la pulsation du début du dessin. La valeur wy est toujours
différente de 0, car I’échelle horizontale est logarithmique et la pulsation wy correspond donc a I'abscisse —oc.

Pour la suite du dessin, la fonction de transfert est factorisée pour faire apparaitre les zéros et les poles. Dans
ce paragraphe ceux-ci sont considérés tous réels. En conséquence,

V(s —z1)(s—22) (5= 2m)
st(s —p1)(s —p2) - (s —pn)

On considere également que le systeme est causal, c.-a~-d. n > m. Une fois la factorisation effectuée, on classe les

G(s) =

poles et les zéros ensembles par ordre des valeurs absolues en commencant par la plus petite vers la plus grande
valeur absolue, et on représente le résultat sous la forme d’un tableau. On laisse une colonne vide entre les
zéros/poles. Dans la colonne vide, on indique +20 [dB/dec] si on se trouve & droite d’un zéro, et —20 [dB/dec]
si on se situe a droite d’un pole. Par exemple, pour un systéeme avec m = 2 et n = 3 avec

Ip1| < |21 < |p2| < |22| < |ps

cela donne le tableau

|1 |21] [p2| |22 [ps]
nb integ. —20 [dB/dec] +20 [dB/dec] —20 [dB/dec] +20 [dB/dec] —20 [dB/dec]

L’idée de ce tableau revient & examiner V'effet de la pulsation juste apres lapparition d’un pole/zéro.
Par exemple, supposons un zéro z; réel ou négatif, et examinons 'effet de

Jw =z
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lorsque w varie entre w = |z; et w >> |z;|. On constate que 1’on ajoute 20 [dB] chaque fois que I’'on multiple par
10 la pulsation w; = |z;| & cause du logarithme et du fait que le zéro se situe au numérateur de la fonction de
transfert.

Lors d’un pole, on examine 'effet de
1

Jw —p;

avec p; réel positif ou négatif. Lorque w varie entre w = |p;| et w >> |p;|. On constate que 1'on soustrait 20 [dB]

chaque fois que I'on multiplie par 10 la pulsation w; = |p;| & cause du logarithme et du fait que le pdle se trouve
au dénominateur de la fonction de transfert.

On prend les valeurs absolues des poles/zéros car on se place du point de vue de w.

Pour tracer le diagramme asymptotique en module, on dessine des traits penchés ou droits en commencant par
une droite horizontale si le gain statique est défini (absence d’intégrateur) ou par une droite de pente négative
(en présence d’intégrateurs). On progresse ensuite dans le tableau en corrigeant les pentes de la quantités qui
apparaissent dans la colonne qui suit le pole/zéro correspondant en reportant le changement de pente pour w
correspondant & la valeur absolue du pole/zéro et en augmantant la pente si cést un zéro ou en diminuant la
pente si c¢’est un pole.

Par exemple pour
(s — 10)(s + 4000)

G(s) = (s — 1)(s + 250)(s — 50000)

On aboutit au tableau

1 10 250 4000 50000
nb integ.|| [—20 [dB/dec]|| |+20 [dB/dec] —20 [dB/dec] +20 [dB/dec] —20 [dB/dec]

Pour dessiner le diagramme asymptotique, comme il n’y a pas de pole en 0 (pas d’intégrateur), on commence par
une droite horizontale. Lorsque w = 1 [rad/s] on trace une droite qui descend avec une pente de —20 [dB/dec].
Arrivé en w = 10 [rad/s| on remonte la pente de 20 [dB/dec] ce qui donne une droite horizontale jusqu’en
w = 250, et on continue de la sorte en respectant le tableau. Le résultat est illustré ci-apres.

[dB]
- . . . L . — w [rad/s]
=501 10 100 1000 10* 10°

-60

-70

-80

-90

-100

Figure 1.1. Diagramme de Bode en module. En rouge, le diagramme asymptotique. En noir, le diagramme exact. A
chaque fréquence de coupure (coude), le diagramme réel est séparé du diagramme asymptotique de £3 [dB].

Les 3 [dB] provient du calcul

201logy, —3 [dB]

1 1
—| =20 log;, —= =
]+1' glO\/§
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obtenu & partir de I’élément simple normalisé
1
s+1

et en posant s = jw et w = 1 est la pulsation de coupure associée.

1.4.2 Les systémes résonants, poles complexes conjugués

Pour tracer le diagramme de Bode de systémes comportants des poles complexes conjugué, on procede de
manieére similaire aux poles réels simples, sauf que l'on groupe les pOles complexes conjugués par paires et on
trace un diagramme par paire de poles complexes. Autrement dit la factorisation de la fonction de transfert est
effectuée de la maniere suivante :

Y(s—z1)(s —2—2) (s —2,)(s2 + a1s + b1)(s* + ag + b2) -+ (s* + ags + by)

G(S) = SZ(S fpl) c.. (5 fpr)(SQ + a8 +,81) s (52 + ags +/89)

Avec, par exemple, (s? + a1s + (1) qui représente (s — z441)(s — Zy+1) le produit correspondant aux poles
complexes conjugués zg11 et 25 ;.

Examinons la fonction de transfert normalisée (8 = 1, la fréquence de coupure autour de laquelle la fréquence
de résonance apparait est normalisée & w = 1)

1

Gh(8) = ——
(5) s24+as+1

(1.5)

Cette fonction de transfert servira de template pour tous les poles complexes conjugués et il est donc bien de se
familiariser avec avec une représentation précise des différents cas du parametre «. La figure suivante illustre le
diagramme de Bode en amplitude pour les valeurs

a = 0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1, 1.2, 1.5,

La valeur a = 0.01 correspond a la résonance la plus marquée et la valeur o = 0.9 correspond & la quasi
disparition de la résonance. La valeur o = 2 (non représentée) correspond a la disparition des parties imaginaires
car alors le dénominateur se factorise s2 +2s+1 = (s + 1)(s + 1) pour faire apparaitre une paire de poles réels
au méme endroit a la pulsation w = 1 et on peut traiter ce cas par la méthode des podle réels. On obtiendra alors
deux droites, la premiére horizontale jusqu’a w = 1 et ensuite une droite de pente -40 [dB/dec] passé w = 1. La
courbe réelle sera alors a -6 [dB].

La phase est représentée a la figure 1.3. Le changement de phase entre 0 [rad] pour w = 0 et —7 [rad] pour
w — oo est le plus abrupte lorsque la résonance est forte (o = 0.01) et la transition est moins appuyée lorsque
« augmente (résonance moins marquée).

Les diagrammes de Bode en module ne permettent pas de distinguer les systemes stables des systemes instables
en boucle ouverte. Prenons par exemple les systemes normalisés instables suivants

1

G .-
M2 —as+1

associés aux systemes stables donnés par G,,(s) formule (1.5) avec les mémes a > 0. Les diagrammes en module
seront rigoureusement identiques a ceux représentés a la figure 1.2. Par contre, la phase progresse dans le sens
inverse de w = 0 vers w = +oc0. L’angle est positif cette fois et les phases sont représentées a la figure 1.4.

En ce qui concerne les zéros, il suffit d’effectuer une réflexion symétrique selon I’axe horizontal pour obtenir les
diagrammes de Bode en module et en phase. En effet, 'utilisation du logarithme dans I’expression du module
transforme la division en une soustraction (ce qui correspond a une réflexion symétrique selon ’axe horizontal).
En ce qui concerne la phase, la division conduit a une soustraction des phases, ce qui correspond également a
une réflexion symétrique. Le diagramme en module de la fonction de transfert
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[dB]

40

20

-40

Figure 1.2. Diagramme de Bode en amplitude de la fonction de transfert G,(s) =
0.01,0.05,0.1,0.2,...,0.9,1,1.2, 1.5.

pour les valeurs a =

1
s2+as+1

[rad]

1'0 w [rad/s]

-1.0

-1.5

Figure 1.3. Diagramme de Bode en phase de la fonction de transfert stable Gn(s) = m pour les valeurs
a = 0.01,0.05,0.1,0.2,...,0.9,1,1.2,1.5. Le flanc correspond & a = 0.01 et la courbe la moins infléchie & a = 1.5.
Toutes les courbes se coupent pour w = 1 et donne —% [rad] & ce moment la. La phase indique mieux la pulsation de

2
coupure que le diagramme de Bode en module.

2

Gny(s)=s"4+as+1= G
est donné a la figure 1.5 et la phase correspondante a la figure 1.6.
Le tragage des diagrammes procedents de manieére similaire & la section précédente concernant les poles réels
simples, en groupant chaque élément du second ordre ensemble et en utilisant la propriété du logarithme
d’additionner les éléments simples correspondants lorsqu’ils sont multipliés. Il s’agit donc d’utiliser le diagramme
normalisé correspondant et de le translater horizontalement pour obtenir la bonne pulsation de coupure et
verticalement pour s’aligner avec 'asymptote de I’élément précédent (ou simplement d’ajuster le module pour
étre a la bonne hauteur).
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=
o
~

3.0

2.5

2.0

1.5

1.0

0.5

é 1'0 w [rad/s]

Figure 1.4. Diagramme de Bode en phase de la fonction de transfert instable G;(s) = m pour les valeurs
a =0.01,0.05,0.1,0.2,...,0.9,1,1.2,1.5. Le flanc correspond & a = 0.01 et la courbe la moins infléchie & a = 1.5. Toutes
les courbes se coupent pour w = 1 et donne +7% [rad] & ce moment la. La phase indique mieux la pulsation de coupure
que le diagramme de Bode en module.

[dB]

40t

20

-40

Figure 1.5. Diagramme de Bode en module de la fonction de transfert Gn.(s) = s? + as + 1 pour les valeurs a =
0.01,0.05,0.1,0.2,...,0.9,1,1.2,1.5.

L’étape clé est de trouver la bonne courbe normalisée. Un exemple suffira pour illustrer la méthode. Considérons

I’élément simple suivant

100
52 4+ 254100

Pour déterminer I’élément normalisé procédons a une mise en échelle de la pulsation en posant

Gi(s) =

=2
10

En posant s = 10w cela donne
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=
o
~

3.0

2.5

2.0

1.5

1.0

0.5

é 1'0 w [rad/s]

Figure 1.6. Diagramme de Bode en phase de la fonction de transfert G,.(s) = s> + as+ 1 pour les valeurs o =
0.01,0.05,0.1,0.2,...,0.9,1,1.2,1.5. Le flanc correspond a a = 0.01 et la courbe la moins infléchie & o = 1.5. Toutes les
courbes se coupent pour w =1 et donne +73 [rad] & ce moment la. La phase indique mieux la pulsation de coupure que
le diagramme de Bode en module.

- 100 B 1
T 100w? + 20w + 100 w2 4+ 05w+ 1

Gl(w)

on obtient la courbe normalisée correspondant & @ = 0.5 du diagramme normalisé. 11 suffit alors de translater
cette courbe pour centrer la pulsation de coupure et de la placer & w = 10 ce qui correspond a la pulsation
normalisée {2 = 1. Le résulat est donné a la figure 1.7.

a
oS

}

10

-10

100

Figure 1.7. Diagramme de Bode de la fonction de transfert T T251100

La phase est obtenue de maniére similaire en translatant la phase normalisée correspondant au bon « vers la
pulsation de coupure.
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En résumé, pour le diagramme de Bode pour des éléments a paire complexes conjuguée, on introduit dans
le colonnes du diagramme asymptotique, les pulsations de coupure associées ainsi que le facteur « correspon-
dant au diagramme normalisé. Cela permet de tracer le diagramme de manieére approximative en superposant
(additionnant) les diagrammes individuels.

1.5 Synthese dans le diagramme de Bode

1.5.1 Diagramme de Bode des régulateurs simples

Diagramme de Bode du régulateur PI

Module 20 log; |G(jw)] Argument arg G(jw)

Diagramme de Bode du régulateur PD

Module 20 log, |G (jw)| Argument arg G(jw)

T

. . . . . . . . . .
-3 -2 -1

-4 3 1 2 -4 -3 -2 -1 1 2
Les diagrammes asymptotiques en module sont dessinés en rouge fin dans les diagramme en module. Pour le

PI, la droite descend de —20 dB/decade jusqu'a w = T% puis continue tout droit. La valeur asymtptotique est
20log,y K. Pour le PD, la droite est horizontale pour les petites pulsations et égal a 20log;, K, jusqua w = T%,
puis suit une droite de +20 dB/decade. Le trait vertical rouge coupe la courbe réelle & £3 dB, +3 dB pour le
PI, et —3 dB pour le PD.
En ce qui concerne le diagramme asymptotique en phase pour le PI (non représenté), il est constant et égal a
—% pour w < T%_, constant et égal a 0 pour w > % Il est égal & —7 uniquement et exactement pour w = %
Quelque chose de similaire a lieu pour le diagramme asymtptotique en phase du PI (non représenté), il est
1

constant et égal a 0 pour w < T%, constant et égal & § pour w > T% Il est égal & +7 exactement pour w = T

1.5.2 La regle d’or fondée sur le critére de Nyquist simplifié
Synthése en asservissement dans le diagramme de Bode

Fondé sur le critére de Nyquist simplifié (le systeme est donc stable en boucle ouverte) 'idée est d’avoir un
systeme proche d’un intégrateur en boucle ouverte autour du module unité, ce qui promet :

— la stabilité en boucle fermée
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— une bonne marge de phase

— une bonne marge de gain

a condition que le module soit monotone décroissant & partir de la pulsation de croisement w, (la pulsation
telle que |G(jws)| = 1, module unité) et que le gain soit suffisament grand pour les pulsations inférieures a la

pulsation de croisement.
Une illustration de ce critere est de considérer un gain K = k € R avec un intégrateur

1
G(s) = -
()=
Le diagramme de Bode en module de la boucle couverte kG(s) = % est une droite de pente -20 dB/decade et
qui coupe I'axe des 0 dB (module 1) & la pulsation w = k (car alors |k/(jk)| = 1).
Un tel systeme en boucle ouverte corresond a la fonction de transfert d’asservissement en boucle fermée

kG k k

S —

1+kG 1+E stk

S

ce qui correspond & un premier ordre stable k > 0, sans statisme G(0) = 1. En ce qui concerne la régulation,

G 1 1

1+kG 1+E s+k

S

et les perturbations asymptotiques sont rejetées car la valeur asymptotique est multipliée par %, et avec un k
La marge de phase est de § car Arg ]ﬁw =-5,Vw,etm— 35 =7.

La marge de gain est infinie pour un intégrateur, car il est impossible de croiser le point —1 quel que soit k.
Pour un systéme autre qu'un premier ordre, la régle consiste donc a se rapprocher le plus possible a un intégrateur

suffisament élevé, les perturbations aS(rmptotiques sont fortement atténuées.

en boucle ouverte autour de la pulsation de croisement w,, de garantir un grand gain avant la pulsation de
croisement et que le gain chute rapidement apres la pulsation de croisement. Ceci est illustré a la figure suivante
avec w, = 2 [rad/s].

100 -

50 -

-100

En basse fréquence il faut un grand gain pour supprimer le statisme et rejeter les perturbations. Le diagramme
de Bode en module doit se situer au dessus de la premiere zone verte a partir de la gauche.

En haute fréquence pour atténuer les bruits et les dynamiques négligées, il faut un petit gain. Le diagramme de
Bode en module doit se situer en dessous de la deuxieme zone verte.
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La pulsation de croisement w, fixe la vitesse de réponse (la constante de temps dominante 7 = le)

1.6 Exemple

Nous allons illustrer la regle d’or ainsi que la compensation d’un pic de résonance Prenons I'immeuble a quatre
étages décrits par la représentation d’état

0 0 0 0 1 0 0 O 0

0 0o 0 0 0100 k

0 0 0 0 0010 0

A 0 0 0 0 0 0 01 B_ 0 (1.6)

-2k Kk 0 0 -0 0 O 0

kE -2tk kK 0 0 —-b0 O 0

0 k -2tk 0 0 -b0 0

0

0 0 k£ —-kO0 0 0 -0

C:(oomoooo)

Avec comme valeurs numériques k = 20, b = 0.5.
Les valeurs propres sont calculées avec la commande Matlab

>> eig(A)

ans =
-0.2500 + 8.40111
-0.2500 - 8.40111
-0.2500 + 6.84711
-0.2500 - 6.84711
-0.2500 + 4.46511
-0.2500 - 4.46511
-0.2500 + 1.5329i
-0.2500 - 1.53291

On constate que les oscillations seront toutes amorties car la partie réelle —0.25 est strictement négative. Les
parties imaginaires donnent les pulsations des oscillations. Il y a quatre modes, w; = 1.5329, wy = 4.4651,
w3 = 6.8471 et wy = 8.4011. Ces quatres pulsations peuvent représenter des fréquences de résonance en fonction
de l'allure du diagramme de Bode autour de ces pulsations. Si le diagramme de Bode en module présente un
maximum autour de ces fréquences, alors il y a une résonance a la fréquence correspondant au maximum. Le
facteur d’amplification sera donné par la valeur maximum du diagramme de Bode en amplitude.

La fonction de transfert se calcule par

G(s)=C(sI - A)"'B

La commande Matlab associée est

[num1,den1]=ss2tf(A,B,C,0)
>> numl

numl =
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1.0e+05 x*

0 0 0 0 0 0.0800 0.0800 3.2200 1.6000

>> denl

denl =

1.0e+05 *

0.0000 0.0000 0.0014 0.0021 0.0611 0.0602 0.8150 0.4000 1.6000

On peut entrer quelque chose de similaire & la main par

num 160000;

[1 2 141.5 210.5 6105 6017.5 81500 40000 160000] ;

den

G = tf(num,den);

>> roots(denl)

ans =
-0.2500 + 8.40111i
-0.2500 - 8.40111i
-0.2500 + 6.84711i
-0.2500 - 6.84711i
-0.2500 + 4.46511
-0.2500 - 4.46511i
-0.2500 + 1.5329i
-0.2500 - 1.5329i

>> roots(den)

ans =
-0.2500 + 8.40141i
-0.2500 - 8.4014i
-0.2499 + 6.8468i
-0.2499 - 6.8468i
-0.2500 + 4.46531
-0.2500 - 4.46531
-0.2500 + 1.5329i
-0.2500 - 1.5329i

Et on constate que la fonction de transfert G(s) contient les mémes valeurs des poéles que les valeurs propres de
la matrice A.
Pour constituer le régulateur, on va placer une paire de zéros complexes conjuguées sur le premier mode de

résonance.
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En lisant le diagramme de Bode en amplitude (et par calcul des valeurs propres) on a déterminé w; ~ 1.533
[rad/s] avec
201log, 0|G (jw1)| ~ 11.7 [dB]

Le deuxiéme mode est we = 4.4653 avec un module /= 9.39 [dB], donc plus atténué.
Pour placer la paire de zéros complexes conjuguées qui va compenser le premier mode, on choisit un polynoéme
du numérateur de la forme

82+ as + (wy)?

avec w, proche et ajusté par rapport a w;. Au dénominateur on choisira
82 + Bs + (wy)?

Lorsque o = 0 on aura une antirésonance trés marquée puisque les zéros seront purement imaginaires. En
augmentant « cela diminue le creux. Le parametre § sera toujours choisit supérieur a «.. Si ce n’est pas le cas,
au lieu d’un creux pour compenser la résonance, il y aura une bosse et donc cela amplifiera la résonance. Les
parametres « et S seront choisis pour un compromis entre 1’élargissement du pic et I’atténuation de la résonance.
Un approche itérative par essai/erreur est illustrée ci-apres.

bode([1 0.053 1.5672],[1 0.2 1.5672])
K = tf([1 0.053 1.56672],[1 0.2 1.5672]);

bode (K*G)

K = tf([1 1.5%0.053 1.56°2],[1 1.5%0.2 1.56°2]);
bode (K*G)

K = tf([1 3%0.053 1.5672],[1 3%0.2 1.5672]);
bode (K*G)

K = tf([1 5%0.053 1.5672],[1 5%0.2 1.5672]);
bode(tf([1 5%0.0563 1.5672],[1 5%x0.2 1.5672])* G)
bode (t£([1 8%0.053 1.5672],[1 8%0.2 1.5672])* G)

Finalement, le dernier essai donne la bonne compensation. Il faut maintenant fixer la bonne constante de temps
en boucle fermée en ajoutant un premier ordre pour avoir la regle d’or —20 [dB/dec].

K = tf([1 8%0.053 1.5672],[1 8%0.2 1.5672])*tf(0.01,[1 0.01]1);
figure(2)
bode (K*G)

Le gain constant est ensuite choisi pour avoir un croisement & —20 [dB/dec] & la pulsation requise pour avoir
une constante de temps en 1/w, ou w, est la pulsation de croisement & 0 [dB]. Dans cet exemple, on choisit un
gain constant égal & +30 [dB], et donc

K = 31.6228+tf([1 8*%0.053 1.56°2],[1 8*0.2 1.5672])*t£(0.01,[1 0.01]);
figure(2)
bode (K*G)

figure(3)

step (feedback (K*G,1))
hold on

step(G)

1.7 Exemple supplémentaire

Soit le systeme en boucle ouverte donné par sa fonction de transfert
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Bode Diagram
50 T
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o
T
/
I

Magnitude (dB)
3
o
T
/
Il

71507 7

-200 - S

250 . | . | . |
180 F

Phase (deg)
& A
3 3
T T
/
Il Il

540 - \ .

-720 & L L pﬁ
102 107 10° 10’ 102
Frequency (rad/s)

Figure 1.8. Représentation du diagramme de Bode du systéme & régler (immeuble) avec plusieurs régulateurs différents
qui atténue le premier mode en w = 1.5329. Le régulateur type est également représenté (la courbe avec une valeur
asymptotique horizontale).

Bode Diagram
50 S

&
o

-100

Magnitude (dB)

-200

-250

-300

-360 -

-540 |-

Phase (deg)

-900 k£ 1 1 1 | |
1074 107 1072 107! 10° 10° 102
Frequency (rad/s)

Figure 1.9. Représentation du diagramme de Bode du systéme réglé (immeuble + régulateur) avec un régulateur qui
place un pole réel autour de 7 x 1073, On distingue les trois derniers modes & wo = 4.4651 [rad/s|,ws = 6.8471 [rad/s] et
ws = 8.4148 [rad/s]. Seul le premier pic & w1 = 1.5329 & été compensé. Les trois pics suivants sont suffisament amortis
par le régulateur pour ne pas devoir étre compensés. On remarque la descente en —20 dB/decade autour de 0 dB. On
satisfait bien a la regle d’or.

150

_ 1.7
s34+ 252 4 20s (1.7)

G(s) =
On a représenté a la figure 1.11 le diagramme de Bode du module de la fonction de transfert a la figure 1.12 la
phase de ce méme diagramme de Bode. Un diagramme de Nyquist de G est donné a la figure 1.13.

On a également dimensionné un régulateur de la forme
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Amplitude

12+ | |

08

06+ |
04 |

oz | /

0 5 10 15 20 25

Time (seconds)

Figure 1.10. En orange, la réponse indicielle de 'immeuble en boucle ouverte sans la structure anti-sysmique. En bleu,
la réponse indicielle de I'immeuble en boucle fermée avec la structure anti-sysmique.

20 ¢

Figure 1.11. Diagramme de Bode du module en [dB] de la fonction de transfert donnée en (1.7). On a indiqué 10 [rad/s]
sur I’axe horizontal et 0 et 20 [dB] sur axe vertical.

K(s) =5 (13)

avec a < b. On a représenté avec le diagramme de Bode de G, celui du produit K G, en module, a la figure 1.14,
et en phase, a la figure 1.15.
On demande :

1. Compléter les échelles sur tous les diagrammes.

2. Est-ce que le gain K =1 au lieu du K proposé stabilise G en boucle fermée ?
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Figure 1.12. Diagramme de Bode en phase de la fonction de transfert donnée en (1.7). On a indiqué 10 [rad/s] sur I'axe

horizontal et -3 [rad] sur 'axe vertical.

Figure 1.13. Diagramme de Nyquist de la fonction de transfert donnée en (1.7).

3. Déterminer a et b du régulateur K proposé cf. (1.8).
4. Est-ce que le K donné en (1.8) stabilise G en boucle fermée ?

5. Donner la fonction de transfert en boucle fermée d’asservissement résultant de K donné en (1.8).

Corrigé du probleme supplémentaire
1. Echelles sur les diagrammes.

Les diagrammes sont représentés avec les échelles correspondantes.
Pour la Figure 1, le 10 indiqué est en [rad/s| ainsi pour trouver l'amplitude, il suffit de remplacer s par j 10

dans la fonction de transfert, cela donne en échelle logarithmique
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10

Figure 1.14. Diagramme de Bode en module ([dB]) de G et de KG avec K donné par (1.8).

10

Figure 1.15. Diagramme de Bode en phase de G et de KG avec K donné par (1.8).

20 10g10(|G(j10)\) = 20 log;

150
—4 1000 — 200 + 2007

= 2010 150
810\ /(200 — 1000)2 + 200

= 20log,, 0.1819 = —14.8 [dB]

Ensuite pour obtenir les différentes abscisses, il faut extraire l'intégrateur de la fonction de transfert. Cet
intégrateur domine en basse fréquence et il est responsable de -20 [dB] par décade. A basse pulsation, on peut
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factoriser la fonction de transfert de la maniere suivante

150 150 20 150

Glsy—= — 09 10 20 150
(5) = 37952 1205 ~ 20552725 120~ 203

Cette approximation a comme module 1 exactement lorsque w = % = 7.5 [rad/s]. On a reporté a la figure
1.16 un trait vertical qui vient coupé ’approximation de la fonction de tranfert % (intégrateur) exactement &
0 [dB]. On a également illustré le résultat précédent ainsi que les valueur verticales pour w = 1,0.1,0.01. Les

valeurs en décibels de % pour ces pulsations sont données dans le tableau
w [rad/s]‘ 20 logyq \%|
7.5 0 [dB]
1 |20logy (43) = 17.5 [dB]
0.1 |20logy, (122) = 37.5 [dB]
5

0.01 |20logy, (1) = 57.5 [dB]

On a représenté des traits verticaux allant depuis 0 [dB] jusqu’aux valeurs données par le tableau aux pulsations
correspondantes (cf. Figure 1.16). Ceci permet de compléter ’échelle en ordonnée en y inscrivant 20, 40, -20,
-40 [dB], etc.

40 b

20 F

220 F

0 |

I L L I L L I L L
0.01 0.1 1 10

Figure 1.16. En plus de 20log,, |G(jw)| (dont on remarque la bosse correspondant & une résonance), On a représenté

150

I'intégrateur 20log;, o ainsi que des traits verticaux aux pulsations w = 0.01,0.1,1,7.5,10 [rad/s]. On a une pente

de -20 [dB/decade]. On a également reporté les —14.8 [dB] que 'on a calculé pour la fonction de transfert G(s) a la

pulsation w = 10 [rad/s]. w = 7.5 [rad/s] correspond au 0 [dB] de I'intégrateur 2°2 qui domine le comportement en basse

20s
fréquence dans la fonction de transfert G(s).

En ce qui concerne la phase, on a deux indications, en abscisse 10 [rad/s] et en ordonnée —3 mais sans unité.

On soupgonne des [rad]. Pour confirmer ceci calculons la phase pour w = 10 [rad/s]

i 150
& 751000 — 200 + 2005

argG(510) = a = —arg —8005 — 200

= —(m 4 arctan(4)) = — (7 + 1.325817) = —4.46741 [rad]

Calculons également la phase pour w =1 [rad/s]
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150

— O —0— arg(19j — 2
—j—2+20j arg(197 = 2)

arg G(jl) = arg

0 — 7 + arctan (129> = —7m + 1.465919388

—1.67567 [rad]

Pour les basses pulsations on a I’argument d’un intégrateur

150 m
G(jw) =~ —— = —— = —1.5708 [rad
arg G(jw) = arg 5070 5 [rad]
On a représenté les quantités calculée sur la figure 1.17 ce qui permet de compléter I’échelle horizontale en
échelle logarithmique faisant apparaitre w = 1 (pour angle —1.67567 calculé) et ensuite de proche en proche

par facteur de 10, & savoir w = 0.1 et w = 0.01. La valeur —3 indique bien des [rad].

I
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
1

Figure 1.17. Diagramme de phase de G(s). On a représenté Pargument arg G(j10) = —4.46741 ainsi que arg G(j1) =

—1.67567 calculé a partir de G(s) = %. On également représenté un trait horizontal supérieur & —1.5708. Toutes

les unités sur 'ordonnée sont ainsi confirmées étre des radians.

En ce qui concerne le diagramme de Nyquist, il faut par exemple déterminer le point avec une partie imaginaire

nulle. Ce point est ainsi I'intersection sur l'axe réel avec 'ordonnée nulle.

150
0=SG(jw) =S
SG(w) =3 (—jw3—2w2+20wj>

0 =3 ((20w — w?)j — 2w?)

= w(20 — w?)
On trouve w = 0 avec comme valeur infinie et
w=4V20 = +2v5 ~ +4.47  [rad/s|

La valeur de du transfert a cette pulsation est purement réelle et donnée par
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150 15

CUND ==

=—-3.75

On peut donc inscrire cette valeur sur le graphique et compléter ainsi les échelles en abscisse et ordonnée. Ceci
est représenté dans la figure 1.18.

4 2 0 2 4

Figure 1.18. Le point d’intersection avec I’axe réel négatif a lieu lorsque w = +2+/5 ~ +4.47. La valeur correspondante
est G(:th\/g) = —3.75. On a représenté des traits hachurés rectilignes pour mettre en évidence ce résultat. Il permet
de compléter les échelles en x et en y. La courbe est complétée avec la courbe hachurée qui correspond aux pulsations
négatives, w < 0

2. Stabilité avec rétroaction unité.

Si un gain proportionnel pur de K = 1 est appliqué, cela conduira & un comportement en boucle fermée instable.
En effet, on applique le critere de Nyquist simplifié. En regardant la figure 1.18, on constate que le contoure
complet encercle le point —1 qui est représenté avec une croix.

Remarque 7. On remarque que le pole en s = 0 n’est pas compté comme un pdle dans le demi plan droit de
la boucle ouverte. La justification est que 'on peut prendre une petite modification du contour initial qui est
I’axe imaginaire lorsqu’on applique le critere de Nyquist. Tout se passe donc comme si la fonction de transfert
est stable en boucle ouverte avec aucun pole dans le demi-plan droit. On applique donc le critere de Nyquist
simplifié.

3. Valeurs de a et b pour le régulateur proposé.

Il faut utiliser la figure 4 ol est représenté le produit KG qui est sous la courbe de G. Le régulateur atténue
donc en basse pulsation ainsi b > a. On remarque également que Patténuation est environ de 15 [dB]. On en
déduit

% = 10715/20 = 0.1778

On pose donc a = 0.1178b. On utilise ensuite le diagramme de phase de la Figure 5 avec les échelles en radians
que lon a établit. On s’intéresse a la différence de phase la plus marquée. Par exemple pour w = 10 [rad] la
différence est bien prononcée. On peut donc utiliser cette information pour déterminer b.

Nous avons obtenu la phase de —4.46741 [rad] en calculant celle-ci pour w = 10 [rad/s], i.e. arg(G(j10)) =
—4.46741. En observant la figure 5, le produit KG a une phase valant approximativement —3.78 ce qui donne

arg K (j10) = arg(K (j10)G(j10)) — arg(G(j10)) = —3.78 — (—4.46741) = 0.68741
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Autrement dit, en posant o = 0.1778 et 8 = 0.68741

. Jj10+ ab 3
g Y—7mM — —
810+ 0

—(j10 + ab)(510 — b)

arg 100 + b2

B

arg(100 — ab10j + 5105 4+ ab?) = 3
et en faisant le rapport de la parti imaginaire sur la partie réelle

106(1 — «@)

ce qui conduit a la quadratique en I'inconnue b
atan(B)b* — 10(1 — a) b+ 100 tan(3) = 0

et donc

p_ 10(1-a)+ v/100(1 — a)2 — 400a tan? ()

2actan(p)

. 8.22241/19.6645 | 43.36
- 0.2919 ) 12.975

on a ainsi soit b &~ 13 soit b &~ 43 et donc deux choix possibles pour K :

K, = s+ 2.31
s+ 13
s+ 7.7

K =
27 5443

4. Est-ce que K stabilise la boucle fermée ¢

Il s’agit de vérifier que le point —1 n’est pas encerclé par le diagramme de Nyquist. L’ordinateur étant indispo-

nible pendant I’examen, on se contente d’obtenir les marges de phase et de gain en examinant les figures 4 et

5.

Marge de phase.

La courbe inférieure dans le diagramme de la figure 4 coupe 0 [dB] en grosso modo deux valeurs. Une premieére

fois juste apres la premiere graduation apre 1 [rad/s] et une seconde & la deuxiéme graduation juste avant

10 [rad/s]. En donnant 51 unité entre 1 [rad/s] et 10 [rad/s], la deuxiéme graduation est située a la fraction

36/54 ~ 0.666.
w = 10%/°% x~ 4.64 [rad /s]

En examinant alors la figure 5, on trouve la phase
arg K (j4.64)G(j4.64) ~ —2.8 [rad]

La marge de phase
¢ =m—2.8=0.34[rad]
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ce qui donne en degré

1
¢ = 0.34@ ~ 19.57 [deg.]
™

Marge de gain.

Il faut cette fois se placer un peu apres -3 sur le graphique de la figure 5 et remonter ensuite examine se qui se
passe sur la figure 4. Comme 7 = —3.14 < —3 < —2.8 et que la courbe supérieure de la figure 4 est monotone
décroissante & partir de —2.8 [rad/s], on garantit de s’écarter et de ne pas encercler le point —1.

Le systéme est stabilisé en boucle fermée par le régulateur proposé.

On peut confirmer ceci a l'aide de l'ordinateur. La figure 1.19 donne le diagramme de Bode en module du
systéme en boucle ouverte G ainsi que la boucle ouverte K1 G (trait bleu plein) et KoG (trait bleu traitillé). Le
régulateur proposé dans I’énoncé ressemble plus a K7 qu’a Ks. La phase est représentée a la figure 1.20 et le
diagramme de Nyquist a la figure 1.21. On confirme que le point —1 n’est pas encerclé dans les deux cas.

1 ) ) 1 ) ) 1 ) ) 1 ) 1
0.01 0.1 1 10 100

Figure 1.19. Illustration des résultats obtenus dans le diagramme de Bode en module [dB]. En trait bleu continu K1G
et en bleu traitillé KoG, avec K1 = (s +2.31)/(s +13) et Ko = (s + 7.7)/(s + 43).
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I . . I . . I . . I . . I
0.01 0.1 1 10 100

Figure 1.20. Illustration des résultats obtenus dans le diagramme de Bode en phase [rad]. En trait bleu continu K1G
et en bleu traitillé KoG, avec K1 = (s +2.31)/(s +13) et Ko = (s + 7.7)/(s + 43).
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Figure 1.21. Illustration des résultats obtenus dans le diagramme de Nyquist. En trait bleu continu K1G et en bleu
traitillé KoG, avec K1 = (s +2.31)/(s+ 13) et Kz = (s + 7.7)/(s + 43).
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x10* Réponse indicielle avec k=1
. : .

6 1 1 1 1 1 1 I I I
0 1 2 3 4 5 6 7 8 9 10

t[s]

Figure 1.22. Illustration de la réponse indicielle en boucle fermée avec un gain unité K = 1. Le systeme est instable
comme prévu avec le critere de Nyquist.

12 Rép indicielle avec k=(s+2.31)/(s+13)
. T T T T
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Figure 1.23. Illustration de la réponse indicielle en boucle fermée avec le régulateur K = . La réponse est stable.
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