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1

Systemes dynamiques et commande

Ce polycopié présente quelques techniques d’analyse et de modification du comportement des systemes dyna-
miques avec un point de vue universel du domaine d’application. C’est la raison pour laquelle les exemples ne
sont pas limités au génie de I’environnment. Le formalisme présenté peut paraitre abstrait en premiere lecture
car il recelle la possibilité de 'appliquer a toutes sortes de disciplines, une fois le formalisme maitrisé. En par-
ticulier, 'application au domaine du génie de ’environnement devient de plus en plus médiatisé. En effet, le
monde devenant de plus en plus interconnecté, par lentremise des systeémes dits intelligents (présence de mi-
croprocesseur et algorithmes), la théorie des systémes dynamiques touche aussi bien la domotique que presque
toutes les activités humaines ayant un impact sur environnement (voiture intelligente, usine entierement au-
tomatisée, etc). La possibilité d’automatiser les taches et de traiter et stocker les données de maniére massive
permettent d’améliorer la vie de tout les jours, dans certains cas, mais conduit également a une dégradation
de lenvironnement et de la qualité de vie, dans d’autres cas. Ainsi, une bonne compréhension des systémes
dynamiques devient de plus importante pour le bagage de 'ingénieur en environnement.

Il s’agit donc de présenter ce que l'on entend par systéme dynamique et par modification du comportement.
Cette derniere notion est, de maniere plus sommaire, appelée commande du systeme dynamique. La commande
peut étre manuelle ou, le plus souvent, automatique, c’est-a-dire sans intervention humaine immédiate, ou,
plus précisément, par 'application systématique d’un résultat obtenu de maniére mécanique par une méthode
algorithmique. Cette méthode algorithmique peut, ou non, étre le résultat de I’élaboration d’une stratégie issue
d’une réflexion humaine.

1.1 Systeme dynamique

1.1.1 Définition d’ordre général

Lorsque les notions de systéme et de variable sont définis (cf. section suivante), un systéme dynamique est
grosso modo une relation entre les variables décrivant le systéme et une variable chronologique représentant le
plus souvent le temps. Cette relation sera, dans notre exposé, modélisée par une progression déterminée par une
fonction.

La distinction précise de la variable chronologique (qui n’est rien d’autre qu’une variable particuliére) par
rapport aux autres variables, consiste en ’existence d’un certain ordre de progression des autres variables par
rapport a la variable chronologique. Cette progression sera, dans notre contexte, supposée étre déterminée par la
relation décrivant le systeme dynamique. Ainsi, on attribuera aux variables du systéme un indexage par rapport
a la variable chronologique.

Nous commencons par laisser momentanément de c6té a la fois la variable chronologique et la relation décrivant

le systeme dynamique pour nous concentrer sur la notion de systeme et de ses variables.
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1.1.2 Systeme

La notion de systéme est souvent introduite pour décrire I'objet de notre étude et I’isoler ainsi de son environ-
nement. Un systeme peut représenter :

— Un ensemble d’éléments en interaction organisé pour un but précis (une entreprise).
— Un ensemble de composants qui sont intégrés pour accomplir une tache (un mécanisme).

— Un ensemble d’objets en interaction qui peut, en premiere approximation, étre considéré comme avoir peu
de relation avec lextérieur (le systéme solaire).

— Le contenu d’une boite noire mal connue par ’observateur (une télévision).

La notion de systéme est large, pour ne pas dire vague. Le seul point commun entre le systéeme métrique, un

systeme d’équations ou le systeme solaire est, justement le mot systéme, c’est-a-dire un ensemble d’éléments.

e Actions e Réactions
e Causes o Effets
e Moyens disponible pour e Résultats
influencer le systéme e Moyens disponibles pour
e Influences de I’environnement observer le systeme
sur le systeme e Influences du systeme
e Excitation du systeme sur I'environnement
e Grandeurs ajustées e Réponse du systeme

e Grandeurs observées

Systéeme
|\ Objet de notre
Entrées attention Sorties
—l/ Ensemble d’éléments

en intéraction

)

e Souvent inconnues
e Indésirables

e Non ajustables

e Souvent négligées

e Déterministes
ou aléatoires

Perturbations

Environnement

Figure 1.1. Interaction du systéme avec son environnement.

Les différentes notions relatives a l'interaction d’un systeme avec son environnement sont représentées a la figure
1.1.

1.1.3 Relation chronologique et propriétés des systémes
Variable chronologique et regle de progression

Nous considérerons deux classes de systemes dynamiques, ceux continus dont la variable chronologique est réelle,
et ceux discrets dont la variable chronologique est discrete.
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Dans le premier cas, une variable réelle (c.-a-d. appartenant & R) obéissant & une régle simple de progression
sera déterminée (cette variable particuliere se réfere, dans la majeure partie des cas, au temps). La variable est
notée t et la régle de progression est déterminée par 1’équation différentielle ordinaire ¢ = 1.

Dans le second cas, une variable discréte (c.-a-d. appartenant a Z) est choisie et la régle de progression devient
celle du successeur. Elle est notée k.

Indexation des variables par la variable chronologique

Dans la présentation des systémes, nous avons vu que les variables pouvaient étre de nature différente (une
vitesse, un prix, une quantité de matiere, une chaleur, une température, une concentration, etc.) et toutes
peuvent prendre des valeurs différentes.

Lors de la présence d’une variable chronologique, il est alors possible de considérer, non pas les variables (mise a
part la variable chronologique) comme des quantités fixées une fois pour toute selon 'ordre de progression de la
variable chronologique, mais comme un nouvel ensemble de variables distinctes, de méme nature, indexées par
rapport a la variable chronologique. Par conséquent, on peut se référer a la variable vitesse a un instant donné,
au prix du marché a un instant discret précis, a la température en début ou en fin de journée par exemple.
Soit x1, x2, x3 trois variables au sens de la présentation des systemes donnée a la section précédante. Lors de la
présence d’une variable chronologique, ces trois variables donnent naissance a une multitude infinie de variables,
toutes indexées par la variable chronologique.

Dans le cas continu, elles sont notée x1(t), x2(t), z3(t), t € R et en particulier on pourra se référer par exemple
a 21(0.2), £1(2.3), £1(1.2345), x2(2.345), et 23(100001.2) toutes ces cinqg nouvelles quantités sont des variables
a part entiere étant donné que ces cinq quantités peuvent a priori prendre n’importe quelle valeur.

Dans le cas discret, nous avons une génese similaire. En effet, 1, x5, 3 donnent naissance aux variables
dénombrables mais infinies x1(k), z2(k), x3(k), k € Z et 'on peut se référer & x1(0), z1(—3), x3(4), z3(5), x3(6),
etc. chacune étant une variable a part entiere puisque ces quantités peuvent, a priori, prendre n’importe quelle

valeur.

Fonctions dynamiques chronologiques

Un systeme dynamique met en relation une sous partie des variables indexées par la variable chronologique a
un autre sous ensemble de ces variables selon une relation qui sera appelée la relation chronologique. Nous ne
considérons, dans ces notes, que les relations données sous la forme de regle de progression provenant de fonctions
uniquement. Dans le cas continu cela sera un ensemble d’équations différentielles ordinaires, autrement dit, des
équations dont le membre de droite est une fonction et le membre de gauche est une différentielle ordinaire.
Voici donc le modele pour les relations chronologiques décrivant un systeme dynamique continu :

#1(t) == fi(z1(t), 22 3
jj?(t) = fg(xl(t),xz(t),.%‘g(t), T 7xp(t)7t)

xn(t) : fn(xl(t>7 xQ(t)7 .%'3(t), T 7xp(t)> t)
Il est important de constater que p et n sont deux entiers positifs non nécessairement égaux et que I'on peut

avoir soit p < n, soit p = n, ou encore p > n. Dans le cas discret la regle de progression sera celle du successeur.
Elle sera donnée par le modele suivant :
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A nouveau p et n ne sont pas nécessairement égaux. Dans ces deux cas les membres de droite déterminent les
fonctions dynamiques chronologiques.

Il est imporant de constater que les deux modeles ci-dessus de relations chronologiques ne sont pas complétement
généraux et que ’on peut en envisager d’autres, comme par exemple, dans le cas continu, la relation fonctionnelle

suivante :

z1(t) == fi(z1([t,t + 1))

La progression d’une variable a un instant précis est conditionné par toute son évolution future sur un intervalle
de durée T. Ou alors, dans le cas discret, la progression :

21(k+1) = fi(aa(k = 2), 20 (k — 1), (k), 21 (k + 1)1 (k +2))

que l'on retrouve fréquemment en traitement du signal faisant intervenir une progression dépendant des variables
indexées en avant de 'index chronologique courant. En traitement d’image par exemple, I'index chronologique
est spatial et la relation discrete ci-dessus peut représenter un filtre dont 1’objectif est d’adoucir ou de renforcer
les contours d’une image.

Voici un exemple élémentaire de systeme dynamique discret ou la variable chronologique est k € N :

’JJ[;H_” = 2:c[k], (11)
avec x[y) € R pour tout k € N. Il comporte une série de variables indexées par rapport a I'indice discret temporel

k. Son comportement est tres différent de celui de I’équation

1
Te+1] = 5Tk (1.2)

avec z[g) € R pour tout k£ € N. Calculons le comportement a long terme pour k& = N connaissant ce que 1'on
appelle la condition initiale T = 3.
Pour I’équation (1.1) :

Q}[N] =2 x[N_l] =22 I[N_Q} = QNI[O] = 2N -3

ce qui correspond A la suite de nombres croissants 3, 6, 12, 24, ..., 2V . 3.
Pour I’équation (1.2) :

fE[o] =3

Ty =320 =5 3=3

o =4 ey =4-5-em=1-3=(3)"3=1

_ 1 _1 _ (1N
TN =3 TN- = 503 T2 T = (5) 03
ce qui correspond & la suite de nombres décroissants 3, %7 %, %, , 2%
1.1.4 Systéme linéaire continu a une seule condition initiale
Soit ’équation différentielle
T =2 (1.3)

dont la solution est
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2 4 6 8 10 k

Figure 1.2. Suite de nombres générée par le systeme discret (1.1).

Z[k]
alb
30
ok
°
' .
°
oL . . . ® e o o . ¢ oo
0 2 4 6 8 10 k

Figure 1.3. Suite de nombres générée par le systeme discret (1.2).

X (z0,t) = moe?t.

Elle ne comporte qu’une seule condition initiale zg € R. On vérifie bien que

X (z0,0) = $062t| = zpe =z - 1 = 2o,

0

d d
=2 X(wot) = o (woe?') = 2x0e® = 2X (w0, t) = 2a.

3500 -
3000 -
2500 -
2000
1500 |
1000 |-

500 -

1 2 3

Figure 1.4. Solution de ’équation différentielle & = 2x partant de la condition initiale o = z(0) = 3.
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1.1.5 Systéme discret linéaire & deux conditions initiales

Deux séries de variables xy ) et 2 ) indexées par rapport au temps sont nécessaires. Il faut deux conditions
initiales z1 o) € R et x5 o) € R pour pouvoir déterminer le comportement futur du systeme.
Soit par exemple les deux systémes suivants :

x =1y + 2y
{ 1,[k+1] B % 1,[k] 5+42,[k] (14)
L2,[k+1] = 5

{xl,mu = 371 + T2, (15)
_ 3 1 ’
T2,[k+1] = 5%1,k] T 3T2,[K)

N ey < . 2+ 3
On constate que les deux systemes ne different que par le facteur de couplage croisé qui passe de £ a .

Ecriture matricielle

On rassemble les variables correspondants aux conditions initiales nécessaires et suffisantes pour connaitre
I’évolution futur du systéme dans un vecteur. Un vecteur [z 3] T2 4] |7 est ainsi constitué qui est iterativement
mis & jour par produit matriciel avec une matrice associée. Les conditions initiales forment les composantes du

vecteur initial. Pour le systéme (1.4) :

En partant de [301,[0]] = lll,

2,[o] 0
1 1 41 73
on obtient successivement N P I e A I I
o] [5] L5 250

Valeurs propres et vecteurs propres

Pour isoler le comportement individuel de chaque dimension, il faut diagonaliser la matrice. Ceci peut étre

interprété en introduisant un changement de variables (coordonnées)
ALk | _ | P11 P12 T1,[k]
22,[k] D21 P22 T2 k]

ZE = P:ZZk

ou de maniere plus compacte

de telle sorte que dans les nouvelles variables les deux équations sont découplées et donc indépendantes. La

matrice décrivant la dynamique devient une matrice diagonale.

ik | _ [ A O | ] 2w
29 [k+1] 0 A2 | | 22,k

Th4+1 = A:Ck

En utilisant la notation compacte

nous obtenons
Zk4+1 = ka-i-l = PAxk = PAP_lzk.

Définissons A := PAP™! qui est la matrice diagonale
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A= MO
0 A2

Nous supposons que la matrice A posséde des valeurs propres réelles. Dans un tel cas, les vecteurs propres ont
des composantes réelles et doivent satisfaire la condition

Av = .

En d’autres termes, il faut que 1’équation matricielle (A — AI)v = 0 posseéde une solution v non triviale (c.-a-d.
v # 0) et donc il faut que la matrice A — AI ne soit pas de rang plein (son déterminant doit étre nul). Ainsi
pour obtenir les valeurs propres, il faut résoudre

A= M| =0

pour obtenir A; et Ao. Ensuite on constate que

Sl

ce qui provient directement de la structure diagonale de la matrice A. En réintroduisant

1
0

0
1

A

A=PAP,

on obtient les identités

1 1
PAP! =)\
0 0
1 1 1
ApP~1 =P\ =\P!
0 0 0
de méme )
PAP! 0 = Ao 0
1 1
Ap~! 0 = M\ P! 0
1 1
mais on sait que
AUl = /\11}1
AU2 = )\21}2
que 'on résoud pour les deux vecteurs vy et vy et donc
1
’Ulzpil O‘| ’U2:P71 2]
10 1 0
P—l — P—l 0 1‘| — P—l 0 P—l 1] ‘| = |:v1 U2i|

et la derniere équation donne I'inverse de la matrice P en fonction des vecteurs propres. Il est alors possible
d’appliquer ceci au deux cas (1.4) et (1.5). En ce qui concerne (1.4), la matrice

|

A =

STy I
Dol o
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donne les valeurs propres \; = 19—0 et Aoy = 1—10, toutes deux inférieures en module & 1, ce qui correspond a un

systéme stable. La matrice de changement de base (coordonnées) est, compte tenu des vecteurs propres associés
T T
vlz[l 1] etvgz[—l 1]

1-1 i1
-1 _ — | 2 2
S P Pi=\"11
22
En ce qui concerne le systéme (1.5), la matrice
13
_ |25
Ar =157
52
donne les valeurs propres \; = % et Ao = —%, dont la premiére est supérieure en module & un. Ceci aura

comme conséquence une divergence des variables 21 ] et par conséquent, une divergence des variables z 1) et
7o (). Les vecteurs propres sont les mémes que pour la matrice A; et par conséquent P, = Py.

Ainsi, pour qu’un systeme dynamique linéaire discret, a coefficients constants, et & deux conditions initiales,
conduise a des suites de nombres qui convergent vers zero, il est nécessaire et suffisant que les deux valeurs
propres associées aient un module inférieur a I'unité.

L’ analyse pour les systemes dynamiques continus linéaires a coefficients constants et a deux conditions intiales
s’en suit de maniere similaire. La conclusion du comportement est toutefois différente que dans le cas discret. Pour
tester si les trajectoires solutions des équations différentielles sont convergentes vers ’origine, il est nécessaire
et suffisant que les deux valeurs propres aient des parties réelles négatives.

Ces considérations de stabilité seront étudiées plus en détails dans un contexte mathématique différent dans les
chapitres suivants, en particulier au chapitre 4.

Une autre remarque tres importante est que dans le cas instable, il n’est pas possible, pour l'instant, de modifier
le systeme afin de le rendre stable, sauf lorsqu’il est possbile d’agir directement sur une ou plusieurs variables
x directement. C’est I'un des objectifs des chapitres suivants.

Entrées, perturbations, parameétres

Parmis les grandeurs z;(¢t) ou x;(k), i = 1,...,p, dont il a été question au paragraphe précédent, celles d’indice
supérieures a n, c.-a-d. celles qui n’apparaissent pas dans les relations chronologiques seront soit des entrées,
des perturbations, ou des parametres, en fonction de certaines de leurs caractéristiques propres. Ceci ne signifie
pas pour autant qu’elles ne dépendent pas de la variable chronologique en tant que tel (elles peuvent étre
fonction du temps). Cependant elles sont considérées comme des grandeurs qui évoluent sans aucune relation
explicite chronologique, c.-a-d. sans leur fonction f;, ¢ =n+1,...,n. Ainsi, dans le cas ou p > n seulement, les
variables d’indices Zy41, Tn42, ..., Tp seront des variables ezogénes. Parmis les variables exogenes, nous faisons
la distinction entre :

— _Les entrées . Ce sont des variables que I'opérateur peut changer a sa guise. Ce sont les variables manipulées

et déterminées par la stratégie de commande que I'on cherchera a déterminer.

— Les perturbations . Ce sont également des sortes d’entrées, mais dont la spécification ne dépend pas de

lopérateur. On peut les assimiler & une entrée d’un autre intervenant, d’un autre joueur, qui cherche a
remplir des objectifs pas nécessairement concurrents a ceux de ’opérateur. Les perturbations sont la plupart
du temps de nature aléatoire et souvent difficilement modélisables.

— Les parametres a proprement dit, c’est-a-dire toutes les autres variables n’ayant pas de relation chronolo-
gique explicite. Les parametres sont, la plupart du temps, constants, ou alors, lentement ou peu variables
par rapport a la variable chronologique.

Les systémes dynamiques que nous allons étudier sont de nature tres générale. Nous allons cependant les

représenter de maniere plus ou moins approximative par des modeles dynamiques, linéaires, stationnaires, cau-

sals et initialement au repos. Ces propriétés sont décrites ci dessous.



1.1 Systéme dynamique 19

a) Linéarité : un systéme est linéaire s’il obéit au principe de superposition défini par les propriétés d’additivité
et d’homogénéité. Considérons le systeme S donné a la figure 1.5 avec I'entrée u et la sortie .
Si le systéme est initialement au repos et que 'entrée u;(¢) produit la sortie y;(t) et entrée ug(t) produit

u(?) y(t)
EEE—— S >

Figure 1.5. Systéeme dynamique.

la sortie yo(t), alors la réponse & la somme u; + ug est la somme y; + yo :
principe d’additivité : up(t) + ua(t) = y1(¢) + y2(t)

principe d’homogénéité : auy(t) — ayy(t); a = nombre réel

Il s’ensuit qu’une combinaison linéaire de signaux d’entrée appliquées & un systeme linéaire produit la méme

combinaison linéaire des signaux de sortie correspondants :
alul(t) + OéQUQ(t) — 1Y (t) + agyg(t)

Il faut parfois faire attention car la représentation mathématique d’un systeme linéaire peut ne pas satisfaire
au principe de superposition. Par exemple, bien qu’exprimant ’équation d’une droite, la relation statique

y=axr—+b

n’est pas linéaire a cause du terme constant b. On dit qu'une telle relation est affine en z. En définissant
a = azx, laquelle est linéaire.

b) Stationnarité : un systéme est stationnaire (ou invariant) si tous ses parameétres sont constants par rapport
au temps. Les entrées et sorties peuvent varier, par exemple P(t) et T(t), mais les parametres physiques
du systeéme restent constant (par exemple, sa géométrie, masse, chaleur spécifique). On dit aussi qu'un
systeme stationnaire ne vieillit pas. Il se comportera plus tard de la méme facon que maintenant. Dans le
cas contraire, on parle d’un systéme non stationnaire (ou évolutif).

¢) Causalité : un systéme est causal si sa réponse & une excitation ne précede pas I'excitation elle-méme (fig.
1.6). Ceci signifie que dans les relations chronologiques spécifiant les variables & l'instant ¢ (ou k) les autres
variables a l'instant plus grand que ¢t ou d’indice supérieure a k ne peuvent apparaitre. Tous les systéemes
physiques évoluant en temps réel sont causals, I'effet ne pouvant en effet pas précéder la cause.
Mais on peut aisément construire des systémes dynamiques non causals. Considérons par exemple des

Cause Cause
A Effet Effet
(:) » Temps OA: Temps
Causal Non causal

Figure 1.6. Distinction entre systeme causal et non causal.

données bruitées que 'on a mesurées en fonction du temps lors de 'expérience. Apres coup, donc pas en
temps réel, on décide de lisser ces données avec un filtre, c’est-a-dire un systeme dynamique qui prend les
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données mesurées en entrée et génere les données filtrées en sortie. Ce filtre est de préférence non causal car
il détermine la valeur filtrée a un instant donné en considérant la valeur mesurée a cet instant mais aussi
aux instants précédents et suivants.

d) Au repos : un systéme dynamique est au repos, a un instant donné, si toutes les quantités qui décrivent
son état interne demeurent constantes dans le temps. Il se trouve a I’état stationnaire et ainsi, en ’absence
d’excitation extérieure, le systéme n’évolue pas. Ses mémoires sont vides. Dans le cas contraire, on dit que
le systéme est chargé (fig. 1.7).

EA: ZA:

Au repos Chargé

Figure 1.7. Distinction entre systéme au repos et chargé.

Il est important de noter les différences qui existent entre un systéme stationnaire, un systéeme dynamique a
I’état stationnaire et un systeme statique :

do
-0
dt

du dy

T 0 systeme a I’état stationnaire ou a un point d’équilibre

systéme stationnaire (6 : vecteur de parametres)

(u, y : signaux temporels)
y(t) = flu(t)] systéme statique (pas de mémoire)

La nomenclature pour ces propriétés peut parfois préter a confusion. On la résume ici dans différentes langues :

Francgais Allemand Anglais
stationnaire zeitinvariant time invariant
a ’état stationnaire beim stationdren at steady state
statique statisch static

La plupart des modeles que nous allons utiliser pour I'analyse et la synthese de systeémes automatiques
posséderont ces cing propriétés. On pourra alors les représenter par des équations différentielles (a) linéaires
(b) & coefficient constant (c) et avec des conditions initiales nulles (e). On utilisera aussi 'appellation systéme
Iscr pour désigner un systeme linéaire, stationnaire, causal et initialement au repos.

Les systemes physiques peuvent posséder plusieurs entrées et plusieurs sorties, comme par exemple dans
I’exemple de la conduite automobile présentée précédemment. On appelle de tels systemes des systémes mul-
tivariables . Cependant, on isole trés souvent une entrée et une sortie pour étudier une boucle de commande.
On parle alors de systémes monovariables , lesquels seront étudiés en priorité dans ce cours.

1.2 Commande automatique

1.2.1 Idée de base

Le domaine de 'automatique comprend ’ensemble des méthodes permettant de conduire un systéme sans
intervention humaine sur la base de mesures liées & son comportement. Le but de la commande consiste &
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déterminer les entrées qu’il faut appliquer au systéme pour obtenir un comportement désiré.

Un exemple de commande manuelle est celui de la conduite d’'un automobile ou le pilote, compte tenu de la
connaissance qu’il a du comportement de son véhicule et des différentes mesures que son oeil effectue, détermine
les actions de direction et d’accélération qui lui permettront de couvrir son parcours de la maniere souhaitée
(fig. 1.8). Nous remarquons la présence d’une boucle de rétroaction dans laquelle, en plus du systeme a
commander (automobile), se situent le régulateur (cerveau du pilote), 'organe de mesure (yeux du pilote) et les
organes de commande (pieds et mains du pilote).

La commande automatique d’une automobile est plus difficile a réaliser. Si les sorties (position et vitesse) sont

YSTEME A MMAN
ENTREES SYSTEME A CO DER SORTIES
Iy - > - —>
] freins position
X accélérateur vitesse !
: volant '
: ) ,
' -§ REGULATEUR :
S : S
grandeurs de Z > grandeurs
commande -§ commandées

Figure 1.8. Automobile commandée manuellement.

facilement mesurables, il convient de tenir compte de I'environnement et notamment de la route et du trafic
routier. Pour appréhender correctement ’environnement, il est nécessaire de disposer de caméras et de traiter
les images en temps réel. Un ordinateur joue alors le role du pilote et transmet ses ordres aux entrées (freins,
accélérateur et volant).

En tant que science, 'automatique essaie de dégager des modeles abstraits des problemes d’automatisations et
de formuler des solutions d’intérét général. C’est ce processus d’abstraction et de solutions qui fait 'objet de ce
cours.

1.2.2 Eléments d’une boucle de commande

Dans une boucle de rétro-action nous avons les grandeurs suivantes :
e grandeur commandée ou grandeur a commander,
e grandeur de commande,
e grandeur perturbatrice ou perturbation,
e grandeur de consigne,
e crreur ou écart de commande.

L’objet & commander est appelé processus ou systéme a commander. Pour mesurer la grandeur commandée
et la perturbation, nous disposons d’organes de mesure (capteurs). La grandeur de commande est imposée
au processus a l'aide d’un organe de commande (actionneurs). Souvent, on considére comme systéme & com-

mander I’ensemble ”processus, organe de mesure et organe de commande”.

1.2.3 Objectifs de la commande

Nous distingerons les deux probléemes principaux suivants :
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a) Probléme d’asservissement ou de poursuite : la grandeur commandée doit suivre une consigne qui varie dans

le temps (exemples : démarrage d’un réacteur discontinu, positionnement de la table d’une machine-outil,
conduite d’une automobile, d’un avion, d’un missile, etc.).

b) Probléme de régulation : la grandeur commandée doit suivre une consigne constante en dépit de variations

internes du processus ou de la présence de perturbations (exemple : régulation d’un processus industriel

autour de son point de fonctionnement).

Contrairement a la commande par compensation de perturbation, la commande par rétroaction est apte a
compenser toutes les sources d’erreurs qui influencent 7' puisque cette derniere est mesurée. C’est 1a que réside
l’avantage de mesurer la grandeur commandée et d’utiliser une commande par rétroaction. Cette approche
constitue la partie principale de ce cours. Un schéma de commande par compensation de perturbation ne sera
efficace que si les trois conditions suivantes sont remplies :

a) il n’y a qu'une seule perturbation affectant la grandeur commandée ;
b) la perturbation peut étre mesurée précisément ;
c¢) Veffet de la perturbation sur la grandeur commandée est bien connu, afin qu’il puisse étre compensé.

La mise au point d’un régulateur nécessite en général une bonne connaissance du systeme a commander. Le
chapitre 2 traitera de I’étude de systémes et leur modélisation.

1.3 Exemples

Nous présentons quatre exemples permettant de mettre en évidence une partie spécifique du cours. Ils ne sont
pas nécessairement du domaine de 'ingénierie de ’environnement (par exemple le moteur électrique et la bille
sur la roue). Toutefois ils sont importants car ils illustrent la nature universelle de la théorie des systémes
dynamiques et ils permettent également d’étudier certains aspects de manieére plus direct. Par exemple, la bille
sur la roue est un joli exemple d’équilibrisme spectaculaire étant donné la nature instable du systéme. Le moteur
est un exemple simple donnant naissance a une fonction de transfert élémentaire. De plus, c’est un systeme tres
concret et tres répandu.

Nous présentons dans ce chapitre les quatres exemples suivant :

1. Systeme d’irrigation.
2. Immeuble a quatre étage et structure anti-sismique.
3. Moteur électrique.

4. Bille sur roue.

La modélisation par des équations différentielles ainsi que la synthese de régulateurs pour ces systemes pour
atteindre les objectifs de commande seront présentés dans les chapitres suivants. Nous insisterons pour l'instant
sur les signaux et les systéemes de maniere descriptive et phénoménologique.

1.3.1 Systeme d’irrigation

Un réservoir d’eau posséde une vanne/pompe qui permet d’alimenter un circuit d’irrigation connecté a un champ
d’une surface donnée. Ce champ est en plein air et sujet aux pluies et avaries. L’objectif du régulateur est de
maintenir un taux d’humidité le plus constant possbile malgré les fluctuations climatiques, telle que sécheresse
momentanée, pluies soutenues, etc. Le régulateur est connecté a la pompe et actionne celle-ci en fonction de la
valeur de 'humidité du champ et permet de collecter le surplus d’eau en la collectant dans le réservoir ou, en
cas de sécheresse, d’alimenter le circuit d’irrigation en actionnant la pompe dans le sens contraire et en vidant
le réservoir.

On peut ainsi distinguer les signaux et systéme suivant :

— perturbation : pluie
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— systeme : champ + absorption
— régulateur : ordinateur, algorithme, réservoir et pompe

— grandeur de commande : commande de la pompe

— grandeur commandée : taux d’humidité

— grandeur mesurée : taux d’humidité

1.3.2 Immeuble a quatre étages

Un petit immeuble consiste en quatre dalles non-déformables représentant les planchers et sols connectés les uns
aux autres par une structure porteuse de parois latérales. L’hypothese est que les parois latérales peuvent se
déformer et agissent comme des forces de ressort sur les dalles situées de part et d’autre des parois. Le systeme
entre donc en oscillation si le sol se met a vibrer. Lors d’un séisme, 1’énergie est transmise dans I'immeuble qui
agit comme un résonateur. Si cette énergie ne peut étre dissipée, cela conduit a la destruction des parois et des
dalles. L’objectif est d’ajouter un systéme anti-sismique qui génere des forces supplémentaires entre le sol et
le premier étage. Ces forces permettent d’absorber de I’énergie permettant a I'immeuble de mieux encaisser le
séisme.

Les signaux et systemes associés sont :

— perturbation : tremblement de terre.

— systéme : étages (dalles) et structure porteuse (parois)

— régulateur : générateur de forces entre le sol et le premier étage et algorithme de commande

— grandeur de commande : consigne de force au générateur

— grandeur commandée : différence de position latérale entre la premiere dalle (étage 1) et le sol

— grandeur mesurée : écart entre deux étages

Remarquer qu’il n’est pas nécessaire de mesurer I’écart entre deux étages particuliers. Seul un écart entre deux
étages quelconques est nécessaire. La théorie associée est celle de I'observation et la construction d’observateurs.
Nous n’aborderons pas cette approche mais nous nous contenterons d’une approche entrée-sortie classique pour
arriver aux objectifs de commande et de régulation.

1.3.3 Moteur électrique

Un moteur électrique a courant continu est considéré. Une tension d’alimentation continue engendre un courant
électrique dans 'armature du moteur. Ce courant électrique agis sur des aimants et/ou (selon les types de
moteur) sur une autre bobine et provoque une force électromagnétique responsable d’un couple (moment de
force) entrainant le rotor (partie mobile rotative) & tourner autour du stator (partie fixe qui guide l'axe du
rotor). On distinguera, le circuit électrique constitué d’une inductance et d’une résistance électrique couplée a
un générateur de tension induite par le mouvement du rotor, du comportement mécanique modélisé par une
inertie avec ou sans frottement mécanique sujet & un couple proportionnel au courant électrique. Il est parfois
d’usage de négliger 'inductance dans le circuit électrique.

— perturbation : couple de freinage agissant sur le rotor
— systeme : moteur électrique
— régulateur : ordinateur, générateur de tension

— grandeur de commande : tension aux bornes du moteur

— grandeur commandée : vitesse ou position angulaire du moteur

— grandeur mesurée : vitesse ou position angulaire du moteur
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1.3.4 Bille sur roue

Une roue est actionnée par un moment de force et peut donc tourner et se positionner librement a l'aide du
moment de force. L’axe de la roue est perpendiculaire a la gravité de tele sorte qu'une bille qui roule sans glisser
sur la roue tombe sous l'effet de la gravité. L’objectif est de maintenir la bille en position instable en utilisant
le moment de force pour agir sur la roue.

— perturbation : aucune, ou déplacement de temps en temps de la bille de son point d’équilibre

— systeme : bille et roue

— régulateur : ordinateur et générateur de moment de force (moteur) qui permet de déplacer la position
angulaire de la roue

— grandeur de commande : moment de force

— grandeur commandée : position de la bille

— grandeur mesurée : écart de la bille par rapport a sa position d’équilibre
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Modélisation mathématique

2.1 Modeles mathématiques

Un modele mathématique est un ensemble de relations mathématiques liant les grandeurs d’entrée et de sortie
d’un processus (ou systéme) physique.

2.1.1 Domaines d’applications

Un modele mathématique permet :
e d’analyser certaines propriétés du processus,

e de mieux comprendre le processus en effectuant des simulations,

de développer une stratégie de commande permettant d’ajuster certaines grandeurs afin que les grandeurs
commandées suivent les consignes correspondantes,

d’optimiser le comportement du processus.

2.1.2 Classes de modéeles mathématiques

On distingue deux classes de modeles mathématiques :

e Le modéle de connaissance élaboré a partir de lois physiques connues, d’ou son autre nom de modele
physique. Un tel modele peut étre développé méme si le processus correspondant n’est pas encore disponible.

Cependant, si certains parametres physiques sont inconnus, ils doivent étre déterminés expérimentalement.

e Le modele de représentation pour lequel une structure simple est proposée sur la base du comportement
du processus face a des excitations particulieres. Le modele met en relation directe chaque entrée et chaque
sortie du systeme. Les parametres du modele sont identifiés a partir d’essais expérimentaux.

Cette distinction entre modele de connaissance et modele de représentation est illustrée a la figure 2.1.

Ce chapitre traite exclusivement de modélisation pour arriver a des modeles de connaissance dynamiques. Par
contre, ’approche de commande développée dans les chapitres suivants considérera les systéemes dynamiques
indépendamment de leur mode d’élaboration (connaissance ou représentation).

2.1.3 Procédure de modélisation physique

L’élaboration d’un modele de connaissance comporte généralement quatre étapes principales :

1. Structuration du probléme qui permet de définir les phénomenes physiques dominants pour I’étude envisagée

et d’en déduire les grandeurs caractéristiques du modele (entrée ou variables indépendantes, sorties ou
variables dépendantes). Dans cette étape de structuration, la contribution principale de 'ingénieur consiste
a distinguer les éléments importants de ceux qui peuvent étre négligés.
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l
0
m
Systeme
loi physique comportements
connue et d’une particuliers ou
complexité abordable dominants connus
4 4
modele de modele de
CONNAISSANCE REPRESENTATION
déterminé analytiquement déterminé expérimentalement
Loi de Newton 0 IObservation
2 .
12% = —mglsin(0) >t
0 (0) = 90 = Wy ‘

0(t) = Asin(wt)
Figure 2.1. Modele de connaissance et modele de représentation pour un pendule.

2. Mise en équations en utilisant des lois connues, par exemple :

— Des lois de conservation (par exemple, de masse, d’énergie, de quantité de mouvement, de flux
magnétique ou de charges électriques, selon la nature du systeéme étudié). Ces relations sont généralement
de type différentiel.

— Des relations constitutives qui mettent en relation des grandeurs de nature différente, par exemple,
le courant et la tension dans une résistance (u = Ri), ou la pression, le volume et la température d’un
gaz dans un systeme fermé (pV = nRT), ou encore la différence de pression et le débit a travers une
vanne (q = aCy+/Ap). Ces relations sont le plus souvent de type algébrique.

On obtient ainsi un systeme d’équations différentielles et algébriques qui décrivent le comportement
dynamique du systeme. Par exemple :

dx(t) = ax(t) + bu(t) 2(0) = o

y(t) = cx(t) + du(t)
ou u(t) est Uentrée, x(t) 'état, y(t) la sortie, t le temps, a, b, ¢ et d les parametres du modele et z( la

condition initiale du systeme dynamique.

3. Identification des paramétres a partir de données physiques ou de mesures expérimentales.

4. Validation du modéle dans le cadre de 1’étude considérée, en comportant les prévisions qu’il fournit avec

certaines données mesurées expérimentalement.
Nous nous proposons de modéliser des systemes dynamiques de nature chimique, thermique et hydraulique.
2.1.4 Types de variables

On appelle variable d’entrée toute variable indépendante qui peut étre, en principe directement modifiée par
l'opérateur.
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On appelle variable d’état toute wvariable dépendant des variables d’entrée ou d’autre variables d’état; ces
variables d’état servent a représenter le comportement dynamique du processus et sont donc associées aux termes
dynamiques ou d’accumulation ; une variable d’état ne peut étre modifiée qu’indirectement par l'intermédiaire
de la modification d’une variable d’entrée.

On appelle variable de sortie tout variable d’état (ou combinaison de celles-ci) qui peut étre mesurée.
Remarque importante

En automatique, lorsque l'on parle de « variable d’entrée » ou de « variable de sortie » (comme définies ci-

dessus), on ne parle pas nécessairement de ce qui entre ou sort physiquement du processus considéré (réacteur
chimique, échangeur de chaleur, etc.). Il convient de distinguer le processus physique réel (réacteur chimique,
échangeur de chaleur, etc.) du systéme abstrait permettant une description mathématique des relations entre
variables indépendantes et variables dépendantes. On peut représenter la situation par le schéma de la figure
2.2.

Pour illustrer ceci, prenons I’exemple d’une cuve, avec un débit volumique d’alimentation ¢., un débit volumique
de fuite g5, une surface de section S et la hauter de niveau h (fig. 2.3).

En effet, on cherche avec un modele mathématique a représenter la variation de la hauteur du liquide dans la

grandeur d’entrée PROCESSUS PHYSIQUE grandeur de sortie
qe ——————p (réacteur chimique, échangeur - - > s
(débit d’alimentation) de chaleur, colonne de distillation) (débit de fuite)

variable d’entrée SYSTEME ABSTRAIT variable de sortie
des s = (modéle mathématiques) > h
(variables indépendantes) (variable dépendante)

Figure 2.2. Processus physique et systeme abstrait.

Qe

ds
S ¥ | CRER

Figure 2.3. Cuve avec volume variable.

cuve en fonction des débits volumiques d’alimentation et de fuite.
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2.2 Modele d’état

2.2.1 Concept d’état

L’état d’'un systeme dynamique déterministe & un instant donné est I’information minimale qui permet, & partir
des entrées futures, de déterminer de fagon univoque le comportement futur du systeme.
Plus précisément :

amam}

— comportement pour ¢t > tg

U[to,00)
Ainsi, I’état d’un systeéme est I'information résumant parfaitement le passé du systeme puisqu’il fixe I’évolution
future une fois les entrées futures spécifiées. Les équations différentielles qui décrivent un systéme dynamique
possedent des conditions initiales pour ty. Ces conditions initiales représentent précisément 1’état du systémes
au temps tg. Ainsi, méme si le systéme n’est pas relaché au temps tg, la connaissance de son état a ty résume
completement 'effet du passé.
Dans ce cours, on ne considere que les systémes pour lesquels ’état a un instant donné est un nombre fini n de
nombres réels. Ceux-ci sont tout naturellement rassemblés dans un vecteur z(¢) de dimension n appelé vecteur
d’état :

1 (t)
.’L'Q(t)
wy= | (21)
Tn(t)
Les coordonnées x1(t), za(t), ..., z,(t) du vecteur d’état représentent les variables d’état au temps ¢. L’entier

n est par définition 'ordre du systeme dynamique. Il s’ensuit qu’un systeme statique est d’ordre zéro car son
modele ne contient aucune équation différentielle.

Dans le but d’alléger les notations, les entrées ui(t), ua(t),. .., u,(t) sont elles aussi regroupées dans un vecteur
u(t) de dimension p appelé vecteur d’entrée :

uy (t)

UQt
u(t) = F) (2.2)

up(t)
Il en est de méme des sorties y1(t), y2(t), - - ., yq(t), réunies dans un vecteur y(¢) de dimension ¢ appelé vecteur
de sortie :

yi(t)

iy = | (23)

Yq (t)

Exemple 1

Soit un objet auquel on applique une force u[ty, c0) pour ¢ > to. Afin de déterminer de fagon compleéte la position
future de I'objet, il est nécessaire de connailtre sa position et sa vitesse initiales. Il résulte de la définition de I’état
d’un systeme que x(tg) et &(to) représentent I’état du systéme a to . Par généralisation, x(t) et &(t) représentent
I’état du systeme au temps t.

On définit ’état comme z(t) et @(t), c’est-a-dire la position et la vitesse de l'objet. Cependant, le choix des
variables d’état n’est pas unique. On peut tres bien choisir d’autres combinaisons des variables position et vitesse
comme, par exemple, 22(t) et z(t) — 5x(t). Ces deux dernieres quantités sont alors des variables d’état qui ne
posseédent plus une signification physique immédiate.

Exemple 2

Soit le retard unité y(t) = u(t — 1)
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Afin de déterminer y[tp,00) & partir de utg,00) il faut connaitre ulto — 1,%9) qui représente donc ’état du
systeme dynamique a tyg. Comme il y a une infinité de valeurs de u entre ty — 1 et tg, il s’agit donc d’un systeme
dynamique d’ordre infini.

2.2.2 Sélection des variables d’état

Pour extraire les variables qui permettent de décrire le systéeme dans le formalisme d’état choisi, il faut tout
d’abord inventorier I’ensemble des grandeurs qui apparaissent sous forme différentielle dans les équations. Ces

grandeurs sont notées v;,7 = 1,...,n,. L’ordre maximale de dérivation de ; est noté p;, lequel définit le nombre
de variables d’état qu’il faut introduire pour représenter la grandeur ;. Ces variables d’état sont, par ordre de
dérivation :
0 (1 i—1

¥O A0, A

ol
k
0 K A"y
W= e AP =TE k=120 i

Ny
L’ordre du systéme est alors égal a E Di-
i=1
La sélection des entrées et des sorties est fonction de I'application considérée. Les entrées sont les variables

indépendantes ajustables, alors que les sorties sont les variables dépendantes mesurées. Il peut également y
avoir des variables indépendantes non ajustables appelées génériquement perturbations. Les grandeurs qui ne
sont ni des variables d’état, ni des entrées, ni des sorties, ni des perturbations, doivent étre éliminées par
substitution.

Exemple

Soit le systeme d’équations différentielles :

at + sin 2 = u?

VO 4 cos = uy
Z4+z=at

avec les conditions initiales v(tg) = vo, w(ty) = wo, w(to) = ao et z(to) = 20-

Le tableau 2.1 inventorie les grandeurs différentielles de ce systeme dynamique ainsi que leur ordre respectif. 1l
est alors possible de définir les variables d’état. On remarque également que les conditions initiales correspondent
a I‘(to)

i grandeur -y; ordre p; variables d’état
1 v 1 T =V
2 w 2 To =W, T3 =W
3 Z 1 Ty =z

Table 2.1. Sélection des variables d’état.

L’ordre de ce systeme est donné par I’expression p; + p2 + p3 = 4.

Le modele dynamique qui résulte de ’expression de la premiere dérivée de chaque variable d’état sélectionnée
est appelé modele d’état. Les équations originales sont exploitées pour exprimer par substitution ces dérivées
en fonction des variables d’état et des entrées :
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i1 =0 = (ug — cos )% = [ug — cos(—z4 + at)]?

i‘g =w = I3
iy = = t[uf — sin(—z4 + at)]
Ty =2=—x4+at

La méme démarche est exploitée pour exprimer les sorties en fonction des variables d’état et des entrées. Par
exemple, si seule la grandeur w est mesurée :
Yy=w=22

2.2.3 Représentation générale

A partir des lois physiques du mouvement, de nombreux systémes dynamiques peuvent étre ainsi décrits par
des équations différentielles et algébriques exhibant la structure suivante :

i1(ﬁ) = f1 [xl(t), . ,xn(t),ul(t), . 7up(t), t] wl(to) = 1,0
{EQ(t) = fg[l'l(t), . 7xn(t),u1(t), . 7Up(t),t] xg(to) = T2,0
. (2.4)
En(t) = fulz1(t), ... zn(t), ur(t), ... up(t),t] Zn(t0) = Tnpo
Di(t) = gufza(t), .. @n(t),ua(t), . up(t), ¢
92(t) = go[x1(2), s (1), ur(t), sup(t 1]
(2.5)

.y'q(t) = gglr1(2), ..., zn(t),ur(t), ..., up(t), ]

La variable ¢ est le temps. On introduit les notations vectorielles (2.1)-(2.3) et les fonctions vectorielles f et g :

fle(t),ult), ] =

g[m(t)m(t),t] =

| 9q[2(t), u(t), t]
La dérivée du vecteur d’état s’écrit : _
.’tl (t) dl‘l /dt

j?g(t) dxz/dt
=" =]

T (t) ] dx,, /dt
Les relations (2.4) et (2.5) prennent alors I’allure vectorielle trés compacte :
@(t) = fle(), ult), ] (to) = o (2.6)

y(t) = glz(t), u(t), ] (2.7)

Le vecteur u(t) est U'entrée du systeéme et y(t) sa sortie. Si x(tg) et u(t), t > tg, sont connus, 'équation (2.6)
peut étre intégrée pour donner x(t), t > to. La relation (2.7) permet ensuite le calcul de y(t) pour ¢t > to. Ainsi,
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comme la notation le laissait présumer, x(to) représente I’état au temps ¢.

L’équation (2.6) régissant le comportement dynamique du systéme est appelée équation d’état. Elle décrit le
comportement dynamique du vecteur d’état z(t). L’ordre n du systéme est donné par la dimension du vecteur
x(t).

La relation (2.7) est ’équation de sortie. Elle indique une relation statique entre les variables d’état x(t) et
d’entrée u(t) et le vecteur de sortie y(t). Souvent, u(t) n’intervient pas dans ’équation de sortie (pas d’effet
direct de l'entrée sur la sortie).

Les équations d’état (2.6) et de sortie (2.7) forment ensemble le modele d’état. Si f[z(t), u(t), t] et Of /Ox[x(t), u(t), t]
sont des fonctions continues de t, on démontre qu’il existe une solution unique pour z(t) étant donnés x(to) et
ulty, 00).

Pour un systéme statique, I’équation d’état (2.6) n’existe pas , et le systéme se réduit a : y(t) = glu(t), t]

2.2.4 Modele d’état linéaire et stationnaire

Un modele d’état particulierement important est celui dans lequel les fonctions f et g sont linéaires par rapport
a x et u et indépendantes du temps. Le modele devient alors :

z(t) = Az(t) + Bu(t) x(to) = xo (2.8)

y(t) = Cx(t) + Du(t) (2.9)

ou A, B, C et D sont respectivement des matrices de dimensions n X n, n X p, ¢ X n et ¢ X p. La figure 2.4
représente le schéma fonctionnel de ce systeme.

Remarquons que, dans ce schéma fonctionnel, les variables d’état apparaissent a la sortie des intégrateurs. Les
divers roles joués par les matrices du modele ressortent clairement : la matrice d’entrée B assure la liaison du
vecteur d’entrée u(t) avec la partie dynamique caractéristique par la matrice du systéme A et l'intégrateur ;
la matrice de sortie C représente la connexion entre cette partie dynamique et le vecteur de sortie y(t), tandis

> D
T I e R e K e e}
A

Figure 2.4. Systéme dynamique linéaire et stationnaire.

que la matrice de passage D indique leffet direct de u(t) sur y(t).
Le cas monovariable est est caractérisé par p = ¢ = 1. La matrice B devient alors le vecteur colonne b de
dimension n, la matrice C le vecteur ligne ¢’ de dimension n, et la matrice D le scalaire d :

%(t) = Ax(t) + bu(t) x(tg) = xo

y(t) = cTz(t) + du(t)

Le schéma fonctionnel pour le cas monovariable linéaire et stationnaire est donné a la figure 2.5.
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> d
u(t) b -l-,\f(t) Ii z(t) T 4;01, y(t)
A |«

Figure 2.5. Systeme dynamique linéaire et stationnaire.

2.2.5 Exemple : Cuve de mélange

Une cuve de mélange (fig 2.6) est alimentée par deux vannes fournissant les débits volumiques variables ¢ (t) et
g2(t) qui contiennent un produit dissous avec les concentrations constantes ¢; et co. Le brassage étant supposé
parfait, la concentration est uniforme dans la cuve et égale a ¢(t). Le débit de sortie ¢(¢) est proportionnel & la
racine carrée de la hauteur du liquide dans la cuve h(t). Les entrées de ce systéme dynamique sont les débits ¢;
et go, les sorties sont la hauteur du liquide dans la cuve h(t) et le rapport de concentration c¢(t)/c;.

Nous supposons la masse volumique p constante. Avec V(t) = Sh(t), ou V est le volume du mélange et S la

q1(t) qz(t)
V(t)
h(t) o(t)
XD
S q(t)
c(t)

Figure 2.6. Cuve de mélange.

section constante du bac, nous pouvons écrire les bilans de masse totale et de masse pour le produit dissout
comme suit :

PS4 (h(t)) = pqr(t) + paa(t) — pa(t) [22] (2.10)

PSE[RB)] = perar () + peaga(t) — pe(a(t) [227] (2.11)

avec les conditions initiales h(0) = hg et ¢(0) = ¢o.
Le débit de sortie dépend de la hauteur du liquide h(t) selon (écoulement turbulent) :

q(t) = k/h(t) (2.12)
La constante k > 0 se détermine expérimentalement. Les deux bilans peuvent ainsi s’écrire :

Sh(t) = q1(t) + qa(t) — k\/h(t) (2.13)
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S[h(t)é(t) + c(t)h(t)] = c1q1(t) + caqa(t) — c(t)k/h(t) (2.14)

En combinant ces deux équations, et en posant z1(t) = h(t),z2(t) = c(t),u1(t) = q1(t) et uz(t) = g2(t), on
obtient :

SCl(t) = %[Ul(t) + UQ(t) - k\/l’l(t)] Il(O) = ho (215)

#2(t) = g ller — za(O)]ur (8) + [e2 — z2(D]uz(t)] 22(0) = co (2.16)

C’est ’équation d’état non linéaire de la cuve de mélange. L’équation de sortie s’écrit simplement :

y1(t) = 21()y2(t) = 22(t) /a1

2.3 Exemples de modélisation

2.3.1 Irrigation

La modélisation du champ et de la cuve (réservoir) s’effectue en appliquant un simple bilan d’eau. Il y a deux
hypotheses importantes cependant. La répartition de I’eau est uniforme sur le champ et une seule variable est
utilisée pour modéliser la quantité d’eau dans le champ. La seconde hypothése est qu’en absence de pompage
et une fois les vannes ouvertes, le débit de la cuve obéit a la loi de Toricelli

Q = KR\/ 29|h1 — h2|sign(h1 — h2)

avec hi la hauteur de I’eau dans le champ et ho la hauteur de ’eau dans la cuve. La constante k reflete la perte
d’énergie dans I’écoulement (type de vanne). Le débit de pluie en [m/s] est noté v. C’est une perturbation. Le
débit de pompage est noté u en [m?/s].

Désignons par A; la section en [m?] du champs et par A, la section de la cuve. Le bilan d’eau conduit ainsi aux
deux équations différentielles du premier ordre couplées

Arhy = A1v — phy —u — £ \/2g|h1 — ho|sign(hy — ha)
Azhy = u+ Kk +/2g|hy — ho|sign(hy — ha)

’ . 3
u débit de la pompe mT}
k facteur de conversion ngﬁ]
A, surface [m?]
v débit de la pluie [2]

2.3.2 Moteur électrique

Le circuit électrique comporte une inductance, une résistance électrique et un générateur de tension induite. u
désigne la tension électrique aux bornes du moteur, 7 est le courant qui circule dans le moteur, w est la vitesse
angulaire du moteur, K est la constante de tension induite, R la résistance et L est I'inductance électrique.
L’inductance mesure la résistance a imposer un champ et un flux électromagnétique qui se traduit par une
inertie au changement de courant dans le moteur.

L’équation électrique s’écrit

u:RiJrL%Jer (2.17)

Conjointement avec le circuit électrique, le moteur possede évidemment un comportement mécanique dicté par
les lois de Newton en rotation. Soit I inertie du moteur. Le courant ¢ impose un couple mécanique donné par
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K. La constante K est la méme que celle de la tension induite de mouvement (seules les unités changent). La
variation du moment cinétique est alors égale au couple a la somme du couple électromagnétique Ki, du couple
di & la perturbation v et du couple des forces de frottement —bw :

Io=Ki—-bw+v (2.18)
u tension aux bornes du moteur [V]
i courant dans le moteur [A]
w vitesse angulaire [%]
v couple perturbateur [N m]
b coefficient de couple de frottement visqueux [N m s/ rad]
K coefficient de tension induite [V s/rad]
K coefficient de couple [N m/A]
I inertie de la partie rotative [kg m?]

Il est souvent d’usage de négliger 'effet de I'inductance et on aboutit a I’équation algébrique électrique suivante

u=Ri+ Kuw

qui ne comporte pas d’état. Le systeme est du deuxieme ordre car la partie mécanique comporte deux dérivées.
En combinant les équations mécanique et électrique,

-t k2+b 0+ (2.19)
= Ru 7 v .
Un choix possible pour les deux états est
I 0
To = 9 = w

1 = T2
SNV (s P
2RI\ R 2y

ce qui peut se mettre en notation matricielle sous la forme

t=Ax+Bu+ B,v

y=Cr
avec
0 1
g oold) L
C:[lo}

2.3.3 Immeuble

La position horizontale de chaque dalle de 'immeuble est représentée par la variable d;, ou 7 désigne I'étage. Le
mouvement vertical est négligé et on ne considere que 1’écart latéral. Chaque étage agit sur les étages supérieurs
et inférieurs par I’entremise d’une force de rappel élastique. De plus,on considere qu’il y a un peu d’énergie
qui est dissipée lors du déplacement. Une force de frottement cinétique proportionnelle & la vitesse relative est
présente. En appliquant les lois de Newton, on arrive de maniere assez directe aux équations suivantes :
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mCZ4:k(d3—d4)+b(d3—d4)

mds = k (dy — d3) + k (dg — ds) + b (dy — d3) + bdy — ds)
mdy =k (dy —do) + k (dz — da) +b(dy — d2) +b(d3 — do) + F
mdy = k(do —dy) + k(dy — dy) +b(do — d1) +b(dy — dy) — F

Chaque équation provient de ’application des lois de Newton en considérant la résultante des forces qui agit
sur le centre de masse de la dalle de 1’étage correspondant. Seul le mouvement horizontal est considéré. Ainsi,
Par exemple, md; est égale a la résultante horizontale des forces en présence et on aura la somme de la force
élastique k (dg — d1) qui provient du non alignement entre 1’étage 0, de la force élastique k (d2 — d1) dt au non
alignement entre 1’étage 2 et I’étage 1, de la force de frottement b(go — ¢1) qui est proportionnelle & la vitesse
relative entre I’étage 0 et 1'étage 1 et de la force de frottement b(gs — ¢1) dit 4 la vitesse relative entre 1’étage

2 et I’étage 1. Un bilan comparable est effectué sur tous les étages et seul 1’étage 4 ne subit que I'influence de
I’étage précédant.

F entrée, force anti-sismique [N]
dy perturbation, position de I’étage zéro [m]
m masse d’une dalle représentant le plancher d’un étage [kg]
d;, 1 =1,2,3,4 position horizontale de I’étage ¢ [m]
k constante de rigidité des parois

(=)

coeflicient de frottement visqueux, perte d’énergie

Le systeme est d’ordre 8 et un choix pour les variables d’état est dy, dl, da, dg, ds, dg, dy, ds.

2.3.4 Bille sur roue

La roue a un rayon R et la bille est de rayon r. Désignons par 6 I'angle de la roue et par ¢ angle de la bille.
Nous pouvons considérer le tout comme un systeme planaire avec la gravité qui agit dans le sens vertical du
plan. Le point de contact entre la bille et la roue est repéré par ’angle y. Comme la bille est supposée rouler
sans glisser, il y a une liaison entre les trois angles 0, ¢ et u donnée par

S (2:20)

En résumé, les angles en présence sont
— pu : angle du point de contact [rad]
— 0 : angle de la roue [rad]

— ¢ : angle de la bille [rad]

et ils sont liés par (2.20).

On peut exprimer la position x et y du centre de masse de la petite bille par les expressions
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x = (r+ R)cos(u) = (r + R) cos (%(b + 9)

. . r
y = (r+ R)sin(u) = (r + R) sin (Egb + 9)
Nous constituons le Lagrangien £ qui est la différence entre ’énergie cinétique et I’énergie potentielle
L=FE, —F,

avec
1

1 1. . 1. .
S N St 2> BTl dP T
E.= 5 + 5 + 21R0 + 2]ng5 (2.21)

— Ig : inertie de la roue [kg m?]
— I, : inertie de la bille [kg m?]
— m : masse de la bille [kg]

Le systeme possede deux degrés de liberté. Sa configuration est décrite par les coordonnées généralisées 6 et ¢.
Appliquons la formule de Lagrange

da(oey o,
dt \ 9q og 1

avec ¢ = 0 et ¢ = ¢. Dans le premier cas Fyp = 7 et dans le second Fyy = 0. Il faut encore exprimer & et § en
fonction de 0, 0, ¢ et ¢. On a successivement

&= —(r+ R)sin (%qﬂ—ﬁ) (Ldﬂ-é)

R
. T r.o
y—(r—i—R)cos(RqH-@) (E¢+9)
de telle sorte que
L L L (e
Smd? + smi? = Sm(r+ R) (R¢+9) (2.22)

étant donné que l'on a sin? + cos? = 1. De plus,
E, = mg(r + R)sin (%(/) + 9)
Ainsi le Lagrangien s’écrit en tenant compte de la modification de 'expression (2.21) en tenant compte de (2.22)
L=E.—E,= %m(r+R)2 (%¢+9)2 —mg (r + R)sin (%¢+9)

Puis en effectuant les dérivées
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oL

- . 2 . 1.
5 = e+ m(r+ R) (9+R¢)

oL

20 = —mg(r + R) cos (%qﬁ—i— 9)

ce qui donne la premieére équation différentielle du deuxiéme ordre couplée
(In +m(r + R)})f + %m(r + R)2p + mg(r + R) cos (%as + 9) _ (2.23)

En ce qui concerne I’équation avec ¢ = ¢, on a successivement

gg = %m(r +R)? (%g& + é) +1.¢
% (gg) - %m(r +R)? (%é + é) +1,¢

oL

% = —mg(r + R)% cos (%Qﬁ + 9)

ce qui donne la deuxieme équation différentielle du deuxiéme ordre couplée

2
r . r . r r
Em(r + R)?0 + (Ir + ﬁm(r + R)z) o+mg(r+ R)E cos (E(b + 9) (2.24)
Les deux équations (2.23) et (2.24) donnent deux équations différentielles du deuxiéme ordre couplées qui
déterminent (;5 et 6. Pour rendre cette dépendance explicite, on peut écrire ces deux équations sous forme d’une
seule équation matricielle

Ir +m(r + R)? m(r + R)?

7
L(r+R)? I+ m(r+R)?||¢

g | -mg(r+R)cos(5o+0)+7
| —mg(r+ R)% cos (£ +0)

La modélisation de la bille sur la roue est ainsi achevée. L’entrée est la couple 7 qui est appliqué a la roue. Un
choix possible pour les états est x1 =60, xo = 0, x3 = ¢ et x4 = ¢.

2.4 Simulation d’un modele d’état

Nous avons introduit a la section précédente la représentation d’état de systemes dynamiques. Cette modélisation
par un systeme d’équations différentielles du premier ordre se préte bien a la simulation du systeme dynamique
par intégration numérique.
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La simulation d’un systéme consiste & déterminer I’état x(¢) et la sortie y(t) pour ¢t > to spécifiés.

De fagon générale, il n’existe pas de solution analytique pour un systeme d’équations différentielles non linéaires.
On doit avoir recours a des méthodes d’intégration numérique pour calculer I’état du systéme. Ces méthodes
ne fournissent pas une solution continue dans le temps mais la valeur de la solution pour des point discrets, sou-
vent uniformément espacés. L’intervalle de temps qui sépare deux points successifs, appelé pas d’intégration,
est noté h. Une solution est obtenue aux instants :

kh,k =ko,ko+1,kg+2,...€ N (225)

ou kg est le compteur tel que koh = tg.
La méthode d’intégration la plus intuitive, proposée par Euler, consiste a écrire le modele d’état a 'insant kh
(exprimé ici pour un modele d’état non linéaire stationnaire) :

z(kh) = flz(kh), u(kh)] x(koh) = xq (2.26)

y(kh) = glz(kh), u(kh)] (2.27)

puis d’utiliser comme approximation de la dérivée 'expression issue des premiers termes du développement en
série de I’état. A partir de 'approximation :
xz(kh + h) ~ x(kh) + &(kh)h on calcule :

x(kh + h) — xz(kh)

z(kh) ~ Y (2.28)
ce qui, avec (2.26), donne la relation constructive suivante :
xz(kh + h) = z(kh) + hfz(kh),u(kh)] (2.29)

L’allure de la solution recherchée, la dérivée a I'instant kh ainsi que son approximation utilisée pour construire

x(t)
4 #(kh)  o(khtn)—a(kh)
h

4
~

koh kh kh+h

Figure 2.7. Etat calculé par intégration numérique avec la méthode d’Euler.

le point z(kh + h) sont représentées a la figure 2.7.
Apres avoir soigneusement sélectionné le pas d’intégration h, la simulation est menée en exploitant successive-
ment, & partir de koh, les équations (2.29) et (2.27) :



2.5 Exemple d’intégration numérique 39

z(koh + h) = x(koh) + hf[x(koh), u(koh)]
y(koh + h) = glz(koh + h), u(koh + h)]
y(koh + 2h) = glxz(koh + 2h), u(koh + 2h)]

:T(kh + h) = xz(kh) + hflx(kh), u(kh)]
y(kh + h) = glz(kh + h),u(kh + h)]

Cette méthode permet une évaluation rapide de la solution du modele d’état mais elle est peu précise. Une
méthode plus précise couramment utilisée est celle de Runge-Kutta.

Méthode de Runge-Kutta classique

La méthode de Runge-Kutta classique consiste a effectuer quatre évaluations de la fonction a intégrer : un fois
au point courant f[z(kh),u(kh)], deux fois & des points courants estimés & une demi-période d’intégration plus
tard flz(kh) + Lki, u(kh + 2)] et flz(kh) + Lk, u(kh + 2)] et finalement une derniére évaluation & un point
estimé une periode d’intégration complete plus tard f[z(kh) 4+ ksh, u(kh 4+ h)]. Les quatre quantités ki, ko, ks
et k4 sont les estimées successives de & et données par :

Ky f[ar(kh)w( h)]
ky = flx(kh) + Bky, u(kh + )]
ks = f[x(kh) h kz, (kh+ )]

La valeur de I’état un pas d’échantillonnage plus loin est donné en pondérant deux fois les estimées de & données
obtenues un demi pas d’intégration plus loin par rapport a celles du début et de la fin du pas d’intégration :

h
x(kh + h) = xz(kh) + 5 (k1 + 2kg + 2ks + kq) .

En itérant la relation ci-dessus, toutes les valeurs de z(kh), k = 1,2,3, ... sont obtenues & partir de la condition
intiale xg.

Remarques

La simulation numérique (sur ordinateur) d’un systéme dynamique offre de nombreux avantages. Pour commen-
cer, les algorithmes mis en oeuvre sont parfaitement connus, ce qui permet d’évaluer la précision des résultats.
Le traitement de systémes multivariables ne pose pas de difficultés particulieres et les fonctions non linéaires f
et g peuvent étre évaluées facilement.

Il ne faut toutefois pas perdre de vue que le calcul numérique est approximatif. En particulier, la représentation
des valeurs numériques par un nombre limité de chiffres provoque des erreurs d’arrondi. Les erreurs de
troncature sont quant a elles provoquées par approximation de fonctions mathématiques au moyen de séries
dont on ne considére qu'un nombre limité de termes.

La stabilité numérique d’un algorithme est garantie lorsque l'erreur d’inté- gration décroit a chaque pas de
calcul. Cette stabilité est facilement perdue lorsque les ordres de grandeur des nombres intervenant dans les
opérations sont tres différents. Il est donc recommandé d’effectuer des mises a 1’échelle pour éviter ce probleme. 11
convient également de préciser que le choix de la méthode et du pas d’intégration qui assurent & la fois, la stabi-
lité de ’algorithme, une bonne précision des résultats, et un temps de calcul non excessif, n’est pas toujours aisé.

2.5 Exemple d’intégration numérique

Soit a intégrer
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i’l = T2
i’g = I3
23 = arctan(30x1) — 1.08z1 — x5 — 23

a partir des conditions initiales #1(0) = 1, z2(0) = 0.5 et z3(0) = 0.9.
Code de simulation a pas fixe

Runge-Kutta classique (code 'Maison’ en Matlab) :

Il faut créer le fichier 'StepRK.m’ :

function [xkplus]=StepRK(fct, xk, h)
k1l = fct(xk);

k2 = fct(xk + ki1*h/2);
k3 = fct(xk + k2*h/2);
k4 = fct(xk + k3*h);

xkplus=xk + h/6x(kl + 2*k2 + 2%k3 + k4);

return

Exemple d’utilisation :
Il faut créer un autre fichier ’TExemplel.m’ :

function [xd]=Exemplel(x)
xd = zeros(3,1);

xd(1) = x(2);

xd(2) = x(3);

xd(3) = atan(30*x(1)) - 1.08*x(1) - x(2) - x(3);
return

et un autre fichier ’IntegrerExemple.m’ :

function [xTraj] = IntegrerExemple(x0,N)

xTraj = zeros(length(x0),N);

xTraj(:,1) = x0;

for i = 2:N
xTraj(:,i) = StepRK(@Exemplel, xTraj(:,i-1), 20/70);
end

return
et finalement le dernier fichier 'runExemple.m’ :

function runExemple
x0 = [1; 0.5; 0.9];
plot(IntegrerExemple(x0,70)°);

return

Pour finalement, en tappant dans la fenétre de commande 'runExemple’,; voir la figure qui représente les trajec-
toires des trois états du systeme représentées en Figure 1.
Pour obtenir la solution par I’algorithme Runge-Kutta incorporé dans Matlab :

function [xd]=ExemplelOde(t,x)
xd = Exemplel(x);
return

function runExempleODE45

x0 = [1, 0.5, 0.9];

[t,x] = ode45(Q@Exempleilde, [0,20], x0);
plot(t,x)
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Figure 2.8. En bleu est représentée la trajectoire de x1, en vert celle de x2 et finalement celle de x3 en rouge.

Runge-Kutta classique (code "Maison’ en Mathematica) :

StepRK[fct_, xk_, h_] := Module[{k1, k2, k3, k4},
k1l = fctxk];
k2 = fct[xk + k1 h/2];
k3 = fctlxk + k2 h/2];
k4 = fctlxk + k3 hl;
Return[xk + h/6 (k1 + 2 k2 + 2 k3 + k4)]]

Exemple d’utilisation :

EquDyn= {x1’[t] == x2[t], x2’[t] == x3[t], x3’[t] == ArcTan[30 x1[t]]
- 1.08 x1[t]-x2[t]-x3[t]};

fctTest = (( Part[#, 2] & /@ EquDyn) /. {x1[t] -> Part([#, 1],
x2[t] -> Part[#, 2], x3[t] -> Part[#, 31}) &
pts = 70;
tsol = Table[20 i /pts, {i, 0, ptsl}];
x1sol = Part[#, 1] & /@ NestList[StepRK[fctTest, #, 20/pts] & ,
{1, 0.5, 0.9}, ptsl;

p2 = ListPlot[Transpose[List[tsol, x1so0lB]]];

Comparaison avec l'intégrateur incorporé dans Mathematica :

xx = {x1[t], x2[t], x3[t]l};

solRK = NDSolve[Join[EquDyn, {x1[0] == 1, x2[0] == 0.5,
x3[0] == 0.9}], xx, {t, 0, 20}];

pl = Plot[x1[t] /. solRK, {t, 0, 20}];

Show [p1,p2]
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Figure 2.9. En trait plein est représentée la solution de l'intégrateur Runge-Kutta de Mathematica et les points

représentent les itérations successives de l'intégrateur Runge-Kutta classique 'fait Maison’. On remarque qu’il n’est pas
nécessaire d’avoir un pas d’intégration petit pour déja avoir un bon résultat.

2.6 Approximation linéaire d’'un modéele non linéaire

2.6.1 Introduction

L’intérét des modeles linéaires réside dans
e la propriété importante liée au principe de superposition

e l'aisance mathématique qui en découle permettant, par exemple, de résoudre analytiquement un systeme
d’équations différentielles linéaires.

Malheureusement, la plupart des systémes physiques réels sont intrinseéquement non linéaires. Afin de tirer parti
de la propriété de linéarité, on peut linéariser un modele non linaire pour un point de fonctionnement choisi.
Il en résultera une approximation linéaire qui sera valable pour de petites déviations autour de ce point de
fonctionnement.

Considérons a titre d’exemple le cas de la fonction non linéaire f(x) représentée & la figure 2.10. Cette fonction
est approchée autour du point T par une droite tangente a la fonction. Cette droite est utilisée pour déterminer
la valeur de la fonction & proximité de Z, en particulier en T + dzx.

En considérant la partie linéaire d’un développement en série de Taylor de f(x) au point Z, on obtient l'ap-

proximation suivante :

f@ + 60y~ 1(@) + L (@)6a

dx
La relation entre une variation dx de z et la variation correspondante § f de f s’écrit donc en premiere approxi-
mation :
5f = Lz
= —(Z)dx
dx

Cette relation n’est évidemment valable que pour de faibles écarts dx autour de Z.

Quelques définitions préalables sont nécessaires pour traiter de fagon rigoureuse le probleme de linéarisation.
La collection (infinie) de vecteurs d’états x(t) ains que la collection des vecteurs de sortie y(¢) constituent une
trajectoire nominale du systeme dynamique si ces collections satisfont aux équations différentielles correspon-
dantes et aux équations définissant les sorties. Ainsi, pour le systéme non linéaire et non stationnaire (2.6)-(2.7)
et 'entrée u(t), et avec tg = 0, les trajectoires nominales Z(t) et g(t) vérifient :

#(t) = fl2(t), a(t), #(0) = w0 (2.30)

y(t) = glz(t), u(t), t] (2.31)
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Figure 2.10. Fonction non linéaire et son approximation linéaire autour de Z.

Pour un systéme stationnaire, les trajectoires nominales sont souvent choisies constantes, z(t) = 0, formant
ainsi un point de fonctionnement stationnaire ou un point d’équilibre. Dans ce cas, les relations (2.30)
et (2.31) s’écrivent :

0= f[z,q] (2.32)
y=glz,u (2.33)
2.6.2 Procédure de linéarisation
Soit le modele d’état non linéaire stationnaire :
(t) = flz(t), u(t)] z(0) = o (2.34)
y(t) = glz(t), u(t)] (2.35)

Pour le point d’équilibre (point de fonctionnement stationnaire) correspondant & @, les variables T et § satisfont
les relations (2.32) et (2.33) :

Les équations (2.34) et (2.35) peuvent étre développées en série de Taylor pour le point d’équilibre @, T et y
(afin de simplifier I’écriture, la dépendance temporelle des variables u(t), 2(t) et y(¢) ne sera plus indiquée dans
le développements qui suivent) :

&= flz,u] + % - (u—1u)+t.os. (2.36)
y = g[z,a] + % - (u—1) +tos. (2.37)

ou t.0.s. indique des termes d’ordre supérieur.
Introduisons les variables écart suivantes :

et notons que 0 = %.

En soustrayant les équations (2.32) et (2.33) des parties linéaires des équations (2.36) et (2.37), et avec la
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définition des variables écart, on obtient :

ob =8 Sx+ 2| su 6x(0) =20 — 7 (2.38)
Sy = % - bz + % - du (2.39)

Cette approximation linéaire s’écrit sous la forme du modele d’état suivant :

0t = Adx + Bou 0x(0) =9 — T (2.40)

0y = Cox + Déu (2.41)
avec A= % - et B := % o
uxr uxr
C = % o et D = g—g o

Remarques

e Le modele d’état (2.34)-(2.35) possede des variables indépendantes (le vecteur d’entrée u(t) et des variables
dépendantes (le vecteur d’état x(t) et le vecteur de sortie y(t)). Pour déterminer le point d’équilibre @, T et
7, il convient donc de spécifier les variables indépendantes u et de calculer les variables dépendantes T et §
a partir de (2.32) et (2.33).

e Les équations (2.40) et (2.41) représentent des approximations, lesquelles ne sont valables que pour de
petites déviations autour du point d’équilibre (4, Z).

e Il est important de noter que u, « et y dans les équations (2.40) et (2.41) représentent en fait les variables
écart du, dx et Jy.

e Pour le cas multivariable, c’est a dire ou u, = et y sont des vecteurs, A, B, C et D représentent les matrices
jacobiennes de f et g par rapport a x et u :

rofi ofr Of1]
g? gajccz %ﬂ}n
2 Ofs 2
8f Oxry Oxs " Oxzn
A== =70 .
Ox la,z . : :
Ofn Ofn Ofn
LOox1 Oxzo °°° Oz, d O,z
rofi ofi 9f1 7
Ouy Ouz """ Ouy
Ofy Ofa df2
8f Oui Ouz """ Ouy
B:=—
oula,z
Ofn Ofn 9fn
LOuy Ouz """ Oupd g 5
091 Og1 991 7
Ox1 Oxa """ Oy
992 0gz 992
89 Ox1 Oxg """ Oxn
C == = . .
Oz la,z : _ :
99n Ogn 9gn
Loz, Ozs °°° Oz, 0,z
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991 991 g1
Ouy Ouz """ Ouyp
992 9g2. 092

ag Ouy Ouz """ Oup

D :: — =

oula,z : : :
99n Ogn 9gn
Ouy Ouz """ Ouyp 0.7

2.7 Exemples

2.7.1 Oscillateur de Van der Pol

En partant de ’équation diffirentielle du second ordre décrivant ’oscillateur de Van der Pol
Pte(@®—1)i+z=0

il est possible de représenter une trajectoire solution de I’équation différentielle pour une condition initiale donnée
en utilisant un algorithme d’intégration de type Runge-Kutta. Par exemple, pour la valeur du parametre e = 0,5
et pour la condition initiale g = £¢ = 1, la solution est représentée a la figure 2.11.

Cependant, lorsqu’une représentation pour un grand nombre de condition initiales est désirée, il est avantageux
de représenter également le graphe des éléments de pente (fig. 2.11).
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Figure 2.11. Superposition du graphe des pentes et d’une trajectoire dans le cas de l'oscillateur de Van der Pol
(E = 07 5,$1o = 1,1}20 = 1).

2.7.2 Dynamique de population

Pour illustrer les concepts introduits dans ce chapitre, nous présentons deux exemples tres simplifiés de dyna-
mique de population. Nous envisageons a la fois les modeles mathématiques de deux especes en compétition pour
une méme ressource unique, ainsi que la dynamique prédateur-proie, ou deux especes distinctes s’affrontent,
I'une jouant le réle de proie et 'autre celui de prédateur.
Les hypotheses simplificatrices suivantes sont adoptées :

e La densité de I'espece, c’est-a-dire le nombre d’individus par unité d’aire, est représentée par une variable
unique, la différence d’age de sexe et de génotype sont ignorés.
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o [’effet de surpeuplement affecte le groupe dans son entier. Tous les membres de la population sont touchés
de maniere similaire. Bien que ceci soit peu probable lorsque les membres se répartissent en sous-groupes,
de telle sorte qu’ils ne soient pas uniformément distribués dans tout ’ensemble du territoire considéré, nous
faisons néanmoins cette hypothese.

e Les effets des interactions au sein de la méme espece et avec des especes différentes sont instantanés. Il n’y
a pas de délai lors d’actions entreprises par un individu.

o Les facteurs abiotiques environnementaux (c-a-d. I'influence du non-vivant sur le vivant) sont suffisamment

constants.
e La croissance du taux de la population est dépendante de la densité, méme lors de tres faibles densités.
e Les femelles trouvent toujours a s’accoupler, méme lorsque la densité est basse.

Ces hypotheses, tres simplificatrices, se justifient essentiellement par le fait qu’il y aura nécessairement un effet
limitant par le manque de ressources.

2.7.3 Compétition

Deux population distinctes sont en compétition pour une méme ressource qui se trouve en quantité limitée.
x1 désigne la population de la premiere espece et x5 celle de la seconde. Un modele d’évolution différentielle
est obtenu en considérant une croissance exponentielle en 'absence d’effet inhibitifs. Deux coefficients positifs
a1 et ag sont introduits pour représenter les taux de croissances instantanés. Les populations agissent alors de
manieére indépendante.

Cependant, les ressources ne sont pas infinies et la présence d’une densité croissante aura tendance a diminuer la
croissance des populations respectives. Ainsi, nous distinguons les coefficients d’auto-inhibition by; et by (deux
quantités positives, crées par la présence d’'un compétiteur de méme espece), de ceux des coefficients d’inhibition
croisée bi2 et bo; (également deux nombres réels positifs mais dus cette fois-ci a la présence d’un compétiteur
de lautre espece). En conséquences, nous posons comme modele d’évolution

@1 = z1(ar — biizy — biaxa)

&g = wa(az — barx1 — baoxa)

Notons, en résolvant 1 = &5 = 0, la présence de plusieurs points d’équilibre. Lorsque by11b2s — b12bo; # 0,1l y a
quatre points d’équilibre isolés distincts :

a) T1 =0 To =0
b) T = a To=0
b11
¢) Ty = asbia — a1bag Zy = a1ba1 — asbiy
bi1b22 — bi2boy b11b22 — bi2ba1
d) T1 =0 To = a2
bao

Ils correspondent respectivement a :
a) Pextinction des deux espeéces;
b) T'extinction de la seconde espéce au profit de la premiere;
¢) la survie des deux espéces en équilibre ;
)

d) lextinction de la premiere au profit de la seconde.
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Lorsque b11b22 — b12b2; = 0, outre le point d’équilibre & l'origine, la présence d’une droite continue de points
d’équilibre est constatée. En effet, en prenant pour valeur numérique a; = as = 2 et by; = bis = byy = boy =1,
on obtient les deux équations définissant les points d’équilibres

2x1—x1x2—x§:0 et 2x2—x1x2—x§:0

En soustrayant ces deux équations, l'expression (zo — x1)(x1 + 21 — 2)= 0 est obtenue faisant apparaitre la
droite z9 = 2 — 1 comme un lieu continu de points d’équilibre.

Le systéme non linéaire & = f(x) peut étre estimé par le premier terme du développement en série de Taylor.
Ceci donne & = A(Z)(x — Z) ou T désigne le point d’équilibre ot 'on développe f(z). La matrice A s’écrit

Ao [ lelf{* b12%2 *?1251 i (2.42)
—b21Z2 az — ba1Z1 — 2b22%>

et dépend des valeurs 1 et £y du point d’équilibre.
Le plan de phase est représenté a dans les figures 2.12, 2.13 et 2.14 pour trois choix de valeurs numériques. Les
facteurs de croissance sont fixés a a; = as = 2. Dans le premier cas, fig. 2.12, les facteurs inhibitifs croisés sont
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Figure 2.12. Plan de phase et points d’équilibre pour deux populations en compétition pour une ressource unique.
a1 = a2 = 2 et b1 = baz = 1. bi2 = b21 = 2, I'inhibition croisée est plus grande que 'auto-inhibition et cela produit une
population & survivre au détriment de l'autre.

plus importants que les facteurs auto-inhibitifs (b1; = bay = 1 et byjg = bya = 2). Le point d’équilibre (0 0)7 est
localement instable. Les points d’équilibre (2 0)7 et (0 2)” sont des points stables. Le point d’équilibre (3 2)7
est un point selle.

Dans le deuxieme cas, fig, 2.13, lorsque ’auto-inhibition est identique a I'inhibition croisée, on constate une vie
mutuelle des deux especes et une convergence vers des points d’équilibre qui dépend des conditions initiales.
Dans le troisieme cas, fig. 2.14, c’est-a-dire lorsque 'inhibition croisée est moins forte que I'auto-inhibition, il
y a également une survie mutuelle des deux especes, mais toujours avec la méme densité. Le point d’équilibre
(3 3)7 est stable. Le point d’équilibre (0 0)" est instable. Les deux points d’équilibre restants (0 2)7 et (2 0)7

sont, des points selles.
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Figure 2.13. Plan de phase et points d’équilibre pour deux populations en compétitions pour une ressource unique.
a1 = a2 = 2 et b1y = baa = 1. b1z = ba1 = 1, I'inhibition croisée est identique & ’auto-inhibition, ce qui conduit les deux
populations a vivre avec des rapports qui dépendent des conditions initiales.
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Figure 2.14. Plan de phase et points d’équilibre pour deux populations en compétitions pour une ressource unique.
a1 = a2 = 2 et b1 = baa = 1. b1z = ba1 = 0,5, "auto-inhibition est plus grande que l'inhibition croisée et les deux
populations finissent au méme point d’équilibre, pour presque toutes les conditions initiales.

2.7.4 Prédateur-proie
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Figure 2.15. Plan de phase et points d’équilibre pour le modele prédateur-proie. La variable x; représente la densité
des proies (axe horizontale) et la variable x2 représente la densité des prédateurs (axe vertical). Les valeurs numériques
choisies sont a1 = a2 = b1 = 2 et b11 = b1z = 1. Deux trajectoires sont également représentées pour z1(0) = z2(0) = 0,2
et pour z1(0) = 1,7, 22(0) = 1,4. Les trois points d’équilibre sont constatés : a) 'origine T1 = T> = 0 ( en bas a gauche),
b)la survie des proies et extinction des prédateurs Z; = 2, Tz = 0 ( en bas & droite), et finalement c) la survie mutuelle
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Dans ce modele, x; représente la densité de population des proies et x5 celle des prédateurs.

L’équation de I'évolution de z; est identique au cas des populations en compétition de la section précédente.
En effet, les proies croissent de maniére exponentielle en 1'absence de prédateur (coefficient aq positif). Leur
croissance est limitée par les ressources (effet auto-inhibitif, b11) et par la présence de prédateur (effet d’inhibition
croisé, bys).

Par contre, ’évolution des prédateurs xo est foncierement différente. En ’absence de proie, les prédateurs
disparaissent progressivement de maniére exponentielle, et le signe devant le coefficient as est cette fois-ci
négatif. De plus, la présence des proies n’a pas un effet inhibitif, mais bien au contraire, un effet de croissance :
le signe devant le facteur bo; est positif. Il n’y a pas d’effet auto-inhibitif, ce qui implique ’annulation du
coefficient byy = 0.

Sous ses hypothese, les deux équations différentielles qui gouvernent 1’évolution des populations sont

@1 = z1(ar — bi1zy — biaxa)

&9 = x2(—ag + ba171)

Ce systeme comporte trois points d’équilibre :

a) T1 =0 To =0

b) T = an To =0
bi1

c) 7, = az Ty = a1ba1 — azbiy
b1 b12b21

Le premier point d’équilibre est I'extinction mutuelle des deux especes. Le deuxieme correspond uniquement a
la survie des proies; il y a absence de prédateurs. Le troisieme correspond a une survie mutuelle.

Lorsque a1ba; < agbii, les prédateurs meurent par manque de facteur de reproduction des proies (coefficient
a1), La condition de survie mutuelle pondére les deux facteurs a1 et as par la qualité de satisfaction énergétique
de la proie pour un prédateur bs; et du taux d’auto-inhibition des proies by1. En effet, 'auto-inhibition des
proies rend la reproduction et la survie des prédateurs difficiles.

La figure 2.12 représente la plan de phase pour les valeurs numériques

a1 =a2 =by1 =2 by =biza=1

Deux courbes, solutions de 1’équation différentielle, sont également représentées, une pour la condition initiale
21(0) = 22(0) = 0,2 et une autre pour la condition initiale z1(0) = 1,7 et x2(0) = 1,4. On constate que dans
les deux cas, la solution correspondante converge vers le point d’équilibre de survie mutuelle z; = 5 = 1.
Pour la premiere courbe, la densité des prédateurs commence légerement a diminuer puis demeure relativement
modeste a cause du faible nombre de proies disponibles. Toutefois, ces derniéres se reproduisent en présence
de la faible densité des prédateurs. Lorsqu’une taille critique est atteinte, & partir de laquelle les prédateurs
peuvent mieux se développer, la tendance s’inverse et les prédateurs augmentent au détriment des proies.

De maniere générale, le taux de prédateurs par rapport a celui des proies oscille jusqu’a atteindre I’équilibre de
survie mutuelle (fig. 2.15).
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Représentation entrée-sortie

3.1 Introduction et objectifs

Ce chapitre introduit la représentation entrée-sortie et les opérateurs de convolution dans le cadre des systémes
linéaires stationnaires. La notion de systeme linéaire permet, a 1’aide du principe de superposition, de construire
des réponses a des signaux élémentaires. Il s’agit des réponses indicielles et impulsionnelles. Un signal arbitraire
est ainsi la superposition d’une succession de sauts indiciels séparés les uns des autres de maniere infinitésimale.
La réponse a un tel signal est alors une succession de réponses indicielles séparées les unes des autres de manieres
infinitésimales. Nous aboutissons alors au produit de convolution. La réponse d’un systeme est la convolution
de son entrée avec la réponse impulsionnelle du systeme. Le produit de convolution est distributif par rapport a
I’addition et commutatif. Il n’a pas de diviseur de zéro. Nous pouvons donc constituer son anneau de fraction.
Nous obtenons une algebre de convolution isomorphe aux fractions de polynomes. Cet isomorphisme sera étudié
par I'entremise de la transformée de Laplace au chapitre suivant. Nous constaterons que tout systéme linéaire
est représentable comme une fraction de deux polynémes dont la variable est un opératuer élémentaire 0.

3.2 Fonctions du temps

Les signaux seront considérés comme nul pour tout instant du temps ¢ < 0 et non nécessairement nul pour

t > 0. Un tel signal sera noté

{£()}

au lieu de f(t). Lorsque les accolades sont absentes, f(t) désigne la valeur de la fonction f & Uinstant t. C’est
un nombre réel. Lorsque les accolades sont présentes, {f(t)} désigne toute la fonction vu comme une entité a
part entiere.

3.3 Principe de superposition

3.3.1 Systéme

Soit un systeme avec une entrée u et une sortie y. Il est représenté a la figure 3.2. L’intérieur de la boite est vide
pour linstant. Evidemment, il y a des équations différentielles avec un certain nombre de conditions initiales
qui permet de décrire la boite. Nous verrons comment représenter la boite du point de vue entrée-sortie. On
pourra alors inscrire quelque chose dans la boite qui traduira fidelement celle-ci sans nécessairement avoir besoin
d’écrire toutes les équations différentielles.

3.3.2 Principe de superposition et systéme linéaire

Un systeme linéaire est un systeme qui obéit au principe de superposition. L’idée est assez directe. Lorsque deux
signaux arbitraires {u1(t)} et {uz(t)} excitent (& mémes conditions initiales) un systéme donné, nous récoltons
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Figure 3.1. Les signaux {f(¢)} sont nuls pour ¢ < 0 et non nécessairement nul pour ¢ > 0. La condition initiale f(0)
jouera un role tres important.

" —> —

Figure 3.2. Un systéeme avec une entrée u et une sortie y.

deux signaux {y1(t)} et {y2(t)} correspondants aux réponses individuelles. Si nous effectuons une troisieme
expérience avec la somme des deux signaux {u;(t) + ua2(t)}, un nouveau signal de sortie {y(t)} est obtenu qui
est la réponse a la somme. Si cette réponse est la somme des deux réponses individuelles

{y@®)} = {1} +{y2()} = {y1(t) +y2(1) },

quels que soient les choix des signaux individuels {u;(t)} et {u2(t)}, alors le systéme obéit au principe de
superposition et le systeme est qualifié de linéaire.
En résumé, lorsque

— {u®)} = {n@®)}
— {ua()} = {12(t)}

il est vrai que

— {u@®} = {w () + w2} = {y(O)} = {v21 ()} + {y2(1)}

alors le systeme obéit au principe de superposition.

3.4 Réponse indicielle

Grace au principe de superposition, on peut construire tous les signaux de sortie connaissant la réponse a
un signal élémentaire. Considérons le signal élémentaire ’saut unité’, ou ’saut indiciel’ que l'on note {e(t)} et
représenté a la figure 3.3.

3.4.1 Réponse indicielle

La réponse indicielle, notée {r(t)}, est la sortie {y(t)} lorsque l'entrée est un saut indiciel, c.-a-d. lorsque

{u(®)} = {e(®)}-
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Figure 3.3. Un saut indiciel, également appelé saut unité ou saut de Heaviside, est un signal qui est nul pour ¢ < 0 et
égal a 1 pour ¢t > 0.

Figure 3.4. Représentation du saut indiciel & I’entrée d’un systéme qui produit une certaine sortie que ’on appelle la
réponse indicielle et notée {r(¢)}.

Une réponse indicielle est représentée a la figure 3.5. Les réponses indicielles varient grandement d’un systeme
a un autre et on classifiera un certain nombre de celles-ci par la suite a 'aide de la décomposition en éléments

simples.

Figure 3.5. Réponse indicielle {r(¢)}.

3.5 Fonction constante par morceaux

3.5.1 Elément de base

Comme élément superposable de base, plusieurs exemples viennent a l’esprit. Signal constant, fonction si-
nusoidale, etc. Souvenons-nous que les signaux {f(¢)} sont nuls pour ¢ < 0 et non nuls ensuite. Ainsi, les
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fonctions sinus et consinus sont assez mal adaptées comme fonctions de base a cause de leur nature non nulle
pour ¢t < 0. On pourrait les tronquer, mais cela conduit a des problemes de convergences assez séveres. Le plus
simple est de choisir des fonctions de base qui soient nulles pour ¢t < 0 et qui se superposent facilement. Le choix
que l'on effectue est de considérer deux sauts indiciels décalés I'un par rapport a 'autre et dont le deuxieme est
changé de signe.

{u(t)} = {e(t) —e(t = h)}

On obtient ainsi une impulsion carrée unique qui sera notre élément de base représenté a la figure 3.6.

05

05F

10

Figure 3.6. L’élément de base retenu est la différence de deux sauts indiciels dont le second est 1égérement décalé par
rapport au premier {e(t) — €(t — h)}. La largeur de I'impulsion résultante est h.

La réponse a un tel signal de base est

{y®)} ={r(®) —rt-h)}

et elle est représentée a la figure 3.7.

05

—05F

Figure 3.7. Réponse au signal élémentaire. Les réponses indicielles sont en trait fin. La deuxieme est changée de signe
et décalée. La somme des deux signaux en trait fin donne la réponse élémentaire en trait épais.

Ce signal élémentaire {e(t)—e(t—h)} se superpose trés bien si on considere les fonctions constantes par morceaux.
En effet, il permet d’obtenir la réponse a un tel signal de maniere exacte a ’aide du principe de superposition.
Evidemment, ceci n’est valable que pour les systémes linéaires stationnaires.

A partir de la décomposition d’un signal constant par morceau donné par
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{u(®)} = {Zui(e(t —ih) —e(t — (i + 1)h))} (h=1)

=0

et représenté a la figure 3.8,

S

() P
S1 0 2 4 6 8 10 12 14

Figure 3.8. Un signal constant par morceaux est la superposition direct de signaux élémentaires, c.-a-d. des sauts
indiciels décalés de maniére appropriée. .

on obtient sa réponse, simplement en remplagant les € par les réponses indicielles 7, et en conservant les mémes

pondérations u;, par simple application du principe de superposition. Ceci donne le signal de sortie

3
{u®)} = {Zui(r(t —th) —r(t—(i+ l)h)}

=0

qui est représenté a la figure 3.9.

Figure 3.9. La réponse a un signal constant par morceaux s’obtient par le principe de superposition a partir des
réponses indicielles décalées et pondérées de maniere identique a la décomposition du signal constant par morceaux en
sauts indiciels décalés.

3.6 Identité Neutre

Faisons une somme jusqu’a la partie entiére de t/h (notée [t/h])
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s —

Figure 3.10. Illustration de la construction lors de fonctions constantes par morceaux. Le principe de superposition
permet d’obtenir la réponse de maniere immédiate. En haut & gauche, le signal constant par morceaux est décomposés en
signaux élémentaires. Chacun est associé a une couleur différente. En haut a droite, les réponses aux signaux élémentaires
sont représentées. On constatera que c’est toujours la méme réponse mais décalée et pondérée de maniere appropriée. En
bas, les signaux d’entrée et de sortie associés sont représentés. Le signal de sortie est la somme des signaux représentés
en haut a droite grace au principe de superposition.

[t/h]
{u(t)} = Z u;(e(t —ih) —e(t — (i + 1)h))

=0

Divisons et multiplions par h (% =1, cela ne change rien. . .)

(t/h] . .
(u(t)} = Z Uie(t —ih) — 6}(; —(i+ 1)h)h
i=0

Passons & la limite limy_,, ce qui induit Y — [, ih — 7,u; — u(7) et h (& droite) devient dr

{u(t)} = {/Otum iy <e<t—7> —;(t—7+h)> dT}

3.6.1 Impulsion de Dirac

La figure 3.11 représente M lorsque A — 0.1. A la limite, 'impulsion de Dirac est obtenue.

t _ —h t
Vh>O,Vt>O,/ %cﬁzl%/ o(r)dr =1
0 0

Definition 1. (IMPULSION DE DIRAC) L’impulsion de Dirac est définie par le passage a la limite

i L@} —{et = h)}
{6(t)} := lim A

h—0

REMARQUE : Pour définir correctement I'impulsion de Dirac, il est nécessaire d’introduire la théorie de la
mesure et la théorie des distribution au sens de Schwartz. Dans notre contexte, I'impulsion de Dirac pourrait se
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3 8 0 2 4 3 8

h=0.5 h =0.25 h=0.1

Figure 3.11. Illustration de la construction de I'impulsion de Dirac {d(¢)}. Lorsque h # 0, il s’agit de fonctions.

Cependant 'objet limite lorsque A = 0 n’est plus une fonction. Tout au long du processus, I'intégrale vaut toujours 1,

La hauteur % s’ajuste de telle sorte que h% =1.

définir comme 'opérateur neutre pour la convolution. Cependant, nous voulons une interprétation en tant que
signal bien spécifique, raison pour laquelle la définition ci-dessus est adoptée bien que pas tres rigoureuse au
sens mathématique étant donné que I'on n’aboutit pas a une fonction a proprement parlé. Une discussion entre
la correspondance entre théorie des distributions au sens de Schwartz (fonctionnelles au lieu de fonction) et la
théorie des distributions données comme des quotients de convolution (c’est notre présentation) est discutée
dans le tres joli ouvrage (court) de J.P. Marchand ”Distributions : an outline”, North Holland, Amsterdam &
NY, 1962. Se référer également aux deux ouvrages mentionnés dans la conclusion de ce chapitre.

3.6.2 Construction de l’identité neutre

En partant de la derniére identité

{u(t)} = {/Otu(ﬂ Jim <e(t7) ;(t7+h)> dT}

on aboutit a l'identité neutre

{u(t)} = { /0 ()t — T)dT} (3.1)

On appelle ceci une identité neutre étant donné que de part et d’autre du singal égalité il apparailt le signal
{u(t)}. En effet (3.1) s’écrit a 1'aide du produit de convolution * sous la forme

{u(®)} = {u@®)} {0()}

ce qui signifie que {0(¢)} est bien 'opération élément neutre pour le produit %, un peu comme 1 est I’élément
neutre pour le produit de deux polynémes.

3.7 Réponse impulsionnelle

Definition 2. (REPONSE IMPULSIONNELLE) Lorsque {u(t)} = {6(t)}, la réponse impulsionnelle {g(t)} est la
sortie

{9@®)} ={y(®)}
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()} — ——ﬁ

Ve

Figure 3.12. La réponse impulsionnelle est la sortie du systeme lorsque I’entrée est une impulsion de Dirac

3.7.1 Construction progressive de la réponse impulsionnelle

La figure 3.13 représente la construction progressive de I'impulsion de Dirac. La fonction W
représentée lorsque h — 0.1.

est
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Figure 3.13. Construction progressive de I'impulsion de Dirac. La figure représente la sortie du systéeme lorsque I’entrée
correspond & un des cas de la figure 3.11.

3.8 Produit de convolution

On reprend l'identité neutre

Definition 3. (PRODUIT DE CONVOLUTION)

w@}=&mn*ww}:{43wm@—ﬂm}

3.8.1 Propriétés du produit de convolution

1. Commutatif

{a@®)} * {0(8)} = {b(t)} * {a(t)}
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2. Associatif

{a@®} + ({o(1)} * {c(D)}) = ({a()} * {b(t)}) * {c(t)}

3. Distributif par rapport a ’addition

{a@®}  ({0()} +{c(®)}) = {a®)} * {0(t)} + {a(t)} * {c(t)}

3.9 Calcul opérationnel

3.9.1 Opérateur neutre 1

Il représente un systéme qui ne modifie pas le signal d’entrée {u(t)}.

Figure 3.14. L’opérateur neutre restitue U'entrée {u(t)} a la sortie.

En comparant la formule générale

wm}—{AlwmeﬂM}—&mn*wm}

a identité neutre .
mw}={4uku—ﬂw}=hmn*wm}

on obtient I’expression

1={9()} = {3(t)}

3.9.2 Opérateur intégral i

Il représente l'intégrale du signal d’entrée {u(¢)}.

{u(t)} — i — {J, u(r)dr}

Figure 3.15. L’opérateur intégral i calcule 'intégrale du signal d’entrée.

En comparant la formule générale

WO = { [ u(rrate - nar} = futo (o0}

a la sortie intégrale du signal d’entrée

59



60 3 Représentation entrée-sortie

Wk ={ [ u(rrar} = e o)

on obtient I’expression

3.9.3 Opérateur 0 (inverse de i)
Definition 4. (OPERATEUR § ) L opérateur 0 est définit comme l'inverse de i pour la convolution . Autrement
dit,
Oxi=1%x0 =1
3.9.4 Théoreme fondamental

Theorem 1.
o {f(®)} = {f' ()} + f(0)
Démonstration

t

() - oy ={ [ rwar}

{F(®)} —ix f(0) = ix{f(1)}
{r®)} =i {r(®} +ix f(0)
o= {f()} = {F' (O} + £(0)

(on a utilisé {f(0)} =1ix* f(0) et D xi=1)
C.Q.F.D.

3.9.5 Notation abrégée

Attention! On a plongé les nombres dans I'espace des opérateurs. Ainsi on ne distingue pas 1 de 1{d(¢)} = 1.

L= 1{5(0)} = {6(6)} =1

De méme, on ne distingue pas le nombre 3 de 3{d(¢)}

3:=3{5(t)}

A ne pas confondre...

3=3{0(t)} # {3} = {3e(t)} = 3{e(t)}

3.9.6 Discontinuité due a la condition initiale

) e d
J nest pas I'inverse de &
car

Par contre, ? est I'inverse de i pour *

2 {11051n( )+2} _ {110005(15)} +o— {focos(t)} +2{5()}
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{]i)cos(t)} +—2{5(t)})
sin(t)} 2k

amw}+2&@n
[ La+2)

On retrouve la condition initiale de maniére correcte!

3.9.7 Pas de diviseur de zéro (anneau intégre)

Theorem 2. (TITCHMARSH) Si

{a(t)} = {b(t)} = {0}
alors nécessairement

{a(®)} = {0} ou/et {b(t)} = {0}

Ce théoreme indique que si on a une fonction nulle comme résultat du produit de convolution alors nécessairement
un des deux arguments (ou les deux a la fois) sont nuls. C’est le cas d’une équation avec les entiers naturels. Si
ab=0 avec a € Z et b € Z alors nécessairement a =0 oub=0oua=>0=0.

Ce théoreme est important pour construire ce que 'on appelle les fractions. Souvenez-vous de la construction
de Q & partir de Z, par exemple —3/4 est construit comme ’entité abstraite qui est telle que lorsque elle est
multipliée par 4 le résultat est —3. Une telle construction n’est pas possible s’il y avait des diviseurs de zéros.
Nous allons construire des fractions de tels opérateurs dans le prochain paragraphe.

3.9.8 Construction du corps de fraction

S’il n’y a pas de diviseur de zéro (anneau intégre), on peut construire un corps de fraction associé. Il suffit
d’écrire par convention une barre de fraction et de s’accorder sur les regles suivantes :

(a®) | {0} _ {a®) « 1O} + {0} » (b(1)}
Gy " gy (0} (D)
W} faw)

C’est exactement le méme cheminement formel que celui utilisé pour construire Q a partir de Z.

3.9.9 Utilité pour la résolution des équations différentielles

La construction de fraction couplée avec la théoreme fondamental produit une technique pour résoudre les
équations différentielles. La résolution des équations difffentielles linéaires est la motivation principale du calcul
opérationnel.

3.9.10 Equivalence entre fonction et fraction de polynémes en ?

En appliquant I'opérateur ® a la fonction exponentielle, le théoreme fondamental donne une relation avec la
condition initiale de la fonction, & savoir e® =1 :

0 x {e*} = {ae*} +1

=afe™} +1
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11 suffit alors de factoriser la fonction {e®!} et de diviser car les fractions d’opérateurs sont maintenant possibles.

1
at
ey =5

On obtient ainsi une correspondance entre la fonction

{e*'}

et 'opérateur
1

00—«

3.9.11 Equations différentielle et opérateur associé
Soit ’équation différentielle

T =ax (3.2)
a résoudre. On utilise le théoreme fondamental qui donne

{} =0 {z()} —x(0) (3-3)

et fait apparaitre la condition initiale 2(0) de maniére explicite. La relation (3.3) est utilisée dans 1’équation
différentielle (3.2) pour remplacer {#} ce qui donne

o # {2(t)} — 2(0) = afa()} (3.4)

En factorisant {z(¢)} et en utilisant les fractions, on exprime {z(t)} par une fraction de ? ce qui permet de
déterminer la solution en appliquant la correspondance entre la fraction et la fonction obtenue au paragraphe
précédant. En effet (3.4) devient

1
0—a

{z()} = 2(0)
ce qui donne, en utilisant I’égalité D%a = {e%} du dernier paragraphe,

{z()} = 2(0){e'}

La solution de I'équation difffentielle (3.2) est ainsi déterminée.

La technique de résolution consistera donc en la factorisation des fractions de polynomes en 0 et la construction
d’éléments simples. Les éléments simples sont des fractions élémentaires pour lesquelles on associe des fonctions
bien connue (exactement comme {e%} est associée & b%a) On pourra alors consulter les correspondances donnés
dans des tables et on obtiendra alors la solution de ’équation différentielle.

Le paragraphe suivant présente certaines de ces fonctions. Le chapitre suivant étudiera la méme question en
introduisant une correspondance plus directe avec les fraction de polyndémes en une variable complexe s. La

présence du corps des nombres complexes C rend les calculs plus directs.
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3.9.12 Table de correspondances (égalité)

opérateur | fonction graphique

- a<0] {ae'}

 a>0] {ae'} J

a0 {acos(wt)} \/

024w?

g {asin(wt)} \/ \\/ \/

024w?

opérateur fonction graphique

A
Y

a(d—a)

Goarror @ > 0[{ae cos(wt)}

\V
a < 0{ae™ cos(wt)} \/
MY
S o> 0[{ae sin(wt)}

4
aw a < 0[{ae® sin(wt)} v

() Fa?
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3.10 Exemple

3.10.1 Structure anti-sismique
Immeuble : réponse impulsionnelle

La réponse impulsionnelle de 'immeuble a quatre étage mentionné au chapitre 1 et modélisé au chapitre 2 est
donnée a la figure 3.16.

dy

0 AA/\AA/\LMVA_ . ‘
| e

Figure 3.16. Réponse impulsionnelle pour 'immeuble a quatre étages dont la sortie est la position de la dalle du
quatrieme étage da.

Nous allons présenter a I'aide du quotient de polynomes en 0 comment construire cette réponse impulsionnelle
de maniere exacte pour le choix de modele simplifié que 1'on a retenu.

Modele (rappel)

Le modele de I'immeuble est donné par quatre équations différentielles linéaires du second ordre couplées les
unes aux autres. La perte d’énergie est cette fois fonction uniquement de la vitesse de I’étage et non de la vitesse
relative. Le systéme suivant est obtenu lorsqu’on procéede a cette modification des hypotheses de modélisation
par rapport a celles du modele obtenu au chapitre précédant :

mdy = k(dy — dy) + k(dy — dy) — bd;
mdy = k(dy — dy) + k(ds — dy) — bdy
mds = k(dy — dy) + k(dy — d3) — bds
mdy = k(ds — dy) — bdy (3.6)

Valeurs numériques

{do(t)} = {6(t)}, k=10, b=2, m=1

Réponse impulsionnelle

L’idée pour obtenir la réponse impulsionnelle est d’appliquer le théoreme fondamental plusieurs fois de suite
pour transformer les dérivées (par exemple dl) et les remplacer par l'effet de 'opérateur 0.

En effectuant ceci sur tout le systéme et en éliminant toutes les variables dy, do, d3 pour ne retenir que dj et
d4, puis en remplagant {dy(¢)} par I'impulsion de Dirac {4(t)}, on trouve pour la réponse impulsionnelle
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160000
T 08 4+ 207 + 141.506 + 210.505 + 6105.060% + 6017.503 + 8150002 + 40000.9 + 160000

{da(t)} (3.7)

Pour donner un peu plus de détails sur la marche a suivre, prenons la premieére équation différentielle du second
ordre (3.6) et appliquons le théoréme fondamental.

m o {di (1)} = mdi(0){6(t)} = k({do(t)} — {dr(t)}) + k({d2(t)} — {da(t)}) — b0 * {da(t)} + bda (0){5(t)}

et apres une seconde application du th. fondamental,

mx0x {di (1)} — mdy (0){8(t)} —mdi(0){3(1)} = k({do(t)} — {dr()}) + k({d2(t)} — {er(1)})
—b0 s {dy(t)} + bd1 (0){6(t)}

Comme nous voulons la réponse impulsionnelle du systéme et que nous savons que le systeme est au repos avant
son excitation par 'impulsion de Dirac, les conditions initiales sont nulles. En conséquence, nous avons plus que
I’équation algébrique suivante

mo 0« {di(t)} = k({do(t)} = {da(t)}) + k({d2(t)} = {da(8)}) — b0 * {d1 ()} (3-8)

en procédant de méme pour les équations différentielles restantes (3.6-3.6) du modele, nous trouvons sans trop
de difficulté

mox0x {da(t)}
mo*0x* {ds(t)}
mox0x* {dy(t)}

k{du(t)} —{d2(t)}) + k({ds(t)} — {d2(t)}) — b0+ {d2(t)}
k({d2(t)} —{ds(t)}) + k({da(t)} — {d3(t)}) — b0+ {d3(t)}
k({ds(t)} — {da(t)}) — b0 * {du(t)} (3.9)

En éliminant {dy(t)}, {d2(t)}, {d3(t)} en ne retenant qu’'une seule équation algébrique parmis (3.8-3.9), on
aboutit & (3.7). Dans cette derniére étape, il est possible de diviser par un polynéme en 9 et on utilise toutes
les propriétés de 1'algebre du produit de convolution présentées auparavant (distributivité, commutativité, as-
sociativité). En somme, la convolution se comporte comme un produit ”classique”.

Immeuble : 4 composantes (modes)

Il est intéressant de considérer la fraction (3.7) comme constituée de fractions élémentaires. Nous pouvons alors
consulter les tables de fractions élémentaires pour déterminer les contributions associées. La réponse impulsion-
nelle est alors la somme des réponses élémentaires. Les factorisations sont rendues plus faciles par I'introduction
d’une correspondance (isomorphisme) entre la variable d et la variable complexe s par la transformée de Laplace,
que nous verrons au chapitre suivant. Pour I'instant, il suffit de vérifier la correspondance en procédant en sens
contraire et utiliser le corps de fraction de polynémes que nous avons introduit et de vérifier que la somme des
éléments simples donne bien (3.7). Les éléments simples sont

6.66667 5.62686

(04 0.25)2 + 19.9375 * (04 0.25)2 + 46.8834
1.95419 2.99399

0+ 02524705793 T (04 0.25)2 + 2.3498

{da()} = =

et les signaux élémentaires associés sont représentés a la figure 3.17.



66 3 Représentation entrée-sortie

Les éléments simples sont détaillés dans la table ci-dessous.

opérateur fonction graphique
N
‘\\/‘j‘
(oT055)5 193108 +0?2-§§923+93.3 oz | {1.953e70-%5" sin(1.523t)}

~ BTOSN 100575 +0_§£§iﬁfg.9375 {—1.493¢~0-25 5in(4.465t) }| -

0o taemssr | 10-822e70 5in(6.8471)

~ B0 10570 +0_215§§f;’0.5793 {—0.233¢0-2% 5in(8.401¢)} |-

3.11 Conclusion

Ce chapitre a mis I’accent sur la réponse impulsionnelle et la convolution. La réponse impulsionnelle représente
tout ce qui est nécessaire de connaitre pour décrire le comportement entrée-sortie du systéme pour des conditions
initiales nulles. Il est d’usage de remplir la boite de la figure 3.2 en utilisant la réponse impuslsionnelle. Celle-ci
peut-étre décrite par une fraction de deux polyndmes en 9 ou de maniere explicite en spécifiant la fonction
{g(t)}. C’est le principe de superposition qui rend cette universalité possible. Le systéme est ainsi caractérisé
entierement par sa réponse impulsionnelle et la sortie de ce systéme est le produit de convolution de ’entrée par
sa réponse impulsionnelle (il faut toutefois veiller & considérer des conditions initiales nulles pour les variables
internes).

L’algebre de convolution n’est pas nécessairement facile & manipuler et c’est la raison pour laquelle on utilise
la transformée de Laplace en fabriquant un isomorphisme entre fraction de polynémes en 9 et entre fraction de
polynomes dans la variable complexe s. Il y a des subtilités entre cette correspondance que nous n’envisagerons
pas. Il est par exemple possible d’étendre la théorie des opérateurs au dela de la validité de la transformée
de Laplace, ceci en particulier en relation avec les équations aux dérivées partielles et les systéme dynamiques
gouvernés par de telles équations. Comme nous nous limitons aux systemes linéaires stationnaires de dimension
finie, nous ne verrons pas grande différence entre les opérateurs de ce chapitre et les fonctions de transfert
du chapitre suivant. Le lecteur désireux d’approfondir la théorie de ce chapitre peut se référer aux ouvrage
de J. Mikusinski ”Operational Calculus”, Pergamon Press, 1959 et de A. Erdélyi ”Operational Calculus and
Generalized Functions”, HRW, NY, 1962.
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4

Fonction de transfert

4.1 Introduction

La représentation entrée-sortie a mis en évidence I'importance de la réponse impulsionnelle pour caractériser la
relation entre ’entrée et la sortie. Les opérateurs et le produit de convolution décrivent cette relation entrée-
sortie. Dans le présent chapitre la relation entrée-sortie est approfondie en utilisant 1’algebre des polynémes en
une variable complexe s. A cette fin, une relation algébrique liant 'entrée et la sortie d’un systeéme dynamique.
Ceci est possible grace a la transformation de Laplace et au concept de fonction de transfert.

La transformation de Laplace, tout comme l'introduction de fractions de polynomes en l'opérateur 0, per-
met de transformer des équations différentielles et intégrales, linéaires et a coeflicients constants, en équations
algébriques beaucoup plus simples & manipuler. Il deviendra ainsi aisé de les résoudre ou d’étudier certaines
propriétés structurelles des systéemes dynamiques correspondantes. C’est une version ”miroir” de ce que nous
avons présenté au chapitre précédant ou le produit de convolution et I'opérateur 0 intervenaient. Dans le présent
chapitre, le produit sera le produit classique et la variable 0 est remplacée par la variable complexe s.

4.2 Transformation de Laplace

4.2.1 Définition

Soient le signal temporel f(t), avec f(t) = 0 pour ¢ < 0, et la variable complexe s.
La tranformation de Laplace de f(¢) pour l'intervalle temporel [0, 00) s’écrit F'(s) et est définie comme suit :

F(s) = LIf(t)] = / " ftyetar (4.1)

La transformée de Laplace transforme donc un signal temporel en un signal dépendant de la variable complexe

S
L

ft)

F(s)

4.2.2 Existence

La transformé de Laplace F(s) du signal f(¢) existe si 'intégrale (4.1) converge.
Considérons a titre d’exemple la transformée de Laplace du signal f(t) = Ae®* ot A et « sont des constantes
réelles s = a + jb une variables complexe :
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[ee} e} A s
F(s) = L[f(t)] = / Ae®testdt = A / e st — e —(sma)t
0 0 S—« 0
A o)
=_ —(@=t1eos(bt) — j sin(bt
e o) = sin(on)|
A .
sila —a) >0 a>a«
) s—a
no converge pas sila—a) <0 a<a

La partie du plan complexe pour laquelle a = R(s) > « représente le domaine de convergence de F'(s). Ce
domaine est illustré & la figure 4.1; « est appelé 'abscisse de convergence de F(s).
Les fonctions temporelles de type exponentielle ou celles qui croissent moins rapidement qu’une exponentielle

AIm

convergence

pas de convergence

>

(o} Re

at

Figure 4.1. Domaine de convergence de F'(s) pour f(t) = Ae

possedent un domaine de convergence non nul. Par exemple ¢, sin(wt) et ¢ sin(wt) posseédent 1’abscisse de conver-
gence 0 alors que e, te® et ¢ sin(wt) possedent toutes 'abscisse de convergence av. Par contre, les fonctions e’
et te!” croissent plus rapidement qu’une fonction exponentielle et ne possedent pas de domaine de convergence,
et donc pas de transformée de Laplace.

Notons cependant que

et’ 0<t<t <oo
0 t>

posseéde bien une transformée de Laplace F(s).
On démontre que l'intégrale (4.1) converge si f(¢) est continue par morceaux pour ¢ > 0 et si une constante
positive 8 existe telle que :

lim e P f(t)| =0

t—o0
La plupart des signaux d’intérét dans 1’étude des systéemes dynamiques possedent une transformée de Laplace.
Il serait fort utile de pouvoir utiliser dans tout le plan complexe ’expression analytique calculée a partir de la
définition (4.1) et valable uniquement dans le domaine de convergence. A cette fin, on peut utiliser le théoréme
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du prolongement analytique' : si deux fonctions complexes, analytiques dans un domaine 2, sont égales pour
un quelconque intervalle non nul de ce domaine, elles sont alors égales partout dans ce domaine. Dans notre
cas particulier, ces deux fonctions sont d’une part l'intégrale de la définition (4.1) et d’autre part 1’expression
analytique pour F'(s); le domaine est le plan complexe & l’exception des points de singularité ou F'(s) est in-
fini ; Uintervalle est un intervalle fini quelconque dans la région de convergence de I'intégrale (4.1). Le théoréme
indique alors que l’expression analytique F'(s) est valable pour tout le plan complexe a ’exception des valeurs
de s qui rendent F(s) infini (les poles de F'(s)).

Nous dirons donc que la transformée de Laplace de f(t) est la fonction analytique F'(s) qui, pour R(s) > «, est
définie par son intégrale de Laplace (4.1).

4.3 Transformée de Laplace de signaux choisis

4.3.1 Saut unité

Le saut unité €(t) est un signal défini de la fagon suivante :
0 t<0

(t) = pour
1pourt >0

On l'appelle également échelon unité en raison de sa forme. Sa représentation graphique est donnée a la figure
4.2
A partir de la définition de la transformation de Laplace (4.1), on obtient pour la saut unité :

e(t)

A
1
> 1
0
Figure 4.2. Saut unité.
> —st 1
L[e(t)] = le™*'dt = — (4.2)
0 s
Dans le cas d’un saut unité d’amplitude A, soit u(t) = Ae(t) :
> —st A
U(s) = Lu(t)] = Ae™dt = < (4.3)
0

La réponse d’un systéeme au repos a un échelon unité est appelée réponse indicielle.

1. Prolongement analytique. Soient deux domaines D et D; tels que D C D;p. Si deux fonctions F' et F; sont ho-
lomorphes sur D et D; et si F(s) = Fi(s) pour tout s € D, on dit que F; est un prolongement analytique de F' sur
D,.

2. Une fonction F'(s) est holomorphes ou analytique en D si elle admet une dérivée F’(s) en tout point de D
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4.3.2 Rampe
Une rampe est un signal & croissance linéaire dont ’équation est u(t) = At, pour ¢ > 0. Sa représentation est

donnée & la figure 4.3. A partir de (4.3), et en utilisant la méthode d’intégration par parties, on a :

4 u(t)

Figure 4.3. Rampe.

Uls) = Llu(t)] = /O " Atestat

:A{ [—tle_s'&] . —/0 —ie‘“dt} :s%

S

4.3.3 Exponentielle

u(t) = 0 pour t < 0 c U(s) = A
| Ae=®t pourt>0 st a

4.3.4 Sinus et cosinus

Soient les relations trigonométriques bien connues : e/“°t = cos(wot) + j sin(wot)
e~Jwot = cos(wot) — j sin(wot)
De la transformée de Laplace d’un signal exponentiel, on déduit aisément :

0 t<0 A
u(t) _ . pour ¢t < _L__} U(s) _ wo ;
Asin(wgt) pour t <0 s2 + wj
0 t<0 A
u(t) = sy —— U =5t
A cos(wgt) pour ¢ <0 52 4w

4.3.5 Impulsion de Dirac

Soit 'impulsion rectangulaire définie par (4.4) :

0 t<0
p(t) =4 1/At te]0,At)
0 t> At

A la limite, pour At — 0, p(t) tend vers une impulsion de durée infiniment courte, d’amplitude infiniment
grande, de surface unité et située a l'origine (fig. 4.5) :
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0 At

Figure 4.4. Impulsion rectangulaire.

o(t) = lim p(t)

Cette impulsion 0(t) est appelée impulsion de Dirac ou fonction delta. De ce qui précede, nous pouvons

5(t)
A

> ¢

Figure 4.5. Impulsion de Dirac.

mettre en évidence les caractéristiques de cette impulsion :

/ Bt
0(t) =0pourt#0

La transformée de Laplace de I'impulsion de Dirac est :

oo 04 o)
t)] :/ S(t)e *dt = 5(t)e°dt+/ Oe*'dt =1
0 0 04

La réponse d’un systéme au repos a une impulsion de Dirac est appelée réponse impulsionnelle.
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4.3.6 Dictionnaire de la transformation de Laplace

n® Signal temporel Transformée de Laplace Abscisse de convergence
1 e(t) 1 (0,00)
2 o(t) 1 (=00, 0)
3 () s" (—00, )
A e(t)e L (0, 00)
s+a ’
s
5 €(t) cos(wt) poanl (0, 00)
6 e(t) sin(wt) A (0, 00)
52 + w? ’
—at sta —
7 e(t)e™ " cos(w(t)) GraZiw? (—a,0)
8 e(t)e™ " sin(wt) S A— (—a, 00)
(s +a)? + w? ’
§COs ¢ — wsin ¢
9 E(t) COS(wt + ¢) 82_'_—“)2 (0, OO)
. ssin ¢ + wcos ¢
10 E(t) sm(wt + ¢) 32—‘,——(,‘)2 (0, OO)
e(t)t" 1
e(t)t"e 1
12 are S — -
n! (S ¥ a)n+1 ( a, OO)

Ces expressions sont valables pour des puissances n positives et entieres. €(t) représente le saut unité a ¢t = 0.

4.4 Propriétés de la transformation de Laplace

4.4.1 Dérivation temporelle

el = [ Ssw]ea
dt Jo lat
Une intégration par parties donne :
d —st]|® = —st
Ll O] = ®e™™]|y - ; f(t)(=s)e”"dt
oo
—JO+s [ 0t = sF(s) - 50
0
De méme, en appliquant successivement l'intégration par parties :

L1 (0] = $2F(3) — 57(0) — 5 (0)
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d" n n—1 dn_l
g/ O] =8"F(s) =" f(0) —... = 22 f(0) (4.5)

En d’autres termes, dériver le signal temporel f(t) correspond, dans le domaine de Laplace, & manipuler sa

L[

transformée de Laplace F(s) par s. Remarquons ici qu’il est nécessaire de prendre en compte les conditions

initiales.

4.4.2 Intégration temporelle

El/otf(T)dT] = /000 l/ot f(T)dT] e Stdt

A nouveau, une intégration par parties permet d’évaluer cette expression :

/Otf(T)dT] = [/Otf(T)dT] <_i)€_5t m—/ooof(t)(—i>e—stdt

0

:_ile—w /OOO f(r)dr — € /00 ()dr
F(s)

= (4.6)

S

L

[ .
+;/O f(t)e stdt

En d’autre termes, intégrer le signal temporel f(t) correspond, dans le domaine de Laplace, & multiplier sa
transformée de Laplace F(s) par 1/s.

4.4.3 Translation dans le domaine de Laplace F(s + )

La transformée de Laplace d’'un signal temporel multiplié par 'exponentielle e~ correspond & la transformée
de Laplace du signal original décalé du facteur A :

Figure 4.6. Translation temporelle du signal f(t).

Lle M f (1) = / T e pyetat = /OOO F@)e™ W dt = F(s + ) (47)

0
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4.4.4 Translation dans le temps f(t — 7)

Soit le signal temporel e(t — 7) f(t — 7) qui correspond au signal €(t) f(¢) retardé de 7 (4.6).
On peut écrire :

Lle(t—7)f(t—7)] = /Om et — )t — T)e=Stdt = /°° [T —

En introduisant le changement de variable v =t — 7, on a, d’une part dv = dt, et, d’autre part

Llet—7)f(t—71)] =e°" /000 e dv = e T F(s). (4.8)

En d’autres termes, retarder le signal temporel f(t) de 7 correspond, dans le domaine de Laplace, & multiplier
ST

sa transformée de Laplace F'(s) par e~

4.4.5 Linéarité

La transformation de Laplace est un opérateur linéaire. En effet, si :
LIAW®)] = Fi(s)
LIf(0)] = Fals)

la définition (4.9) permet alors d’écrire :

Ller fi(t) + cafo(t)] = c1Fi(s) + cali(s) (4.9)

c1 et co sont des constantes réelles, vérifiant ainsi le principe de superposition (théoreme d’additivité et d’ho-
mogénéité). Notons au passage que

LU0 falt)] = / () fat)e e £ Fy(s)Fas)

Vérifier cette derniére relation en choisissant par exemple f1(t) = fa(t) = €(t).

4.4.6 Valeur finale (régime stationnaire)

Nous verrons plus loin comment calculer le signal f(t) & partir de sa transformée de Laplace F'(s). En attendant,
si la valeur en régime stationnaire de f(t) existe, elle peut étre évaluée a partir de F'(s) grace au théoréme de
la valeur finale :

lim f(t) = lim sF(s) (4.10)

t—o00 s—0

Cette relation peut étre obtenue de Laplace de d/dtf(¢) :

/OOO [(jtf(t)] e *ldt = sF(s) ~ (0)

En faisant tendre s vers 0, on obtient :
4 t)|dt = df(t) = lim f(t) — f(0) = lim sF'(s) — f(0
/o {dtf()] /0 If (t) 2 f(@t) = £(0) Jm s (s) — f(0)

d’oti Pon tire la relation (3.10).

La valeur en régime stationnaire de f(t) existe, et donc la relation (4.10) est valable, si sF(s), c’est-a-dire
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lorsque les valeurs de s qui rendent sF'(s) infini, se trouvent dans la moitié gauche du plan complexe, axe
imaginaire non compris. On vérifie ainsi que le théoréme de la valeur finale s’applique & un saut échelon (pour
lequel lim;_, oo f(t) = lims—0 sF'(s) = 1) mais pas & un sinus (pour lequel lim;_,, f(¢) n’existe pas) ni a une

exponentielle croissante (pour laquelle lim; ,o, = oo alors que lims_,o sF(s) = 0).

—2t t

Vérifier que le théoreme de la valeur finale s’applique a y(t) = e~ mais pas a y(t) = e’

4.4.7 Valeur initiale (comportement initial)

De maniére similaire, on peut calculer la valeur initiale de f(¢) & partir de F(s) :

lim f(t) = lim sF(s) (4.11)

t—0 s—00

Pour le démontrer, on utilise & nouveau la transformée de Laplace de d/dtf(t) et on fait tendre s vers I'infini.
Ainsi, d’une part, en faisant commuter la limite avec 'intégrale,

oo

. d oo s _ [T 4 m e [ 4 _
lim ﬁf(t)e tdt—/o gf(t)(hme t)dt—/o £f(t)0dt—0,

Ehde el 0 §—00

d’autre part, en utilisant la transformée de Laplace d’une valeur dérivée,

lim /000 %f(t)e_“dt = lim (sF'(s) — f(0)) = lim sF(s) — f(0)

§—00 L de el §—00

de telle sorte qu’en égalant les deux expressions, on obtienne

0= lim sF(s)— f(0)

S— 00

et ainsi la relation (4.11).
Il n’y a dans ce cas pas de condition sur la position des poles de sF'(s). Cette relation est, par exemple, valable
pour un sinus ou une exponentielle croissante.

4.4.8 Dérivation dans le domaine de Laplace

Soit F(s) la transformée de Laplace du signal f(t). Par définition, on a :

o0
F(s) = / ft)e stat
0
et, en dérivant par rapport a s :

d

£F(S) = % /ooo ft)e stdt = — /Ooo tf(t)e stdt = —L[tf(t)] (4.12)

On établit facilement la regle générale :

L (0] = (-1 S F () (1.13)

4.4.9 Grammaire de la transformation de Laplace

L’ensemble des propriétés de la transformation de Laplace constitue la regle de grammaire a appliquer pour
déterminer la transformée d’un signal temporel particulier. Elles sont regroupées dans le tableau qui suit :
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ne Signal temporel Transformée de Laplace

I f(t) F(s)

I > kifi(t) i kiFi(s)

i FE/N) IF(As)

Y e M F() F(s+ )

v et — ) f(t—7) e~ F(s)

Vi Ky PP -0 -2 L o) - - L)
VII /0 t f(r)dr Fis)
VIII a0 (=1)" j; F(s)

X lim /() tim s (s)]

X lin £(0) Tim [sF(s)

Les signaux temporels sont nuls pour ¢ < 0. ¢(t — 7) représente le saut unité au temps t = 7.

4.5 Exemples de transformée de Laplace

4.5.1 Echelon de durée finie

Déterminons la transformée de Laplace du signal représenté a la figure 4.7 :
Une premiere approche consiste & appliquer directement la définition (4.1).

ft)

A

Figure 4.7. Impulsion de durée 7.

i) :/OT 1e_3tdt+/oo Oe=*tdt = L(1 — e=7)

S

Une seconde approche, qui est appliquée de préférence chaque fois que cela est possible, consiste & décomposer
le signal f(¢) en une combinaison de signaux dont les transformées de Laplace sont connues, en 'occurence :



4.5 Exemples de transformée de Laplace

ft) = e(t) —e(t =7)

Et avec la linéarité de la transformation de Laplace :

LIf(B)] = Lle(t)] — L[e(t —7)]

Et avec la propriété de translation temporelle :

Finalement :

4.5.2 Réponse exponentielle

Soit f(t) = A[l — e~ "] comme illustré a la figure 4.8, avec a > 0.

f@) 4

vy

Figure 4.8. Réponse exponentielle.

a) Déterminons F'(s) en utilisant le dictionnaire de la transformation de Laplace.
b) Déterminons la valeur finale de f(t)
Solution

a) Selon le dictionnaire de la section 4.3 :

b) Valeur finale selon la grammaire de la section 4.4 :

79

Le péle de sF(s) = Aa/(s + a) se trouve s = —a dans la moitié gauche du plan complexe. On peut donc
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appliquer le théoreme de la valeur finale :
. . . Ax
tlggo ft) = SII_I%[SF(S)] = lim [ } =A

s—=0 | s+ «

4.5.3 Transformation de Laplace inverse

Quel est le signal dont la transformée de Laplace est

1
F(s) = (S+(I)2 ?
Solution
Le dictionnaire nous donne :
1

et la grammaire :

Il s’ensuit que, pour ¢ > 0 :

4.6 Fonction de transfert

4.6.1 Définition

Un systéme dynamique lscr est caractérisé par sa réponse impulsionnelle g(¢) ou, de maniére équivalente, par

la transformée de Laplace correspondante G(s) qui est appelée la fonction de transfert du systeme :

G(s) == L{g(t)}

A partir de cette définition, on peut affirmer que la fonction de transfert est indépendante de 'entrée.

(4.14)

On démontre que la fonction de transfert d’un systéme lscr monovariable est le rapport des transformées de

Laplace de la sortie et de I'entrée. Considérons a titre d’exemple le systéeme dynamique donné par I’équation

différentielle :

d*y dy
ﬁ + a E

avec les conditions initiales y(0) = dy/dt(0) = 0.

du

b
dt+ ol

+ apy = by

En appliquant la transformation de Laplace & 1’équation (4.15), on a :
[s2 + a1s + ao]Y (s) = [bys + bo]U (s)

ou

Uts) » G(s) 0 >

Figure 4.9. Représentation par fonction de transfert.

(4.15)
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Y (s) bis + b

U(s) (s) 2+ a1s+ag (4.16)
G(s) lie ainsi la sortie a 'entrée d’un systeme lscr :
Y(s) = G(s)U(s) (4.17)
La représentation par fonction de transfert est illustrée par le schéma fonctionnel de la figure 4.9.
4.6.2 Equations différentielles linéaires a coefficients constants
Le comportement dynamique d’un grand nombre de systemes linéaires peut étre représenté par :
e n équations différentielles du premier ordre (modele d’état linéaire) ;
e une équation différentielle linéaire d’ordre n (modele entrée-sortie).
Considérons le second cas :
Y™ tan_ 1y + 4+ ary™ +agy (4.18)
= bpu’™ + b qu™ 1+ b+ bou ’
En appliquant la transformation de Laplace aux deux membres de ’équation (4.18), on obtient :
[Y(s)s™ —yos" ! — y(()l)s"’2 - = y(()"_l)]
Fan Y (s)s" T —yos" 2 — . —yp 7
+...+a1[Y(s)s — yo] + aY (s)
= b [U (8)s™ —ups™ ™1 — uél)sm*2 — = u(()m_l)]
+bpm_1[U(8)s™ L — ugs™™2 — uél)sm_3 e uémfz)] (4.19)

+...+b1|U(s)s — uo| + boU(s)

En regroupant dans les polynémes Yj(s) de degré n — 1 et Up(s) de degré m — 1 les termes faisant intervenir

respectivement les conditions initiales de y et de w :

Yo(s) = yos™  + yél)s"_2 + ..+ yénfl)

+an_1[yos" 2 + yél)s”*?’ +...+ y(()"_z)]
+...+a1yo

= 505"+ [y + an1gols 2+ Y F anoayd
+ ...+ alyo]

Uo(8) = by [ugs™ 1 + uél)sm_2 +.o 4 uémfl)]
+by—1[ugs™ 2 + ugl)sm’3 +...4+ uém_Z)]
+...+ b1U0

= bugs™ ! + [bmuél) + b _1ug)s™ 2+ ...
Fbmtud™ ™ 4 by ul™ 2 4+ brug)
La relation (4.19) donne :
b 8™ 4 by18™ L+ L+ D b
y(s) = md Homots He FOSE Doy
s+ a,_ 18"+ ...a15+ ag (4.20)

Yo(s) — Uo(s)
$" 4+ ap_18" L+ ... +ais+ag

On constate que la sortie comporte deux termes bien distincts. Le premier di a I’entrée, correspond a la réponse
forcée du systeme; le second, dii aux conditions initiales, correspond a sa répomnse libre, ou réponse propre.
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Pour se ramener & la définition de la fonction de transfert, il convient de considérer le systéme au repos (Yo(s) =

Uo(s) = O) :

by s™ + bmflsmil + ...+ bis+ by
§" 4+ ap_18" 1+ ... +ais+ag

Y(s) = Ul(s)

Le systeme est causal si les degrés m et n des polyndomes numérateur et dénominateur respectent la condition
m < n. Cette affirmation peut se justifier de facon intuitive en considérant le cas contraire, par exemple pour
m =1 et n =0, ce qui correspond a I’équation différentielle

y(t) = bya(t) + boul(t).

Ce systeme répondrait infiniment rapidement et avec une amplitude infinie & un saut échelon de ’entrée. Cette
faculté de répondre infiniment rapidement & une variation finie de ’entrée n’est pas possible pour un processus
physique. D’ou la restriction de faisabilité physique m < n qui correspond en fait & la condition de causalité.
Peut-on utiliser le méme argument pour montrer qu’un systeme pour lequel m = n = 1 est physiquement
réalisable ¢

La fonction de transfert d’un systéme lscr représenté par une équation différentielle d’ordre n a donc la forme :

Y m . m—1
(s) :bms 4+ by_158 4+ ...+ bis+ b m<n (4.21)

G =
() U(s) s"+ap_1s" 1 +.. .. +ais+ag -

Les valeurs de la variable complexe s qui annulent le dénominateur de la fonction de transfert sont appelés les
poles du systeme ; quant aux valeurs qui annulent le numérateur, elles sont appelées zéros. L’ordre du systeme
est le nombre de poles, c’est-a-dire le degré du dénominateur. Ces concepts seront précisés au chapitre suivant.
On remarque que la fonction de transfert est une fonction rationnelle de la variable de Laplace s, c¢’est-a-dire
un quotient de polynémes en s. Pourquoi a-t-on cette structure particuliére ¢ Est-ce toujours le cas ?

4.6.3 Systemes multivariables

En appliquant la transformée de Laplace a la représentation d’état

= Ax+ Bu
y = Cx + Du,
deux équations
sX(s) —zg = AX(s) + BU(s) (4.22)
Y(s) =CX(s)+ DU(s) (4.23)

sont obtenues ot X (s) et o sont des vecteurs de dimension n, U(s) un vecteur de dimension p et Y(s) un
vecteur de dimension q.
Pour des conditions initiales nulles (zg = 0), les équations (4.22) et (4.23) donnent

X(s) = (sI — A)"'BU(s)
Y(s) = [C(sI — A)"'B+ DJU(s).
Ainsi, la matrice de fonctions de transfert s’écrit
G(s)=C(sI — A" 'B+D (4.24)

qui est une matrice de dimension ¢ x p dans laquelle chaque élément G;(s) représente une fonction de transfert
correspondant a Y;(s)/U;(s), c’est-a-dire une fonction de transfert entre l’entrée u; et la sortie y;.
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4.6.4 Domaine temporel et domaine de Laplace

La transformation de Laplace et la notion de fonction de transfert sont des outils puissants qui permettent,
entre autres, de déterminer la transformée de Laplace de la réponse d’un systeme lscr par une simple opération
de multiplication, plutét que par un produit de convolution fastidieux. Il est par exemple possible de résoudre
une équation différentielle linéaire a coefficients constants par simple résolution d’une équation algébrique. Ces
simplifications découlent de la transposition du probléme du domaine temporel dans le domaine de Laplace (fig
4.6.4). Tl faut néanmoins relever que, en regle générale, toute simplification d’un probléme & un niveau donné de
sa résolution se répercute par une complication a une autre étape. Il s’agit, dans ce cas-ci, de trouver le signal
y(t) qui correspond a la transformée de Laplace Y (s). Cette opération, connue sous le nom de transformation
de Laplace inverse, est notée :

La voie de résolution choisie est adéquate uniquement si la complication résultante est moindre que celle présente
a lorigine.

. u(t) équation y(t)
domaine temporel ——» . . -
A différentielle Iscr A
N
Ll|lct Lt Lllct
Y
. Y fonction de transfert L
domaine de Laplace
Uls) - Gls) = Y(s

Figure 4.10. Correspondance entre le domaine temporel et le domaine de Laplace.

4.7 Transformation de Laplace inverse

4.7.1 Introduction

On calcul la sortie d’un systéme dynamique Iscr excité par une entrée connue comme suit :

C’est la transformation de Laplace inverse appliquée a Y (s) qui permettra d’obtenir la réponse temporelle y(t).
L’idée de base pour réaliser la transformation inverse consiste, dans le domaine de Laplace, & décomposer Y (s)
en une combinaison linéaire de termes dont les images dans le domaine temporel sont connues, par exemple les
signaux donnés dans le dictionnaire. La transformation de Laplace étant un opérateur linéaire satisfaisant au
principe de superposition, le signal y(t) sera donc la combinaison linéaire des images obtenues.

4.7.2 Eléments simples

La transformation de Laplace de la sortie d’'un systeéme est une fraction rationnelle dont le dénominateur
contient des termes qui proviennent de ’équation différentielle et de ’entrée. On peut développer cette fraction

rationnelle en une somme pondérée d’éléments simples comme suit :
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dgs? +dy_157 1+ ...d A A A
y(s)= et Pt Febo A 2y A
SPHcp1sP L+ 4cg s—s1 s5— 89 s—Sp
ous; (¢ = 1,...,p) sont les valeurs de s qui annulent le dénominateur de Y'(s). Les facteurs constants A;

(i =1,...p) sont appelés résidus.

Pour des raisons de causalité , le degré du numérateur est inférieur ou égal & celui du dénominateur (¢ < p). Un
terme constant A apparait dans la décomposition en éléments simples si ¢ = p. Le terme constant est obtenu
par division des deux polynoémes. Par conséquent, dans le cas général, la fraction rationnelle s’écrit :

N(s)
D(s)

Y(s)=A+

ol le degré du polyndéme N (s) est strictement inférieur & celui du polynéme D(s). On se restreindrai donc par
la suite & la décomposition de N(s)/D(s).

Pour un systeme physique réel, les coefficients ¢,_1,...,cop du dénominateur sont réels. Les racines sont par
conséquent des nombres réels ou des paires de nombres conjugués complexes. Il s’ensuit qu’a toute racine
complexe s; = a; + jb; correspond la racine s;11 = a; — jb;.

Pour déterminer les résidus, il est possible soit de réduire au méme dénominateur les éléments simples puis
d’identifier les coefficients de méme puissance avec ceux de la fonction de transfert, soit de faire appel a une
méthode générale de calcul appelée méthode des résidus.

4.7.3 Décomposition en éléments simples par réduction au méme dénominateur

Cette méthode, utilisable dans les cas simple, est illustrée sur la base d’'un exemple. Soit le systéme au repos
caractérisé par la fonction de transfert :

 2(s+3)
Gls) = (s+1)(s+6)

et excité par Ientrée u(t) = e=2!,t > 0, dont la transformée de Laplace est :

1
s+ 2

U(s) =

La transformée de Laplace de la réponse devient :

2(s +3)
(s+1D)(s+6)(s+2)

Y(s) =G(s)U(s) = (4.25)

On choisit de décomposer cette fraction rationnelle en trois éléments simples pondérés par les coefficients réel
A, B et C qui sont les résidus & déterminer :

A+B+C
s+1 s+6 s+2

Y(s) = (4.26)

Apres réduction au méme dénominateur des fractions de la relation (4.26), une comparaison avec (4.25) donne :
2(s+3)=A(s+6)(s+2)+B(s+1)(s+2)+C(s+1)(s +6)

L’identification membre & membre des coefficients de méme puissance de s donne :

s2:0=A+B+C ce qui donne : A=0,8
s1:2=84+3B+17C B=-0,3
s9:6=124+2B+6C C=-0,5

La transformation de Laplace inverse donne alors comme signal de sortie :
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y(t) =0,8¢7"—0,3¢7% —0,5e7%"  t>0

4.7.4 Décomposition en éléments simples par la méthode des résidus

L’équation (4.26) est valable pour tout s. On peut donc multiplier cette équation par I'un des facteurs et faire

tendre s vers la valeur qui annule ce facteur. On obtient ainsi :

A= lim (s+1)Y(s) = lim {Mz(;m

s——1 s——1

]:0,8

. . 2(s+3)

B= Jim (o0 6) = fim || = 0.0
. . 2(s+3)

0= Jim,(o+2)¥ () = fim, | 26| = 09

Ainsi :
0,8 0,3 0,5

Y(s) = — -
s+1 s4+6 s+4+2

La transformation de Laplace inverse donne alors :

y(t) =0,8¢" —0,3¢7% —0,5e72 t>0

4.7.5 Cas particuliers

Racines complexes
Soit :

s+1
Y(i)= ———
() s(s? +4s+5)
Déterminons y(t), la transformée de Laplace inverse de Y (s).
Soution

Le dénominateur de Y (s) posséde des racines complexes. Deux décompositions en éléments sont possibles, la

deuxieme étant plus facile & manipuler car elle ne fait pas intervenir de termes complexes :

s+1 A C+Dj C — Dj
Y(s) = _ ~=—+ _ -
s(s+24+75)(s+2—-34) s s+245 s+2—j
et :
A E F
Y(s)= 2+

s  s24+4s+5

Déterminons A, E et F pour la deuxiéme décomposition (en réduisant au méme dénominateur) :

(s+1)=A(s* +45+5) + (Es + F)s

d’ou :
s2:0=A+FE ce qui donne : A=0,2
sli1=4A+ F E=-0,2
s9:1=5A F=0,2
Ainsi :
Y(s)_072+—0723+0,2_0,2 —0,2(s +2) 0,6
T s s244s54+5 s (s+2)241 (s+2)2+1

La transformation de Laplace inverse donne alors :

y(t) = 0,2 —0,2e > cost + 0,6e > sint t>0
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Racines doubles
Un systeme dynamique est décrit par I’équation différentielle suivante :

VA T+ 160+ 12y = 44 u (4.27)

avec les conditions initiales :
y(0) = 9(0) = §(0) = u(0) =0 (4.28)

Sachant que u(t) correspond & une impulsion de Dirac au temps ¢ = 0, calculons y(t).
Solution

En appliquant la transformation de Laplace & (4.27) et en utilisant (4.28), on obtient :
Y (s)[s® 4+ 7s? + 165 +12] = U(s)[s + 1]

Y(s) s+1 B s+1
U(s) s3+T7s2+165+12  (s+2)2(s+3)

Pour U(s) =1 (impulsion de Dirac) :

s+1 A B C
Y(s)i(8+2)2(s+3)*s+2+(s+2)2+s+3 (4.29)

Notons que la décomposition en éléments simple correspondant au terme 1/(s + 2)? peut s’écrire ainsi :

A's+ B  A(s+2)+(B'—24) A LB
(s+2)2 (s+2)2 Cos+2 (s+2)2

Déterminons A, B et C par la méthode des résidus. L’équation (4.29) permet d’écrire :

+1 C(s+2)?
MY (s) = o= — A(s4+2)+ B4+ 212 4,
(s +2)°Y(s) ST 3 (s+2)+B+ P (4.30)
et en dérivant (4.30) par rapport a s :
(s +22Y(s)] = —— = A+ (5 +2)Q(s)
Is S s)| = G132 s S

ot Q(s) est un polyndéme en s. On calcule A, B et C' comme suit :

o o
A= lim, Zle+ 2V ()] Jim, mrass =

T 2 ERT s+1 _
b= 51—1>H—12(s + 2) Y(S) B 51—1>n;12 (8 —+ 3)2 -

. . s+ 1
¢ = Mm (s +3)Y(s) = lim =g = =

Finalement on obtient :

2 1 2
— — =22 _ e 273 ¢ >0
s+2 (s+2)2 s+3

y(t)=L"1

Terme constant

s(s+3)

Soit : Y (s) = 51 1)
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Déterminons y(t).
Solution

2+ 3s s—1 A B
1+ ——+

Y = — — = _— = [
() s2+2s+1 +(5+1)2 s+1  (s+1)2

Déterminons A et B en réduisant au méme dénominateur :
s—1=A(s+1)+B
d’ou :

st:A=1
s9:—-1=A+BB=-2

Ainsi :
1 2

Y(S)Zl—f‘m—m

La transformation de Laplace inverse donne alors :
y(t) = 0(t) + et —2te™? t>0

Systéme non linéaire

Un systeme dynamique est donné par I’équation différentielle
J+29+3=u y(0)=y(0)=0 (4.31)

Calculons la fonction de transfert correspondante.
Solution

L’équation différentielle est non linéaire car le principe de superposition ne s’applique pas. En effet :

u =y i1 F2h+3=w
Uz —> Yo i o+ 2Y2 + 3 =u

uytuz »yr+y2 0 (1 +92) + 201 +92) + 6 = (ur + u2)

On voit donc que le terme 3 dans l’équation dynamique géne. Comme le concept de fonction de transfert
ne s’applique qu’aux systemes lscr, il convient de calculer d’abord une approximation linéaire a I’équation
dynamique. Dans ce cas-ci, on peut le faire trés simplement en définissant une nouvelle entrée a(t) = u(t) — 3,
ce qui donne le systeme dynamique linéaire suivant :

y+2y=u y(0) =5(0) =0

Bien que, dans le cas présent, le systéme dynamique soit linéaire, la représentation (4.31) est non linéaire (elle
est en fait affine) suite & un mauvais choix du point de référence pour u(t). Le fait de travailler en variables
écart permet d’éviter ce genre de probléeme.

La fonction de transfert est alors :

4.8 Exercices résolus

Exercice 1
Soit le systeme dynamique :
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i’1:—$1+$2+u .’El(O):O

l"g =1 — 2$2 ZQ(O) =0

Calculer la fonction de transfert X»(s)/U(s) correspondant aux point de fonctionnement
a) u=

b) @ =

Solution
La fonction de transfert est la méme pour w = 1 et @ = 2 car le systeme est linéaire.

L = Xi(s)[s+1]= XQ(S) +U(s)
Xa(s)[s +2] = Xu(s)
Xo(s)[s + 2][s + 1] = Xa(s) + U(s)
XQ(S) 1

U(s) T 2+3s+1

Exercice 2

Calculer la réponse du systéeme dynamique suivant a une impulsion de Dirac :

§(t) +29(t) = 2u(t) y(0)=-1,  ¢(0)=0
Solution
L = [$?Y(s8)+s]+2[sY(s)+ 1] =2U(s)
2 (s+2)
Y = U(s) —
() s(s ;— 2) () i(s +2)
= U -
s(s+2) () S
réponse forcée réponse libre
2 1 A B 1
P =1 Y(§)= ——  — =4 — __
our U(s) - () s(s+2) s s + s+2 s
Méthode des résidus pour calculer A et B
A = lim =1
s—0 s +
= lim —=-1
s——2 8
. o 1
On obtient ainsi : Y (s) = —
s+ 2
L7 o yt)=—eH t>0

Exercice 3

a) Calculer la transformée de Laplace de :

0 t<1
t) =
y( ) {e—(t—l)/4 t 2 1

b) Calculer la transformée de Laplace inverse de :
2

(s+1)?

1) Y(s) =
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—2s

DY) = Fr 555

Solution
e’ de~*
a) yt)y=e DA t>1 £ Y(s)= =
s+ i 4541
2 £t _
bl) Y(s) = (s+1)2 y(t) =2te™"  t>0
6725 o
b2) Y(S) = m =€ Yl(S)
1 1 £t —ot .
N = o5 " Grorad () =eFsint £20
t>2

= yt) =y (t—2) = e—2(t-2) sin(t — 2)

Exercice 4
La modélisation d’un systeme dynamique a donné I’équation différentielle suivante
y(0) =1

9(8) +2y(t) — 3 = u(t)

Evaluer la fonction de transfert correspondante.

Solution
Systeme non linéaire a cause du terme constant -3. Introduisons
t=u+3 — gyg+2y=a y0)=1
Fonction de tranfert :
Y(s) 1
U(s) s+2
Exercice 5
Soit le systeme dynamique avec l'entrée u(t) et la sortie y(t) :
&(t) = —x(t) + 2u(t) — z(t)u(t) z(0) =1
y(t) = =(t —2)

a) Ce systeme est-il linéaire, stationnaire, causal et initialement au repos?
b) Evaluer la fonction de transfert Y (s)/U(s) pour le point de fonctionnement correspondant & @ = 1.

Solution
a) Le systéme est non linéaire & cause du terme zu, stationnaire car les coefficients sont constants, causal

car y(t) ne dépend par des entrées futures, mais il n’est pas initialement au repos car z(0) = 1.

b) A D’état stationnaire pour 4 =1 :
0=-2+2-7 —T=1

Linéarisation de zu :
Tu >~ TU+ woxr + Téu =1+ dx + du

Systeme linéarisé (en variables écart) :



90 4 Fonction de transfert

&(t) = —x(t) + 2u(t) — z(t) — u(t) = —2z(t) + u(?) z(0) =0
y(t) = =(t —2)
X(s) 1
L =
- Ul(s s+ 2
Y(s) o2
X(s)
Y(s) e
U(s) s+2
Exercie 6 Soit le systeme dynamique
Gls) = 1+as
14
a) Calculer sa réponse indicielle
b) Esquisser les réponses indicielles pour o = 1 et a = —1
Solution
a)
U(s) =~

1
A = lim —i—as:
s—0 14+ s
1
B lim — % _ 01
s——1 S
L7 =yt)=14(a—1)e" t>0

Exercice 7

a) Calculer la transformée de Laplace du signal temporel u(t) représenté par les figures suivantes.
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P

4
Yoy e+
(s+1)(s+2)
Solution
a)
u(t) = ul(t) + Ug(t)
0 t<o0 0 t<T
t) = t) =
wu(t) {it t>0 ua(t) {i(tr) t>7
1 1 1
— T eTTS — T [l TS
Uls) 782 182° 7'52[ e
b)
s2+T7s+12 45+ 10 A B
Y = - — = - 1
() s24+3s+2 (s+1)(s+2) +s+1+5+2
A= tim B0 _g
s——1 s+ 2
B lim 45410 _ 9
s——2 s+1
L—yt)=6(t)+6e " —2e % t>0
Exercice 8
Calculer la réponse indicielle du systeme dynamique suivant :
T+ 2¢ + bx = bu z(0) = (0) =0
Solution
Gs) = 5——o  U(s) =~
s2+2s5+5 s
5 A Bs+C 1 2
Voo b AL BstC 1 s

T s(s242545) s (s+1)2422 s (s+1)2422
5=A(s*>+25s+5)+ (Bs+CO)s

s2:0=A+RB A=1
s':0=24+C — B=-1
s:5=5A4 C=-2

542 o (s+1) 2

1
Gr12+2 (1212 211212

91
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Y (s) 1 s+1 1 2
s) =~ — — -
s (s+1)2422  2(s+1)2 422
1
y(t)zl—e_t(c052t+2sin2t) t>0

Exercice 9
Soit Y (s) = (s + 12)/(s? + 4s) la transformée de Laplace de la réponse indicielle d’un systéme dynamique.

a) Calculer y(t)
b) Evaluer la valeur finale de la réponse du systéme & I'entrée u(t) = 1 — e 2t

Solution

a)
s+12 s+12 A B
Yi(s) = - -2, 2
() s2+4s  s(s+4) s+s+4

12
lim sY'(s) =

—4+12

3

y(t) = L7V (s)] = £ [Z’ - SiJ 324 1>

s+ 12

_Y(s)  s(s4+4)  s+12
CO=Fm =" 1 ~sia

S

1 1
p t)=1-—eU(s) =~ —
our u(t) e ", U(s) s 512
s—|—12><1 1 ) s+ 12 s+ 12

s+4 ;_s+2 -

s(s+4) (s+4)(s+2)

donc Y (s) = (

lim y(¢) = lim sY (s) = lim =3
5—0

t—o0

Exercice 10
Soit le systeme décrit par ’équation dynamique :

() — 29(t) + y(t) = u(t) avec y(0) = 1,75(0) = 0 et Pentrée u(t) = e*

Déterminer la réponse temporelle libre de ce systeme.

Solution
§(t) = 29(t) +y(t) = u(t)  y(0) =1,5(0) =0
y(t) = Y(s)
y(t) = sY(s) —y(0) = sY(s) =1
§(t) = s*Y (s) = sy(0) = §(0) = s*Y(s) — s
Ainsi :

s2Y (5) —s —25Y(s) + 2+ Y (s) = U(s)

Y(s)(s —1)% = (s —2) = U(s)
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L' — ys(t) = réponse forcée y1(t) = réponse libre

Calcul de la réponse libre y;(t) :

— s— — A
() = €| it = £ + ot

yi(t) = e'e(t) — te' = e(t)e'[1 — 1]

Exercie 11

On consideére le transfert d’énergie d’une source chaude (cuve de volume constant V., température T, puissance
de chauffe P.) vers un puit froid (réacteur endothermique de volume contant Vy, température Ty, puissance
consommée Py < 0). Le transfert a lieu par U'intermédiaire d’'un manteau de chauffe (volume constant V,,,,
température homogene Ty, coefficient de transfert UA entre T, et T7).

Le liquide caloporteur circule & 1’aide d’une pompe avec un débit volumique F'. Les capacités calorifiques du
caloporteur et du mélange réactionnel sont identiques et égales & pc,. On suppose que le systeme est bien isolé

et qu’il n’y pas de perte thermique vers I'extérieur.

| w
V. T, V5 UA K]
P, /P '
T. J
Ty o lmsK ]

a) Ecrire un modele dynamique pour ce systeme.
b) Sachant que F' est constant et que V;,, et V, peuvent étre négligés par rapport & Vy(V,,, Vo — 0), déterminer

la fonction de transfert Tr(s)/Pe(s).
Solution

a) Bilans thermiques

pepVy Gt = UA(T,, — Ty) + Py Ty (0) =Tro (1)
pep Vi T = pe, F(T. — Tpy)) —UA(Tr — Ty)  Tin(0) =Tro  (2)
pepVelle = pe, F(T,, — T.) + P. T.(0) = Teo (3)

b) Hypothese : V,,, =V, =0

2) = 0= pe,F(T, — Tp) — UA(T,, — Ty)

(3) — 0= pcpF (T, — T¢) + P,

— UA(T,, — Tf) = pcpF (T, — Ty,,) = P. (4)
(1) + (4) = pe, Vs = P, 4 Py (5)

L : pcpyVisTy(s) = Pe(s) + Py(s)

Fonction de transfert

Ty(s) _ 1
P.(s)  pcy,Vys
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Exercice 12
Le systeme dynamique
i+2+y=2u y(0)=1 ¢(0)=-2

est soumis & Pentrée u(t) = e~2!,¢ > 0. Calculer sa réponse libre et sa réponse forcée.
Solution

j+2+y=2u y(0)=1 ¢(0)=-2
ulty=e* t>0
L — [$°Y(s) — s+ 2] +2[sY(s) — 1] + Y (s) = 2U(s)
Y (s)[s® +2s+1] =2U(s) + s

2 s
Y(s)= ——U
Réponse libre pour U(s) =0
s s+1-1 1 1

T (s+1)2 (s+1)2  s+1 (s+1)2

Réponse forcée pour U(s) = 1/(s + 2)

2 A B C

YO = 2619 s+l G iE 510

A= lim i 2 = lim [ — 2 = -2
s——1ds\ s+ 2 s——1 (s+2)2
B = lim ( 2 ) =2
s—>—1\ s+ 2

C= S]ﬁ{an 7(5 e =

2

y(t) = —2e "+ 2te "t + 272 >0

Exercice 13
Soit le réacteur chimique continu suivant :

q
Ch. I réaction A — B
_ _ q
s iy oA > vitesse de réaction
i gmole
r=kecy:
14 A Ilmin
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A Détat stationnaire, § = 0,05(m3/min), cae = 2(mole/l) et ¢4 = 1,33(mole/l)

a) Calculer la fonction de transfert Ca(s)/Cac(s) sachant que V = 0, 1m3.
b) Indiquer les suppositions nécessaires a ’obtention du modele.
Solution

a) Modele dynamique

de
d—f =q(cae—ca)—Vkecs ca(0)=cao (1)
A Tétat stationnaire :
OZQ(EA,G—EA) —Vkcy (2)
d’ou 'on tire : o ~
k= 7(][6’4’67_ c] =0,25min"*
VCA

En utilisant la transformation de Laplace et en considérant des conditions initiales nulles :

VsCa(s) = q[Cae(s) — Ca(s)] — VECA(s)

q
Cals) _ q _ q+tVk _ K
Cac(s) sV +(¢g+Vk) V Ts+1
' s+1
q+Vk
avec e 7__ v
g+ VE g+ VEk

b) Suppositions
e Pertes thermiques négligeables
e Zone homogene (réacteur bien mélangé)

Exercice 14
La réaction catalytique 2A — B a lieu dans un réacteur agité isotherme & marche continue. La modélisation du
réacteur a donné les équations suivantes :

dea = L(cpe — ca) — 2k1c} c4(0) =¢a
dn — —Lep+ ke C(0) =2z

ou 7 représente le temps de séjour constant, cy4 et cp les concentrations de A et B, ca. la concentration
d’alimentation de A,¢a et ¢g les concentrations de A et B au point de fonctionnement stationnaire et k; la
constante cinétique. Déterminer la fonction de transfert C'p(s)/Cac(s).

Solution

Systéme dynamique non linéaire & cause du terme ¢%. On peut linéariser ce terme non linéaire autour du point
de fonctionnement stationnaire ¢4 :

0124 ~ 5?4 + 25,4(6,4 — EA)

Le systeme dynamique devient ainsi (en variables écarts autour de ¢4 et ¢p) :

% = Heae —ca) — 4kicaca ca(0) =0
@r = —lep +2kicaca cp(0) =0

La transformation de Laplace donne :
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1
1 1 ¢
Ca(s) {s +=-+ 4k‘1CA] = —Cac(s) — Cals) _ 1 t4lecA
T T CAe(S) [ —- +1
1+ 4ki7ca

CB(S) . 2k171CA
Ca(s) 7s+1

Cn(s) [s + i] — 21EACA(s) o

2k1TCa
Cp(s) _ Cg(s) Ca(s) 1+ dky7ca

} _(TS+1)<

C - C C T

ae(s)  Cals) Caels) B

14+ 4ki7Ca

Exercice 15

Le systeme de deux réservoirs cylindriques de section A; et A, placés en cascade est présenté sur le schéma.
Les débits g1 et ¢o sont proportionnels aux niveaux de liquide h; et ho dans les réservoirs, c’est-a-dire :

qr=kih1 et g =koho

Le débit de recyclage g, est ajusté par la pompe P et peut ainsi étre considéré comme une variable indépendante ;

q
CAe I
_ _ q
I N VN >
CA
\%4

qo est un débit d’entrée.

a) Ecrire les équations dynamiques pour ce systeme.
b) Déterminer les fonctions de transfert

Hl(s) Hl(s) HQ(S) HQ(S)
Qo(s)" @r(s)” Qo(s)” @r(s)

c) Est-ce que le débit ¢, influence le niveau hy en régime stationnaire ?

Solution

a) Modele dynamique

Bilan massique pour le réservoir 1 :

d
%(PAlhl) = pqr + pqo — pk1hy h1(0) = hio (1)

Bilan massique pou le réservoir 2 :

d
%(PAsz) = pkihy — pkaha — pg, h2(0) = hag (2)

Comme p est constant, on peut diviser (1) et (2) par p.
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b) Fonctions de transfert

Hy(s)[sA1 + k1] = Qr(s) + Qo(s)
(2)  ———  Ha(s)[sAx + ko] = k1 Hi(s) — Qr(s)
(3) Hlés Hl(S) 1

) _ -
Qr(s)  Qu(s)  Ais+k

—
B~ W
=

—
(%2
~

L’équation (4) indique que Hs(s) dépend de la variable dépendante Hi(s) en plus de la variable
indépendante @,(s). Il faut donc exprimer H;(s) en fonction des variables indépendantes Q..(s) et Qo(s)
& partir de (3) :
1
H : H A kol = ki —
Qo(s) = Ha(s) 2(s)[sAz + ko] As ik
HQ(S) ]{71

Qo(s) (A18+k1)(A28+/€2)

Qo(s)

Qu(s) = Hals) - H2(5>[5A2+k2]:klﬁ@«(s)—@(s)
HQ(S) A18

Qr(s)  (Ars+k1)(Aas + k2)

c) Etat stationnaire

D= 0=G+q—kh
(2) — 0= ]{71}_11 — kgiLQ — (jr

En additionnant ces deux équations pour éliminer le terme k;h; dans la deuxiéme, on obtient
0 = qo — kaho
ce qui indique que hy dépend de gy mais pas de G,

Exercice 16

Un systeme dynamique est décrit par I’équation différentielle :

d?y dy du
—_— 47 = — p— 1 J P— =
gz TA Ty =t y(0) = 1,9(0) = u(0) =0
a) Evaluer sa fonction de transfert.

b) Calculer la réponse du systéme & une impulsion de Dirac au temps ¢ = 1.
Solution

a) La transformée de Laplace de I’équation différentielle :

Y(s)(s* +4s+4) =U(s)(s+ 1)+ (s +4)

_Y(s) s+1 s+41
G(S)_U(s) s2+4s+4  (s+2)2

U(s)=e"*

V() =Gl (s) = T ECED _yi gt 1 vits)

réponse  réponse
forcée libre
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. Vi(s) s+1 A n B
S) = =

! (s+2)(s+2) s+2 (s+2)?
Méthode des résidus :

A= lim di[(s+2)2Y1(s)] = lim 1=1

s——2 ds s——2

B = lim (s +2)*Yi(s) = lim (s +1) = —1

s——2 s——2
s+4 _ C . D
s2+4s+4  s+2  (s+2)2

. Yls) =

C = lim di[(s +2)%Y,(s)] = lim 1=

s——2 ds s——2

D= lim (s+2)?Ya(s) = lim (s+4) =2
s——2 s——2

n(t) = £ L i - (s+12)2} — e(B)]e 2 — te=2)

yo(t) = L1 L+12 + (852)2] = e(t)[e ™% + 2te™?]

e Finalement on obtient
y(t) = e(t — 1)[e 27D — (¢ — 1)e 2] 4 e(t)[e 72 + 2te =]

Exercice 17
Transformer le systeme dynamique

() + 22(t) = u(t) 2(0) = 2

sous la forme d’un systéme dynamique avec des conditions initiales nulles.
Solution
La transformation de Laplace du systéme dynamique donne :

[sX(S)—2]+2X(s)=U(s)

X(5) = —5[U() +2] = —{U(s) +2A() )

ott A(s) = L(6(t)) = 1

La transformation de Laplace inverse de (1) donne :
() + 2z(t) = u(t) + 246(t) z(0)=0

On voit ainsi que, pour un systeme dynamique linéaire, des conditions initiales différentes de zéro correspondent

a I'application d’une impulsion de Dirac au temps initial.

4.9 Symboles utilisés

D(s) polynéme dénominateur
f@) signal temporel

F(s) transformée de Laplace de f(t)
g(t) réponse impulsionnelle
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axe imaginaire du plan complexe

V-1

transformée de Laplace

transformée de Laplace inverse
polynéme numérateur

axe réel du plan complexe

variable complexe de Laplace (s = a + bj)
temps

entrée du systeme

sortie du systeme

impulsion de Dirac au temps ¢t = 0
saut unité au temps t =0

translation fréquentielle

impulsion rectangulaire au temps ¢t =0
translation temporelle

4.9 Symboles utilisés
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5

Analyse temporelle

5.1 définitions préliminaires

5.1.1 Introduction

Nous avons vu précédemment que les réponses temporelles de systemes linéaires sont obtenues par combinaison
de termes issus d’une décomposition en éléments simples. Ces éléments sont d’ordre un ou deux, suivant que
les racines du dénominateur sont réelles ou conjuguées complexes. Les réponses types des systemes d’ordre un
ou deux constituent par conséquent les <« briques > de base qui, combinées et pondérées par les résidus des
éléments simples correspondants, permettent de calculer les réponses d’un systeme d’ordre quelconque.

La réponse indicielle «(¢) sera étudiée en priorité dans ce chapitre, sachant que la réponse impulsionnelle g(t)

est obtenue par simple dérivation : g(t) = v(¢).

5.1.2 Gain statique, poles et zéros, équation caractéristique

Soit un systeme dynamique dont la fonction de transfert G(s) est donnée sous la forme d’un quotient de deux

polynomes en s :
Y(s) bps™+---+bis+ by

CU(s) s"+---+ais+ag

e Le gain statique K est défini comme la valeur de G(s) pour s =0 :

K = lim G(s)
s—0
Pour un systeme stable (systéme dont tous les poles ont une partie réelle négative), le gain statique est
le rapport entre 'amplitude de la réponse et 'amplitude de ’excitation apres disparition des phénomenes
transitoires, c’est a dire en régime stationnaire :

K= l?mt—mo y(t) (5.1)
limy o0 u(t)

On peut le montrer en considérant un saut d’amplitude A comme excitation, c’est a dire U(s) = A/s, et en
appliquant le théoréeme de la valeur finale pour calculer la valeur stationnaire de la sortie vy :

_ limg,0sY(s)  limg o SG(S)% L
K = I = 1 = ilg(l) G(s) (5.2)
Il est parfois utile de définir d’autres gains statiques :
Gain en vitesse : K, = lir% sG(s)
S—>

Gain en accélération : K, = lin%) s2G(s)
S—r
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e Les poles de G(s) sont les n valeurs de s qui annulent le dénominateur de G(s). Ces valeurs sont notées
pit=1,...,n.
Les zéros de G(s) sont les m valeurs de s qui annulent le numérateur de G(s).
Ces valeurs sont notées zj,j =1,...,m.
Les poles et les zéros peuvent étre réels ou complexes. S’ils sont complexes, ils apparaissent en paires
conjuguées.

e L’équation caractéristique de G(s) est :

"t an 18" 4 +as+ag=0

5.1.3 Ordre d’un systéme

Il y a plusieurs manieres équivalents de définir 'ordre d’un systeme :

e L’ordre d’un systéeme est le nombre minimum d’équations différentielles temporelles du premier ordre
nécessaires pour décrire le comportement du systeme ; une équation d’ordre n peut se réduire sous la forme
de n équations du premier ordre. De fagon équivalente, ’ordre d’un systéme est le nombre de variables d’état
(variables dépendantes) nécessaires pour décrire la dynamique du systeme.

e L’ordre d’un systeme est le degré du polynéme en s du dénominateur de la fonction de transfert décrivant
ce systeme apres, le cas échéant, élimination des facteurs communs au numérateur et au dénominateur. De
la fagon équivalente, I'ordre d’un systéme correspond au nombre de poles de la fonction de transfert.

Exemples

a) Soit un systeme décrit par I’équation de mouvement de Newton :

d2
m@x(t) = Z:Fi(t)

Il s’agit d'un systeme du deuxieme ordre car il est caractérisé par une deuxieme dérivée par rapport a t.

b) Soient les fonctions de transfert Gy(s) = 1/(s® + 2s) et Ga(s) = s/(s> + 2s). G1(s) est d’ordre 3 alors que
G4(s) est d’ordre 2 car on peut simplifier le numérateur et les dénominateur par s.

Z4+5&+3x=20+u x(0) =2(0) =u(0) =0

Ce systéme dynamique est d’ordre deux. En effet, comme wu(t) représente 1’entrée du systeme, le terme (t)
ne fait pas intervenir de variable d’état. On le remarque également en calculant la fonction de transfert :

X(s) 2s+1
U(s) s2+5s+3

5.2 Etude d’un systéme simple : salle chauffée

Soit une salle chauffée par un radiateur qui dispense une puissance de chauffage P(t). A l'intérieur régne une
température T'(t), U'extérieur se trouvant a la température Tp.¢(t) comme indiqué a la figure 5.1. Le but est
d’étudier le comportement de T'(t) en fonction des variations de P(t) et de Te,+(t).

5.2.1 Variables écart

Pour l'analyse de systémes dynamiques, on travaille le plus souvent avec des variables écart définies par
rapport a un état stationnaire de référence. Ceci est du au fait que, d’une part, les modeles linéarisés ne sont
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CEEE

Figure 5.1. Schéma d’une salle chauffée

valable que dans le voisinage du point stationnaire de référence et, d’autre part, les variables écart possedent la
valeur zéro au point de référence, ce qui est utile pour définir des conditions initiales nulles. Dans notre exemple,

nous définissons les variables écart suivantes :

5Temt(t) = ext(t) - Teact

ouT, P et T,;; correspondent a un point de fonctionnement stationnaire.

5.2.2 Modélisation du systéme

Bilan thermique
Nous pouvons écrire, par rapport a I’état stationnaire de référence :

puissance thermique . .

 entre dans puissance thermique
. N s ui entre .

(accumulatlon dechaleur dansla piece par unitéde temps) = d — perdue & travers

la piece via .
. les cloisons
le radiateur

1

d
0T (1) = OP(t) = [6T(t) = T.ar(1)] (5.3)

ou C[J/K] est la capacité thermique de la piece et R[K /W] la résistance thermique des cloisons.

Grandeurs caractéristiques

Nous retrouvons dans le modele (5.3) :

e une variable d’état (dépendante) : 0T(t)

e une variable d’entrée (indépendante) : JP(t)

e une variable de perturbation (indépendante) : 0T et (t)
e des parametres constants : C,R

5.2.3 Fonctions de transfert

En appliquant la transformation de Laplace a I’équation (5.3), on obtient :

sCoT(s) = 0P(s) [0T(s) — 6T ent(s)]

!
R

[sSRC 4+ 1]0T(s) = ROP(s) + 6Text(s)

En posant 7 = RC, on trouve :
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R 1
OT(s) = = 0P(s) + ——— 0 e (s) (5.4)

Qu’en est-il de la condition initiale pour 6T ?
Quelle est la dimension de T ¢ Quelle est sa signification physique ?
Puisqu’il y a deux variables indépendantes distinctes, 0P (t) et 6Te.t(t), on considere les deux fonctions de

transfert : ST R
Gals) = 6P8 BEZES! (5:5)
Gals) = 1) 1 (5.6)

© 6Tepi(s)  Ts+1

L’équation (5.5) décrit uniquement le comportement de 6T en fonction de 6P, tandis que I'équation (5.6)
renseigne uniquement sur la variation 07T résultant d’une variation 07.,;. Si nous sommes intéressés par la
réponse du systéme & des variations dP et 0T¢,¢, il nous faut alors considérer 1'équation complete (5.4).

5.2.4 Réponse de T'(t) & un saut unité de P(t)

Variation de P(¢) :
P(t) =P+ 6P(t)

Pour un saut unité, §P(t) = 1 ou 6 P(s) = 1/s, I'équation (5.5) permet d’écrire :

5T (s) = Gy (s)6P(s) = (Ti 1) (i) - ? N Ti 1

Détermination de A et B a l’aide de la méthode des résidus :

R
= p— R
Ts+1
s=0
B = E = —Rt
s S
Ainsi R R
0T(s) = — —
() S s+1

La transformation de Laplace inverse de 6T'(s) donne :

10 7]

=R—Re ~ :R{l—eﬂ

T

et ainsi :

Comportement de §7'(t) pour t — oo

. . i R
Gain statique de G1(s) : K = lim [734-1} =R
) 1
Pole de G (s) : Pr="—7
-

Zéros de G (s) : aucun
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Equation caractéristique de G1(s) : Ts+1=0

Représentation graphique

En supposant que le saut unité de lentrée P(t) a lieu a Uinstant ¢*, la représentation graphique de ce test
dynamique est donnée a la figure 5.2.

0t :

Figure 5.2. Réponse indicielle.

5.2.5 Réponse de T'(t) & un saut unité de Tez (1)

Pour 6T¢,:(t) = 1, on calcule aisément :

Comportement de §7'(t) pour t — oo

Le théoreme de la valeur finale donne :

lim 6T'(t) = llg(l)[séT(s)] =1

t—o0

c’est a dire :
(6T)final = 5Text

Gain statique, pole, zéro et équation caractéristique

1
in statique d : K =1 =1
Gain statique de G(s) SI_I,% L—s + 1]
) 1
Pole de Ga(s) : p=-=
-
Zéro de Ga(s) : aucun

Equation caractéristique deGa(s): 7s+1=10
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Peut-on comparer les grandeurs caractéristiques de G1(s) et Ga(s) ?

Représenter graphiquement §T(t) pour un saut d’unité de 0Tpy(t).

5.2.6 Remarque importante concernant les notations

On a vu dans 'exemple précédent que les variables écart 6T, 6P et dT,,; déterminent entierement les varia-
tions du systeme autour du point de référence T, P et T,,;. Pour Ianalyse des systéme, on travaille presque
exclusivement avec des variables écart car on s’intéresse aux variations autour du point de référence. On avait
déja rencontré ces variables écart lors de 'approximation linéaire d’un systéme non linéaire. La figure 5.2 se
laisse normaliser si I’on reporte en abscisse 0t = ¢t — ¢*(dt > 0) et en ordonnée les variables écart dP(t) et 0T(t),
comme illustré a la figure 5.3.

On rencontre naturellement les variables absolues lors de la modélisation d’un systéme ou lors de son opération

0 t

Figure 5.3. Réponse indicielle en variable écart.

(les grandeurs physiques de mesure et de commande sont des signaux en valeur absolue). Par contre, pour
I’étude des systemes linéaires ou linéarisés, il est plus simple de travailler en variables écart. Ceci a ’avantage
de générer des conditions initiales nulles pour le systeme relaché au point de référence, ce qui permet d’utili-
ser directement le concept de fonction de transfert. On peut aisément passer des variables écart aux variables
absolues, et inversement, a 1’aide des relations :

T(t)=T+ 6T

P(t)=P+4P

Dorénavant, et en accord avec les notation au niveau international, nous omettrons le symbole § distinguant
une variable écart d’une variable absolue. Le contexte indiquera s’il s’agit d’une variable écart ou d’une variable

absolue.
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5.3 Systeme du premier ordre
5.3.1 Représentation

Un systeme du premier ordre est décrit par une fonction de transfert possédant un polynéme du premier ordre

au dénominateur. Si il n’y a pas de zéro, la fonction de transfert aura la forme suivante :

G(s) = - (5.7)

Le gain statique de ce systeme est lim,_,o G(s) = K.
Le pole est p = —1/7, 7 étant la constante de temps du systéme.

5.3.2 Réponse indicielle

La réponse & un saut d’amplitude A, u(t) = Ae(t), d'un systéme du premier ordre est :

y(t) = e(t) KA1 — e*t/T] (5.8)
On peut 'obtenir suit :
ult) = Ae(t) —E—  U(s) = é
Y(s) K
U(s) 7s+1

Cette représentation graphique de la réponse indicielle est valable pour tous les systémes caractérisés par la

fonction de transfert (5.7), laquelle est paramétrée par K et 7. En d’autre termes, qu’il s’agisse d’un processus
lent ou rapide, de nature mécanique, électrique ou autres, pour autant que ce processus soit caractérisable par
(5.7), la réponse indicelle de la figure 5.4 paramétrée par KA et 7 restera valable (A est ici Pamplitude du
saut échelon). On peut donc choisir de représenter la réponse indicielle normalisée, c’est a dire y(t)/K A en
fonction de ¢/7.

La dérivée de la réponse indicielle est maximale a ’origine et vaut :

y(0) = KA/7
Quant a la valeur finale de la réponse, elle est donnée par :
Jim y(t) = KA

La valeur de la réponse pour ¢t = 7 est :

y(r) = KA (1 - 1) —0,63K A
&

La valeur de la réponse pour t = 37 est :
1
y(37) = KA(l — e3> =0,95KA

On constate donc que la réponse indicielle du systeme atteint le 63% de sa valeur finale lorsqu’un temps 7 s’est
écoulé. De plus, la réponse indicielle atteint 95% de sa valeur finale pour 37. La variable 7 constitue donc une
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0 T t
Figure 5.4. Réponse indicielle d’'un systéme du premier ordre.

mesure de la rapidité de la réponse. Pour cette raison, cette grandeur est appelée la constante de temps du
systeme. Elle est toujours en unités de temps, comme une analyse dimensionnelle le montre.

Identification du systéme & partir de la réponse indicielle

Si la réponse indicielle d’un systeme du premier ordre est mesurée, il est possible de déterminer le gain statique
K et la constante de temps 7. Une fois ces grandeurs disponibles, la fonction de transfert est compléetement
définie et peut étre utilisée pour prédire les réponses a des entrées autres q’'un saut indiciel.

Trois méthodes simples sont proposées pour 'identification (fig. 5.5).

a) Le gain statique est obtenu en divisant Pamplitude maximale K A de la réponse par le facteur A (amplitude
connue du saut indiciel appliqué au systeéme). La constante de temps correspond & U'instant ot amplitude
de cette réponse atteint le 63% de sa valeur finale.

b) Le gain statique est obtenu de la méme maniére que celle proposée en a. Pour déterminer la constante de

temps, la pente m de la tangente de la réponse indicielle est mesurée a l'instant d’application de 1’échelon.
Elle vaut :

KA
m=—
-
Par conséquent,
KA
T = —
m

¢) Une troisieme possibilité consiste & prélever deux échantillons de la réponse y;(t) et y2(t) et a résoudre un

systeme de deux équations avec les deux inconnues K et 7.

y(tr) = KAl —e /7]
y(ts) = KA[l — e t2/7]

On constate en pratique que la réponse indicielle relevée expérimentalement est souvent bruitée et présente une
allure qui differe légerement de celle attendue, certains phénomenes ayant été négligés lors de la modélisation
comme des non-linéarités et des modes rapides. La précision des résultats obtenus avec les outils simples proposés
ci-dessus est par conséquent souvent insuffisante. Afin d’améliorer Iidentification, toutes les mesures disponibles
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peuvent étre prises en compte pour introduire une redondance et par conséquent un effet de lissage. Un probleme
de régression, linéaire ou non linéaire selon ’approche choisie, est & méme de réaliser cet objectif.

Les techniques décrites précédemment servent également a obtenir une fonction de transfert qui décrit localement
un systeme non linéaire. Dans ce cas ci, I'entrée u et la sortie y doivent impérativement étre remplacées dans
toutes les expressions par I’écart du de l'entrée par rapport a l’entrée nominale % et I'écart dy de la sortie par
rapport a la sortie nominale .

Sy

Figure 5.5. Réponse indicielle mesurée.

0,374

0 T t

Figure 5.6. Réponse impulsionnelle d’un systeme du premier ordre.

5.3.3 Réponse impulsionnelle
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_ KA s £ o= B4
T Ts+1

y(t)

La représentation graphique est donnée a la figure 5.6.

Vérifier que la réponse impulsionelle soit bien la dérivée de la réponse indicielle. Comment peut-on le justifier ?

5.3.4 Réponse a une rampe

(1) — e - () (%)

Ts+1 52

Pour déterminer y(t), il est nécessaire de décomposer Y (s) en éléments simples :

(K N(A\_a B
Yis) = (Ts+1)<s2) s + 52 + Ts+1 (5.9)

Déterminons «, 8 et y par la méthode des résidus :

oo d( KA
~lds\7s+1 s—0

I
N
BN
e
|5
N———
i
I
|
~
b
\‘

Ainsi )
KAr KA KAr
Y =
() s 52 Ts+1
La transformation de Laplace inverse donne :
y(t) = —KAT + KAt + KAre V7™ = KA(t — 7) + K Are™'/7 t>0

La représentation graphique de y(t) est donnée a la figure 5.7.

5.3.5 Réponse harmonique

La réponse harmonique est la réponse en régime permanent d’un systéme dynamique excité par une sinusoide
de pulsation donnée. Le terme transitoire de la réponse est donc négligé.
Pour un systéme du premier ordre excité par l'entrée sinusoidale u(t) = Asin(wt) de pulsation w =

27t /T[rad/sec], on peut écrire :
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Figure 5.7. Réponse d’un systeme du premier ordre & une rampe.

Aw
t) = Asin(wt £ -
u(t) sin(wt) ~——— U(s) P ro?
Y(s) K
U(s) 7s+1
(o) £ Y(s) = KAw _ o oS + a3 (5.10)

(rs+1)(s?+w?) 7s+1 s2+w?

Calculons la réponse y(t). Nous commengons par déterminer «; par la méthode des résidus :

[ KAw B K Awr?
R Py s=—1/r S 1+ 202

En réduisant I’équation (5.10) au méme dénominateur, on obtient :
KAw = a;(s* + w?) + (s + as)(1s + 1)

Cette équation est valable pour tous s. On peut également la dériver une fois, puis une deuxieme fois par rapport
a § pour obtenir :

0 =218+ 2078 + g + azT (5.11)

0 =201 + 2057

d’ou :
a1 KAwr
« =
2 T 1+ 72w2
L’équation (5.11) pour s = 0 donne :
(%) KAw
o == —-F
3 T 1+ 7202

On obtient ainsi la réponse du systeme :
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Y(s)

_ KA w2 wTS n w
T 147202 | Ts+1 24 w? 24 w?

et avec la transformée de Laplace inverse de Y(s) :

y(t) = % (m exp (— :) — wrcos(wt) + sin(wt)} (5.12)

En utilisant la relation trigonométrique :

asin(wt) 4+ beos(wt) = va? + b? sin(wt + @)

ou

» = arctan <b> (5.13)

a

léquation (5.12) devient :

KAwt t KA )
y(t) = <1—|—T2wQ <exp(—7_) + (\/W) sin(wt + ) (5.14)
avec :
¢ = arctan(—7Tw) = — arctan(Tw)

La réponse comporte une partie transitoire (premier terme) et une partie permanente (deuxiéme terme). La
réponse en régime permanent (c’est-a-dire une fois que la partie transitoire a disparu) s’écrit :

5(t) KA n(wt+ o)
= ——sin(w
Y V147202 4

et est caractérisée par :

1. une amplitude A’ différente de 'amplitude du signal d’excitation A ; on parle de rapport d’amplitude entre
la sortie et 'entrée, Ry = A’ /A

2. la méme pulsation w (c’est-a-dire la méme période T')
3. un déphasage ¢ entre les signaux d’entrée et de sortie.

Cette situation en régime permanent est visualisée & la figure 5.8. Le déphasage est négatif (¢ = —wt’) ; on dit
que §(t) est en < retard > sur u(t) et on parle de retard de phase. Exemple

Soit une cuve homogene de 1[m?] de volume alimentée en continu par un début d’eau de 0,05[m?/min| qu’il
convient de chauffer de 10 & 20[C] par l'intermédiaire d’un corps de chauffe dont la puissance nominale vaut
35[kW]. On peut modéliser ce systeme par la fonction de transfert liant la puissance de chauffe & la température
de la cuve (cf. section 6.2) :

T(s) K K =0,29[C/kW]
= avec
P(s) 7s+1 T = 20[min]

On désire étudier effet sur la température d’une excitation sinusoidale de la puissance de chauffe. On a observé

les comportements suivants :
a) Sous leffet de 'excitation

P(t) = 10sin(0, 01¢) [EW]

autour de la valeur stationnaire de référence P = 35[kW], le temps étant exprimé en [min], la variation de
température en régime permanent devient :

T(t) = 2,84sin(0,01¢ — 0,197) [C]
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Figure 5.8. Réponse en régime permanent a une excitation sinusoidale.

b) Avec une excitation de pulsation plus élevée, par exemple :
P(t) = 10sin(t) kW]
on obtient
T(t) =0,14sin(t — 1,52) [C]

Quelle constatation peut-étre faite en comparant ces deux tests ¢
Peut-on identifier le gain statique K et la constante de temps T ¢

5.4 Systeme intégrateur du premier ordre

5.4.1 Représentation

Un systeme intégrateur du premier ordre posséde un pole unique a l'origine (p = 0). Sa fonction de transfert

est donc de la forme : ¥(s) %
s
= = — .1
Gls) = i = (5.15)

Le gain statique d’un tel systeme est infini. Le gain en vitesse vaut K.

5.4.2 Réponse indicielle

La réponse d’un systéme intégrateur du premier ordre au saut échelon u(t) = Ae(t) est :

y(t) = L7HG(s)U(s)] = L1 {8} = e(t) K At (5.16)

5.4.3 Exemple

Soit la cuve de volume variable donnée a la figure 5.9. On peut modéliser ce systéme comme suit :

S h(t) = (e (t) — s (t)

dt
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h
s akd
Figure 5.9. Cuve de volume variable.
Pour un débit de fuite constant (imposé par la pompe), on obtient :
d
Soh(t) = ge(t) — gs (5.17)

Remarque
L’équation (5.17) est écrite en variables absolues. En travaillant avec des variables écart, on obtient :

d

ST

h(t) = qe(t)
et dans le domaine de Laplace

SsH(s) = Qu(s)
La fonction de transfert du systéeme s’écrit donc :

H(s) 1

Q.(s) Ss

Indiquer le gain statique, le gain en vitesse et les péles de cette fonction de transfert ¢

Réponse de h(t) & un saut de g.(t) d’amplitude A
Supposons le systéme initialement au repos (& 1’état stationnaire) :

dh

ar ={qe — Gs
c’est a dire §. = q; = const.
Soit g.(t) = A pour ¢t > 0. Ainsi (tout en variables écart) :

w=4 —E Q=1
H(s) 1
Qc(s) Ss
h(t) = gt —E H(s)= %
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Ce résultat est représenté a la figure 5.10.
Si le niveau h(t) doit étre exprimé en variable absolue, il devient :

h(t) =h+ =t t>0

(]S

Figure 5.10. Niveau du liquide en réponse a un saut du débit d’alimentation

5.5 Systeme du deuxieme ordre sans zéro

5.5.1 Représentation

Un systeme du deuxieéme ordre sans zéro se rencontre dans la littérature sous deux forme classiques équivalentes :

Y (s) K W2
G(s) = = =K
() U(s) 712s82+2(ts+1 52 4 2Cwps + w?

(5.18)

On limite étude au cas ot ¢ > 0 pour lequel le systéme est stable (voir section 5.6 et le chapitre 7 pour une
discussion sur la stabilité).

Une simple inspection permet de construire les relations pour passer d’une représentation & l'autre, soit wg = 1/7
et a = (wp.

La nomenclature correspondante est la suivante :

K : Gain statique

¢ : Coefficient d’amortissement [-]

7 : Constante de temps [s]

wp : Pulsation propre ou naturelle [1/s]

Les poles de G(s) sont :

pra=—2(CEVE 1) = —wp(C+ VED)

Ces poles peuvent étre réels distincts, réels confondus ou conjugués complexes.
Un systeme du deuxieme ordre est souvent formé a partir de deux systemes du premier ordre en série, c’est-a-
dire :
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6= g = (1) (202 (519

On a dans ce ce cas la correspondance suivante :

K=K K,
T = T17T2
- T1 +7‘2

2\/7'17'2

Remarques

Il convient de noter certaines limitations liées & la représentation (5.18) pour un systéme du deuxiéme ordre :

e La constante de temps équivalente 7 ne représente pas nécessairement la constante de temps dominante
du systéme. Par exemple, pour le systéme (5.19) avec 71 > 7, la constante de temps dominante est
environ 71 et non T = /7T To.

e Comme mentionné précédemment, la représentation (5.18) n’est pas utilisable pour un systéme instable.
Par exemple, pour le systéme strictement instable (un ou plusieurs péles positifs)

Gls) = <ﬁﬁ1> (Tzfil)

K1 K,
T1T282 + (7'2 — Tl)S -1

on obtient

G(s) =

qui ne se laisse pas mettre sous la forme (5.18).

5.5.2 Réponse indicielle

Pente a l'origine

La pente a l'origine de la réponse indicielle d’un systeme du deuxieéme ordre sans zéro est toujours nulle. C’est une
caractéristique intrinseque qui permet de les différencier des systemes du premier ordre par simple inspection.
Pour justifier cette affirmation, il suffit d’utiliser le théoreme de la valeur initiale. La pente a l'origine est :

9(0) = lim §(t) = lim sL[j(t)]

t—0 §—00
Pour une excitation u(t) = Ae(t) en forme d’échelon :

L[g(t)] = sY (s) = sG(s)U(s) = SG(S)é

=G(s)A
Le théoreme de la valeur initiale permet d’écrire :

7(0) = lim sG(s)A

S5— 00

. sKA 0
im —5———— =
s—oo 7282 +2(Ts+ 1

Montrer que cette conclusion n’est, en général, pas valable pour un systéme du deuzxiéme ordre avec un zéro.

Cas sur-amorti : Poles réels distincts pour ¢ > 1

La fonction de transfert G(s) peut dans ce cas étre décomposée en deux facteurs du premier ordre :
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1 1
G(s) =K 5.20
&) = K e D) (ras 1 ) (5-20)
avec
T2 =7/(CE V¢ —1)
La réponse a un échelon de la forme u(t) = Ae(t) devient :
y(t) = e(t)KA{l — [rre ¥/ — Tget/“]} (5.21)
L — T2
Cas critique : Poles réels confondus pour ¢ =1
La fonction de transfert G(s) se résume dans ce cas a :
K
G(s) = st 1) (5.22)

La réponse & un échelon de la forme u(t) = Ae(t) est alors :

y(t) = e(t) KA {1 - (1 + i)e—t/T] (5.23)

Cas sous-amorti : Poles conjugués complexes pour 0 < ¢ < 1

La réponse & un échelon de la forme u(t) = Ae(t) est dans ce cas :

y(t) = e(t)KA{l — et {coswt + (5.24)

¢ o
\/17_7@ Slnwt:| }

avec

=]
O
T
I
Il
—_
!

0.6 b
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u(t)
KA 16 T T
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Figure 5.12. Réponse indicielle normalisée d’un systeme du deuxieme ordre sans zéro et avec pdles conjugués complexes
(0< ¢ <.

La réponse normalisée y(t)/K A en fonction du temps relatif ¢/7 est présentée aux figures 5.11 et 5.12 pour
différentes valeurs de (.

5.5.3 Systémes oscillants et non oscillants

Suite a I’étude de la section précédente, on distingue deux cas de réponse d’un systeme du deuxieéme ordre sans
zéro & une entrée non oscillante (p; et pa sont les poles de G(s) :

a) Si ¢ > 1, la réponse y(t) sera non oscillatoire (cas sur-amorti et critique).
Cela signifie que p; et ps sont réels.

b) Si 0 < ({ < 1, la réponse y(t) sera oscillatoire (cas sous-amorti).
Cela signifie que p; et pe sont conjugués complexes (p1,2 = a % jb).
De plus :

— s1 0 < ¢ < 1: les oscillations seront amorties,

— si ¢ =0 : les oscillations seront entretenues.

5.5.4 Identification de la fonction de transfert

Il est utile d’exprimer analytiquement 1’abscisse et 1’ordonnée de certains points particuliers de la réponse
indicielle d’un systéme du deuxiéme ordre sans zéro, tel un point d’inflexion ou un maximum. En effet, cette
connaissance permet d’identifier le modele d’une installation existante sur la base de 'observation de sa réponse
indicielle.

Cas sur-amorti : Poles réels distincts pour ¢ > 1

Dans le cas d’un systéeme non oscillant, un point particulier est le point d’inflexion de la réponse indicielle. Ses
coordonnées t; et y(t;) sont obtenues en exploitant les deux premiéres dérivées de la réponse :
KA
j(t) = et/ — et/ (5.25)

T — T2

KA 1 1
(1) = _ et/ ot/ 5.26
i) = = ey e (5.26)
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Comme au point d’inflexion §(¢;) = 0, I’équation (5.26) donne :

1 1
Zemti/T = gt/ (5.27)

T1 T2

ce qui permet de déterminer I'instant ¢; du point d’inflexion :

tp= 12 1L (5.28)
L — T2 T2
Introduisons la constante : ! 1
X — 7e_ti/7'1 — 76—@1/72 (529)
1 T2
qui permet de simplifier I’écriture de la réponse indicielle et de sa dérivée au point d’inflexion :
2 — 73
y(t;) :KA{l— X} =KA{1—(n+7m)X} (5.30)
1 — T2
y(t;) = KAX (5.31)
L’équation de la droite d(t) tangente au point d’inflexion est :
d(t) = KA[X(t — (t; + 11+ 72)) + 1] (5.32)

Cette droite passe par zéro en t = t4 et croise 'asymptote horizontale correspondant & la valeur finale KA en
t =tp =t; + 71 + 7. Ainsi, 'intervalle de temps qui sépare le point d’inflexion de I'intersection mentionnée est
égale a la somme des constantes de temps 7 et To.

L’ensemble des indications obtenues et résumées a la figure 5.13 sont pratiques pour identifier la fonction de

| at)
4+ T pente : KAX
KA bommmmmmmmmmemeeeeee
KAX(r1 + )
A | |
: : u(t)
0 ta ii t}; t

Figure 5.13. Réponse indicielle d’un systéme sur-amorti du deuxieme ordre sans zéro.

transfert d’un systéme sur-amorti du deuxieéme ordre sans zéro. La marche & suivre est la suivante :

1. Mesurer la valeur finale K A de la réponse a un échelon d’amplitude A. Ceci permet de déterminer la valeur
du gain statique K.

2. Mesurer la pente KAX de la droite tangente au point d’inflexion. Ceci permet d’en déduire la valeur de la
constante X. En injectant ensuite cette valeur dans les deux termes de la relation (5.29), deux équations
non linéaires sont obtenues qui permettent de déterminer les constantes de temps 71 et 5.
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3. Mesurer l'intervalle de temps tg — t; et vérifier qu’il corresponde bien a la somme des constantes de temps.

Cas critique : Poles réels confondus pour ( =1

Un point particulier est également le point d’inflexion de la réponse indicielle. Ses coordonnées t; et y(¢;) sont
obtenues en exploitant les deux premieres dérivées de la réponse :

- 1—t7’ 1 l —t/T KAt —t/T
y(t):—KA[Te / —(1—1—7_)6 /}:2 et/

T T
KA t KA t
i(t) = — {et/T — et/T} =—e /" [1 — ] (5.33)
T T T T

Comme au point d’inflexion §(¢;) = 0, I’équation (5.33) donne t; = 7.
La marche a suivre pour déterminer K et 7 est la suivante :

1. Mesurer la valeur finale KA de la réponse a un échelon d’amplitude A. On obtient directement 7 = ;.
2. Déterminer le point d’inflexion et le temps correspondant ¢;. On obtient directement 7 = ¢;.

3. Les valeurs de la réponse indicielle et de sa dérivée au temps t; permettent de vérifier ’exactitude de K et

7. En effet, on doit avoir :

2 KA KA
y(t;)) = KA (1 — > =0,264KA et g(t;))=— =0,368—
e T

TE

Cas sous-amorti : Poles conjugués complexes pour 0 < ¢ < 1

Dans le cas d’un systéme sous-amorti ou oscillant, les points particuliers sont les extrema de la réponse indicielle,
plus spécialement le premier maximum qu’il est important de connaitre et facile a mesurer. Ses coordonnées t,,
et y(t,) sont obtenues en exploitant la premiere dérivée de la réponse.

Déterminons pour commencer les extrema qui sont situés aux instants tx, tels que §(tx) = 0. La dérivation
temporelle de (5.24) donne :

) kAe=St/T 0
i) = 228 singt t>
Y -
et donc :
k k
t = & OTT k=0,1,2,...

— )
w V1=
Les minimas sont obtenus pour les valeurs paires de k et les maxima pour valeurs impaires. Le premier maximum

est obtenu pour £ = 1. Ainsi :
T

En introduisant cette expression dans I’équation de la réponse indicielle (5.24), on obtient :
s
y(t,) = KA (1 te VI— C2> (5.34)

tp =

Ces indications, résumeées a la figure 5.14, sont utiles pour identifier la fonction de transfert d’un systeme oscillant
du deuxiéme ordre sans zéro. La marche a suivre est la suivante :

1. Mesurer la valeur finale KA de la réponse a un échelon d’amplitude A. Ceci permet de déterminer la valeur
du gain statique K.

2. Mesurer 'amplitude du premier maximum, ce qui permet de déterminer la valeur de (.

3. Mesurer 'instant d’apparition de ce premier maximum, ce qui permet de déterminer la valeur de la constante
de temps 7.
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KAbfd A N

Sl S DT

Figure 5.14. Réponse indicielle d’un systeme sous-amorti du deuxieme ordre sans zéro.

La méthodologie d’identification proposée ici est de nature plus didactique que pratique. Elle permet en effet
de développer une intuition quant a la forme de la réponse indicielle. Toutefois, pour identifier efficacement le
modele d’un systeme sur la base d’une réponse dynamique, il convient d’utiliser plus de mesures que les 3 points
pré-cités. Il existe des méthodes d’identification de systeme dynamiques basées sur la technique des moindres
carrées qui permettent d’utiliser tous les points mesurés de la réponse. Il y a ainsi une forte redondance des
données (par exemple, 100 mesures pour déterminer les trois parametres K, 7 et ¢, ce qui permet de lisser les
erreurs de mesure et les effets d’autres perturbations).

5.6 Relation entre position des pdles et réponse temporelle

La réponse Y (s) d’un systéme dynamique contient les poles du systéme ainsi que d’autres pdles associés a
Vexcitation U(s) :
Y(s) = G(s)U(s)

Nous avons appris au chapitre 4 & décomposer Y (s) en éléments simples de maniéres & retomber sur une ou
plusieurs entrées du dictionnaire de la transformation de Laplace. Les termes temporels qui correspondent a
une fraction rationnelle simple peuvent s’écrire de la maniere générique. Pour les cas paire de poles conjugués
complexes, la réponse temporelle s’écrit :

2A 2B
" e cos(wt) — ————t""Le™ sin(wt 5.35
— ) - = (wt) (5.35)
avec p1,2 = a % jw la paire de poles conjugués complexes, A &+ Bj les résidus correspondants et r =1,2,..., 1

ol 4 représente la multiplicité des poles. L’expression (5.35) est appelée un mode. Il s’agit du mode associé a
la paire de poles conjugués complexes a + jw. Selon les cas, r — 1, @ ou w peuvent étre nuls. Par exemple, pour
un pole réel simple (w =0 et p = 1), le mode devient Ae“’.

K(s—z)

Evaluer Uexpression (5.35) pour Y (s) = GoGop)
§—=P1){S — P2

Le signe de « joue un role important. Pour v > 0, la réponse croitra au-dela de toute limite. Inversement, si
a < 0, ces termes décroissent et tendent vers zéro lorsque le temps s’écoule. L’existence d’un facteur ¢"~! ne
change rien & cette régle car la décroissance de I’exponentielle 'emporte sur "' ainsi qu'un développement en
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Figure 5.15. Lieu des pdles d’'un mode et allure temporelle correspondante.

série de Taylor le montre.

De fagon générale, la partie réelle o d’un pdle conditionne I’amortissement du mode qui lui est associé. La
partie imaginaire w détermine quant a elle la fréquence d’oscillation du méme mode. Ces particularités sont
représentées a la figure 5.15.

Un systeme linéaire est dit stable si et seulement si tous ses poles sont stables, c’est-a-dire si ses poles se
trouvent dans le demi-plan complexe de gauche (a; < 0), axe imaginaire non compris. On parle alors de stabi-
lité BIBO (Bounded Input Bounded Output), c’est-a-dire que la réponse & toute entrée bornée restera bornée.
Un signal borné est un signal dont la valeur en fonction du temps reste entre une limite inférieur finie et une

2 Zt).

limite supérieur finie (par exemple, un saut unité, une sinusoide ou e~2¢, mais par contre pas e

Pour un systeéme stable, le pole le plus proche de lorigine, c¢’est-a-dire celui pour lequel |a| est le plus petit, est
dit dominant. En effet, aprés un temps suffisant pour que les contributions des autres poles se soient amortis,
seule la contribution qui lui est associée reste présente. Il conditionne de ce fait ’allure globale de la réponse

apres un temps initial.

5.7 Exercices résolus

Exercice 1
a) Evaluer la réponse impulsionnelle du systéme :

s—1

)= B+

b) Représenter graphiquement cette réponse.

¢) Evaluer les poles et les zéros de ce systeme. Est-il stable ?

Solution
a)
s—1 A B
Y(s) =G(s)U(s) = =
() =COUE) = G553 ~3+1 T 553
A= lim 8_1*7§
s—>—15+3 5
B s—l_é
s——32s+1 5
-3
1 _ 79 —t/2 -3t 4
L7 y(t) e 0

b) Graphique

C) zZ1 = 17p1 = 70.5,])2 =-3
Comme les deux poles sont dans la moitié gauche du plan complexe, le systeme est BIBO stable.

Exercice 2
Soit le systeme dynamique autonome, c’est-a-dire sans entrée :

C[1-2 10
°e l2—3]x =0) = [10]
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—-0.3

_0.4 1 1 1 1 1 1 1

a) Calculer z(¢).

b) Quel est 'ordre du systéme ? Combien de modes se trouvent dans la réponse x(t) ? Discuter ce résultat.

Solution

a) i‘l =1 — 2562 .Z‘l(O) =10

jig = 2$1 — 3$2 1‘2(0) =10

Transformation de Laplace :

sX1(s) —10 = X1(s) — 2Xa(s)

sXo(s) — 10 = 2X4(s) — 3X2(s)

X 1

2()[s+3] =2X1(s) + 10 —  Xa(s) = igX—I(S)JF%
X (s)[s — 1] = —2Xa(s) + 10 = - Xy (s) — —2_ 110
pET T e T s T s

Xi(s)[(s—=1)(s+3) +4] = —-20+10(s + 3)
X (s)[s% +25 — 3+ 4] = 10s + 10
X(s)[s* + 25+ 1] = 10s + 10

Xi(s)[s* +2s+1] =10(s + 1)

10
X =
1(8) s+1
2 10 10 20+ 10(s+ 1 10(s + 3 10
als) = _ (s+1) _ _10(s+3) _

T i35+l 543 (543541 L)+ s+l
z1(t) = 22(t) = 10" t>0

123
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b) Le systéme est d’ordre 2 car il est décrit par 2 équations différentielles du premier ordre. Comme les
réponses x1(t) et xo(t) ne contiennent que le mode e~!, on pourrait penser que le systéme est du premier
ordre. Cependant, il s’agit la d’un artefact dii au choix des conditions initiales. Pour le montrer, considérons
le méme systeme dynamique avec les conditions initiales génériques :

Un développement similaire & celui du point a) donne les signaux X;(s) et Xo(s) suivants :

108 —+ (3%10) — 21’20

X -
1(5) (8 + 1)2
w208 + (2210 — 220)
X -
2(5) (S T 1)2
Pour z19 = x99 = 10, on retrouve le résultat du point a). Dans le cas général avec un pole double a4 s = —1,

on observe les modes e~ !

Al =X =—-1L

et te~!. Notons également que les valeurs propres de la matrice du systéme sont

Exercice 3
Un systeme physique est composé de deux sous-systemes 57 et Sy : Le sous-systeme S; est décrit par la fonction

u(t) 2(1)

de transfert : G1(s) = (s +1)/s.
La sortie z de ce systeme est I'entrée du sous-systeme Ss dont la dynamique est régie par ’équation différentielle :

(E) + 34(8) + 29(t) = () +32(8) y(0)=1 §(0)=0 2(0)=0

a) Calculer la fonction de transfert du systéme complet S.

b) Evaluer les pdles et les zéros ainsi que le gain statique du systeme S.

Solution
1
a) Systeme S7 : G1(s) = s+1 Z(s)

s U(s)

Systeme Sy : §(t) + 3y(t) + 2y(t) = 2(t) + 32(¢)

Y(s)

Calcul de Ga(s) = Z(5)

Le concept de fonction de transfert suppose des conditions initiales nulles (systeme relaché) :

s2Y (s) + 3sY (s) +2Y (s) = sZ(s) + 3Z(s)
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Y (s)[s? 4+ 3s +2] = Z(s)[s + 3]

Y(s) s+ 3
Z(S) B 52 4+3s+2
X . _Y(s) Y(s) Z(s)
Systéme S : G(s) = U(s) B Z(s) . Ul(s)
(s+3)(s+1) _ s+3
(s+D(+2)s ~ s(s+2)

G(s) = Ga(s) - G1(s) = G(s) =

b) Poles: p1 =0 pg = —2
Zéro: z1 = -3

1l s’agit d’un systeme intégrateur (p; = 0) possédant donc un gain statique infini :

lim G(s) = lim sE3 00
s—0 s—0 8(8 —+ 2)

Exercice 4

a) Calculer la réponse indicielle du systéme suivant :

Y (s) 2
U(s) s2+s—2

b) Quel est le gain statique, la constante de temps dominante et le coefficient d’amortissement de ce systéme ?

Solution

a)
Y(s) 2 2

Ui) s24+s5-2 (s—1)(s+2)

Pour un saut unité, U(s) = 1/s, on a :

Y(s) = 2 _ 4, B C
§ Cos(s—1)(s+2) s+2 s—1 s

Par la méthode des résidus, on détermine :

A= lim 2 = 1
s——2 ] s(s—1) 3
B=tlimd—— {2
s—1 | s(s+2) 3

. 2
Cﬂ%{w—uw}:‘l

Finalement, on obtient :

b) Comme le systeme est instable (un pdle & 1), il n’est pas possible d’identifier K, 7 et ¢ par inspection de sa

fonction de transfert :
K 1

7252 +27¢s+1 " 0,552 +0,55 -1

e Le gain statique est infini & cause du terme e! dans y(t).
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e Le mode instable 0,67¢’ est dominant.

e Le concept de coefficient d’amortissement n’a pas de sens pour un systéme instable.

Exercice 5
Calculer la réponse indicielle du systéme dynamique caractérisé
temps de 5 minutes et un retard pur de 1 minute.

Solution
Fonction de transfert

par un gain statique de 2, une constante de

Y(s) 2e?
G = =
)= T ~ msr1
Réponse du systeme sans retard
YSR(S) 2
G = =
sr(8) = ) " B 11
2
Y, = =
SR(S) GSR(S)U(S) 8(58 + 1)
2 10 2 2
Y, = - - =-—
sh(s) s bs+1 s s+1
Ainsi :
ysr(t) = <l—e_§> t>0

Réponse avec retard

y(t) = ysp(t — 1) = 2€(t — 1) [1 ~ 6—1}

Exercice 6

Soit le systéme de cuves suivant avec le débit d’alimentation g (¢

la différence de niveaux hq(t) — ha(t) et go constant :
Calculer I’état stationnaire du systeme.

Calculer la fonction de transfert Ha(s)/Qc(s).

a
b
¢

d

)
)
) Un tel systeme est appelé interactif. Pourquoi ?
) Ce systeme posséde-t-il un élément intégrateur ?
Solution

a) Etat stationnaire

Bilans massiques (apreés simplification par p =const.) :

dhy

), le débit intermédiaire g;(¢) proportionnel a

1
Cuve 1: Slﬂ =q¢c—q :qe*E(hl — hs) (5.1)
dh 1
Cuve 2 : Sgd—; =q— Q= E(hl —ha) — ¢ (5.2)
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Etat stationnaire :

M= 0=g- () (5.0
@)= 0=plu-la)-a

Il y a un état stationnaire uniquement si go = qa2,= hy — hy = Rge.

b) Fonctions de transfert
Equations dynamiques en variables écarts :

Ahy = hy — hy
Ahg = h2 — }_12
Age = Ge — Ge
1 la): S d Ahy) = A ! Ahy — Ah 2
(1) = (a) : 157 (A1) = Age — 5 (Ahy — Ahy) (5:2)
()~ (20): S (Ahy) = £ (Ahy — Ahy) (5:2)
A Tétat stationnaire Ahy = Aho = Ag. =0
Transformation de Laplace :
SysAH;(s) = AQu(s) — %[AHl(s) — AHy(s)] (5.2)
SQSAHQ(S) = %[AHl (S) - AHQ(S)] (52)
(3): <Sls + ;)AHl(s) = AQ.(s) + %AHQ(S) (5.2)
(4) : (Sgs + ;)AHQ(S) = %AHl(s) (5.2)
. AHQ(S) - 1
(6): AHy(s)  RSps +1 (5.2)
Eliminons AH(s) dans (5) :
(513 + R)AHl(S) = AQE(S) + Em
1
AH(s) R(RS>s +1) (5.2)
AQ.(s)  s[R25.535 + R(Sy + S)] '
AQ.(s)  AH (s) AQ.(s)  s[RS1S2s+ (S1 +S2)]  s(rs+1) '
avec :
B 1 _ RS:S;
k=575, TT S5,

¢) Le systeme est appelé interactif car le niveau de la deuxiéme cuve influence celui de la premiere.

d) Elément intégrateur car le terme 1/s apparait dans la fonction de transfert (9).

Exercice 7
Soient les 2 systemes de cuves suivants.
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a) Pour chaque systeme, calculer la fonction de transfert Ha(s)/Q.(s) et évaluer son gain statique et ses poles.
Y a-t-il un élément intégrateur ?

b) Comparer qualitativement les deux systemes.

Solution

al) Systeme 1
Equations dynamiques :

A1%h1(t) = qe(t) — k1ha(t)

d
Ao Zha(t) = kaha (£) = koha(?)

Fonction de transfert :
AlsHl(s) = Qe(S) — lel(S)

AQSHQ(S) = lel(S) kQHQ(S)
1

1

Hi(s)
Qe(s) %S"‘ 1
Hay(s) &

Gain statique :

1
K=—
ks
e Constantes de temps :
Ay Aa
TNT="— Tp=-
"k Tk
Poles :
e Poles ok ok
p1 = A, p2 = A,
e Pas d’éléments intégrateur (pas de pole en 0)

a2) Systeme 2
Equation dynamiques :

A S ha(t) = ae(t) — kaha(0) — o)
d
As Zha(t) = kalha (£) = ha(8)] = kaha(t)

Fonctions de transfert :

Aq1sHq(8) = Qe(s) — k1[H1(s) — Ha(s)]
AQSHQ(S) = kl [Hl(s) — HQ(S)] — k'QHQ(S)

k
Hy(s) %k

As
k1+ko s+1




k1ko

5.8 Symboles utilisés

ki+ko Ao
|:k1+k2 s+ 1:|

Hj(s) _ Ha(s) Hi(s)

A1 A 2 [AL A | Ai(k1+ka)+ki1As
k1k2 § +25 k1k2 |: 2\/k}1]€2A1A2 +1

Aq (k1 + ko) + k1 A2
2+/ kleAlAQ

(=

K,y

Qc(s) — Hi(s) Qe(s)
Avec la définition des parameétres suivants :
kl kl + k2
Ky = K3 =
> ki + ko ° k1ks
AQ A1A2
T p— ’7— p—
2 k1 + ko k1ko
on obtient les fonctions de transfert :
Hy(s) Ko
H1 (S) ToS + 1
Hi(s) K3[ras + 1]
Qe(s) 71282+ 2(rs+1
Ha(s) _ Ha(s) Hi(s) _
Qe(s)  Hi(s) Qe(s)

Gain statique : K = Ky = 1/ko
Constante de temps équivalente : 7 = /A1 As/k1ko

e Poles :
(-
T

b1 D2

e Pas d’élément intégrateur (pas de poles en 0)

b) Comparaison des deux systémes

7252 4+ 2(1ts+ 1

/BT

Systeme Ordre Particularités Gain statique Poles
D te
1 2 CUX BYS emf}s. ki Pas d’oscillation
d’ordre 1 en série 2
Int tif :
'n eractt 1 Oscillation pour
2 2 hi1 influence ho = c<1
ho influence h;
5.8 Symboles utilisés
amplitude [J/K]

capacité thermique

~
~

réponse impulsionnelle
fonction de transfert
hauteur

V-1

gain statique

N RS T Qe Qe
Va)

Q

gain en accélération

129
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K, gain en vitesse
L[] transformation de Laplace
~11] transformation de Laplace inverse
nombre de zéros
nombre de podles
p pole (p = a £ jw)
puissance
débit volumique
résistance thermique
variable complexe de Laplace (s = a + bj)
t temps
t; temps au point d’inflexion
température
période
wrt  température extérieur
entrée du systeme
état du systeme
sortie du systeme
7€ro
Re(p)
(t) réponse indicielle

L

m

n

P

q

R

S

S surface de section
T

T

T,

U

x

Y

z

Q@

8l

d(t) impulsion de Dirac au temps t =0
e(t) saut unité au temps ¢ =0

¢ coefficient d’amortissement
I multiplicité d’un pole

10} déphasage

T constante de temps

w pulsation

wo pulsation propre

) W/T

Indices et autres symboles

3 2 3 e

X d’entrée

X de sortie

condition initiale pour X

X a l’état stationnaire

dérivée de X par rapport au temps
variation de X ; variable écart X (t) — X
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Commandes élémentaires

Nous étudions dans ce chapitre le comportement de systemes commandés en rétroaction par des régulateurs
simples, en particulier des régulateurs avec effets proportionnel, intégral et dérivé. La mise au point de tels
régulateurs est également discutée.

En introduction, la section 6.1 présente différents types de commande, notamment la commande manuelle, la
commande en boucle ouverte et la commande en boucle fermée. On étudie également la réduction de schémas
fonctionnels.

6.1 Types de commande

On utilise la notation générale u(t) pour la grandeur de commande, y(t) pour la grandeur commandée, y.(t)
pour la grandeur de consigne, d(¢) pour la perturbation, e(t) pour erreur de commande, G p(t) pour Deffet de
w sur y, Gr(s) pour celui de d sur y et Gr(s) pour la fonction de transfert du régulateur. Les effets des organes
de mesure et de commande sont inclus dans Gp(s). Le schémas fonctionnel général d’un systeme de commande
est donné a la figure 6.1, lequel permet de visualiser trois situations importantes :

|

U’VYLIJ/VL GL(S)
MAN l
U~ <~ u + v
> Gp(s > >
AUTO #(e) +

Figure 6.1. Schéma fonctionnel d’un systeme commandé (MAN : manuel, AUTO : automatique, BO : boucle ouverte,
BF : boucle fermée).

a) commande manuelle avec u = Uy qn,
b) commande en boucle ouverte lorsque le signal de retour est déconnecté au niveau du comparateur,

¢) commande en boucle fermée ou par rétroaction lorsque la boucle est fermée au niveau du comparateur.

Dans ce chapitre consacré a la commande, on va également travailler avec des variables écart, lesquelles vont donc
représenter des déviations autour d’un point de fonctionnement de référence. On a ainsi la situation dépictée a
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la figure 6.2 avec les signaux u et y liés au procédé et la fonction de transfert Gp entre du et dy. Comme dans
le chapitre précédent, on va également noter par u et y les écarts du et dy afin de simplifier les notations; ainsi,
une valeur de u en variable écart signifie en fait @,.s + u en variable absolue.

Gp

ﬂ'r‘ef :U'r'ef

ou + u Y — dy
Procédé

A 4

+v

Figure 6.2. Relations entre variables absolues (u et y), variables de référence (@res €t Fres) et variables écart (du et
0y).

6.1.1 Commande manuelle

Il arrive parfois que l'opérateur doive (ou désire) prendre controle du systéme de commande. Pour ce faire, il
existe un commutateur & la sortie du régulateur (fig. 6.1) : en mode < manuelle >, le signal u est généré par
I'opérateur a I’aide d’un potentiometre ou d’un générateur de fonctions ; en mode < automatique >, u correspond
a la sortie du régulateur.

Pour passer d’'un mode & ’autre sans-a-coup, on procede ainsi :

Commutation < manuel > / < automatique >

1. Opération en mode < manuel > a I’état stationnaire : Uman, Yman

2a Ajuster la consigne telle que y. = Yman, c’est-a-dire € =0
2b Ajuster la commande a priori @,.s (fig. 6.2) telle que Uref = Uman

2. Commuter en < automatique » : u(t) = Uyres + 0 = Uman
Commutation < automatique > / < manuel >

1. Opération en mode < automatique > a 1’état stationnaire : Ugyut, Yaut
2. Ajuster la commande manuelle telle que Uman = Uaut
3. Commuter en < manuel > : u(t) = Uman = Uqut

6.1.2 Commande en boucle ouverte

Si la boucle est déconnectée au niveau du comparateur, la fonction de transfert entre la consigne y. et la gran-
deur commandée y devient :

= GR(S)GP(S)

La commande est parfaite (c’est-a-dire y suit parfaitement la consigne y.) si Gr(s) = 1/Gp(s). Il y a cepen-
dant trois raison principales qui, dans la pratique, limitent ’application d’une telle commande en boucle ouverte :

1. nécessité de connaitre parfaitement le modele du systeme a commander,

2. le régulateur Gr(s) ainsi calculé est souvent un élément dynamique non causal nécessitant un prédiction
et donc pas réalisable physiquement,

3. aucune action n’est prévue pour rejeter la perturbation d.
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6.1.3 Commande en boucle fermée

Il s’agit d’une commande par rétroaction (en anglais feedback) pour laquelle le signal de commande u est calculé
a partir d’'une mesure de la grandeur commandée y. Le principe a été introduit au chapitre 1. La fagon de
calculer la fonction de transfert d’'un systéme bouclé par rétroaction est présentée au paragraphe suivant.

6.1.4 Réduction de schémas fonctionnels

Il arrive souvent que I'on souhaite calculer une fonction de transfert globale a partir de plusieurs fonction de
transferts se trouvant dans un systéme bouclé. Pour ce faire, on dispose de la regle simple suivante :

Produit des fonctions de transfert
Fonction de transfert

en transmission direct (entrée — sortie)
entre entrée et sortie | = (6.1)
lProduit des fonctions de]

transfert dans la boucle

d’un systéeme bouclé

Illustrons cette regle a I’aide du systeme en boucle fermée de la figure 6.1. On peut écrire :
Y(s) =Gp(s)U(s) + GL(s)D(s)

U(s) = Gr(s)E(s)
E(s) = Ya(s) — Y (s)

e Pour calculer la fonction de transfert Y (s)/Y.(s), on pose D(s) = 0 et on obtient & partir des 3 équations
précédentes :
Y(s) = Gp(s)Gr(s)[Ye(s) = Y (s)]

Y(s)[1+ Gp(s)Gr(s)] = Gp(s)Gr(s)Ye(s)
Y(s)  Gp(s)Gr(s)

= 6.2
Yo(s) 14+ Ggr(s)Gp(s) (6:2)
Exemple Considérons I’exemple de la figure 6.3.
. Y3(s) Gr2(s)Goc(s)Gpai(s)
Boucle intérieure : = : : =G4(s
Va(s) 1% Grals)Goc(9)Gra(3)Gori() ')
L. Yi(s) KonGr1(s)Gi1(s)Gpa(s)
Boucle extérieure : =G s) = : :
* Vi) - or =13 Gr(s)G1(5)Gpa(s)Gora(s)
Pour le schéma fonctionnel de la figure 6.1, vérifier la validité des quatre relations suivantes :
Y(s) Y(s) GL(s)
=Gp(s) = =7 (6.3)
D(s) 5o D(s) ap LT Gr(s)Gp(s)
Y(s) Y(s) Gr(s)Gp(s)
B I S 715) Bl Y BT (04
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Gom,1 |«
Gom,2 |«
Y1 Yq
f— — Qmﬁ >

Figure 6.3. Réduction de schémas fonctionnels.
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6.2 Exemple : régulation de température

Soit une cuve homogene de 1 [m?3] de volume et alimentée en continu par un débit d’eau de 0,05[m3] qu'il
convient de chauffer de 10 & 20 [°C] par l'intermédiaire d’un corps de chauffe dont la puissance nominale vaut
35 [kW]. On souhaite modéliser les divers éléments de la boucle de commande nécessaire & la régulation de la
température de la cuve. On consideére un régulateur proportionnel pour commander 7'(t) en ajustant P(t). Le
schéma de l'installation commandée est donné a la figure 6.4 ou M et N sont des signaux électriques de mesure
et de commande.

q L ]

ELEELTIS Rl =

%

Figure 6.4. Régulation de la température d’une cuve (TT : transmetteur de température; RT : régulateur de
température).

6.2.1 Modélisation

Un bilan thermique pour la cuve donne le modele suivant :

d
Ve, 2 T(t) = apep[Te(t) = T(2)] + P(t) (6.5)
avec les grandeurs suivantes :
e parametres constants : V.p,cp,q
e variables d’entrée (variables indépendantes) : P(t), T.(t)
e variable d’état (variable dépendante) : T(t)
e variable de sortie (mesure) : T(t)

A Tétat stationnaire, I’équation (6.5) devient :

0=gpc,(Te —T)+ P

d’ott l'on tire : T =T, + (P/qpc,) = 20[C]
Ecrire l’équation (6.5) en termes de variables écart par rapport & I'état stationnaire de référence.
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6.2.2 Analyse des éléments de la boucle de commande

Le schéma fonctionnel pour la régulation de température de la cuve est donnée a la figure 6.5. M., M et N sont
des signaux électriques normés, par exemple 0-5 [V] ou 4-20 [mA]. On étudie ci-dessous séparément chacun des
blocs du schéma fonctionnel.

a) Cuve
La transformée de Laplace de 1’équation 6.6 donne (en supposant le systéme initialement au repos) :

VpepsT(s) = gpep|Te(s) —T(s)] + P(s)

ou
1

apcp

(%s F1)T(s) = Tu(s) + ——P(s) (6.6)

Puisque la grandeur commandée T'(t) dépend de T.(t) et de P(t), nous considérons deux fonctions de
transfert distinctes :

e Fonction de transfert de la perturbation (load) G (s) décrivant le comportement de T'(s) en fonction
de T.(s) uniquement ; pour cela on pose P(s) = 0 dans I’équation (6.6) et, aprés réarrangement, on
obtient :

T(s) 1 1

Grls):= Te(s) B (V/g)s+1 T s+l

T = — = 20[min]

\%

q

e Fonction de transfert du processus Gp(s) décrivant le comportement de T'(s) en fonction de P(s)

uniquement ; pour cela on pose T,(s) = 0 dans ’équation (6.6), et apreés réarrangement, on obtient :
T(s) 1/qpcy

K 1
- - - WK = —— = 0,20[C/k
Grls) P(s) (V/gs+1 7s+ 1" apcy 0.29[C/kW]

b) Organe de mesure (thermocouple + conditionnement du signal électrique)

La caractéristique faiblement non linéaire de I'organe de mesure ainsi que son approximation linéaire sont
représentées a la figure 6.6. Cette caractéristique représente une relation statique entre la température T
et la tension générée correspondante M.

La constante de temps du thermocouple est d’environ 3 [s]
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Un organe de mesure est souvent modélisé comme un systeéme statique (d’ordre zéro) ou un systéme de
premier ordre (cf. section 5.3). Ici :

M(S) KOM
G = =
om(s) T(s) (toms+1)
avec
5|V
Kom = 50[[6]’] = 0,1[V/C] (obtenu & partir du graphe ci-dessous)
ros(s) = 3[s] = 0,05[min]
tension M
[V] A
100
=
Kowm
B mm - m - o
| T
| I ,
0 50 / 1000 €]

Figure 6.6. Caractéristique statique de l'organe de mesure.

¢) Organne de commande (amplificateur de puissance + corps de chauffe)

La caractéristique statique de l'organe de commande est donnée a la figure 6.7.
Sa constante de temps est d’environ 2 [min].
Un organe de commande est souvent modélisé comme un systéeme du premier ordre :

_ P(s)  Koc
Goc(s) = N(s) N Tocs +1
1
Iei: Koo = Og[[‘k;l]/[/] = 20[kW/V] (obtenu & partir du graphe ci-dessus) Toc = 2[min]

d) Systéme & commander (cuve avec organe de mesure et organe de commande)

Le systeme a commander, tel que vu par le régulateur, correspond a la mise en série des trois éléments
indiqués a la figure 6.8.

_ M(s) ) = Gom(5)Gp(s)Goc(s)

M
G) = N5) ~ T(s)P(s)N(5)
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100 fo=mmmmmmmmmmmmm e

tension N
\4

3 1 (N Sy Ay gy iy ey gy gy g Sy R

Figure 6.7. Caractéristique statique de l'organe de commande.

organe de commande cuve organe de mesure
N P T M

—| Goc > Gp Gomy p—

4

SYSTEME A COMMANDER
N M

- G .

Figure 6.8. Systeme a commander comprenant la cuve et les organes de mesure et de commande.

0,1
0,055 + 1

0,29 20 0,58

= G0+ 1) 551 = (0,055 + 1)(20s + 1)(2s + 1)

La dynamique du capteur (organe de mesure) étant négligeable (en effet 0,05 < 2 ou 20), on peut écrire

simplement :
0,58

(20s +1)(2s+ 1)

Utiliser des arguments graphiques pour justifier la simplification précédente. Peut-on également négliger
Kom ?

G(s) ~ KouGp(s)Goc(s) =

e) Régulateur Le régulateur calcule le signal de commande N sur la base de lerreur de commande e =
M. — M. Un régulateur proportionnel possede la fonction de transfert suivante :
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ol KR représente le gain du régulateur.

f) Systeme bouclé
Le systeme bouclé, avec toutes les fonctions de transfert d’intérét, est donné a la figure 6.9. Le systeme

Telm

SYSTEME A G
L
COMMANDER
REGULATEUR 1
T Mgt e N P Lo
— Kou F—> Kp > Goc > Gp —>O—TF—
€] V1 $-[V] Vi \4 + (€]
M
Gowm [+
Vi

Figure 6.9. Schéma fonctionnel de la commande d’une cuve

bouclé représente un systeme dynamique dont ’étude constitue I'objet de I’automatique. L’objectif prin-
cipal est le dimensionnement du régulateur (ici le choix du gain Kg) en fonction des caractéristiques du
systeme a commander et du systéme bouclé désiré.

En appliquant la regle de la section précédente, on peut écrire les fonctions de transferts suivantes :

e Effet de 1 consigne T, sur la grandeur commandée T :

T(s) _ KOMKRGoc(S)Gp(S) (6 7)
TC(S) BE 1+ KrGoc (S)GP(S)GOM(S) '

e Effet de la perturbation T, sur la grandeur commandée T :
Ie) | GLs (6.8)
Te(s) » 1+ KrGoc(s)Gp(s)Gon(s)

Etant donnés Gp(s),Gr(s),Goc(s) et Gon(s), la synthése du régulat- eur consiste a choisir Kr de
fagon & avoir une solution acceptable au probleme d’asservissement (6.7) et/ou de régulation (6.8). D’ou
Pintérét d’étudier le comportement dynamique de T'(s)/Te.(s) et de T'(s)/Te(s).

Par définition, les variables du schéma fonctionnel de la figure 6.9 représentent des écarts autour de 1’état
stationnaire de référence. Pour déterminer cet état stationnaire, on a spécifié les valeurs numériques des
deux variables indépendantes P et T, (cf. §6.2.1). Pour le systéme en boucle fermée, I’état stationnaire
sera déterminé en spécifiant les valeurs numériques des deux variables indépendantes T, et T, (fig. 6.9).
Il en résultera les valeurs numériques de M., M,e, N, P et T.

6.3 Commande tout-ou-rien

Considérons la régulation de la température d’une salle équipée d’un radiateur avec thermostat a deux positions :
< ouvert » / « fermé », c’est-a-dire que le radiateur chauffe ou ne chauffe pas. La consigne est T.(t) et la
température effective dans la piece est T'(t). Lerreur e(t) = T.(t) — T'(t) permet de déterminer la puissance
P(t). Comme cette derniére ne peut prendre que deux valeurs Py, ou Py (dans ce cas particulier P, = 0),

on obtient la loi de commande suivante :
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P(t) = P,ax pour e(t) >0
Prin pour e(t) <0

Cette condition exprime une commande tout-ou-rien ou on/off. Le radiateur sera < on » lorsque 'erreur est
positive (T' < T¢) et < off » lorsque l'erreur est négative ou nulle (T' > T.). La variable commandée oscillera

P

A
P’maz

i
Y+
4
=)
e,

Figure 6.10. Commande tout-ou-rien

b)

off off

t

Figure 6.11. Comportement qualitatif d’'une commande tout-ou-rien : a) sans hystérésis, b) avec hystérésis.

autour de la valeur de consigne avec une amplitude et une fréquence qui dépendront de 'ordre et de la valeur
constante de temps du systeme a commander.
Pour éviter de passer tres souvent de Prin & Prgs, €t inversement, dés que erreur change de signe (c¢’est-a-dire
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afin de réduire le nombre de commutations on/off par 14 'usure de 'organe de commande), on introduit souvent
une hystérésis de largeur 2¢ (Fig. 6.12.

La commande tout-ou-rien est simple, bon marché et utile en ’absence d’une connaissance précise de la dy-
namique du processus. Elle est tres utilisée pour des commandes simples dans I'industrie et les applications
courantes (systemes de chauffage et de conditionnement de laire, réfrigérateurs, etc.). Malgré son apparente
simplicité, la commande tout-ou-rien est difficile a analyser du fait de sa non-linéarité.

Pm,aac <

&3
Y+
@
o
T

> >

M)
- _ €
> P, min
T

Figure 6.12. Commande tout-ou-rien avec hystérésis.

Identifier l’élément non linéaire de la commande tout-ou-rien. Pourquoi [’analyse est-elle difficile ?  Ecrire la
fonction de transfert pour une commande tout-ou-rien. Dessiner qualitativement la réponse temporelle d’un
systéme du premier ordre commandé a l'aide d’un régulateur tout-ou-rien avec hystérésis. Quelle est linfluence

de € sur 'amplitude et la fréquence des oscillations ¢

6.4 Commande proportionnelle

Le plus souvent, il ne saurait étre question d’agir comme dans ’exemple précédent par < tout-ou-rien > car le
systeme est ajusté par a-coups. Il est préférable de pondérer 'action du régulateur. Par exemple, celle-ci peut
étre proportionnelle & ’écart de commande e(t).

6.4.1 Fonction de transfert du régulateur proportionnel

La sortie N(¢) d’un régulateur proportionnel dépend de son entrée e(t) selon ’équation suivante :
N(t) = Kre(t) (6.9)

Ceci donne la fonction de transfert suivante pour le régulateur proportionnel :

GR(S) = = KR (610)

K représente la gain du régulateur. Dans I'industrie, on rencontre souvent une indication de la bande propor-
tionnelle (BP en % = 100/ Kg). L’équation (6.9) indique la relation entre les déviations e(t) et N(t), lesquelles
sont calculées a partir de I’état stationnaire de référence €.y et N,. ¢. L’erreur de référence €yef = Ye,ref — Yref
est typiquement nulle. Le signal de référence N, ¢ est appelé commande & priori et représente le signal de
commande réel lorsque I'erreur est nulle.

Il est important de ne pas oublier la commande a priori dans une implantation pratique car, lorsque 'erreur
de commande est nulle, il convient d’appliquer la tension N,.. ¢ (et non pas 0) & I’actionneur. On voit aussi que
Nye ¢ doit étre calculé de fagon a ce que, a I’état stationnaire, I’erreur de commande correspondante €. soit
nulle. On obtient ainsi la situation de la figure 6.13.
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éref =0 N’ref

ereel(t) :O_ e(t) R N(t) = Kpe(t) N(t) O+ NTE&l(f)

Figure 6.13. Régulateur proportionnel avec la commande a priori N,c; correspondant & &..; = 0.

6.4.2 Statisme

Définition On appelle statisme, ou erreur statique, l’erreur résiduelle (permanente) entre la grandeur de
consigne et la grandeur commandée pour ¢t — oo :

€:= lim [T,(t) — T(t)] = lim s[T.(s) — T(s)]

t—o00 s—0

On cherche souvent a éliminer le statisme afin d’améliorer la précision en régime permanent; on dit qu'un
systeme bouclé n’a pas de statisme si e = 0.

L’équation (6.9) montre que si I'on veut, avec un régulateur P, obtenir un valeur de N(t) différente de zéro
(c’est-a-dire un signal de commande réel différent de ]\_fwf), une certaine erreur est nécessaire.

Avec un régulateur proportionnel, une certaine erreur e(t) est nécessaire afin de pouvoir générer une grandeur
de commande différente de celle a ’état de référence. Ceci est souvent nécessaire suite a un changement durable
de consigne ou a une perturbation durable comme illustré dans I’exemple suivant.

Exemple

Supposons que le systéme bouclé de la section 6.2 soit a 1’état stationnaire de référence avec, en variables ab-
solues :

Teves = Trep = 20[C] c’est-a-dire Eref =0
Npep = 2L —1,75[V]  Prey = 35[kW]

Le systeme est bouclé par un régulateur P et on désire imposer une nouvelle température de consigne. On
aimerait donc que le régulateur amene le systéme & un nouvel état stationnaire, si possible sans statisme,
caractérisé par :

T.=T = 25[C] c’est-a-dire e=0

Pour cela, il faut N = 2,62[V] et P = 52, 5[kW].

Or, pour générer un signal de commande réel N = 2,62[V], donc différent de N,.; = 1,75[V], il faut quune
certaine erreur existe puisque N = N,..; + Kreé. Avec une régulateur proportionnel, une erreur statique nulle
( & = 0) donnera toujours N = Nref et donc T = Tref = Twef. Par conséquent, pour avoir T =+ Tref, il
est nécessaire d’avoir un statisme (e # 0). L’erreur statique qui résulte d’un saut de consigne est représentée
graphiquement & la figure 6.14 (une description quantitative est donnée au §6.4.4).

Dessiner qualitativement le comportement du signal de commande N (t).

6.4.3 Saturation du régulateur

A partir de I'équation (6.9), le signal réel de commande (donc en variable absolue) peut s’écrire :

Nréel(t) - Nref + KRe(t)

En pratique, le signal Nyg est borné entre 0 et 5[V]. Ainsi, si le terme Kge est grand en valeur absolue, il y
aura saturation de Ny (), comme représenté a la figure 6.15. On cherche donc a travailler dans les régions de



144 6 Commandes élémentaires

Pmaw <

O

Figure 6.14. Réponse de la température de la cuve & un saut de consigne de 5°C (régulateur P). Les variables expriment
des déviations par rapport au point de référence.

non saturation.

La commande tout-ou-rien de la figure 6.10 constitue en fait une commande proportionnelle de gain infini et
avec des saturations a P, et Paz.
Le régulateur P avec saturation est-il linéaire ¢

Nreel L [V]

NTef

4

Figure 6.15. Caractéristique d’un régulateur P avec effets de saturation.

6.4.4 Effet de la consigne T.(t) sur T'(t)

Pour les valeurs numériques de la section 6.2, ’équation (6.7) donne pour un régulateur P :

Cor(s) T(s) 0,58K 5
S) = =
BE Te(s)|,, 40 +22s+ (1+0,58Kp)
ce qui permet de définir :
0,58K g
Kpp = lim G =R 6.11
pr = lim Gpr(s) = 1 0,58Kp (6.11)
40 ¢ 1,74
T = —_——— = —
BETN140,58Ks """~ /T10,58Kz
a) Pour Kp=1":
0,58 C
G = ’ don  Kpp=0,37=
5r(9) = G rosyies OO0 Ker=0 [C’]

Ter = 5,03[min]

Esr =1,38
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b) Pour Kr =10 :

5,8 . B c
Gor(s) = o35 568 ot Ker=08 {C}
Tpr = 2,42[min]
Epp = 0,66
T [C]

0.98
0.85
0.74

0.50
0.37

[min)

Figure 6.16. Réponse du systéme bouclé & un saut de consigne pour différents régulateurs, P.

Le systeme est il oscillant pour Kg =1 % Et pour Kr =10 ?
Répéter le calcul pour Kr =5 et K = 100.
La réponse T'(t) & un saut unité de T.(t) pour différents régulateurs P est donnée & la figure 6.16.
Qu’elle est leffet de Kgr sur l'erreur statique ?
Qu’elle est leffet de Kr sur Kpp,Tpr et Egr ?

6.4.5 Effet de la perturbation T.(t) sur T'(t)

a) En boucle ouverte

Gpol(s) =

= Grls) = 2051+ 1 {g]

b) En boucle fermée Pour les valeurs numériques de la section 6.2, 'équation (6.8) donne pour un régulateur
P:

Grrls) = T(s) _ 25 +1
BENT T (s) bp 4057225 +140,58Kp
d'ont .
Kpp =lim G = 6.12
pr = I Ger(s) = 753, (6.12)

La réponse indicielle, ¢’est-a-dire la réponse T'(¢) & un saut unité de la perturbation T, (t¢), est donnée a la figure
6.17.
Quelle est leffet de Kg sur lerreur statique ?
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t  [min]

0 1 1 1 1 1 1 1 1 1 L,
0 10 20 30 40 50 60 70 80 90 100

Figure 6.17. Réponse du systéme bouclé & un saut unité de perturbation pour différents régulateurs P (Kr = 0 :
systéme en boucle ouverte).

6.4.6 Action directe ou inverse ?

Jusqu’a présent, nous avons considéré le gain du régulateur comme une grandeur positive; cependant, un
régulateur doit sans cas posséder un gain négatif.
Considérons le régulateur P de la figure 6.18 avec :

N(t) = Kge(t) = Kr[Mc(t) — M(t)] (6.13)

On distingue deux cas en relation avec 1’équation (6.13) :
a) Kp >0 Action inverse du régulateur
N (t) augmente quand M (t) diminue, et inversement
b) Kr <0 Action directe du régulateur
N(t) augmente quand M (t) augmente et inversement

M,
e
U

V] - v
M ‘[V]

Figure 6.18. Régulateur P.

w+

> KR >

e N
]

Exemple : Régulation de niveau dans une cuve

Soit I'installation de la figure 6.19. La vanne peut étre de deux types :

e Vanne <« air-to-open » (un signal est nécessaire pour ouvrir la vanne; l'organe de commande a un gain
statique positif). Si ’énergie pneumatique vient & manquer, la vanne se ferme automatiquement ; une telle
vanne est utilisée pour des raisons de sécurité pour commande un débit d’alimentation par exemple. Seul
un régulateur a action inverse convient ; en effet :
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I
|
I
I
I
qﬁ :
I
I
I
I
M M,
-»| régulateur f«---

s

h —

Figure 6.19. Régulation de niveau dans une cuve.

Lorsque h(t) /= M(t) /= N(t) \= q.(t) \= h(t) \,

(action corrective dans la bonne direction)

(régulateur & action directe : si h(t) /= M(t) /= N(t) /= q.(t) /= h(t) ")

e Vanne < air-to-close » (un signal est nécessaire pour fermer la vanne; l'organe de commande a un grain
statique négatif). Si ’énergie pneumatique vient & manquer, la vanne s’ouvre automatiquement ; une telle
vanne est utilisée par exemple pour un débit de réfrigération. Seul un régulateur a4 action direct convient ;
en effet :

lorsque h(t) /= M(t) /= N(t) /= qo(t) = h(t) \
(action corrective dans la bonne direction)

(régulateur & action inverse : si h(t) /= M(t) /= N(t) \= ¢.(t) /= h(t) M)

6.5 Commande intégrale

La sortie N(t) d’un régulateur intégral dépend de son entrée e(t) selon I’équation :

N@:l/QwW (6.14)

T1
ou 71 est la constante de temps d’intégration.
Avantages
L’intégrale dans ’équation (6.14) représente une somme pondérée de toutes les erreurs passées; le régulateur T
considere donc le passé aussi bien que le présent pour calculer le signal de commande.
N (t) varie aussi longtemps que e(t) # 0 et n’atteint donc pas de nouvel état stationnaire avant que lerreur de
commande soit nulle De ce fait, ce nouvel état stationnaire n’exhibe pas d’erreur statique. Il est donc possible
d’obtenir N différent de zéro et € nulle. Il s’ensuit que la commande intégrale permet d’éliminer le statisme.
Inconvénient
La commande intégrale ne répond pas suffisamment & lerreur instantanée vu qu’elle tient en mémoire toute
lerreur passée. En d’autre termes, I'erreur instantanée est pondérée trop faiblement. Le régulateur I est de ce
fait tres peu utilisé en pratique; on lui préfere le régulateur PI, lequel possede un terme P en plus d’élément I
(cf. section 6.7).
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6.6 Commande dérivée

La sortie N(t) d’un régulateur dérivé dépend de son entrée e(t) selon I’équation suivante :

N(t) = Tpie(t) (6.15)
dt

ou 7p est la constante de dérivation.
La dérivée %e(t) indique la variation de l'erreur, c’est-a-dire la tendance de celle-ci a augmenter ou a diminuer.
Avantage La dérivée dans I’équation (6.15) signifie que 1'on considere la tendance de l’erreur a augmenter ou
a diminuer. De ce fait, on porte un regard sur le futur (effet de prévision). On verra que cet effet de prévision
augmente en général la stabilité du régulateur.
Inconvénient
On n’emploie que trés rarement un régulateur dérivé tout seul; on lui associe généralement un terme P et
souvent également un terme I (cf. section 6.8).

6.7 Commande proportionnelle-intégrale

6.7.1 fonction de transfert du régulateur PI

En combinant les deux effets, proportionnel et intégrale, on obtient ’équation suivante décrivant le comporte-
ment de la sortie N(¢) en fonction de lentrée e(t) :

N(t) = Kgr -

e(t) + e /Ot e(t’)dt'] (6.16)

Ce type de régulateur est tres utilisé dans 'industrie chimique.
Avec la transformée de Laplace de 1'équation (6.16) :

N(s) = K| E(5) + ~=E ()]

T1S

la fonction de transfert du régulateur PI devient :

Gr(s) = :m@+) (6.17)
Cette derniére est-elle-linéaire ¢ Quel est son ordre ?

6.7.2 Effet de la consigne T : ¢(t) sur T'(t)

Pour les valeurs numériques de la section 6.2, I’équation (6.7) donne pour un régulateur PT :

T(s) 0,58 Kg(m1s+1)
G = = ( 6.18
Br(s) Te(s)|,, 40ms® +22ms2 + 71 (1 +0,58Kp)s + 0,58Kp (6.18)
d’oit
KBF: lim GBF(S)Zl (619)
s—0

Une comparaison des équation (6.11) et (6.19) montre bien que le terme I régulateur permet 1’élimination du
statisme; en effet, Kpr = 1 signifie ici que, grace & la commande PI, une augmentation de 1 [°C] de la valeur
de consigne T.(t) implique également, au nouvel état stationnaire, une augmentation de 1 [°C] de la grandeur
commandée T'(t).

La réponse T'(t) & un saut unité de T,(t) pour différents régulateurs P et PI est donnée & la figure 6.20.



6.8 Commande proportionnelle-intégrale-dérivée 149

(1) Kr=1

(2) Kr=5
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Figure 6.20. Réponse du systeme bouclé a un saut de consigne pour différents régulateurs P et PI.

6.7.3 Effet de la perturbation T.(t) sur T'(t)

Pour les valeurs numériques de la section 6.2, ’équation (6.8) donne pour un régulateur P :

T(s) 718(25 + 1)
G = = - 6.20
zr(s) To(s)|gp 40 8® + 22182 + 71(1 + 0,58K)s + 0,58 K (6:20)
d’oll
KBF: lim GBF(S):O (621)
s—0

Une comparaison des équation (6.12) et (6.21) montre que le terme I du régulateur permet I’élimination du
statisme ; en effet , dans le cas du régulateur PI, lorsque t — oo, la perturbation constante T, n’influence plus
la grandeur commandée T'(¢).

La réponse T'(t) & un saut unité de T, (t) pour différents régulateurs P et PI est donnée a la figure 6.21.

A la figure 6.21, laquelle des courbes (3) et (4) représente la réponse la plus rapide ? Quelle conclusion en tirer

pour le choiz de 11 ¢.

6.8 Commande proportionnelle-intégrale-dérivée

6.8.1 Fonction de transfert PID

La sortie N(t) d’un régulateur PID dépend de son entrée e(t) selon I’équation suivante :

N(t) = Kgr -

e(t) + k= /0 e(t)dt' + TD:lite(t)] (6.22)

terme P terme I  terme D Remarque : le gain K multiplie les trois termes du régulateur
PID.
La transformée de Laplace de I’équation (6.22) permet d’obtenir la fonction de transfert du régulateur PID :
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0 2 1 1 1 1 1 1 1 1 1 1 ¢ [mln]
0 10 20 30 40 50 60 70 80 90 100

Figure 6.21. Réponse du systéme bouclé a un saut de perturbation pour différents régulateur P et PI.

T17'D82 +7ms+1
T1S

(6.23)

s 1
GR(S):SZKR[l-i-m-i-TDS] ZKR[
1

Cependant, le terme 7ps n’est pas réalisable physiquement car le degrés du numérateur est supérieur a celui du
dénominateur (cf. section 3.6.2) ; c’est pourquoi, en pratique, on utilisera ’approximation suivante :

s 1 DS
= —Knl14+ — .24
GR(S) R[ + T8 + as + 1] (6 )

avec o <L Tp

6.8.2 Effet de la consigne T.(t) sur T'(t)

Pour les valeurs numériques de la section 6.2, ’équation (6.7) donne pour un régulateur PID :

Grr(s) = T(s) B 0,58Kr(1+ 715+ 117ps?)) (6.25)
BRI To(s) | gp - 40ms® + 22182 + 71 (1 + 0,58KR)s + 0, 58K 5 '
d’ou
KBFZSI}_%GBF(S):]- (626)

La réponse T'(t) & un saut unité de T.(¢) pour différents régulateurs PI et PID est donnée & la figure 6.22.

6.8.3 Effet de la perturbation T.(t) sur T(t)
Pour les valeurs numériques de la section 6.2, ’équation (6.8) donne pour un régulateur PID :

G = =
5r(s) To(s)|gp  40ms® + 227152 + 71 (1 + 0,58KR)s + 0,58Kp

(6.27)

d’ou
KBFZ lim GBF(S)ZO (628)
s—0
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Figure 6.22. Réponse du systeme bouclé a un saut de consigne pour différents régulateurs PI et PID.

La réponse T'(t) a un saut unité de Te(t) pour différents régulateurs PI et PID est donnée & la figure 6.23.

Kr=5 71 = 50[min)]
0.3 L (2) Kr=5 1 =5 [min]
(3) Kr=5 11 =5 [min] Tp = 1.25[min]

0.25

0.2

0.15

0.1

0.05

t [min]
100

_005 L L L L L L 1 1 1
0 10 20 30 40 50 60 70 80 90

Figure 6.23. Réponse du systéme bouclé & un saut de perturbation pour différents régulateurs PI et PID.

6.8.4 Effets des termes P, I et D du régulateur PID

a) Effet du terme P Elément de base de la loi de commande, il permet une réponse rapide, proportionnelle &

I'erreur instantanée.

Si on augment Kp :
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— réduction de Uerreur statique (cf. fig. 6.16),
— systéme bouclé plus rapide mais aussi un peu plus oscillant (cf. fig. 6.15)
— saturation possible du régulateur (cf. §6.4.3).

Avantage

N(t) varie proportionnellement & 'erreur e(t) : plus 'erreur est importante, plus laction corrective sera
grande. Inconvénient Une erreur statique est présente pour un changement durable de consigne ou une
perturbation durable (cf. §6.4.2).

Effet du terme I Avantage 11 élimine le statisme grice a l'intégration de erreur e(t), ce qui permet de définir
automatiquement une commande a priori adaptée au nouvel état stationnaire (cf. section 6.5). Inconvénients

Le systéme bouclé peut devenir plus oscillant (cf. fig. 6.20 et fig. 6.21).

< Integral Windup > : le terme intégral fg e(t")dt’ peut devenir treés grand suite & de grandes perturbations
de longue durée, ou lors d’une opération de démarrage; il s’ensuit une saturation de la commande N (¢).
Afin d’éviter ce probleme ou deés que la sortie du régulateur sature.

Effet du terme D Avantages Augmente la sensibilité du régulateur en intriduisant une correction prédictive
basée sur de(t)/dt (cf. section 6.6).

Augmente la stabilité du systéme bouclé grace a l'effet de prévision, permettant ainsi I’emploi de plus
grandes valeurs de K. Inconvénients

Amplifie le bruit de mesure car le terme D utilise la dérivée du signal de mesure M(t),de(t)/dt =
(d/dt)[M.(t) — M(t)]. Si le signal M(t) est bruité , I'opérateur dérivation amplifiera ce bruit qui, bien
que tres petite amplitude, peut avoir une dérivée treés grande (fluctuations tres rapides).

6.9 Dimensionnement des régulateurs P, PI ET PID

6.9.1 Caractéristiques souhaitées du systeme bouclé

On
o
o
o
L]

aimerait que le systéme en boucle fermée :

répondre rapidement & des changements de la grandeur de consigne T.(t),
rejette bien les perturbations T, (t),

évite le statisme,

soit un peu sensible aux variations du processus et aux erreurs de mesure,

n’ait pas un signal de commande excessif, afin d’éviter la saturation du régulateur.

6.9.2 Dimensionnement du régulateur (choix de Kgr, 71 et 7p)

On peut dimensionner un régulateur sur la base d’une analyse temporelle (cf. cette section), ou d’une analyse

fréquentielle (pas abordé dans ce cours).
Pour le choix des parametres du régulateur sur la base d’une analyse temporelle, deux classes de méthodes ont

été développés :

)

b)

Les méthodes basées sur un test expérimental en boucle fermée, par exemple la méthode empirique du
paragraphe 6.9.3
Les méthodes basées sur I'identification en boucle ouverte du systéme a commander :

— la méthode de Ziegler Nichols (cf. §6.9.4),

— la spécification du systéme bouclé (cf. §6.9.5).
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6.9.3 Méthode empirique en boucle fermée

Cette approche considére le systéme en boucle fermée et propose la procédure suivante [cf. C.L. Smith, 2000] :

e Implanter un régulateur PI de maniére a obtenir une réponse oscillatoire comme illustré a la figure 6.24.

On suggere d’utiliser Kro = 2/K ol K représente le gain statique AM/AN du systéme & commander ; si
Poscillation n’est pas suffisamment marquée, augmenter Kp .

Figure 6.24. Réponse du systéme commandé par un régulateur PI (parameétre KproetTr,o).

e Observer la période d’oscillation P (fig. 6.24) et calculer

P

e 13+0.2(:2)

TDZO,25T[

e Avec un régulateur PI ou PID et les valeurs de 77 et 7p ci-dessus, ajuster Kr de manieére & obtenir la
performance souhaitée comme illustrée a la figure 6.25.

Avec cette méthode, 7; et 7p sont calculés sur la base des caractéristiques du systeme a commander alors que
Kg dépend des objectifs de commande. L’avantage de cette méthode en boucle fermée est qu’elle considere tous
les éléments de la boucle de commande.

6.9.4 Méthode de Ziegler-Nichols

Cette méthode considére la réponse indicielle du systéme en boucle ouverte, avec ouverture de la boucle au
niveau de la sortie du régulateur (fig. 6.26).

On positionne le régulateur en mode <« manuel » (cf. §6.1.1). On impose un saut AN sur N(¢) et on observe la
réponse M (t). Cette réponse (actionneur, processus et capteur) est approchée par celle d’un systéme du premier

ordre avec un retard pur :
M(s) (s) ~ Kexp(—0s)
N(s) T oT1s+1

(6.29)

A Taide d’une analyse graphique, on déduit les parameétres K, 7 et 6 du systéeme a commander et de 1a ceux du
régulateur a concevoir. T représente la constante de temps dominante du systeme dynamique, c’est-a-dire
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Rejet de perturbation

Saut de consigne
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Figure 6.25. Réponse du systeme commandé par un régulateur PID pour un saut de consigne au temps 0 et une
perturbation au temps t*. La performance est ajustée a ’aide du gain du régulateur Kg.

T. M+ e[ N P T
—— | calibration O régulateur I NN actionneur processus
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Figure 6.26. Schéma fonctionnel du systéeme en boucle ouverte pour le test de la réponse indicielle.

la constante de temps du systeme du premier ordre qui approche le mieux possible la réponse du systeme.
On distingue les cas de systeémes avec ou sans nouvel état stationnaire :

a) pour un systéme avec nouvel état stationnaire (fig. 6.27) :
K = AM/AN, 1 et 0 directement du graphique

b) pour un systéme intégrateur, sans nouvel état stationnaire (fig. 6.28) : m et 8 directement du graphique
Le choix des parametres du régulateur se fait sur la base des relations empiriques suivantes :

a) Régulateur P

N T
K = — = _—
B om 0, 99K
b) Régulateur PI
N T
Kr=09—=0,9—
r 0’99m 0, 99K

¢) Régulateur PID
S — -

N
Kp=12—=12—
=5 0K

Om
T[:20

TD:O,59
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M(t) A
AM p-=-=-=-=------ P
pente m I'I E
by E A : point d’inflection
, AM
' m=—
A 1 T
0 L : .
0 0+ t

Figure 6.27. Réponse indicielle d’un systeme sans terme intégrateur.

M(t) A

Figure 6.28. Réponse indicielle d’un systéme avec terme intégrateur.

d) Corrections finales Le systéme bouclé obtenu avec cette méthode posséde une réponse oscillatoire avec un

rapport d’amortissement d’environ 4 (rapport des amplitudes de deux oscillations successives). Si un systéme
bouclé non oscillant est souhaité, on propose de réduire de moitié le gain K et d’augmenter 77 et 7p d’un
facteur 2.

Avantages de la méthode de Ziegler-Nichols

e Un seul test en boucle ouverte est nécessaire,

e ce test est simple et rapide.

Inconvénients de la méthode de Ziegler-Nichols

e Analyse en boucle ouverte, c’est-a-dire sans tenir compte du régulateur (si ce dernier a des imprécisions de
calibration, la qualité de la commande en souffrira),

e sensible aux erreurs d’appréciation (dans la détermination de la pente m et du retard pur ),

e ne s’applique pas aux systémes qui oscillent (en boucle ouverte) ni aux systémes du premier ordre sans
retard pur (Car 6 = 0).
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6.9.5 Spécification du systéme bouclé

La réponse en boucle fermé la plus simple correspond a celle d’un systéme du premier ordre.

1
G = — 6.30
5r(s) TBFS +1 ( )
Comme I’équation (6.30) peut également s’écrire :
Gr(s)G(s)

G =5 6.31
o) = 1 Gr()Go) (031

on peut combiner ces deux relations pour exprimer Gr(s) en fonction de G(s) et Tpp(s) :

G 1

Gr(s) = 5r(s) - (6.32)

G(S)[]. — GBF(S)} o G(S)TBFS

Ce régulateur possede un terme intégral de fagon & éliminer le statisme (gain unité spécifié pour Ggr(s)). On
considere plusieurs cas spéciaux.

e Si le systeme a commander est strictement du premier ordre avec

G(s) = Tslil GBF(S):ﬁ
on obtient :
Grls) = 7 ;18 (6.33)
L’équation (6.33) est celle d’un régulateur PI avec
Kn = %é (6.34)
=T (6.35)

On remarque que plus la constante temps du systéeme bouclé est petite, plus le gain du régulateur sera élevé.

e Si le systeme a commander possede la fonction de transfert :

K 1
G(s) = —— e —
() s(rs+1) Gor(s) Trs +1
I’équation (6.32) done :
Ts+1
G = 6.36
r(s) Kipp ( )

qui est I'équation d’un intégrateur PD avec

Kn = K:BF (6.37)
TD=T (6.38)
e Si le systeme a commander est de la forme
Gs) = (r1s + liﬁs +1) Grr(s) = Wﬁ
I’équation (6.32) donne :
Grls) = 717282 + (11 +72)s + 1 (6.39)

KTBFS
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qui est 'équation d’un régulateur PID avec

T1 + To
Ko — 6.40
s (6.40)
TT =71+ T2 (6.41)
7172
T = 6.42
P T1 + To ( )
e Pour le systeme a commander
K 1
G(s) = — G .
() S Br (s) TBrS+1
I’équation (6.32) donne le régulateur proportionnel
Gl ! (6.43)
s) = .
R KTBF
e Si le systeme a commander est de la forme
K
G(s) = e s
s+ 1

il est possible de dimensionner un régulateur PI en spécifiant la fonction de transfert

1 —0s

el = 1

En effet, en approximant le retard pur comme suit :
e 9 ~ (1 - 6s)

on obtient en suivant la démarche suivante proposée (cf. éq. 6.30 - 6.32) :

Ts+1

Gp=—""°
BT K(rgr +0)

c’est-a-dire :
-
KR = - ~T1 =T
K(rgr +6)
Choix du systéme bouclé
Dans tous les cas précédents, nous avons choisi un systeme bouclé du premier ordre parametré uniquement par

7pr(Kpr = 1 afin d’éviter un statisme). Si nécessaire, il est également possible de spécifier un systéme bouclé

du deuxiéme ordre, lequel sera alors parametré par 71 et 72 ou alors 7 et € (cf. section 5.5).
Comme un des objectifs de la commande est d’accélérer la réponse du systéme dynamique, on choisit
généralement Tpp inférieure a la constante de temps dominante du systéme a commander. On propose sou-

vent la relation empirique suivant 7gp = 7/2.

6.9.6 Exemple

Conception d’un régulateur PID pour le systeme de la figure 6.29

a) Méthode de la réponse indicielle de Ziegler-Nichols En boucle ouverte, la fonction de transfert entre N(s) et

T(s) s’écrit :
T(s) _ 2 5 B 10
N(s) (0,25+1>(2s+1> (25 +1)(0,25 + 1) (6.44)
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T. +ﬁe N 2 P 5 T

G
Y _ R 025 +1 25+ 1

Figure 6.29. Schéma fonctionnel d’un systéeme bouclé.

La figure 6.30 montre la réponse indicielle de ce systeme, ainsi que celle d’'une approximation du premier
ordre. On peut y déduire graphiquement la pente m ainsi que le retard pur 6. Pour cet exemple simple, ces
deux valeurs peuvent également se calculer analytiquement comme suit :

e On approche le systeme du deuxiéme ordre par un systéeme du premier ordre avec le retard pur, 6,
comme indiqué par I’équation (6.29) :

N(s) (Tslj— 1 > cxp(=0s) (6.45)

e On détermine le retard pur 6 en comparant les deux équations précédentes : on fixe K = 10,7 = 2 et

on demande : 1
0s) ~ 4
exp(—0s) 025 11 (6.46)

Un développement en série de Taylor donne pour chacun des termes :

10

5 o J  ====- modele exact

modele approche au premier ordre

Figure 6.30. Réponse indicielle du systéeme a commander.

(0s)?  (0s)3 1 (0,25)2  (0,2s5)3
czp(=0s) Os+ =5 3! 0,25 + 1 0.2+ 5 6
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Ainsi, en premiere approximation, c’est-a-dire en ne retenant que la partie linéaire des développements en
série, 'approximation (6.46) est valable pour :

6 = 0,2[min]

On obtient finalement le régulateur PID suivant (cf. §6.9.4) :

T 2 Vv
Knp = = - = _
r=065% O’60,2-10 0’6{ ]

T7=40 =4-0,2 = 0,8[min]
mp =60 = 0,2[min]

b) Spécification du systéme bouclé

Pour un systéeme bouclé qui soit environ deux fois plus rapide que le systéme a commander (11 = 2,75 = 0, 2),

on choisit :
T1 .
TBF = 5= 1[min]

Les équations (6.40) et (6.42) permettent alors d’évaluer :

T1+7'2 2+0,2 V
Kp = = =0,22| =
AT Krgr  10-1 ’ [C]

TT=714+7=2+0,2 =2 2[min]

T1T2 2~O,2 .
- - —0,18
e T 2402 [min]

En comparant les valeurs obtenues sous point a) et b), on remarque bien que celles-ci n’ont qu’une valeur
indicative. Les parametres définitifs seront de préférence choisis sur I'installation en observant son comportement
en asservissement et en régulation.

6.10 Exercices résolus

Exercice 1
Un systeme a commander a été approché par la fonction de transfert suivantes :

M(s)  2e7°
N(s) 3s+1

Calculer les parametres d’un régulateur PID pour ce processus.
Solution
Systéme a commander du premier ordre avec retard pur :

K=271=30=1

En utilisant la méthode de la réponse indicielle de Ziegler-Nichols :

1,2r  1,2-3 o0 en
Kp= e = T3 =187 =20=27p =0,50=0,5

Exercice 2
Soit le systeme bouclé suivant :

a) Déterminer le régulateur qui donne la fonction de transfert Gpgp.
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b) Discuter la réalisation pratique d'un tel régulateur pour Ggr = 1 (cas idéal) et Gpr = 1/(7prs + 1)2

Solution

¢) Régulateur

Y(s) G — KonGrGocGp
Y.(s) BE T 1 Y GrGocGrGon
Gpr(1+ GrGocGpGom) = KonmGrGocGp
Cr GBr

" GocGp(Kom — GprGon)

d) Réalisation pratique

e Pour le cas idéal (Gpr = 1) avec des fonctions de transfert du premier ordre pour Porgane de mesure,
I’organe de commande et le processus, on obtient :

Koc Kowm Kp
oc Tocs + 1 oM TomSs + 1 P Tps+ 1
G (tocs+ 1)(tps+1) ~ (tocs+1)(tps+1)(Toms + 1)
= 1 B KocKpKomToms
KocKpKoym (1 — ——)
Toms + 1

numérateur : degré 3, dénominateur : degré 1 = Gg(s) pas réalisable

e Pour la fonction de transfert Ggr = 1/(tprs + 1)%, on a :

(Tocs + 1)(7‘p8 + 1)
(TBFS + 1)2KocKpKOM (1 —

Gr = -

(TBFS =+ 1)2(To]y[8 =+ 1))

o (TOC<‘5+1)(7‘p5+1)(TOMS+1)(TBFS+1)2
- (TBFs+1)2KocKpKon[(TBFs + 1)2(toars + 1) — 1]

numérateur : degré 5, dénominateur : degré 5 = Gp(s) réalisable

Exercice 3
Soit le systeme bouclé suivant :
Indiquer la démarche a suivre pour mettre au point un régulateur de type PID qui élimine le statisme suite a

un changement de consigne.

Solution
K
R —
s(ts+1)2 GrK
= = 1
Gor e K s(ts+1)2 4+ GrK (1)
RS(TS +1)2

Il n’y aura pas de statisme si lim,_,o Gppr(s) = 1, ce qui sera le cas pour tout régulateur de type PID, c’est-a-
dire P, PI,PD ou PID. Il n’y a pas de statisme avec un régulateur P car le systeme a commander contient un
terme intégrateur.

Le systeme a commander n’ayant pas de retard pur, il n’est pas possible d’utiliser la méthode de Ziegler-Nichols
basée sur la réponse indicielle. On peut par contre utiliser la méthode empirique en boucle fermée de la section
6.9.3.
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Exercice 4
Un processus a commander est décrit par I’équation différentielle suivante :

y+2y="2u (0) =y(0) =0

Les organes de mesure et de commande sont de nature statique et possedent les caractéristiques suivantes :
Dimensionner un régulateur tel que le systéme bouclé se comporte comme Gpr(s) = 1/(0,2s + 1).

Solution
Dynamique du procédé

s2Y (s) 4+ 2sY (s) = 2U(s) G(s) = =——

Organe de mesure. D’apres le graphe :

AM 5—-0
KOM:T

=270 o5
y 10-0 ’

Organe de mesure statique : Goa(s) = Koa Organe de commande. D’apres le graphe :

Au 40 -0
K :7:7:1
OCT AN T 5-1 0

Organe de commande statique : Goc = Koc
Fonction de transfert en boucle fermée

Y(S) KOMGRKocG

Yo(s) 14 GrKocGKom

ce que donne :

0,5GRr10

1 B s(s+2)
0,25 +1
’ 14+0,5GRr10———
0 9GR s(s+2)
d’ou 'on tire :
s

On a ainsi un régulateur PD avec Kr =1et 7p =0,5

Exercice 5
L’équation dynamique d’une cuve de mélange de volume variable est donnée par I’équation

Sh(t) = q.(t) = as(t)  h(0) = 1m

ou h représente le niveau dans la cuve, ¢. et g5 les débits volumiques d’entrée et de sortie et .S la section de la
cuve cylindrique. On désire commander le niveau h par rétroaction en ajustant le débit g..

L’organe de mesure est de nature statique avec un gain AM/Ah de 2,5[V/m]. L’organe de commande est
approché par une fonction de transfert du premier ordre avec une constante de temps de 0, 1[min]. La ca-
ractéristique statique a été modélisée comme suit :

ge = —0,04N? + N + 14
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ol ¢, est exprimé en [I/min] et N en [V].

a) Evaluer la fonction de transfert M (s)/N(s) correspondant & N = 1V et sachant que S = 0, 1[m]%.
b) Dimensionner un régulateur de type PID (c’est-a-dire avec 1,2, ou 3 termes) pour ce systéme.

Solution

a) Cuve
Qc(s) _ Qs(s) + 1

sSH(s) = Sh(0) = Qe(s) = Qs(s)H(s) = = o= = === + 1

Organe de mesure
M(s) Vv
=Kom =2,5—
H(s) oM m

Notons que 'on doit utiliser ce gain statique pour convertir la valeur de consigne en une grandeur comparable
a celle qui sort de 'organe de mesure.

Organne de commande

Le gain statique de I'organe de commande vaut pour N =1 :

dqe - l
Koo =— =— N+1= 2
0C¢ = UN Ne1 0,08 + 0,9 minV
Ainsi : 0.92
Goc(s) = 01st1

Fonction de transfert M (s)/N(s)

M(s)  M(s) H(s) Qe(s) 1092 23 vV

N(s)  H(s) Qec(s) N(s) 77 Ss 0,1s+1 s(0,1s+1)

b) Régulateur Comme le systéme & commander possede déja un terme intégrateur, on utilise un régulateur P
ou PD.
On peut par exemple spécifier la fonction de transfert du systeme bouclé comme étant du premier ordre
avec Kpp =1et 7gr = 7/2 = 0,05min. On obtient ainsi un régulateur PD avec (équations 6.37 et 6.38) :

1 1
-~ K7pr 23-0,05

Pour un régulateur P, les relations empiriques de Ziegler-Nichols nous indiquent de diminuer sensiblement

Kg =0,87[V/V]rp =7 =0,1min

le gain du régulateur :
0,9

1,2

)

Kp=0,87-

= 0,65[V/V]

Exercice 6
Soit deux réservoirs cylindriques de section respectives A et B. Les écoulements par les vannes réductrices sont
proportionnels aux différences de pression amont/aval de ces vannes, le coefficients de proportionnalité étant
égal & 1/R.

a) Déterminer les fonctions de transfert

_ Hi(s) _ Hy(s)
Qe(s)’ Qe(s)

b) Pour le systeme Gi(s), déterminer le régulateur le plus simple parmi P, PD,PI, PID qui garantisse

G1(s)

Ga(s)

I’absence de statisme dans la variable commandée.
c¢) Est-ce qu’un régulateur de méme structure permet d’éliminer le statisme pour le systéme Ga(s) ?
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Solution

a) Modele dynamique

dh 1
Aditl =qe — E(hl — ha) (1)
B2 = L(hy — hy) — %hs (2)

A Tétat d’équilibre stationnaire :

Bl = 2Rg.

0=Ge— 5(h1 — ha)
{h2 :RQe

0= L(h1 — ha) — Lho

Transformation de Laplace (avec des conditions initiales nulles en variables écart) :

S

AsH(5) = Quls) — 5 lH(5) — Ha(s)] 3)
BSHy(s) = 5 [Hi(s) ~ Ho(s)] ~ £ Ha(s) @)
B+6) = Gils)= 518 - ABR‘ZSjLz ﬁﬁiﬁ 42—)B)s+ O
Gals) = g&g; ~ ABR2s? + R](ZA ¥ B)s+1 (™)
b) hy sans statisme
Soit G x(s) la fonction de transfert du régulateur. En boucle fermée, on aura :
Gor(9) = T et (3)

Avec Gr(s)G1(s) = N(s)/D(s), (8) devient :

N(s)

@)= D)+ NG

L’absence de statisme est garantie pour Kgr = 1, c’est-a-dire pour :

. N(s) .
1m8_>0D(s)+N(s) “ ims — 0D(s) =0

Comme D(s) = Dr(s)D1(s) = Dr(s)[ABR?s®* + R(2A + B)s + 1]
lims — 0D(s) =0 — lims — 0DR(s) =0

Il est donc nécessaire d’avoir un terme intégral dans le régulateur — régulateur PI1

163
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¢) ho sans statisme
Méme développement que ci-dessus. Comme G1(s) et Ga(s) possédent le méme dénominateur, le résultat
est identique — régulateur PI.

Exercice 7
La réponse indicielle d’un systeme dynamique a été mesurée comme suit :
Pour ce systeme dynamique :
a) Evaluer son gain statique et sa constante de temps dominante.
b)
¢) Le systéme commandé résultant est-il stable ? sans statisme ? (le justifier sans calcul).
d)

Dimensionner un régulateur PI.

Quel est Deffet du retard pur sur la stabilité du systéeme bouclé ?

Solution

a)

Gain statique K = 3,8

—6,7s
Retard pur 6§ = 6, 7s G(s) = ?ﬁﬁ
Constante de temps = 6, 7s 108
b) Régulateur PI
6,7
Kr=09— =092 —0,24

0K ~ '76,7-3,8
71 =23,330 =3,33.6,7 = 22,3s

c¢) Systeéme commandé est
stable (rapport d’amortissement de 4)
sans statisme (terme intégral)

d) Une augmentation du retard pur réduit K r. Pour un régulateur donné, une augmentation du retard pur
diminue la marge de stabilité.

6.11 Symnbole utilisés

AUTO mode automatique

BF  boucle fermée

BO boucle ouverte

bande proportionnelle (= 100/ Kg)

chaleur spécifique [J/ke"C]

%
=

perturbation
erreur ou écart de commande
erreur statique ou statisme
fonction de transfert
hauteur [m]
gain statique

AN mode manuel
pente AM /T [V/s
signal électrique de mesure normé [
signal électrique de commande normé [

wzgs =X QY A

puissance de chauffage kW



q débit volumique

RT régulateur de température

t temps

T température

Tum période a la limite de la stabilité
TT transmetteur de température

U signal d’entrée

V volume

y signal de sortie

€ largeur d’hystérésis

13 coefficients d’amortissement

P masse volumique

T constante de temps

I constante de temps d’intégration
D constante de temps de dérivation
0 retard pur

Indices et autres symboles

XBF
XBo

Xman
Xmaz
Xmin
Xoc

Xom

X du systeme en boucle fermée
X du systeme en boucle ouverte
X de consigne

X d’entrée

X de la perturbation (<« load »)
X a la limite de la stabilité

X mode manuel

maximum de X

minimum de X

X de l'organe de commande

X de 'organe de mesure

X du processus

X du régulateur

X réel (en valeur absolue)

X de sortie

X a l’état stationnaire

X T'état stationnaire de référence
variation de X ; variable écart X (t) — X
variation de X

6.11 Symnbole utilisés 165
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7

Stabilité et performance des systemes bouclés

7.1 Définition et critére de stabilité

7.1.1 Définition

Stabilité BIBO (Bounded Input, Bounded Output)

Un systéme linéaire est stable si et seulement si sa réponse a toute entrée bornée reste bornée.

Un signal borné est un signal dont la valeur en fonction du temps (¢ > 0) reste entre une limite inférieur finie
et une limite supérieur finie. Par exemple, un saut unité, une sinusoide ou s(t) = exp(—2t) représentent des
signaux bornés. Par contre une rampe ou s(t) = exp 2t sont des signaux non bornés.

Cette définition indique que si, par exemple, la réponse d’un systéme & un saut unité est y(t) = exp(2t), le
systéme est instable (entrée bornée résultant en une sortie non bornée).

7.1.2 Critére de stabilité

Un systéme est stable si et seulement si toutes les racines de son équation caractéristique ont une partie réelle
négative. Ce critere représente une condition nécessaire et suffisante.

La stabilité d’un systeme linéaire peut donc étre déduite de la position de ses poles dans le plan complexe,
comme indiqué a la figure 7.1.

Nous allons démontrer ce critere de stabilité a partir de la définition de la stabilité BIBO. Pour cela, considérons
un systeme bouclé dont le schéma fonctionnel est donné a la figure 7.2.

]m“

stable instable

Figure 7.1. Domaine de stabilité (axe imaginaire non compris).

La réponse du systeme pour des conditions initiales nulles est la somme des effets des variations de consigna ¥,
et de perturbation d :
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Ye
D ———
consigne

Koum

M, +

——

REGULATEUR

erreur e

Gr

N

Goc

perturbation

Gom

A

Figure 7.2. Schéma fonctionnel d’un systéme bouclé.

Y

grandeur
commandée
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_ KOMGR(S)GOC(S)GP(S) Y. (s)
1+ Gr(s)Goc(s)Gp(s)Gom(s) (7.1)
Gr(s)

+ L
1+ GR(S)Goc(S)GP(S)GO]\/[(S)

La fonction de transfert de la boucle comprend tous les éléments contenus dans la boucle et s’écrit donc :

Y(s)

GB(s) = Gr(s)Goc(s)Gp(s)Gom(s)
si bien que 'équation (7.1) devient :

~ KomGr(s)Goc(s)Gp(s)
- 1+Gg S)

GL(s)

Y(s) 1+ Gp(s)

Ye(s) + D(s)

On peut expliciter les fonctions de transfert en fonction des poles et des zéros :

Y(S) _ KOMGR(S)Goc(S)GP(S) :C(S*'Zl)(S*ZQ)---(S*Zm) n>m
Ye($)| 0 1+ Gp(s) (s =pi)(s =p2)... (s =pn) — —
Y(s) Guls) _als=2)s=2).(s=2)

o 1HGs(s) T P —ph) . (—p) T

ol p;, pi, z; et z, peuvent étre réels ou complexes.

Etudions le comportement du systéme bouclé soumis & une excitation bornée de y.(t). Les conclusions seront
les mémes pour une variation bornée de d(t). Calculons, par exemple, la réponse du systéme bouclé & un saut
unité de y., c’est-a-dire Y.(s) = 1/s.

C(s—z)(s—22)...(s— 2zm)
Y(s)=—
s(s=p1)(s—p2)...(s—pm) 79
Ao A A A (72
S S—p1 S—DpP2 S — Pn

La transformation de Laplace inverse donne :
y(t) = Ag + A1 exp(pit) + Az exp(pat) + ... + A, exp(ppt)

Séparons les poles réels et les poles complexes :
a) p; réel
La fonction y;(t) = A; exp(p;t) est décroissante pour p; < 0 et croissante pour p; > 0. La réponse y;(t),
et par conséquent aussi y(t), sera non bornée et ainsi le systeme instable pour p; > 0.
Si p; = 0, le dénominateur de Y (s) possédera un terme en s2, lequel générera un terme en t pour y;(t).
Il s’ensuit que la réponse y(t) sera nécessairement non bornée et le systéme instable pour p; = 0.
b) pi, pir1 conjugués complexes :

pi = a; + jb;
pi+1 = a; — jb;
Yi(t) + yiv1(t)
= (ai +jpBi) expl(ai + jbi)t] + (a; — jBi) exp[(a; — jbi)i]
= a; exp(a;t)[exp(jbit) + exp(—jb;t)]

+;B; exp(a;t)[exp(jbit) — exp(—jb;t)]
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= 2q; exp(a;t) cos(b;t) — 2, exp(a;t) sin(b;t)
=2 exp(ait)[ai COS(bit) — ﬂz sm(bzt)]

Si a; > 0, alors y;(t) + y;+1(t) croit sans limite, donc aussi y(t), et le systeme est instable. De méme, si
a; = 0, Uexcitation bornée u(t) = Asin(b;t) va générer une réponse y(t) non bornée car le dénominateur
de Y (s) possédera un terme en (s + b?)?, mettant ainsi en évidence I'instabilité du systeme.
Il importe encore de vérifier que ces conclusions sur la stabilité ne dépendent pas du choix de I'excitation y.(t),
pour autant que celle-ci soit bornée. Cette vérification se base sur la décomposition en éléments simples de la
réponse Y (s) :
e Si lexcitation y.(t) est bornée et possede une limite pour ¢ — oo alors, en vertu du théoreéme de la valeur
finale :
li t) = lim sY, +
Jim ye(t) = lim sYe(s) 7 oo

Il s’ensuit que Y.(s) contiendra au plus un pole a s = 0. Cela nous ramene au cas considéré dans I’équation
(7.2).

e Si lexcitation est bornée mais ne posséde pas de limite pour ¢ — oo, par exemple la sinusoide sin(wt), on
aura y.(t) = exp(jwt). Comme les pdles de I'excitation (partie réelle nulle) ne correspondent pas a ceux
du systeme (pour lequel a; < 0), la réponse possédera un terme de méme type, exp(jwt), et sera donc
bornée.

Remarques
a) La stabilité d’un systeme linéaire est complétement déterminée par ses poles.
b) Ces conditions de stabilité restent valables méme si tous les poles ne sont pas distincts.

7.1.3 Exemples

Exemple 1
Considérons le systeme intégrateur du §5.4.3 (cuve avec débit de fuite constant) dont la fonction de transfert
est :
H(s) 1
Q.(s) Ss
Pour un saut échelon de ¢.(t) d’amplitude b, la sortie devient :
b
h(t) = =t
()=

Ainsi, puisqu’une entrée bornée produit une réponse non bornée, le systéme est instable. On peut également le
vérifier en évaluant le pole du systeme (p; = 0).

Exemple 2
Etudions la stabilité du systeme bouclé donné a la figure 7.2 avec :

Gr(s) = Kr Goc =

Gr(s) = Gu(s) = =——

2s—|—11
Goum(s) =

s+1

La fonction de transfert Y(s)/Yc(s)‘BF donne :

Kr/((2s +1)(5s + 1))

pr L+ Kr/((2s +1)(5s + 1)(s+ 1))
KR(S + 1)
1083 + 1752 +8s+ 1+ Kg
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avec I’équation caractéristique suivante :
10s® + 175 + 85+ 1+ Kp =0

Pour déduire la stabilité de ce systeme, il faut trouver les racines d’une équation cubique en s. Il existe des
programmes de manipulations symboliques (par exemple MAPLE ou MATHEMATICA) qui permettent de
résoudre analytiquement de telles équations. On peut aussi les résoudre numériquement, par exemple avec
Matlab ; on obtient ainsi, pour différentes valeurs de Ky :

Kp=2s =—1,25s5 = —0,22 4 0,44 s3 = —0,22 — 0, 44
6 ~1.48 —0,11 + 0,685 —0,11 — 0,68;
15 ~1.76 0,03 + 0,957 0,03 — 0,95/

Le systeme bouclé est donc stable pour Kp = 2 et Kz = 6 et instable pour Kz = 15. Cela se voit bien en

v,
3 L

25 L

0.5
(a) Kp=2 \/
—05 | (b) Kp =6
(¢) Kr=15
-1 1 1 1 1 1 -

0 2 4 6 8 10 12 14 16 18 20
t [s]

Figure 7.3. Réponse du systeme bouclé en fonction du gain du régulateur.

représentant la réponse du systéme a un saut unité de y. (7.3).

Pour K = 15, le systeme est instable car la réponse est une oscillation caractérisée par une amplitude croissante,
c’est-a-dire un signal non borné. En pratique, un signal ne peut grandir indéfiniment. Certaines limitations phy-
siques telles les saturations feront que le systéme atteindra un cycle limite (oscillation d’amplitude entretenue).
Cependant, le systéme linéaire est bien instable (tendance de la sortie a croitre indéfiniment).

L’objectif de la commande est d’assurer une bonne performance du systéme bouclé tout en garantissant bien
str sa stabilité. D’ou 'importance du choix des parametres du régulateur.

7.2 Critére de stabilité de Routh-Hurvitz

Pour 'exemple simple de la figure 7.2, il est nécessaire de calculer les racines d’un polynémes cubique en s. La
question se pose de savoir s’il est possible d’évaluer la stabilité d’un systeme linéaire sans devoir calculer ses
poles. Cela est possible avec critere de Routh-Hurwitz.
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7.2.1 Principe

Le critere de Routh-Hurwitz est une technique analytique pour déterminer si toutes les racines d’un polynome
sont a parties réelles négatives et et ceci sans les calculer. Nous verrons également le critere de Nyquist dans
le chapitre suivant qui a le méme avantage de ne pas nécessiter le calcul explicite des racines du polynéme.
Le critere de Nyquist est un critére avec une interprétation graphique qui permet de donner des marges (des
”distances” a l'instabilité). Le critere de Routh-Hurwitz est purement algébrique et il ne permet pas de mesurer
facilement ”la distance” & l'instabilité. Il donne une réponse tout ou rien concernant la stabilité.

Si I'on applique ce critére a ’équation caractéristique polynomiale d’un systéme, il devient aisé d’analyser sa
stabilité.

Soit ’équation caractéristique sous sa forme polynomiale générale :

anS" + Qp_1+...+a15+ag=0 (7.3)

Supposons a,, > 0 (pour le cas ol a,, < 0, on multipliera I’équation par -1).
On peut montrer qu'une premiére condition nécessaire (mais non suffisante) pour la stabilité est :

QAp,y Ap—1,.-.,01,00 > 0

Afin d’obtenir une condition également suffisante, on construit le tableau de Routh de la maniére suivante :

ligne 1 an Ap—2 Ay
2 Gn—1 ap—3 Qp—5
3 b1 b2 b3
4 C1 Co
n+1 21
ol
an—10p—2 — Ap0n—3 An—1Gp—4 — Anln—5
bl = 5 b2 = )
Gn—1 Qp—1
o bian—3 — an—1b2 o bian—5 — an—1b3
1= 2= 37
b] ) bl )

Pour que toues les racines de I’équation caractéristique (7.3) aient une partie réelle négative, il est nécessaire et
suffisant que tous les éléments de la premiere colonne du tableau de Routh soient positifs.
7.2.2 Exemples

Exemple 1
Reprenons ’équation caractéristique cubique de 'exemple 2 du §7.1.3 :

10s® +17s> +8s+1+ Kr =0

Etudions la stabilité du systeme bouclé a ’aide du critere de Routh-Hurwitz.

1. Conditions nécessaire :
10,17,8 et (1+ Kp) >0 = Kr > —1

2. Tableau de Routh :
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ligne 1 10 8
20 17 1+ Kpg
3 136 — 10K R
17
4 14+ Kg

Conditions nécessaire et suffisantes :

136 — 10Kg

>0— Kg < 13,6
17 R

1+ Kr>0= Kr > -1

Le systeme est donc stable pour —1 < Kr < 13,6.

Justifier intuitivement ces deuz bornes pour Kpg.

Exemple 2
Le systeme avec ’équation caractéristique suivante est-il stable ?

P 4552 4+3241=0

Conditions nécessaire :
1,5,3,0,1 >0

Le coefficient du terme en s est nul; le systéme est donc instable.

Exemple 3
Etudier la stabilité du systeme bouclé de la figure 7.2 pour :

GR(S) :KR Goc(s)=2
_ 4exp(—s) B
Gp(s) = Thetl Gom(s) =0,25

L’équation caractéristique devient :

2KRp4exp(—s)0,25
5s +1 N

1+Gp(s) =1+ 0

< 5s+1+2Kpexp(—s) =0 (7.4)

Comme ’équation caractéristique n’est pas de nature polynomiale, le critere de Routh-Hurwitz n’est pas appli-
cable. Néanmoins, il est possible d’approcher un retard pur de fagon a obtenir une équation caractéristique de
type polynomial comme indiqué ci-dessous.

7.2.3 Approximation d’un retard pur

Lorsque I’équation caractéristique comporte un facteur de la forme exp(—6s), il est possible de approcher par
une équation rationnelle a l'aide d’un développement en série de Taylor :

%22 933
2l 3l

exp(—f0s) =1—0s+ (expression exacte de la série)

ou encore :
_exp(—(0/2)s)  1—(0/2)s+ (0%/8)s* — (6°/48)s + . ..

OD(0%) = = L/2)s) 15 (8/2)s + (62/8)s + (6°/48)5° + ...
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On peut donc choisir comme approximation rationnelle de exp(—0s) :

exp(—0s) ~ (1 — 6s) (zéro positif : z; =1/0)

1 1
exp(—6s) = exp(fs) 1+0s
exp(—60s) =

1

(pdle négatif : py = —1/6)

exp(—(0/2)s) 1—(0/2)s
exp((6/2)s) ~— 1+ (0/2)s

(zéro positif : z; = 2/0)
(pole négatif : p; = —2/6)

Cette derniere approximation est connue sous le nom d’approximation de Padé du premier ordre.

Exemple

En utilisant 'approximation de Padé du premier ordre, I’équation caractéristique (7.4) donne lexpression ra-

tionnelle suivante : L o0s
— s
5 14+2Kp| ——— | =0
shidein ( 140, 55)

& 2,552+ (5,5 — Kr)s+ (1 +2Kg) =0

1. Conditions nécessaires pour la stabilité :

5,5—Kr>0 = Kr <5,5
142K >0 = Kp>-1

2. Tableau de Routh

ligne 1| 2,5 1+ 2Kpg
9l 55— Kg
3| 1+2Kpg

Conditions nécessaires et suffisantes :

5,6 —-Kr>0 = Kr <5,5
142K >0 = Kp>-1

En premiere approximation, le systéeme est donc stable pour —0,5 < Kr < 5,5. La condition exacte de stabilité
de ce systeme (—0,5 < Kg < 4,25) peut étre obtenue & l'aide du critére de stabilité de Bode (pas abordé dans
ce cours).

Déterminer la condition de stabilité du systéme précédent en utilisant une approximation de Padé du deuxiéme
ordre pour le retard pur.

7.3 Performance d’un systeme bouclé

7.3.1 Objectifs de la commande

Mentionnons certains objectifs importants quant & la performance d’un systéme bouclé (cf. §6.9.1) :

a) La stabilité du systéme bouclé doit étre garantie.

b) La réponse a des changements de consigne doit étre rapide et fiable (probléeme d’asservissement).

c¢) Leffet des perturbations sur la grandeur commandée doit étre minimal (probléeme de régulation).
)

d

Le statisme est & minimiser.
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e) On doit également éviter de trop grandes variations de la grandeur de commande qui risqueraient de
provoquer une saturation du régulateur.
f) Le systeéme bouclé doit étre robuste, c’est-a-dire peu sensible aux changements du point de fonctionne-

ment, aux erreurs de modele, aux bruits de mesure et aux perturbations.

7.3.2 Asservissement et régulation

Etudions les fonctions de transfert en boucle fermée pour les problémes d’asservissement et de régulation. Afin
de simplifier les notations, et sans perte de généralité, considérons la situation suivante, tres courante dans la
pratique : organe de mesure de nature statique avec :

Gowm(s) = Kou
Avec la fonction de transfert du systeme & commander
G(S) = Goc(S)Gp(S)KOM

les fonctions de transfert pour les problemes d’asservissement et de régulation peuvent s’écrire :

Gr(s)G(s)

Yo(s)|pr 1+ Gr(s)G(s) (7.6)
et

Y(S) o GL(S)

D(s)|gp 1+ Gr(s)G(s) (7.7)

On obtient une commande parfaite, c’est-a-dire Y(s)/YC(s)‘ = 1 (suivi de consigne idéal) et Y (s)/D(s) =
BF BF

0 (régulation parfaite) en choisissant Gr(s) tres grand malheureusement, cela n’est pas possible pour toutes

les valeurs de s, pour des raisons de causalité, de stabilité et d’amplification de bruit. Cependant, le cas s — 0

permet d’éliminer 'erreur statique. On montre que le statisme peut étre éliminé de la facon suivante :
a) en asservissement : si le produit Gr(s)G(s) contient au moins un terme intégrateur.

b) en régulation : si le produit Gr(s)G(s) contient au moins un terme intégrateur de plus que Gr(s).

Exemples
1.
K K
Gls) = s+ 10 Grls) = TLSil; Gr(S) = Kn
Y(S) _ GR(S)G(S) _ KRK/(TS+ 1) _ KRK
Yo(s)|gp 14+ Gr(s)G(s) 14+ KgK/(ts+1) 7s+1+ KK
Y (s) B Gr(s) _ Kp/(res+1)  Kp(rs+1)/(tps+ 1)
D(s)|gp 14+ Gr(s)G(s) 1+ KpK/(ts+1) s+ KpK

Comportement a 1’état stationnaire, c¢’est-a-dire pour s — 0 :

. Y(s) _ KrK .

Sh_r% Yols) | o =17 T KnK #1 = statisme
Y(s) Kp .

lim = 0 tat

M D) |, T TxKak 70 7 statisme

2. I K

G(s) = < Gr(s) = ?L; Gr(S) = Kr

Yo(s)|gp 1+ KpK/s s+ KpK




176 7 Stabilité et performance des systémes bouclés

Y (s)
D(s)

o KL/S - KL
sp 1+ KgrK/s s+ KpK

Le comportement en régime permanent :

. Y(s) KrK .
] — —1 = pasde stat
lim Yols) | e~ Kk pas de statisme
Y K
lim ﬂ =L # 0 = statisme
s=0D(s)|gr KrK

Répéter les calculs des exemples précédents en utilisant un régulateur PI. Vérifier bien qu’il n’y a pas de statisme.

7.4 Exercices résolus

Exercice 1
Pour quelles valeurs de « le systéeme dynamique non linéaire suivant est-il localement stable autour du point de

fonctionnement (z =1,z =1) :

F4+ai+a’=u 2(0)=1 (0)=0

Solution

Approximation linéaire (en variable écart) :
it+at+2®=u x(0)=0 &0)=0

Equation caractéristique :

S+as+2=0
—a++va? -8
Slﬂ:f

Le systeéme est stable si ®{s1,2} < 0, donc pour a > 0.
On peut également utiliser le critere de Routh-Hurwitz. La condition nécessaire (et également suffisante pour
un systeme d’ordre 2, voir exercice 3) est que tous les coefficients de ’équation soient positifs, d’ou a > 0.

Exercice 2
Soit le systeme dynamique stable

§+39+2y=>5u  y(0)=y0)=0

que 'on commande avec un régulateur de type PID.

a) Déterminer les conditions de stabilité lorsque le systéme est bouclé avec un régulateur P.
b) Idem pour un régulateur PI.

Solution
a) Régulateur P : u= Kg(y. — v)
J+39+ (2+5Kr)y = 5KRy.

Condition de stabilité : 2+ 5K > 0 Kr>—-0,4
b) Régulateur PT
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KR(T[8+ 1)
TIS

U(s) = =0

718° + 371782 + (2 4+ 5KR)T1s + 5KRr =0

Routh-Hurwitz :

1 I (2 =+ 5KR)T]
37’[ 5KR
3 (2+5KR)T]7%KR
Conditions >0 5Kr(3r; —1)+ 677 >0
Remarques

On peut obtenir la condition de stabilité du systeme bouclé avec un régulateur P a partir de celles obtenues
pour un régulateur PI comme suit :
Pour 77 > 1/3, la derniére condition devient :

67’[

5Kpr > —
R 37‘[—1

d’ot l'on tire, pour 77 — oo (régulateur P) :

Kgp>—-——-=-0,4

Exercice 3
Montrer que la condition nécessaire de stabilité selon Routh-Hurwitz est également suffisante dans le cas d’un
systeme d’ordre 2.

Solution

Soit ass® +a1s+ag =0

Conditions nécessaires : as,a1,ag > 0
Tableau de Routh-Hurwitz :

a9 Qg
ai
3 ag

Conditions nécessaires et suffisantes : as,a1,a9 > 0

Exercice 4

Le systeme dynamique
—2s

Jse
G(s)= ————
() 5s2+3s+1
est commandé par un régulateur proportionnel.
a) Utiliser une approximation de Padé de premier ordre pour approcher le retard pur et déterminer la
condition de stabilité du systeme bouclé.
b) Comparer la région de stabilité avec celle obtenue pour le systéme sans retard pur.

Solution
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a) Equation caractéristique du systéme bouclé :

3K pse™2*
1+G =14+ -—
+Gp(s) +582+33+1
& 552 +3s+14+3Kpse 2 =0
Padé 1¢" ordre :
025 o 1—s
1+s
- 553+ (8 —3Kp)s* + (4 +3Kg)s+1=0
Routh-Hurwitz :
1 5 4+ 3Kg
8 —3Kg 1
3 27+12KR—9K12{
8 —3Kgr
Conditions : 8 = 3Kgr > 0 & Kr <2,67
27+ 12Kr —9K% >0 & —1,19< Kp < 2,52

La vraie condition de stabilité du systeme bouclé (sans approximation ; étude dans le domaine fréquentiel)
est en fait :
—1,20< K < 1,78

b) Equation caractéristique du systéme sans retard pur :
552 +3(1+ Kg)s+1=0

Condition de stabilité : Kg > —1.
On voit que la présence du retard pur limite fortement le domaine de stabilité du systeme bouclé.

Exercice 5
Montrer que le statisme peut étre éliminé de la fagon suivante :

a) en asservissement, si le produit Gr(s)G(s) contient au moins un terme intégrateur,
b) en régulation, si le produit Gr(s)G(s) contient au moins un terme intégrateur de plus que Gp(s).

Solution
Exprimons Gg(s) = Gr(s)G(s) et Gr(s) comme suit :
! !
Gols) = B Gus) = “

SOL

«, 3 : entiers

olt G'5(s) et G’ (s) ne contiennent pas de termes en .

a) En asservissement :
(s) _ Gpls)/s* Gyl
Yo(s)  1+Gp(s)/s* s+ Gp(s)

En régime permanent (s — 0), G’5(0) est fini. Il s’ensuit :

. Y(s)  GR(0) .
il_r}r(l) Yols) 51 GL0) 1 (pas de statisme)

= lim s* =0 c’est-a-dire a>0
s—0
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b) En régulation

Y(s) _ Gu)fs®  _ sPGL(s)
D(s) 1+Gx(s)/s*  s*4+G3(s)

En régime permanent (s — 0), G5(0) et G (0) sont finis. Il s’ensuit :

. Y(s)  AG,(0) ,
1 = = S S S
Slg(l) D(s) B+ (0) 0 (pas de statisme)

avec A = lim,_,o s* 5

B = lim s®
s—0

pour A =0 & a>f
ou A fini, B—-oo & a>p,a<0
ou A—o0, B—oo avec a<a—-f <& «a,f<0,a<p
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Donc, pour ne pas avoir de statisme en régulation, il faut avoir a > 8 ou alors «, 8 < 0 (cas tres parti-

culiers).

Exercice 6

Soit le systeme bouclé de la figure 7.2 avec

a) Déterminer si la présence d’un zéro positif (« > 0) influence la stabilité du systéme bouclé.

0,4(s —a) Ky

— Kp: — 9. _ .
Gr = KriGoc =2%Gp (2s+ 1)(10s+1)"

Thst 1

b) Montrer que la valeur de K n’influencera pas la stabilité du systeme bouclé.

Solution

La stabilité est analysée a partir de 1’éqaution caractéristique :

_ 0,8KRg(s —a) —
14+ GrGocGpGonm =1+ (2s+1)(10s + 1)(s+1) !

& 20s% +325% + (13 4+ 0,8KR)s + (1 — 0,8Kra) =0

Gom =

1
s+1

a) L’équation caractéristique du zéro a, lequel influencera donc la stabilité du systéme bouclé. La condition

de stabilité selon Routh-Hurwitz donne :

1/20 134 0,8Kx
2(32 1-0,8Kga
312,375+ 0,8K 5 + 0, 5K pa
41 - 0,8Kpa
12,375
12,375+ (0,8 + 0,5a) K 0 & K -
- ) +(7 + ,Cl) R > R > 078"‘0,5@

1-0,8Kra>0 <& Kr<1,25/a
Donc, la condition de stabilité en fonction de a est la suivante :

12,375 _ . _ 1,2
0,8+ 0,5a R

Comme la fonction de transfert de la perturbation n’intervient pas dans 1’équation caractéristique, la

valeur de K, n’influencera pas la stabilité du systeme bouclé.
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7.5 Symboles utilisés

Indices

€ 9

perturbation

erreur ou écart de commande
fonction de transfert

hauteur

axe imaginaire du plan complexe
V-1

gain statique

degré du numérateur d’une fonction de transfert
signal électrique de mesure normé
pole d’une fonction de transfert
signal électrique de commande normé
pole d’une fonction de transfert

débit volumique d’entrée

axe réel du plan complexe

variable complexe de Laplace

Surface de section

temps

Signal temporel de sortie (terme général)
zéro d’une fonction de transfert
retard pur

constante de temps

pulsation

Xp Xde la boucle de commande
Xpr Xdu systeme en boucle fermée
X, Xde consigne

X1 Xde la perturbation (< load >)
Xoc Xde l'organe de commande
Xom Xde lorgane de mesure

Xp Xdu processus

Xgr  Xdu régulateur

[rad/sec]
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Diagramme de Nyquist

8.1 Introduction et objectifs

Ce chapitre décrit le critere de Nyquist. Ce critere permet de déterminer si un systeme est stable en boucle
fermée sans devoir calculer les racines du polynéme du dénominateur de la boucle fermée. Il donne également
des marges de stabilité comme la marge de gain et la marge de phase. Le critere utilise la réponse harmonique
K (iw)G(iw) en boucle ouverte afin de déduire la stabilité en boucle fermée.

Nous avons vu au chapitre précédant que la stabilité est déterminée par la position des poles (zéros du polyndéme
au dénominateur de la fonction de transfert). Lorsque ceux-ci sont tous dans le demi-plan gauche du plan
complexe, la stabilité est garantie (on dit méme que la stabilité est de type exponentiel). Lorsqu’un seul de ces
poles est dans le demi-plan droit, le systéeme entrée-sortie représenté par la fonction de transfert est instable.
Un tel critere nécessite ainsi la capacité de calculer les poles un a un, et ainsi de tous les calculer étant donné
qu’'un seul d’entre eux peut étre responsable du comportement instable.

Dans ce chapitre, nous allons indirectement garantir que tous les poles de la fonction de transfert en boucle
fermée (asservissement et régulation) se situent du bon c¢6té du plan complexe, le demi-plan gauche, sans devoir
calculer individuellement les péles en boucle fermée.

L’analyse du comportement en boucle fermée est effectuée sur la connaissance de la boucle ouverte uniquement.
11 faut faire tres attention au fait que se sont les données de la boucle ouverte (sous la forme de la connaissance
des polynomes des numérateurs et des dénominateurs des fonctions de transfert du régulateur et du systeme
a régler) qui sont utilisées & des fins de conclure sur la stabilité du montage en boucle fermée. Ceci conduit
malheureusement & une potentielle source de confusion.

Le critéere de Nyquist repose sur un peu d’analyse complexe, et en particulier du theoreme de Cauchy. Nous
utiliserons le principe de 'argument appliqué a une transformation méromorphe particuliere.

Nous ferons donc un rappel de la différence entre polynéme, fonction rationnelle, fonction entiére, fonction
méromorphe et fonction analytique, avant de présenter la transformation particuliere donnant naissance au
critere de stabilité.

Le critere est finalement appliqué, en guise d’illustration, au systeme bille sur une roue.

8.2 Boucle ouverte et boucle fermée

Il est important de rappeler les concepts de boucle ouverte et de boucle fermée. Notons que bien qu’il existe es-
sentiellement deux formes de boucle fermée (celle d’asservissement et celle de régulation), toutes deux possedent
le méme polynéme au dénominateur ce qui entraine que la stabilité de 'une est automatiquement garantie des
lors que que les racines de ce polynéme sont toutes dans C_.
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8.2.1 Boucle ouverte

La boucle ouverte est le mise en série du régulateur K (s) et du systeme a régler G(s) ne supprimant la rétroaction
e(t) = ye(t) — y(¢t) entre la grandeur de sortie y(¢) du systeme a régler G(s) et Uentrée e(t) du régulateur K(s).
Il n’y a pas d’influence du systéme & régler G(s) sur le régulateur K (s). Ce dernier opere en sorte en aveugle
par rapport a la grandeur & commander y (la sortie du systéme a réguler G(s)).

—PO—P K(s) (O G(s) — Y

Figure 8.1. Schéma de commande en boucle ouverte qui consiste dans la mise en série du régulateur et du systeme a
régler.

Parmis les fonctions de transfert en boucle ouverte impliquant le systéeme & commander G(s) on peut distinger
la fonction de transfert du syséme & commander G(s) et la mise en série de la fonction de transfert du systeme
& commander et du régulateur, ce qui donne K (s)G(s).

La fonction de transfert du systéme a commander G(s)

C’est la fonction de transfert définissant le rapport entre la transformée de Laplace de la sortie Y (s) sur celle
de Pentrée U(s)

Le systeme a régler obéit & des équations différentielles ordinaires qui lient I'entrée w(t) a la sortie y(t), et par
conséquent G(s) est une fraction rationnelle donnée sous la forme d’une fraction entre deux polynémes en s.
Par convention, le polynéme au numérateur sera noté B(s) et celui du dénominateur A(s) et ainsi

La mise en série K (s)G(s) entre le régulateur et le systéme & commander
Par définition c’est le produit

K(s)G(s)

ou K(s) et la fonction de transfert du régulateur donné comme le rapport de la transformation de Laplace de
la grandeur de commande (sortie de K (s)) sur la transformation de Laplace de Perreur (entrée de K(s)).

Comme le régulateur est également décrit par un ensemble d’équations différentielles ordinaires, la fonction de
tranfert K (s) est une fraction rationnelle. Le polynéme du numérateur sera par convention S(s) et celui du
dénominateur R(s) :

Poles en boucle ouverte

Ce sont les zéros du polynéme A(s)R(s).
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8.2.2 Boucle fermée

La boucle fermée apparait des qu’il existe une influence de la grandeur a commander sur la grandeur d’entrée du
régulateur. Parmis toutes celles possibles, on distingues essentiellement deux fonctions de transfert particulieres,
celle d’asservissement (poursuite de la consigne) et celle de régulation (rejet de perturbation). Grace au principe
de superposition, les deux apparaissent dans le méme schéma fonctionnel.

Fonctions de transfert en boucle fermée

Il y a deux fonctions de transfert en boucle fermée, celle d’asservissement

vey _ _K(8)G(s) B(s)S(s)
¢ 1T K(5)G(s) ~ A(S)R(s) £ B()S(s) (8.1)
et celle de régulation
e G B )

1+ K(s)G(s) A(s)R(s) + B(s)S(s)

Figure 8.2. Schéma de commande en boucle fermée. La fraction Y (s)/V(s) est décrit par la fonction de transfert
en boucle fermée de régulation (8.2) et la fraction Y (s)/Y.(s) est donné par la fonction de transfert en boucle fermée
d’asservissement (8.1).

Poles en boucle fermée

Les deux fonctions de transfert en boucle fermée, celle d’asservissement et celle de régulation, ont le méme
polynoéme au dénominateur

A(s)R(s) + B(s)S(s)

qui détermine ainsi les poles en boucle fermée.

8.3 Principe et criteres de Nyquist

Un critere graphique est présenté qui permet de vérifier la stabilité en boucle fermée sans calculer les racines du
polynéme du dénominateur AR+ BS des fonctions de transfert en boucle fermée. A cette fin, il suffit d’examiner

la boucle ouverte en dessinant dans le plan complexe C la courbe

K (iw) G(iw)

pour w qui varie w € [—00;400]. Ceci décrit une courbe fermée dans le plan complexe qui peut encercler ou
non le point —1. Comme les coefficients des polyndémes apparaissant dans K (s) et G(s) (c.-a-d. les polyndémes
A, B, R et S), la courbe est symetrique par rapport & axe réel.

La stabilité est déterminée par le nombre de fois que la courbe K (iw) G(iw) encercle le point —1.

Les hypothese de stabilité de la boucle ouverte conditionne le type de critere utilisé, le critere de Nyquist
simplifié et celui généralisé. Une esquisse de la démonstration du criere généralisé sera effectuée.
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8.3.1 Critere de Nyquist simplifié

Theorem 3. (CRITERE DE NYQUIST SIMPLIFIE) Hypothése : Le systéme en boucle ouverte K (s)G(s) est stable.
Sous cette hypothese, le systéme est BIBO stable en boucle fermée si et seulement si K (iw) G(iw) n’encercle pas

le points —1.

Enongons le critere généralisé. Une esquisse de la démonstration sera donnée ensuite. L’avantage du critere
simplifié est qu’il n’est pas nécessaire de comptabiliser le nombre d’encerclements du points —1. L’inconvénient
est qu’il ne s’applique uniquement aux systémes stables en boucle ouverte.

8.3.2 Critére de Nyquist généralisé

Theorem 4. ( CRITERE DE NYQUIST GENERALISE) Le systéme K (s)G(s) posséde P péles instables (poles
instables de la boucle ouverte). Le systéme en boucle fermée est stable, si et seulement si K (iw) G(iw) encercle
le point —1 un nombre de fois correspondant a P dans le sens trigonométrique positif.

8.4 Un peu d’analyse complexe...

Dans cette section, nous laissons provisoirement de coté le critere de Nyquist et nous étudions des éléments
d’analyse complexe essentiel pour sa justification.

8.4.1 Polynémes

Definition 5. (POLYNOMES) Un polynome est une somme finie de monomes
n
F(s) = Z a;s’
i=0

8.4.2 Fonction entiére

Definition 6. (FONCTION ENTIERE) Une fonction entiére est une somme infinie de monomes, dont la somme
est convergente partout (pour tout s € C)

Exemple :
F(s) = Z a;s’
i=0
Condition < pour la convergence dans tout C
lim (Ja;|)* =0 (8.3)
1— 00

8.4.3 Fonction analytique
Definition 7. (FONCTION ANALYTIQUE) Une fonction analytique est localement une fonction entiére Dans un
ouwvert YV C C
oo
F(s) = Zai(so)(s —S0)" Vsg €V a;(so) € C
i=0

— La série converge dans un disque centré en sog de rayon r(so)
(qui peut étre petit)

— Le disque de convergence doit étre inclut dans V
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8.4.4 Fonction méromorphe
Definition 8. (FONCTION MEROMORPHE) C’est une fraction de deuz fonctions entiéres.

Definition 9. (FONCTION MEROMORPHE, DEFINITION ALTERNATIVE PLUS GENERALE) C’est une fonction lo-
calement définie par une fraction de deux fonctions analytiques.

8.4.5 Exemples de fonctions méromorphes

Polynéme

s+3+3s5°+3s5+1
Fraction de deux polynémes

s+2
s2+2s5+1

A T’aide de fonctions entiéres bien connues

La fonction sinus est une fonction entiére car elle se développe en une série en la variable s qui converge partout.
C’est par conséquent une fonction méromorphe. Le sinus est également la différence entre deux exponentielles
complexes pondérées ce qui donne une autre démonstration de cette propriété du sinus.

sin(s) e’

s2+s+1 cos(s)

A P’aide du critére de convergence pour les fonctions entiéres

Lorsque on effectue une somme infinie de la variable s élevée en puissances successives, les coeflicients devant
chaque terme peuvent entrainer la convergence pour toute les valeurs de la variable s. Un fonction entiere est
alors obtenue. Celle-ci n’admet pas nécessairement une description par une fonction bien connue (contrairement
& Pexponentielle ou le sinus). Par exemple,
25+3 142
Yoo aist (In(i 4 2))*t

est une fonction méromorphe étant donné que la série au dénominateur est une fonction entiere. Ce sont les a;
qui ont la propriété (8.3) ce qui garantit cette propriété. Il n’existe pas de fonction connue qui décrive la fraction
(8.4). La théorie de ce chapitre s’applique a cette fraction étant donné que c’est une fonction méromorphe.

8.4.6 Transformation définie par une fonction méromorphe

Examinons 'effet d’une application qui prend comme source les points d’un plan complexe et qui les applique
dans un autre plan complexe. Soit donc

H:C—C

la fonction méromorphe.
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8.4.7 Courbe I

Une courbe I' dans le plan complexe est choisie qui effectue une boucle simple en se refermant sur elle-méme.
Cette courbe est orientée. Nous choisirons 1'orientation comme le sens trigonométrique positif (c’est le sens
relatif qui a de I'importance, donc le choix d’une orientation est importante mais sa direction est un choix

arbitraire).

I'=¢e" a€l0;2r7] (8.5)

8.4.8 Image de I' par la fonction méromorophe

Lorsque les points s € I" varient il est possible de dessiner I'image de ces points par I’application méromorphe,

c.-a-d. I’ensemble

H(I'):={H(s)|se T}

qui est une nouvelle courbe qui se referme sur elle-méme mais qui n’effectue pas nécessairement une boucle
simple. En effet, comme ’application H peut étre surjective, il est possible que cette courbe repasse par les
méme points. Elle peut effectuer plusieurs boucles.

Par exemple, lorsque

(s+1.1)2+0.22

H(s) = — o5

(8.6)

Iimage de la courbe I" donnée par le cercle (8.5), & savoir H(I") est donnée ci-dessous
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8.4.9 Nombre d’encerclements de ’origine et singularités

Supposons que I" soit décrit par un parametre « € [0; 1]
I' =~(a) a € [0;1]

Comme la courbe se referme sur elle-méme v(0) = (1) et puisque la courbe est simple y(a1) # v(az) lorsque
o # ag et ag,an € [0;1].
Etant donné que H peut étre surjective, on peut avoir

o #Far H(y(ar)) = H(v(a2))

Definition 10. (NOMBRE D’ENCERCLEMENTS N) On appelle N le nombre de fois que la courbe encercle l’ori-

gine 0 lorsque « € [0; 1] pour une courbe I' paramétrée par a.
Pour la courbe I" donnée par (8.5), a appartient a I'intervalle [0; 27| et on a e = 7.

Definition 11. (Z ET P) Comme H est une fonction méromorphe donnée par le quotient de deux fonctions
entieres, on appelle Z le nombre de zéros du numérateur de H contenu a lintérieur de I'. On appelle P le

nombre de poles de H (zéros du dénominateur) contenu a lintérieur de I

L’équation N = Z — P
Nous avons un théoréme important :

Theorem 5. La courbe H(I") encerle N = Z — P fois Uorigine O ou Z désigne le nombre de zéros et P le
nombre de poles de H contenus a l'intérieur de I'.

Reprenons I'exemple avec la courbe I donnée par (8.5) et la fonction H(s) donnée par (8.6). Z est le nombre
de zéros de H(s) a lintérieur du contour I". Comme le numérateur de H(s) est (s + 1.1)% + 0.2%, nous avons
deux zéros, en —1.1 +0.24¢ qui sont tous les deux a l'extérieur de I" car leur module vaut 1.18 qui est supérieur
au rayon 1 du cercle I'. Par conséquent Z = 0. En ce qui concerne P, le nombre de pdles de H(s) & U'intérieur
de I', le dénominateur de I' a trois racines qui sont toutes en —0.5, et donc a l'intérieur du cercle unité. En
conséquence, P = 3. La conclusion est que la courbe H(I") doit encercler N = Z — P = —3 fois origine du
plan complexe. C’est ce que nous avons constater en examinant la courbe juste en dessous de ’équation (8.6).
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8.4.10 Exemples supplémentaires

Conservons les mémes poles qu’auparavant et changeons le numérateur afin d’avoir un zéro unique juste a

I'intérieur de I'. Ceci donne

s+ 0.99
(s+0.5)3

et conduit a la courbe image

L L
@10 R®0.5

La courbe n’encercle que deux fois ’origine car cette fois N =1— P = —2.
Finalement, déplacons le zéro juste a I’extérieur de la courbe I', autrement dit juste a I’extérieur du cercle unité

avec

s+ 1.01
(s+0.5)3

C

et on constate que la courbe encercle trois fois dans le sens trig. — puisque nous avons a nouveau N = Z — P =
0—-3=-3.
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Nous pouvons prendre des courbes I" plus compliquées comme par exemple

I'=(1+0.2cos(8w))e’” w € [0;27]

C

et avec comme transformation

ce qui conduit a la courbe image

A
qui encercle bien 'origine un nombre de fois compatibles avec la théorie N =272 — P=0—4 = —4.

Prenons encore quelques cas ol la transformation H(s) est plus compliquée que la fraction de deux polynéme,
ceci afin d’effectuer des dessins plus complexes. Cette fois la théorie permet de générer un grand nombre de
boucles puisque Z = N — P et en emprisonant beaucoup de zéros ou de poéles on effectuera beaucoup de tours
autour de l'origine. Reprenons le cercle comme courbe initiale

I'=ée* we0;2n]
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et prenons un fonction sinus de la variables complexe s. Cette fonction possede un nombre infini de zéros.

sin(22s)

0.5s -1
On s’attend alors que la courbe image H(I") tourne un nombre infini de fois autour de l'origine et c’est ce qui
se produit en examinant la figure

8.4.11 Principe de 'argument

Le nombre d’encerclements de l'origine par la transformation d’une courbe fermée peut étre justifié par le
principe de 'arguement dont voici une esquisse. L’idée clé est que seul les zéros et les poles situés a l'intérieure
de la courbe contribue & I'arguement de la fonction H(s) modulo 27 lorsqu’on considere la variation de l'angle
du vecteur reliant un poéle ou un zéro et le point de la courbe paramétré par a. Lorsque le point sur I effectue
un tour complet, 'angle du vecteur entre ce point et un pole ou zéro sera un multiple de 27 si celui-ci est a
Iintérieur de la courbe I" ou non. Si c’est un pole il contribuera —2, si ¢’est un zéro, il contribuera +2m. Tous
les poles et zéros situés a 'extérieur de I' ne contribueront pas.

Contour I' et fonction méromorphe H (s)

Soit I' un contour dans la plan complexe qui entoure une région simplement connexe ayant ainsi un intérieur

et un extérieur.
La courbe I' est paramétrée par, par exemple, o € [0; 27]. Soit H(s) une fonction méromorphe qui sera prise,
sans perte de généralité, comme une fraction rationnelle contenant
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— mzéros z;,i=1,...,m
— n poles p;,i=1,...,n
— les Z premiers zéros sont a l'intérieur de I’
— les P premiers poles sont a I'intérieur de I”

Principe de ’argument de Cauchy

Theorem 6. (PRINCIPE DE L’ARGUMENT DE CAUCHY)
arg H(I') = 2m(Z — P)

Z est le nombre de zéros de H(s) a Uintérieur de I’
P est le nombre de péles de H(s) a Uintérieur de I’
le signe + correspond a la méme orientation que celle de I"

Esquisse de démonstration :

oI 2)
A6 = =m0
Z m
arg(H(I")) = Zarg(f‘ —8;) + Z arg(I" — s;)
=1 i=Z+1
P n
—Zarg(F*pi)* Z arg(I" — p;)
1=1 1=P+1

8.5 Démonstration du critere de Nyquist généralisé

Le critere de Nyquist provient de l'application du nombre d’encerclements de l'origine pour un choix de la
courbe I" qui encercle I’ensemble du demi plan droit C,.
La courbe I" est choisie ainsi comme ’axe imaginaire (qui encercle le demi-plan complexe C

I' = {iw,w €] — 00; +o0[}

La fonction de transformation est

H(s) =1+ K(s)G(s)
En appliquant la méthode de la section précédante, on arrive aux conclusions que le nombre d’encerclements N
de la courbe 1 + K (iw)G(iw), w €] — 00; +00[ est donné par

N=7Z-P

ol

N|Nombre d’encerclements de 1 4+ K (iw)G (iw) autour de 0
Z |Nombre de zéros de 1+ K(s)G(s) dans C4

P |Nombre de poles de 1+ K(s)G(s) dans C




192 8 Diagramme de Nyquist

étant donné que la courbe I" entoure tout Cy.
Un examen attentif de Pexpression 1+ K(s)G(s) donne

et on peut réécrire le tableau ainsi

N|Nombre d’encerclements de 1 4+ K (iw)G (iw) autour de 0
Z |Nombre de zéros de A(s)R(s) + B(s)S(s) dans C
P |Nombre de zéros de A(s)R(s) dans C;

En remarquant que les zéros du polynéme A(s)R(s) sont les poles de K (s)G(s) (les poles de la boucle ouverte,
cf. sections 8.2.1 et 8.2.1) et que les zéros de A(s)R(s) + B(s)S(s) sont les poles des fonctions de transfert en
boucle fermée (cf. sections 8.2.2 et 8.2.2), le tableau s’écrit

N|Nombre d’encerclements de 1 4+ K (iw)G (iw) autour de 0
Z |Nombre de poles de la boucle fermée dans C

P|Nombre de pdles de la boucle ouverte dans C.

Finalement, regarder le nombre d’encerclements de lorigine par 1+ K (iw)G (iw) revient au méme & regarder le
nombre d’encerclements du point —1 par la courbe K (iw)G (iw).

N|Nombre d’encerclements de K (iw)G(iw) autour de —1

Z |Nombre de poles de la boucle fermée dans C

P [Nombre de poles de la boucle ouverte dans C

ce qui donne le critere de Nyquist généralisé. En posant P = 0 (valable uniquement & condition d’avoir le
systéme en boucle ouverte stable), le critere de Nyquist simplifié est obtenu.

8.6 Exemples

8.6.1 Critere de Nyquist simplifié

La courbe I" est choisie comme ’axe imaginaire en laissant de c6té tous les podles situés sur ’axe imaginaire.

I' = {iw € Clw € R,w €] = o0; +o0[} (8.7)

Par exemple, lorsque H(s) = 1 4+ K(s)G(s), il revient au méme de regarder le nombre d’encerclements de
Porigine de H(I") que le nombre d’encerclements de —1 par K (I")G(I"). Prenons

1

K =
(5)G() = 07 19657 24

(8.8)

Iimage de I’axe imaginaire donné par I" défini par (8.7) devient



8.6 Exemples 193

003

Les poles en boucle ouverte de K(s)G(s) donnés par les zéros du dénominateur de (8.8) qui sont —2, —3, —4
et aucun n’est instable (aucun n’est situé dans C*). On peut donc appliquer le critere de Nyquist simplifié en
posant P = 0. En examinant la figure ci-dessus on constate que la courbe n’encercle pas le point —1. Ainsi
N = 0. De la, la conclusion que Z =N + P =040 =0. Il n'y a donc pas de pole instable de la boucle fermée.
Prenons comme autre exemple

150
53 4+ 952 4 265 + 24
150

K(s)G(s) =

C (5+2)(s+3)(s+4)
150

(s —p1)(s —p2)(s — p3)

On a représenté le point —1 en rouge. Bien que celui-ci se rapproche de la courbe K (I')G(I), il n’est toujours
pas entouré et le critere de Nyquist prédit la stabilité de la boucle fermée.

Vérifions que tous les poles de la boucle fermée sont stables. Rappelons que ce calcul n’est pas nécessaire pour
appliquer le critere de Nyquist.

K(s)G(s) 150

1+ K(s)G(s) 83+ 9s2 +26s+ 174
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A(s)R(s) + B(s)S(s) = 5% + 95 + 265 + 174
= (s+8.38)(s + 0.31 + 4.555) (s + 0.31 — 4.55/)
= (s = p1)(s —p2)(s — ps3)

Les poles en boucle fermée sont tous dans le demi-plan gauche (p; € C_,i = 1,2,3). Le critére de Nyquist a
prédit correctement la stabilité de la boucle fermée.
Prenons un autre exemple, mais cette fois-ci avec un gain statique de la boucle ouverte supérieur

350
53 4+ 952 4 265 + 24
350

K(s)G(s) =

(s +2)(s+3)(s+4)
_ 350

(s —p1)(s —p2)(s — p3)

En examinant la courbe K (iw) G(iw) pour w € [—00; +00], on se rend compte que le point —1 est encerclé une
fois. Ceci prédit un pole instable de la boucle fermée

10

Vérifions cette prédiction en calculant les poles de la boucle fermée.

K(s)G(s) 350

1+ K(s)G(s) s+ 952+ 265 + 374

A(s)R(s) + B(s)S(s) = s> + 95 + 265 + 374
= (s —10.1)(s + 0.55 + 6.067) (s + 0.55 — 6.06)
= (s —p1)(s —p2)(s — ps3)

Le podle p; = 10.1 conduit a une instabilité car il appartient a C,

8.6.2 Critere de Nyquist généralisé
8.6.3 Exemple : bille sur une roue

La fonction de transfert de la bille sur la roue est donnée par

1

Gl =01
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et nous choisissons le régulateur initial sous la forme

K(s) = K(1+4s)
Calcul du nombre de pole instable de la boucle ouverte :
— 1 pole instable p; = v/0.1. Ainsi P =1
Le critere de stabilité de Nyquist généralisé détermine N :

— P =1 (1 pole instable en boucle ouverte)
Z =0 (0 poles de la boucle fermées dans C.)
Calculons N (le nombre de tours autour de —1).

N=Z-P
—1=0-1

— K(jw)G(jw) doit encercler le point —1 une fois pour assurer la stabilité en boucle fermée

Au fur et & mesure que K augmente. . .

2

Ainsi il existe un gain suffisament grand pour lequel on entoure le point —1 conduisant la stabilité de la boucle
fermée. Objectif atteint.

8.7 Conclusion

Un critére de stabilité essentiellement graphique et qui exploite la boucle ouverte en fréquence K (iw)G(iw) a
été présenté et développé dans ce chapitre. Le critere de stabilité possede les propriétés suivantes :

— Pas besoin de calculer les poles en boucle fermée.
(Pas besoin de calculer les racines de AR + BS avec K = % et G =

)

>

— Utilisation uniquement du transfert en boucle ouverte.

(Utilisation directe de KG) et évalué sur l’axe imaginaire. Autrement dit il nécessite la connaissance de
K (iw)G(iw) et non toute la connaissance du transfert K (s)G(s).)
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— 11 faut seulement connaitre le nombre de poles instables de la boucle ouverte.
(Le nombre de racines instables de AR.)

— Rend possible la synthese en “sculptant” la boucle ouverte.
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