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Dynamiques

16 mars 2023

EPFL - SIE
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4.7.4 Décomposition en éléments simples par la méthode des résidus . . . . . . . . . . . . . . . . . . . . . . . 85

4.7.5 Cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Symboles utilisés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Analyse temporelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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7.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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8.3.1 Critère de Nyquist simplifié . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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1

Systèmes dynamiques et commande

Ce polycopié présente quelques techniques d’analyse et de modification du comportement des systèmes dyna-

miques avec un point de vue universel du domaine d’application. C’est la raison pour laquelle les exemples ne

sont pas limités au génie de l’environnment. Le formalisme présenté peut parâıtre abstrait en première lecture

car il recelle la possibilité de l’appliquer à toutes sortes de disciplines, une fois le formalisme mâıtrisé. En par-

ticulier, l’application au domaine du génie de l’environnement devient de plus en plus médiatisé. En effet, le

monde devenant de plus en plus interconnecté, par l’entremise des systèmes dits intelligents (présence de mi-

croprocesseur et algorithmes), la théorie des systèmes dynamiques touche aussi bien la domotique que presque

toutes les activités humaines ayant un impact sur l’environnement (voiture intelligente, usine entièrement au-

tomatisée, etc). La possibilité d’automatiser les tâches et de traiter et stocker les données de manière massive

permettent d’améliorer la vie de tout les jours, dans certains cas, mais conduit également à une dégradation

de l’environnement et de la qualité de vie, dans d’autres cas. Ainsi, une bonne compréhension des systèmes

dynamiques devient de plus importante pour le bagage de l’ingénieur en environnement.

Il s’agit donc de présenter ce que l’on entend par système dynamique et par modification du comportement.

Cette dernière notion est, de manière plus sommaire, appelée commande du système dynamique. La commande

peut être manuelle ou, le plus souvent, automatique, c’est-à-dire sans intervention humaine immédiate, ou,

plus précisément, par l’application systématique d’un résultat obtenu de manière mécanique par une méthode

algorithmique. Cette méthode algorithmique peut, ou non, être le résultat de l’élaboration d’une stratégie issue

d’une réflexion humaine.

1.1 Système dynamique

1.1.1 Définition d’ordre général

Lorsque les notions de système et de variable sont définis (cf. section suivante), un système dynamique est

grosso modo une relation entre les variables décrivant le système et une variable chronologique représentant le

plus souvent le temps. Cette relation sera, dans notre exposé, modélisée par une progression déterminée par une

fonction.

La distinction précise de la variable chronologique (qui n’est rien d’autre qu’une variable particulière) par

rapport aux autres variables, consiste en l’existence d’un certain ordre de progression des autres variables par

rapport à la variable chronologique. Cette progression sera, dans notre contexte, supposée être déterminée par la

relation décrivant le système dynamique. Ainsi, on attribuera aux variables du système un indexage par rapport

à la variable chronologique.

Nous commençons par laisser momentanément de côté à la fois la variable chronologique et la relation décrivant

le système dynamique pour nous concentrer sur la notion de système et de ses variables.
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1.1.2 Système

La notion de système est souvent introduite pour décrire l’objet de notre étude et l’isoler ainsi de son environ-

nement. Un système peut représenter :

— Un ensemble d’éléments en interaction organisé pour un but précis (une entreprise).

— Un ensemble de composants qui sont intégrés pour accomplir une tâche (un mécanisme).

— Un ensemble d’objets en interaction qui peut, en première approximation, être considéré comme avoir peu

de relation avec l’extérieur (le système solaire).

— Le contenu d’une bôıte noire mal connue par l’observateur (une télévision).

La notion de système est large, pour ne pas dire vague. Le seul point commun entre le système métrique, un

système d’équations ou le système solaire est, justement le mot système, c’est-à-dire un ensemble d’éléments.

Système

Objet de notre
attention

Ensemble d’éléments
en intéraction

Entrées Sorties

P
e
rt

u
rb

a
ti

o
n

s

Environnement

• Souvent inconnues
• Indésirables
• Non ajustables
• Souvent négligées
• Déterministes

ou aléatoires

• Actions
• Causes
• Moyens disponible pour

• Influences de l’environnement

• Excitation du système
• Grandeurs ajustées

influencer le système

sur le système

• Réactions
• Effets
• Résultats
• Moyens disponibles pour

• Influences du système

• Réponse du système
• Grandeurs observées

observer le système

sur l’environnement

Figure 1.1. Interaction du système avec son environnement.

Les différentes notions relatives à l’interaction d’un système avec son environnement sont représentées à la figure

1.1.

1.1.3 Relation chronologique et propriétés des systèmes

Variable chronologique et règle de progression

Nous considérerons deux classes de systèmes dynamiques, ceux continus dont la variable chronologique est réelle,

et ceux discrets dont la variable chronologique est discrète.



1.1 Système dynamique 13

Dans le premier cas, une variable réelle (c.-à-d. appartenant à R) obéissant à une règle simple de progression

sera déterminée (cette variable particulière se réfère, dans la majeure partie des cas, au temps). La variable est

notée t et la règle de progression est déterminée par l’équation différentielle ordinaire ṫ = 1.

Dans le second cas, une variable discrète (c.-à-d. appartenant à Z) est choisie et la règle de progression devient

celle du successeur. Elle est notée k.

Indexation des variables par la variable chronologique

Dans la présentation des systèmes, nous avons vu que les variables pouvaient être de nature différente (une

vitesse, un prix, une quantité de matière, une chaleur, une température, une concentration, etc.) et toutes

peuvent prendre des valeurs différentes.

Lors de la présence d’une variable chronologique, il est alors possible de considérer, non pas les variables (mise à

part la variable chronologique) comme des quantités fixées une fois pour toute selon l’ordre de progression de la

variable chronologique, mais comme un nouvel ensemble de variables distinctes, de même nature, indexées par

rapport à la variable chronologique. Par conséquent, on peut se référer à la variable vitesse à un instant donné,

au prix du marché à un instant discret précis, à la température en début ou en fin de journée par exemple.

Soit x1, x2, x3 trois variables au sens de la présentation des systèmes donnée à la section précédante. Lors de la

présence d’une variable chronologique, ces trois variables donnent naissance à une multitude infinie de variables,

toutes indexées par la variable chronologique.

Dans le cas continu, elles sont notée x1(t), x2(t), x3(t), t ∈ R et en particulier on pourra se référer par exemple

à x1(0.2), x1(2.3), x1(1.2345), x2(2.345), et x3(100001.2) toutes ces cinq nouvelles quantités sont des variables

à part entière étant donné que ces cinq quantités peuvent a priori prendre n’importe quelle valeur.

Dans le cas discret, nous avons une génèse similaire. En effet, x1, x2, x3 donnent naissance aux variables

dénombrables mais infinies x1(k), x2(k), x3(k), k ∈ Z et l’on peut se référer à x1(0), x1(−3), x3(4), x3(5), x3(6),

etc. chacune étant une variable à part entière puisque ces quantités peuvent, a priori, prendre n’importe quelle

valeur.

Fonctions dynamiques chronologiques

Un système dynamique met en relation une sous partie des variables indexées par la variable chronologique à

un autre sous ensemble de ces variables selon une relation qui sera appelée la relation chronologique. Nous ne

considérons, dans ces notes, que les relations données sous la forme de règle de progression provenant de fonctions

uniquement. Dans le cas continu cela sera un ensemble d’équations différentielles ordinaires, autrement dit, des

équations dont le membre de droite est une fonction et le membre de gauche est une différentielle ordinaire.

Voici donc le modèle pour les relations chronologiques décrivant un système dynamique continu :

ẋ1(t) := f1(x1(t), x2(t), x3(t), · · · , xp(t), t)
ẋ2(t) := f2(x1(t), x2(t), x3(t), · · · , xp(t), t)

... :=
...

ẋn(t) := fn(x1(t), x2(t), x3(t), · · · , xp(t), t)

Il est important de constater que p et n sont deux entiers positifs non nécessairement égaux et que l’on peut

avoir soit p < n, soit p = n, ou encore p > n. Dans le cas discret la règle de progression sera celle du successeur.

Elle sera donnée par le modèle suivant :

x1(k + 1) := f1(x1(k), x2(k), x3(k), · · · , xp(k), k)

x2(k + 1) := f2(x1(k), x2(k), x3(k), · · · , xp(k), k)
... :=

...

xn(k + 1) := fn(x1(k), x2(k), x3(k), · · · , xp(k), k)
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A nouveau p et n ne sont pas nécessairement égaux. Dans ces deux cas les membres de droite déterminent les

fonctions dynamiques chronologiques.

Il est imporant de constater que les deux modèles ci-dessus de relations chronologiques ne sont pas complètement

généraux et que l’on peut en envisager d’autres, comme par exemple, dans le cas continu, la relation fonctionnelle

suivante :

ẋ1(t) := f1(x1([t, t+ T ))

La progression d’une variable à un instant précis est conditionné par toute son évolution future sur un intervalle

de durée T . Ou alors, dans le cas discret, la progression :

x1(k + 1) := f1(x1(k − 2), x1(k − 1), x1(k), x1(k + 1), x1(k + 2))

que l’on retrouve fréquemment en traitement du signal faisant intervenir une progression dépendant des variables

indexées en avant de l’index chronologique courant. En traitement d’image par exemple, l’index chronologique

est spatial et la relation discrète ci-dessus peut représenter un filtre dont l’objectif est d’adoucir ou de renforcer

les contours d’une image.

Voici un exemple élémentaire de système dynamique discret où la variable chronologique est k ∈ N :

x[k+1] = 2x[k], (1.1)

avec x[k] ∈ R pour tout k ∈ N. Il comporte une série de variables indexées par rapport à l’indice discret temporel

k. Son comportement est très différent de celui de l’équation

x[k+1] =
1

2
x[k]. (1.2)

avec x[k] ∈ R pour tout k ∈ N. Calculons le comportement à long terme pour k = N connaissant ce que l’on

appelle la condition initiale x[0] = 3.

Pour l’équation (1.1) :

x[0] = 3

x[1] = 2 · x[0] = 2 · 3 = 6

x[2] = 2 · x[1] = 2 · 2 · x[0] = 4 · 3 = 22 · 3 = 12
...

...

x[N ] = 2 · x[N−1] = 2 · 2 · x[N−2] = 2Nx[0] = 2N · 3

ce qui correspond à la suite de nombres croissants 3, 6, 12, 24, . . ., 2N · 3.

Pour l’équation (1.2) :

x[0] = 3

x[1] = 1
2 · x[0] = 1

2 · 3 = 3
2

x[2] = 1
2 · x[1] = 1

2 ·
1
2 · x[0] = 1

4 · 3 =
(

1
2

)2 · 3 = 3
4

...
...

x[N ] = 1
2 · x[N−1] = 1

2 ·
1
2 · x[N−2] · x[0] =

(
1
2

)N · 3
ce qui correspond à la suite de nombres décroissants 3, 3

2 , 3
4 , 3

8 , . . ., 3
2N

.

1.1.4 Système linéaire continu à une seule condition initiale

Soit l’équation différentielle

ẋ = 2x (1.3)

dont la solution est
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Figure 1.2. Suite de nombres générée par le système discret (1.1).
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Figure 1.3. Suite de nombres générée par le système discret (1.2).

X (x0, t) = x0e
2t.

Elle ne comporte qu’une seule condition initiale x0 ∈ R. On vérifie bien que

X (x0, 0) = x0e
2t
∣∣
0

= x0e
0 = x0 · 1 = x0,

ẋ =
d

dt
X (x0, t) =

d

dt

(
x0e

2t
)

= 2x0e
2t = 2X (x0, t) = 2x.
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Figure 1.4. Solution de l’équation différentielle ẋ = 2x partant de la condition initiale x0 = x(0) = 3.
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1.1.5 Système discret linéaire à deux conditions initiales

Deux séries de variables x1,[k] et x2,[k] indexées par rapport au temps sont nécessaires. Il faut deux conditions

initiales x1,[0] ∈ R et x2,[0] ∈ R pour pouvoir déterminer le comportement futur du système.

Soit par exemple les deux systèmes suivants :{
x1,[k+1] = 1

2x1,[k] + 2
5x2,[k]

x2,[k+1] = 2
5x1,[k] + 1

2x2,[k]

(1.4)

{
x1,[k+1] = 1

2x1,[k] + 3
5x2,[k]

x2,[k+1] = 3
5x1,[k] + 1

2x2,[k]

(1.5)

On constate que les deux systèmes ne diffèrent que par le facteur de couplage croisé qui passe de 2
5 à 3

5 .

Ecriture matricielle

On rassemble les variables correspondants aux conditions initiales nécessaires et suffisantes pour connâıtre

l’évolution futur du système dans un vecteur. Un vecteur [x1,[k] x2,[k] ]T est ainsi constitué qui est iterativement

mis à jour par produit matriciel avec une matrice associée. Les conditions initiales forment les composantes du

vecteur initial. Pour le système (1.4) : [
x1,[k+1]

x2,[k+1]

]
=

[
1
2

2
5

2
5

1
2

][
x1,[k]

x2,[k]

]

En partant de

[
x1,[0]

x2,[0]

]
=

[
1

0

]
,

on obtient successivement

[
1

0

]
,

[
1
2
2
5

]
,

[
41
100
2
5

]
,

[
73
200
91
250

]
, . . .

Valeurs propres et vecteurs propres

Pour isoler le comportement individuel de chaque dimension, il faut diagonaliser la matrice. Ceci peut être

interprété en introduisant un changement de variables (coordonnées)[
z1,[k]

z2,[k]

]
=

[
p11 p12

p21 p22

][
x1,[k]

x2,[k]

]

ou de manière plus compacte

zk = Pxk

de telle sorte que dans les nouvelles variables les deux équations sont découplées et donc indépendantes. La

matrice décrivant la dynamique devient une matrice diagonale.[
z1,[k+1]

z2,[k+1]

]
=

[
λ1 0

0 λ2

][
z1,[k]

z2,[k]

]
En utilisant la notation compacte

xk+1 = Axk

nous obtenons

zk+1 = Pxk+1 = PAxk = PAP−1zk.

Définissons Ā := PAP−1 qui est la matrice diagonale
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Ā =

[
λ1 0

0 λ2

]
.

Nous supposons que la matrice A possède des valeurs propres réelles. Dans un tel cas, les vecteurs propres ont

des composantes réelles et doivent satisfaire la condition

Av = λv.

En d’autres termes, il faut que l’équation matricielle (A− λI)v = 0 possède une solution v non triviale (c.-à-d.

v 6= 0) et donc il faut que la matrice A − λI ne soit pas de rang plein (son déterminant doit être nul). Ainsi

pour obtenir les valeurs propres, il faut résoudre

|A− λI| = 0

pour obtenir λ1 et λ2. Ensuite on constate que

Ā

[
1

0

]
= λ1

[
1

0

]
Ā

[
0

1

]
= λ2

[
0

1

]

ce qui provient directement de la structure diagonale de la matrice Ā. En réintroduisant

Ā = PAP−1,

on obtient les identités

PAP−1

[
1

0

]
= λ1

[
1

0

]

AP−1

[
1

0

]
= P−1λ1

[
1

0

]
= λ1P

−1

[
1

0

]
de même

PAP−1

[
0

1

]
= λ2

[
0

1

]

AP−1

[
0

1

]
= λ2P

−1

[
0

1

]
mais on sait que

Av1 = λ1v1

Av2 = λ2v2

que l’on résoud pour les deux vecteurs v1 et v2 et donc

v1 = P−1

[
1

0

]
v2 = P−1

[
0

1

]

P−1 = P−1

[
1 0

0 1

]
=

[
P−1

[
1

0

]
P−1

[
0

1

]]
=
[
v1 v2

]
et la dernière équation donne l’inverse de la matrice P en fonction des vecteurs propres. Il est alors possible

d’appliquer ceci au deux cas (1.4) et (1.5). En ce qui concerne (1.4), la matrice

A1 =

[
1
2

2
5

2
5

1
2

]
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donne les valeurs propres λ1 = 9
10 et λ2 = 1

10 , toutes deux inférieures en module à 1, ce qui correspond à un

système stable. La matrice de changement de base (coordonnées) est, compte tenu des vecteurs propres associés

v1 =
[

1 1
]T

et v2 =
[
−1 1

]T
.

P−1
1 =

[
1 −1

1 1

]
P1 =

[
1
2

1
2

− 1
2

1
2

]
En ce qui concerne le système (1.5), la matrice

A2 =

[
1
2

3
5

3
5

1
2

]

donne les valeurs propres λ1 = 11
10 et λ2 = − 1

10 , dont la première est supérieure en module à un. Ceci aura

comme conséquence une divergence des variables z1,[k] et par conséquent, une divergence des variables x1,[k] et

x2,[k]. Les vecteurs propres sont les mêmes que pour la matrice A1 et par conséquent P2 = P1.

Ainsi, pour qu’un système dynamique linéaire discret, à coefficients constants, et à deux conditions initiales,

conduise à des suites de nombres qui convergent vers zero, il est nécessaire et suffisant que les deux valeurs

propres associées aient un module inférieur à l’unité.

L’ analyse pour les systèmes dynamiques continus linéaires à coefficients constants et à deux conditions intiales

s’en suit de manière similaire. La conclusion du comportement est toutefois différente que dans le cas discret. Pour

tester si les trajectoires solutions des équations différentielles sont convergentes vers l’origine, il est nécessaire

et suffisant que les deux valeurs propres aient des parties réelles négatives.

Ces considérations de stabilité seront étudiées plus en détails dans un contexte mathématique différent dans les

chapitres suivants, en particulier au chapitre 4.

Une autre remarque très importante est que dans le cas instable, il n’est pas possible, pour l’instant, de modifier

le système afin de le rendre stable, sauf lorsqu’il est possbile d’agir directement sur une ou plusieurs variables

x directement. C’est l’un des objectifs des chapitres suivants.

Entrées, perturbations, paramètres

Parmis les grandeurs xi(t) ou xi(k), i = 1, . . . , p, dont il a été question au paragraphe précédent, celles d’indice

supérieures à n, c.-à-d. celles qui n’apparaissent pas dans les relations chronologiques seront soit des entrées,

des perturbations, ou des paramètres, en fonction de certaines de leurs caractéristiques propres. Ceci ne signifie

pas pour autant qu’elles ne dépendent pas de la variable chronologique en tant que tel (elles peuvent être

fonction du temps). Cependant elles sont considérées comme des grandeurs qui évoluent sans aucune relation

explicite chronologique, c.-à-d. sans leur fonction fi, i = n+ 1, . . . , n. Ainsi, dans le cas où p > n seulement, les

variables d’indices xn+1, xn+2, . . ., xp seront des variables exogènes. Parmis les variables exogènes, nous faisons

la distinction entre :

— Les entrées . Ce sont des variables que l’opérateur peut changer à sa guise. Ce sont les variables manipulées

et déterminées par la stratégie de commande que l’on cherchera à déterminer.

— Les perturbations . Ce sont également des sortes d’entrées, mais dont la spécification ne dépend pas de

l’opérateur. On peut les assimiler à une entrée d’un autre intervenant, d’un autre joueur, qui cherche à

remplir des objectifs pas nécessairement concurrents à ceux de l’opérateur. Les perturbations sont la plupart

du temps de nature aléatoire et souvent difficilement modélisables.

— Les paramètres à proprement dit, c’est-à-dire toutes les autres variables n’ayant pas de relation chronolo-

gique explicite. Les paramètres sont, la plupart du temps, constants, ou alors, lentement ou peu variables

par rapport à la variable chronologique.

Les systèmes dynamiques que nous allons étudier sont de nature très générale. Nous allons cependant les

représenter de manière plus ou moins approximative par des modèles dynamiques, linéaires, stationnaires, cau-

sals et initialement au repos. Ces propriétés sont décrites ci dessous.
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a) Linéarité : un système est linéaire s’il obéit au principe de superposition défini par les propriétés d’additivité

et d’homogénéité. Considérons le système S donné à la figure 1.5 avec l’entrée u et la sortie y.

Si le système est initialement au repos et que l’entrée u1(t) produit la sortie y1(t) et l’entrée u2(t) produit

S
y(t)u(t)

Figure 1.5. Système dynamique.

la sortie y2(t), alors la réponse à la somme u1 + u2 est la somme y1 + y2 :

principe d’additivité : u1(t) + u2(t)→ y1(t) + y2(t)

principe d’homogénéité : αu1(t)→ αy1(t); α = nombre réel

Il s’ensuit qu’une combinaison linéaire de signaux d’entrée appliquées à un système linéaire produit la même

combinaison linéaire des signaux de sortie correspondants :

α1u1(t) + α2u2(t)→ α1y1(t) + α2y2(t)

Il faut parfois faire attention car la représentation mathématique d’un système linéaire peut ne pas satisfaire

au principe de superposition. Par exemple, bien qu’exprimant l’équation d’une droite, la relation statique

y = ax+ b

n’est pas linéaire à cause du terme constant b. On dit qu’une telle relation est affine en x. En définissant

ã = ax, laquelle est linéaire.

b) Stationnarité : un système est stationnaire (ou invariant) si tous ses paramètres sont constants par rapport

au temps. Les entrées et sorties peuvent varier, par exemple P(t) et T(t), mais les paramètres physiques

du système restent constant (par exemple, sa géométrie, masse, chaleur spécifique). On dit aussi qu’un

système stationnaire ne vieillit pas. Il se comportera plus tard de la même façon que maintenant. Dans le

cas contraire, on parle d’un système non stationnaire (ou évolutif).

c) Causalité : un système est causal si sa réponse à une excitation ne précède pas l’excitation elle-même (fig.

1.6). Ceci signifie que dans les relations chronologiques spécifiant les variables à l’instant t (ou k) les autres

variables à l’instant plus grand que t ou d’indice supérieure à k ne peuvent apparâıtre. Tous les systèmes

physiques évoluant en temps réel sont causals, l’effet ne pouvant en effet pas précéder la cause.

Mais on peut aisément construire des systèmes dynamiques non causals. Considérons par exemple des

Temps
0

Causal

Cause

Effet

Temps
0

Non causal

Cause

Effet

Figure 1.6. Distinction entre système causal et non causal.

données bruitées que l’on a mesurées en fonction du temps lors de l’expérience. Après coup, donc pas en

temps réel, on décide de lisser ces données avec un filtre, c’est-à-dire un système dynamique qui prend les
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données mesurées en entrée et génère les données filtrées en sortie. Ce filtre est de préférence non causal car

il détermine la valeur filtrée à un instant donné en considérant la valeur mesurée à cet instant mais aussi

aux instants précédents et suivants.

d) Au repos : un système dynamique est au repos, à un instant donné, si toutes les quantités qui décrivent

son état interne demeurent constantes dans le temps. Il se trouve à l’état stationnaire et ainsi, en l’absence

d’excitation extérieure, le système n’évolue pas. Ses mémoires sont vides. Dans le cas contraire, on dit que

le système est chargé (fig. 1.7).

Au repos Chargé

Figure 1.7. Distinction entre système au repos et chargé.

Il est important de noter les différences qui existent entre un système stationnaire, un système dynamique à

l’état stationnaire et un système statique :

dθ

dt
= 0 système stationnaire (θ : vecteur de paramètres)

du

dt
=
dy

dt
= 0 système à l’état stationnaire ou à un point d’équilibre

(u, y : signaux temporels)

y(t) = f [u(t)] système statique (pas de mémoire)

La nomenclature pour ces propriétés peut parfois prêter à confusion. On la résume ici dans différentes langues :

Français Allemand Anglais

stationnaire zeitinvariant time invariant

à l’état stationnaire beim stationären at steady state

statique statisch static

La plupart des modèles que nous allons utiliser pour l’analyse et la synthèse de systèmes automatiques

posséderont ces cinq propriétés. On pourra alors les représenter par des équations différentielles (a) linéaires

(b) à coefficient constant (c) et avec des conditions initiales nulles (e). On utilisera aussi l’appellation système

lscr pour désigner un système linéaire, stationnaire, causal et initialement au repos.

Les systèmes physiques peuvent posséder plusieurs entrées et plusieurs sorties, comme par exemple dans

l’exemple de la conduite automobile présentée précédemment. On appelle de tels systèmes des systèmes mul-

tivariables . Cependant, on isole très souvent une entrée et une sortie pour étudier une boucle de commande.

On parle alors de systèmes monovariables , lesquels seront étudiés en priorité dans ce cours.

1.2 Commande automatique

1.2.1 Idée de base

Le domaine de l’automatique comprend l’ensemble des méthodes permettant de conduire un système sans

intervention humaine sur la base de mesures liées à son comportement. Le but de la commande consiste à
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déterminer les entrées qu’il faut appliquer au système pour obtenir un comportement désiré.

Un exemple de commande manuelle est celui de la conduite d’un automobile où le pilote, compte tenu de la

connaissance qu’il a du comportement de son véhicule et des différentes mesures que son oeil effectue, détermine

les actions de direction et d’accélération qui lui permettront de couvrir son parcours de la manière souhaitée

(fig. 1.8). Nous remarquons la présence d’une boucle de rétroaction dans laquelle, en plus du système à

commander (automobile), se situent le régulateur (cerveau du pilote), l’organe de mesure (yeux du pilote) et les

organes de commande (pieds et mains du pilote).

La commande automatique d’une automobile est plus difficile à réaliser. Si les sorties (position et vitesse) sont

SYSTEME A COMMANDER
SORTIES

position
vitesse

REGULATEUR

grandeurs
commandées

y
eu
x

p
ie
d
s,
m
a
in
s

ENTREES

freins
accélérateur
volant

grandeurs de
commande

Figure 1.8. Automobile commandée manuellement.

facilement mesurables, il convient de tenir compte de l’environnement et notamment de la route et du trafic

routier. Pour appréhender correctement l’environnement, il est nécessaire de disposer de caméras et de traiter

les images en temps réel. Un ordinateur joue alors le rôle du pilote et transmet ses ordres aux entrées (freins,

accélérateur et volant).

En tant que science, l’automatique essaie de dégager des modèles abstraits des problèmes d’automatisations et

de formuler des solutions d’intérêt général. C’est ce processus d’abstraction et de solutions qui fait l’objet de ce

cours.

1.2.2 Eléments d’une boucle de commande

Dans une boucle de rétro-action nous avons les grandeurs suivantes :

• grandeur commandée ou grandeur à commander,

• grandeur de commande,

• grandeur perturbatrice ou perturbation,

• grandeur de consigne,

• erreur ou écart de commande.

L’objet à commander est appelé processus ou système à commander. Pour mesurer la grandeur commandée

et la perturbation, nous disposons d’organes de mesure (capteurs). La grandeur de commande est imposée

au processus à l’aide d’un organe de commande (actionneurs). Souvent, on considère comme système à com-

mander l’ensemble ”processus, organe de mesure et organe de commande”.

1.2.3 Objectifs de la commande

Nous distingerons les deux problèmes principaux suivants :
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a) Problème d’asservissement ou de poursuite : la grandeur commandée doit suivre une consigne qui varie dans

le temps (exemples : démarrage d’un réacteur discontinu, positionnement de la table d’une machine-outil,

conduite d’une automobile, d’un avion, d’un missile, etc.).

b) Problème de régulation : la grandeur commandée doit suivre une consigne constante en dépit de variations

internes du processus ou de la présence de perturbations (exemple : régulation d’un processus industriel

autour de son point de fonctionnement).

Contrairement à la commande par compensation de perturbation, la commande par rétroaction est apte à

compenser toutes les sources d’erreurs qui influencent T puisque cette dernière est mesurée. C’est là que réside

l’avantage de mesurer la grandeur commandée et d’utiliser une commande par rétroaction. Cette approche

constitue la partie principale de ce cours. Un schéma de commande par compensation de perturbation ne sera

efficace que si les trois conditions suivantes sont remplies :

a) il n’y a qu’une seule perturbation affectant la grandeur commandée ;

b) la perturbation peut être mesurée précisément ;

c) l’effet de la perturbation sur la grandeur commandée est bien connu, afin qu’il puisse être compensé.

La mise au point d’un régulateur nécessite en général une bonne connaissance du système à commander. Le

chapitre 2 traitera de l’étude de systèmes et leur modélisation.

1.3 Exemples

Nous présentons quatre exemples permettant de mettre en évidence une partie spécifique du cours. Ils ne sont

pas nécessairement du domaine de l’ingénierie de l’environnement (par exemple le moteur électrique et la bille

sur la roue). Toutefois ils sont importants car ils illustrent la nature universelle de la théorie des systèmes

dynamiques et ils permettent également d’étudier certains aspects de manière plus direct. Par exemple, la bille

sur la roue est un joli exemple d’équilibrisme spectaculaire étant donné la nature instable du système. Le moteur

est un exemple simple donnant naissance à une fonction de transfert élémentaire. De plus, c’est un système très

concret et très répandu.

Nous présentons dans ce chapitre les quatres exemples suivant :

1. Système d’irrigation.

2. Immeuble à quatre étage et structure anti-sismique.

3. Moteur électrique.

4. Bille sur roue.

La modélisation par des équations différentielles ainsi que la synthèse de régulateurs pour ces systèmes pour

atteindre les objectifs de commande seront présentés dans les chapitres suivants. Nous insisterons pour l’instant

sur les signaux et les systèmes de manière descriptive et phénoménologique.

1.3.1 Système d’irrigation

Un réservoir d’eau possède une vanne/pompe qui permet d’alimenter un circuit d’irrigation connecté à un champ

d’une surface donnée. Ce champ est en plein air et sujet aux pluies et avaries. L’objectif du régulateur est de

maintenir un taux d’humidité le plus constant possbile malgré les fluctuations climatiques, telle que sécheresse

momentanée, pluies soutenues, etc. Le régulateur est connecté à la pompe et actionne celle-ci en fonction de la

valeur de l’humidité du champ et permet de collecter le surplus d’eau en la collectant dans le réservoir ou, en

cas de sécheresse, d’alimenter le circuit d’irrigation en actionnant la pompe dans le sens contraire et en vidant

le réservoir.

On peut ainsi distinguer les signaux et systéme suivant :

— perturbation : pluie
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— système : champ + absorption

— régulateur : ordinateur, algorithme, réservoir et pompe

— grandeur de commande : commande de la pompe

— grandeur commandée : taux d’humidité

— grandeur mesurée : taux d’humidité

1.3.2 Immeuble à quatre étages

Un petit immeuble consiste en quatre dalles non-déformables représentant les planchers et sols connectés les uns

aux autres par une structure porteuse de parois latérales. L’hypothèse est que les parois latérales peuvent se

déformer et agissent comme des forces de ressort sur les dalles situées de part et d’autre des parois. Le système

entre donc en oscillation si le sol se met à vibrer. Lors d’un séisme, l’énergie est transmise dans l’immeuble qui

agit comme un résonateur. Si cette énergie ne peut être dissipée, cela conduit à la destruction des parois et des

dalles. L’objectif est d’ajouter un système anti-sismique qui génère des forces supplémentaires entre le sol et

le premier étage. Ces forces permettent d’absorber de l’énergie permettant à l’immeuble de mieux encaisser le

séisme.

Les signaux et systèmes associés sont :

— perturbation : tremblement de terre.

— système : étages (dalles) et structure porteuse (parois)

— régulateur : générateur de forces entre le sol et le premier étage et algorithme de commande

— grandeur de commande : consigne de force au générateur

— grandeur commandée : différence de position latérale entre la première dalle (étage 1) et le sol

— grandeur mesurée : écart entre deux étages

Remarquer qu’il n’est pas nécessaire de mesurer l’écart entre deux étages particuliers. Seul un écart entre deux

étages quelconques est nécessaire. La théorie associée est celle de l’observation et la construction d’observateurs.

Nous n’aborderons pas cette approche mais nous nous contenterons d’une approche entrée-sortie classique pour

arriver aux objectifs de commande et de régulation.

1.3.3 Moteur électrique

Un moteur électrique à courant continu est considéré. Une tension d’alimentation continue engendre un courant

électrique dans l’armature du moteur. Ce courant électrique agis sur des aimants et/ou (selon les types de

moteur) sur une autre bobine et provoque une force électromagnétique responsable d’un couple (moment de

force) entrâınant le rotor (partie mobile rotative) à tourner autour du stator (partie fixe qui guide l’axe du

rotor). On distinguera, le circuit électrique constitué d’une inductance et d’une résistance électrique couplée à

un générateur de tension induite par le mouvement du rotor, du comportement mécanique modélisé par une

inertie avec ou sans frottement mécanique sujet à un couple proportionnel au courant électrique. Il est parfois

d’usage de négliger l’inductance dans le circuit électrique.

— perturbation : couple de freinage agissant sur le rotor

— système : moteur électrique

— régulateur : ordinateur, générateur de tension

— grandeur de commande : tension aux bornes du moteur

— grandeur commandée : vitesse ou position angulaire du moteur

— grandeur mesurée : vitesse ou position angulaire du moteur
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1.3.4 Bille sur roue

Une roue est actionnée par un moment de force et peut donc tourner et se positionner librement à l’aide du

moment de force. L’axe de la roue est perpendiculaire à la gravité de tele sorte qu’une bille qui roule sans glisser

sur la roue tombe sous l’effet de la gravité. L’objectif est de maintenir la bille en position instable en utilisant

le moment de force pour agir sur la roue.

— perturbation : aucune, ou déplacement de temps en temps de la bille de son point d’équilibre

— système : bille et roue

— régulateur : ordinateur et générateur de moment de force (moteur) qui permet de déplacer la position

angulaire de la roue

— grandeur de commande : moment de force

— grandeur commandée : position de la bille

— grandeur mesurée : écart de la bille par rapport à sa position d’équilibre
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Modélisation mathématique

2.1 Modèles mathématiques

Un modèle mathématique est un ensemble de relations mathématiques liant les grandeurs d’entrée et de sortie

d’un processus (ou système) physique.

2.1.1 Domaines d’applications

Un modèle mathématique permet :

• d’analyser certaines propriétés du processus,

• de mieux comprendre le processus en effectuant des simulations,

• de développer une stratégie de commande permettant d’ajuster certaines grandeurs afin que les grandeurs

commandées suivent les consignes correspondantes,

• d’optimiser le comportement du processus.

2.1.2 Classes de modèles mathématiques

On distingue deux classes de modèles mathématiques :

• Le modèle de connaissance élaboré à partir de lois physiques connues, d’où son autre nom de modèle

physique. Un tel modèle peut être développé même si le processus correspondant n’est pas encore disponible.

Cependant, si certains paramètres physiques sont inconnus, ils doivent être déterminés expérimentalement.

• Le modèle de représentation pour lequel une structure simple est proposée sur la base du comportement

du processus face à des excitations particulières. Le modèle met en relation directe chaque entrée et chaque

sortie du système. Les paramètres du modèle sont identifiés à partir d’essais expérimentaux.

Cette distinction entre modèle de connaissance et modèle de représentation est illustrée à la figure 2.1.

Ce chapitre traite exclusivement de modélisation pour arriver à des modèles de connaissance dynamiques. Par

contre, l’approche de commande développée dans les chapitres suivants considérera les systèmes dynamiques

indépendamment de leur mode d’élaboration (connaissance ou représentation).

2.1.3 Procédure de modélisation physique

L’élaboration d’un modèle de connaissance comporte généralement quatre étapes principales :

1. Structuration du problème qui permet de définir les phénomènes physiques dominants pour l’étude envisagée

et d’en déduire les grandeurs caractéristiques du modèle (entrée ou variables indépendantes, sorties ou

variables dépendantes). Dans cette étape de structuration, la contribution principale de l’ingénieur consiste

à distinguer les éléments importants de ceux qui peuvent être négligés.
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Système

m

l
θ

loi physique
connue et d’une

complexité abordable

comportements

particuliers ou

dominants connus

modèle de

CONNAISSANCE
déterminé analytiquement

modèle de

REPRESENTATION
déterminé expérimentalement

Observation
θ

t

θ(t) = A sin(ωt)

Loi de Newton

ml2 d
2θ
dt2 = −mgl sin(θ)

˙θ(0) = θ̇0 = ω0

Figure 2.1. Modèle de connaissance et modèle de représentation pour un pendule.

2. Mise en équations en utilisant des lois connues, par exemple :

— Des lois de conservation (par exemple, de masse, d’énergie, de quantité de mouvement, de flux

magnétique ou de charges électriques, selon la nature du système étudié). Ces relations sont généralement

de type différentiel.

— Des relations constitutives qui mettent en relation des grandeurs de nature différente, par exemple,

le courant et la tension dans une résistance (u = Ri), ou la pression, le volume et la température d’un

gaz dans un système fermé (pV = nRT ), ou encore la différence de pression et le débit à travers une

vanne (q = αCV
√
∆p). Ces relations sont le plus souvent de type algébrique.

On obtient ainsi un système d’équations différentielles et algébriques qui décrivent le comportement

dynamique du système. Par exemple :
dx(t)

dt
= ax(t) + bu(t) x(0) = x0

y(t) = cx(t) + du(t)

où u(t) est l’entrée, x(t) l’état, y(t) la sortie, t le temps, a, b, c et d les paramètres du modèle et x0 la

condition initiale du système dynamique.

3. Identification des paramètres à partir de données physiques ou de mesures expérimentales.

4. Validation du modèle dans le cadre de l’étude considérée, en comportant les prévisions qu’il fournit avec

certaines données mesurées expérimentalement.

Nous nous proposons de modéliser des systèmes dynamiques de nature chimique, thermique et hydraulique.

2.1.4 Types de variables

On appelle variable d’entrée toute variable indépendante qui peut être, en principe directement modifiée par

l’opérateur.
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On appelle variable d’état toute variable dépendant des variables d’entrée ou d’autre variables d’état ; ces

variables d’état servent à représenter le comportement dynamique du processus et sont donc associées aux termes

dynamiques ou d’accumulation ; une variable d’état ne peut être modifiée qu’indirectement par l’intermédiaire

de la modification d’une variable d’entrée.

On appelle variable de sortie tout variable d’état (ou combinaison de celles-ci) qui peut être mesurée.

Remarque importante

En automatique, lorsque l’on parle de � variable d’entrée � ou de � variable de sortie � (comme définies ci-

dessus), on ne parle pas nécessairement de ce qui entre ou sort physiquement du processus considéré (réacteur

chimique, échangeur de chaleur, etc.). Il convient de distinguer le processus physique réel (réacteur chimique,

échangeur de chaleur, etc.) du système abstrait permettant une description mathématique des relations entre

variables indépendantes et variables dépendantes. On peut représenter la situation par le schéma de la figure

2.2.

Pour illustrer ceci, prenons l’exemple d’une cuve, avec un débit volumique d’alimentation qe, un débit volumique

de fuite qs, une surface de section S et la hauter de niveau h (fig. 2.3).

En effet, on cherche avec un modèle mathématique à représenter la variation de la hauteur du liquide dans la

grandeur de sortiegrandeur d’entrée

variable de sortievariable d’entrée

qs

hqe, qs

qe

(variable dépendante)(variables indépendantes)

(débit d’alimentation) (débit de fuite)

PROCESSUS PHYSIQUE
(réacteur chimique, échangeur

de chaleur, colonne de distillation)

SYSTEME ABSTRAIT
(modèle mathématiques)

Figure 2.2. Processus physique et système abstrait.

qe

qs

h

S

Figure 2.3. Cuve avec volume variable.

cuve en fonction des débits volumiques d’alimentation et de fuite.
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2.2 Modèle d’état

2.2.1 Concept d’état

L’état d’un système dynamique déterministe à un instant donné est l’information minimale qui permet, à partir

des entrées futures, de déterminer de façon univoque le comportement futur du système.

Plus précisément :

état à t0
u[t0,∞)

}
−→ comportement pour t ≥ t0

Ainsi, l’état d’un système est l’information résumant parfaitement le passé du système puisqu’il fixe l’évolution

future une fois les entrées futures spécifiées. Les équations différentielles qui décrivent un système dynamique

possèdent des conditions initiales pour t0. Ces conditions initiales représentent précisément l’état du systèmes

au temps t0. Ainsi, même si le système n’est pas relâché au temps t0, la connaissance de son état à t0 résume

complètement l’effet du passé.

Dans ce cours, on ne considère que les systèmes pour lesquels l’état à un instant donné est un nombre fini n de

nombres réels. Ceux-ci sont tout naturellement rassemblés dans un vecteur x(t) de dimension n appelé vecteur

d’état :

x(t) =


x1(t)

x2(t)
...

xn(t)

 (2.1)

Les coordonnées x1(t), x2(t), . . . , xn(t) du vecteur d’état représentent les variables d’état au temps t. L’entier

n est par définition l’ordre du système dynamique. Il s’ensuit qu’un système statique est d’ordre zéro car son

modèle ne contient aucune équation différentielle.

Dans le but d’alléger les notations, les entrées u1(t), u2(t), . . . , up(t) sont elles aussi regroupées dans un vecteur

u(t) de dimension p appelé vecteur d’entrée :

u(t) =


u1(t)

u2(t)
...

up(t)

 (2.2)

Il en est de même des sorties y1(t), y2(t), . . . , yq(t), réunies dans un vecteur y(t) de dimension q appelé vecteur

de sortie :

y(t) =


y1(t)

y2(t)
...

yq(t)

 (2.3)

Exemple 1

Soit un objet auquel on applique une force u[t0,∞) pour t ≥ t0. Afin de déterminer de façon complète la position

future de l’objet, il est nécessaire de connâıtre sa position et sa vitesse initiales. Il résulte de la définition de l’état

d’un système que x(t0) et ẋ(t0) représentent l’état du système à t0 . Par généralisation, x(t) et ẋ(t) représentent

l’état du système au temps t.

On définit l’état comme x(t) et ẋ(t), c’est-à-dire la position et la vitesse de l’objet. Cependant, le choix des

variables d’état n’est pas unique. On peut très bien choisir d’autres combinaisons des variables position et vitesse

comme, par exemple, 2x(t) et x(t) − 5ẋ(t). Ces deux dernières quantités sont alors des variables d’état qui ne

possèdent plus une signification physique immédiate.

Exemple 2

Soit le retard unité y(t) = u(t− 1)
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Afin de déterminer y[t0,∞) à partir de u[t0,∞) il faut connâıtre u[t0 − 1, t0) qui représente donc l’état du

système dynamique à t0. Comme il y a une infinité de valeurs de u entre t0− 1 et t0, il s’agit donc d’un système

dynamique d’ordre infini.

2.2.2 Sélection des variables d’état

Pour extraire les variables qui permettent de décrire le système dans le formalisme d’état choisi, il faut tout

d’abord inventorier l’ensemble des grandeurs qui apparaissent sous forme différentielle dans les équations. Ces

grandeurs sont notées γi, i = 1, . . . , nγ . L’ordre maximale de dérivation de γi est noté ρi, lequel définit le nombre

de variables d’état qu’il faut introduire pour représenter la grandeur γi. Ces variables d’état sont, par ordre de

dérivation :

γ
(0)
i , γ

(1)
i , . . . , γ

(ρi−1)
i

où

γ
(0)
i = γi et γ

(k)
i =

dkγi
dtk

, k = 1, 2, · · · , ρi − 1

L’ordre du système est alors égal à

nγ∑
i=1

ρi.

La sélection des entrées et des sorties est fonction de l’application considérée. Les entrées sont les variables

indépendantes ajustables, alors que les sorties sont les variables dépendantes mesurées. Il peut également y

avoir des variables indépendantes non ajustables appelées génériquement perturbations. Les grandeurs qui ne

sont ni des variables d’état, ni des entrées, ni des sorties, ni des perturbations, doivent être éliminées par

substitution.

Exemple

Soit le système d’équations différentielles :

aẅ + sin ż = u2
1

√
v̇ + cos ż = u2

ż + z = αt

avec les conditions initiales v(t0) = v0, w(t0) = w0, ẇ(t0) = a0 et z(t0) = z0.

Le tableau 2.1 inventorie les grandeurs différentielles de ce système dynamique ainsi que leur ordre respectif. Il

est alors possible de définir les variables d’état. On remarque également que les conditions initiales correspondent

à x(t0).

i grandeur γi ordre ρi variables d’état
1 v 1 x1 = v
2 w 2 x2 = w, x3 = ẇ
3 z 1 x4 = z

Table 2.1. Sélection des variables d’état.

L’ordre de ce système est donné par l’expression ρ1 + ρ2 + ρ3 = 4.

Le modèle dynamique qui résulte de l’expression de la première dérivée de chaque variable d’état sélectionnée

est appelé modèle d’état. Les équations originales sont exploitées pour exprimer par substitution ces dérivées

en fonction des variables d’état et des entrées :
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ẋ1 = v̇ = (u2 − cos ż)2 = [u2 − cos(−x4 + αt)]2

ẋ2 = ẇ = x3

ẋ3 = ẅ = 1
a [u2

1 − sin(−x4 + αt)]

ẋ4 = ż = −x4 + αt

La même démarche est exploitée pour exprimer les sorties en fonction des variables d’état et des entrées. Par

exemple, si seule la grandeur w est mesurée :

y = w = x2

2.2.3 Représentation générale

A partir des lois physiques du mouvement, de nombreux systèmes dynamiques peuvent être ainsi décrits par

des équations différentielles et algébriques exhibant la structure suivante :∣∣∣∣∣∣∣∣∣∣
ẋ1(t) = f1[x1(t), . . . , xn(t), u1(t), . . . , up(t), t] x1(t0) = x1,0

ẋ2(t) = f2[x1(t), . . . , xn(t), u1(t), . . . , up(t), t] x2(t0) = x2,0

...

ẋn(t) = fn[x1(t), . . . , xn(t), u1(t), . . . , up(t), t] xn(t0) = xn,0

(2.4)

∣∣∣∣∣∣∣∣∣∣
ẏ1(t) = g1[x1(t), . . . , xn(t), u1(t), . . . , up(t), t]

ẏ2(t) = g2[x1(t), . . . , xn(t), u1(t), . . . , up(t), t]
...

ẏq(t) = gq[x1(t), . . . , xn(t), u1(t), . . . , up(t), t]

(2.5)

La variable t est le temps. On introduit les notations vectorielles (2.1)-(2.3) et les fonctions vectorielles f et g :

f [x(t), u(t), t] =


f1[x(t), u(t), t]

f2[x(t), u(t), t]
...

fn[x(t), u(t), t]



g[x(t), u(t), t] =


g1[x(t), u(t), t]

g2[x(t), u(t), t]
...

gq[x(t), u(t), t]


La dérivée du vecteur d’état s’écrit :

ẋ(t) =


ẋ1(t)

ẋ2(t)
...

ẋn(t)

 =


dx1/dt

dx2/dt
...

dxn/dt


Les relations (2.4) et (2.5) prennent alors l’allure vectorielle très compacte :

ẋ(t) = f [x(t), u(t), t] x(t0) = x0 (2.6)

y(t) = g[x(t), u(t), t] (2.7)

Le vecteur u(t) est l’entrée du système et y(t) sa sortie. Si x(t0) et u(t), t ≥ t0, sont connus, l’équation (2.6)

peut être intégrée pour donner x(t), t ≥ t0. La relation (2.7) permet ensuite le calcul de y(t) pour t ≥ t0. Ainsi,



2.2 Modèle d’état 31

comme la notation le laissait présumer, x(t0) représente l’état au temps t0.

L’équation (2.6) régissant le comportement dynamique du système est appelée équation d’état. Elle décrit le

comportement dynamique du vecteur d’état x(t). L’ordre n du système est donné par la dimension du vecteur

x(t).

La relation (2.7) est l’équation de sortie. Elle indique une relation statique entre les variables d’état x(t) et

d’entrée u(t) et le vecteur de sortie y(t). Souvent, u(t) n’intervient pas dans l’équation de sortie (pas d’effet

direct de l’entrée sur la sortie).

Les équations d’état (2.6) et de sortie (2.7) forment ensemble le modèle d’état. Si f [x(t), u(t), t] et ∂f/∂x[x(t), u(t), t]

sont des fonctions continues de t, on démontre qu’il existe une solution unique pour x(t) étant donnés x(t0) et

u[t0,∞).

Pour un système statique, l’équation d’état (2.6) n’existe pas , et le système se réduit à : y(t) = g[u(t), t]

2.2.4 Modèle d’état linéaire et stationnaire

Un modèle d’état particulièrement important est celui dans lequel les fonctions f et g sont linéaires par rapport

à x et u et indépendantes du temps. Le modèle devient alors :

ẋ(t) = Ax(t) +Bu(t) x(t0) = x0 (2.8)

y(t) = Cx(t) +Du(t) (2.9)

où A, B, C et D sont respectivement des matrices de dimensions n × n, n × p, q × n et q × p. La figure 2.4

représente le schéma fonctionnel de ce système.

Remarquons que, dans ce schéma fonctionnel, les variables d’état apparaissent à la sortie des intégrateurs. Les

divers rôles joués par les matrices du modèle ressortent clairement : la matrice d’entrée B assure la liaison du

vecteur d’entrée u(t) avec la partie dynamique caractéristique par la matrice du système A et l’intégrateur ;

la matrice de sortie C représente la connexion entre cette partie dynamique et le vecteur de sortie y(t), tandis

∫
CB

D

A

+

+

+

+
y(t)u(t)

ẋ(t) x(t)

Figure 2.4. Système dynamique linéaire et stationnaire.

que la matrice de passage D indique l’effet direct de u(t) sur y(t).

Le cas monovariable est est caractérisé par p = q = 1. La matrice B devient alors le vecteur colonne b de

dimension n, la matrice C le vecteur ligne cT de dimension n, et la matrice D le scalaire d :

ẋ(t) = Ax(t) + bu(t) x(t0) = x0

y(t) = cTx(t) + du(t)

Le schéma fonctionnel pour le cas monovariable linéaire et stationnaire est donné à la figure 2.5.
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∫
cTb

d

A

+

+

+

+
y(t)u(t)

ẋ(t) x(t)

Figure 2.5. Système dynamique linéaire et stationnaire.

2.2.5 Exemple : Cuve de mélange

Une cuve de mélange (fig 2.6) est alimentée par deux vannes fournissant les débits volumiques variables q1(t) et

q2(t) qui contiennent un produit dissous avec les concentrations constantes c1 et c2. Le brassage étant supposé

parfait, la concentration est uniforme dans la cuve et égale à c(t). Le débit de sortie q(t) est proportionnel à la

racine carrée de la hauteur du liquide dans la cuve h(t). Les entrées de ce système dynamique sont les débits q1

et q2, les sorties sont la hauteur du liquide dans la cuve h(t) et le rapport de concentration c(t)/c1.

Nous supposons la masse volumique ρ constante. Avec V (t) = Sh(t), ou V est le volume du mélange et S la

q1(t) q2(t)

q(t)

c(t)

V(t)

c(t)

S

h(t)

c1 c2

Figure 2.6. Cuve de mélange.

section constante du bac, nous pouvons écrire les bilans de masse totale et de masse pour le produit dissout

comme suit :

ρS d
dt (h(t)) = ρq1(t) + ρq2(t)− ρq(t)

[
kg
s

]
(2.10)

ρS d
dt [c(t)h(t)] = ρc1q1(t) + ρc2q2(t)− ρc(t)q(t)

[
kgP
s

]
(2.11)

avec les conditions initiales h(0) = h0 et c(0) = c0.

Le débit de sortie dépend de la hauteur du liquide h(t) selon (écoulement turbulent) :

q(t) = k
√
h(t) (2.12)

La constante k > 0 se détermine expérimentalement. Les deux bilans peuvent ainsi s’écrire :

Sḣ(t) = q1(t) + q2(t)− k
√
h(t) (2.13)
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S[h(t)ċ(t) + c(t)ḣ(t)] = c1q1(t) + c2q2(t)− c(t)k
√
h(t) (2.14)

En combinant ces deux équations, et en posant x1(t) = h(t), x2(t) = c(t), u1(t) = q1(t) et u2(t) = q2(t), on

obtient :

ẋ1(t) = 1
S [u1(t) + u2(t)− k

√
x1(t)] x1(0) = h0 (2.15)

ẋ2(t) = 1
Sx1(t) [[c1 − x2(t)]u1(t) + [c2 − x2(t)]u2(t)] x2(0) = c0 (2.16)

C’est l’équation d’état non linéaire de la cuve de mélange. L’équation de sortie s’écrit simplement :

y1(t) = x1(t)y2(t) = x2(t)/c1

2.3 Exemples de modélisation

2.3.1 Irrigation

La modélisation du champ et de la cuve (réservoir) s’effectue en appliquant un simple bilan d’eau. Il y a deux

hypothèses importantes cependant. La répartition de l’eau est uniforme sur le champ et une seule variable est

utilisée pour modéliser la quantité d’eau dans le champ. La seconde hypothèse est qu’en absence de pompage

et une fois les vannes ouvertes, le débit de la cuve obéit à la loi de Toricelli

Q = κ
√

2g|h1 − h2|sign(h1 − h2)

avec h1 la hauteur de l’eau dans le champ et h2 la hauteur de l’eau dans la cuve. La constante κ reflète la perte

d’énergie dans l’écoulement (type de vanne). Le débit de pluie en [m/s] est noté v. C’est une perturbation. Le

débit de pompage est noté u en [m3/s].

Désignons par A1 la section en [m2] du champs et par A2 la section de la cuve. Le bilan d’eau conduit ainsi aux

deux équations différentielles du premier ordre couplées

A1ḣ1 = A1v − ρ h1 − u− κ
√

2g|h1 − h2| sign(h1 − h2)

A2ḣ2 = u+ κ
√

2g|h1 − h2| sign(h1 − h2)

u débit de la pompe
[

m3

s

]
κ facteur de conversion

[
N s

kg
√

mm3

]
A2 surface [m2]

v débit de la pluie
[

m
s

]
2.3.2 Moteur électrique

Le circuit électrique comporte une inductance, une résistance électrique et un générateur de tension induite. u

désigne la tension électrique aux bornes du moteur, i est le courant qui circule dans le moteur, ω est la vitesse

angulaire du moteur, K est la constante de tension induite, R la résistance et L est l’inductance électrique.

L’inductance mesure la résistance à imposer un champ et un flux électromagnétique qui se traduit par une

inertie au changement de courant dans le moteur.

L’équation électrique s’écrit

u = R i+ L
di

dt
+K ω (2.17)

Conjointement avec le circuit électrique, le moteur possède évidemment un comportement mécanique dicté par

les lois de Newton en rotation. Soit I l’inertie du moteur. Le courant i impose un couple mécanique donné par
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Ki. La constante K est la même que celle de la tension induite de mouvement (seules les unités changent). La

variation du moment cinétique est alors égale au couple à la somme du couple électromagnétique Ki, du couple

dû à la perturbation v et du couple des forces de frottement −b ω :

Iω̇ = K i− b ω + v (2.18)

u tension aux bornes du moteur [V]

i courant dans le moteur [A]

ω vitesse angulaire
[

rad
s

]
v couple perturbateur [N m]

b coefficient de couple de frottement visqueux [N m s/ rad]

K coefficient de tension induite [V s/rad]

K coefficient de couple [N m/A]

I inertie de la partie rotative [kg m2]

Il est souvent d’usage de négliger l’effet de l’inductance et on aboutit à l’équation algébrique électrique suivante

u = R i+K ω

qui ne comporte pas d’état. Le système est du deuxième ordre car la partie mécanique comporte deux dérivées.

En combinant les équations mécanique et électrique,

Iθ̈ =
k

R
u−

(
k2

R
+ b

)
θ̇ + v (2.19)

Un choix possible pour les deux états est

x1 = θ

x2 = θ̇ = ω

ce qui donne comme représentation d’état

ẋ1 = x2

ẋ2 =
k

RI
u− 1

I

(
k2

R
+ b

)
x2 + v

ce qui peut se mettre en notation matricielle sous la forme

ẋ = Ax+B u+Bv v

y = Cx

avec

A =

[
0 1

0 − 1
I

(
k2

R + b
)] B =

[
0
k
RI

] [
0

1

]
C =

[
1 0
]

2.3.3 Immeuble

La position horizontale de chaque dalle de l’immeuble est représentée par la variable di, où i désigne l’étage. Le

mouvement vertical est négligé et on ne considère que l’écart latéral. Chaque étage agit sur les étages supérieurs

et inférieurs par l’entremise d’une force de rappel élastique. De plus,on considère qu’il y a un peu d’énergie

qui est dissipée lors du déplacement. Une force de frottement cinétique proportionnelle à la vitesse relative est

présente. En appliquant les lois de Newton, on arrive de manière assez directe aux équations suivantes :
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md̈4 = k (d3 − d4) + b (ḋ3 − ḋ4)

md̈3 = k (d2 − d3) + k (d4 − d3) + b (ḋ2 − ḋ3) + b ḋ4 − ḋ3)

md̈2 = k (d1 − d2) + k (d3 − d2) + b (ḋ1 − ḋ2) + b (ḋ3 − ḋ2) + F

m d̈1 = k (d0 − d1) + k (d2 − d1) + b (ḋ0 − ḋ1) + b (ḋ0 − ḋ1)− F

Chaque équation provient de l’application des lois de Newton en considérant la résultante des forces qui agit

sur le centre de masse de la dalle de l’étage correspondant. Seul le mouvement horizontal est considéré. Ainsi,

Par exemple, mq̈1 est égale à la résultante horizontale des forces en présence et on aura la somme de la force

élastique k (d0 − d1) qui provient du non alignement entre l’étage 0, de la force élastique k (d2 − d1) dû au non

alignement entre l’étage 2 et l’étage 1, de la force de frottement b (q̇0 − q̇1) qui est proportionnelle à la vitesse

relative entre l’étage 0 et l’étage 1 et de la force de frottement b (q̇2 − q̇1) dû á la vitesse relative entre l’étage

2 et l’étage 1. Un bilan comparable est effectué sur tous les étages et seul l’étage 4 ne subit que l’influence de

l’étage précédant.

F entrée, force anti-sismique [N]

d0 perturbation, position de l’étage zéro [m]

m masse d’une dalle représentant le plancher d’un étage [kg]

di, i = 1, 2, 3, 4 position horizontale de l’étage i [m]

k constante de rigidité des parois
[

N
m

]
b coefficient de frottement visqueux, perte d’énergie

[
N s
m

]
Le système est d’ordre 8 et un choix pour les variables d’état est d1, ḋ1, d2, ḋ2, d3, ḋ3, d4, ḋ4.

2.3.4 Bille sur roue

La roue a un rayon R et la bille est de rayon r. Désignons par θ l’angle de la roue et par φ l’angle de la bille.

Nous pouvons considérer le tout comme un système planaire avec la gravité qui agit dans le sens vertical du

plan. Le point de contact entre la bille et la roue est repéré par l’angle µ. Comme la bille est supposée rouler

sans glisser, il y a une liaison entre les trois angles θ, φ et µ donnée par

µ =
r

R
φ+ θ (2.20)

En résumé, les angles en présence sont

— µ : angle du point de contact [rad]

— θ : angle de la roue [rad]

— φ : angle de la bille [rad]

et ils sont liés par (2.20).

On peut exprimer la position x et y du centre de masse de la petite bille par les expressions
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x = (r +R) cos(µ) = (r +R) cos
( r
R
φ+ θ

)

y = (r +R) sin(µ) = (r +R) sin
( r
R
φ+ θ

)
Nous constituons le Lagrangien L qui est la différence entre l’énergie cinétique et l’énergie potentielle

L = Ec − Ep

avec

Ec =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
IRθ̇

2 +
1

2
Irφ̇

2 (2.21)

— IR : inertie de la roue [kg m2]

— Ir : inertie de la bille [kg m2]

— m : masse de la bille [kg]

Le système possède deux degrés de liberté. Sa configuration est décrite par les coordonnées généralisées θ et φ.

Appliquons la formule de Lagrange

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= Fq

avec q = θ et q = φ. Dans le premier cas Fθ = τ et dans le second Fφ = 0. Il faut encore exprimer ẋ et ẏ en

fonction de θ, θ̇, φ et φ̇. On a successivement

ẋ = −(r +R) sin
( r
R
φ+ θ

)( r
R
φ̇+ θ̇

)
ẏ = (r +R) cos

( r
R
φ+ θ

)( r
R
φ̇+ θ̇

)
de telle sorte que

1

2
mẋ2 +

1

2
mẏ2 =

1

2
m(r +R)2

( r
R
φ̇+ θ̇

)2

(2.22)

étant donné que l’on a sin2 + cos2 = 1. De plus,

Ep = mg(r +R) sin
( r
R
φ+ θ

)
Ainsi le Lagrangien s’écrit en tenant compte de la modification de l’expression (2.21) en tenant compte de (2.22)

L = Ec − Ep =
1

2
m(r +R)2

( r
R
φ̇+ θ̇

)2

−mg (r +R) sin
( r
R
φ+ θ

)
Puis en effectuant les dérivées



2.4 Simulation d’un modèle d’état 37

∂L
∂θ̇

= IRθ̇ +m(r +R)2
(
θ̇ +

r

R
φ̇
)

d

dt

(
∂L
∂θ̇

)
= IRθ̈ +m(r +R)2

(
θ̈ +

r

R
φ̈
)

∂L
∂θ

= −mg(r +R) cos
( r
R
φ+ θ

)
ce qui donne la première équation différentielle du deuxième ordre couplée

(IR +m(r +R)2)θ̈ +
r

R
m(r +R)2φ̈+mg(r +R) cos

( r
R
φ+ θ

)
= τ (2.23)

En ce qui concerne l’équation avec q = φ, on a successivement

∂L
∂φ̇

=
r

R
m(r +R)2

( r
R
φ̇+ θ̇

)
+ Irφ̇

d

dt

(
∂L
∂φ̇

)
=

r

R
m(r +R)2

( r
R
φ̈+ θ̈

)
+ Irφ̈

∂L
∂φ

= −mg(r +R)
r

R
cos
( r
R
φ+ θ

)
ce qui donne la deuxième équation différentielle du deuxième ordre couplée

r

R
m(r +R)2θ̈ +

(
Ir +

r2

R2
m(r +R)2

)
φ̈+mg (r +R)

r

R
cos
( r
R
φ+ θ

)
(2.24)

Les deux équations (2.23) et (2.24) donnent deux équations différentielles du deuxième ordre couplées qui

déterminent φ̈ et θ̈. Pour rendre cette dépendance explicite, on peut écrire ces deux équations sous forme d’une

seule équation matricielle

[
IR +m(r +R)2 r

Rm(r +R)2

r
R (r +R)2 Ir + r2

R2m(r +R)2

][
θ̈

φ̇

]
=

[
−mg (r +R) cos

(
r
Rφ+ θ

)
+ τ

−mg (r +R) rR cos
(
r
Rφ+ θ

) ]

La modélisation de la bille sur la roue est ainsi achevée. L’entrée est la couple τ qui est appliqué à la roue. Un

choix possible pour les états est x1 = θ, x2 = θ̇, x3 = φ et x4 = φ̇.

2.4 Simulation d’un modèle d’état

Nous avons introduit à la section précédente la représentation d’état de systèmes dynamiques. Cette modélisation

par un système d’équations différentielles du premier ordre se prête bien à la simulation du système dynamique

par intégration numérique.
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La simulation d’un système consiste à déterminer l’état x(t) et la sortie y(t) pour t ≥ t0 spécifiés.

De façon générale, il n’existe pas de solution analytique pour un système d’équations différentielles non linéaires.

On doit avoir recours à des méthodes d’intégration numérique pour calculer l’état du système. Ces méthodes

ne fournissent pas une solution continue dans le temps mais la valeur de la solution pour des point discrets, sou-

vent uniformément espacés. L’intervalle de temps qui sépare deux points successifs, appelé pas d’intégration,

est noté h. Une solution est obtenue aux instants :

kh, k = k0, k0 + 1, k0 + 2, . . . ∈ N (2.25)

où k0 est le compteur tel que k0h = t0.

La méthode d’intégration la plus intuitive, proposée par Euler, consiste à écrire le modèle d’état à l’insant kh

(exprimé ici pour un modèle d’état non linéaire stationnaire) :

ẋ(kh) = f [x(kh), u(kh)] x(k0h) = x0 (2.26)

y(kh) = g[x(kh), u(kh)] (2.27)

puis d’utiliser comme approximation de la dérivée l’expression issue des premiers termes du développement en

série de l’état. A partir de l’approximation :

x(kh+ h) ≈ x(kh) + ẋ(kh)h on calcule :

ẋ(kh) ≈ x(kh+ h)− x(kh)

h
(2.28)

ce qui, avec (2.26), donne la relation constructive suivante :

x(kh+ h) = x(kh) + hf [x(kh), u(kh)] (2.29)

L’allure de la solution recherchée, la dérivée à l’instant kh ainsi que son approximation utilisée pour construire

t

x(t)

k0h kh kh+ h

x0
h

ẋ(kh) x(kh+h)−x(kh)
h

Figure 2.7. Etat calculé par intégration numérique avec la méthode d’Euler.

le point x(kh+ h) sont représentées à la figure 2.7.

Après avoir soigneusement sélectionné le pas d’intégration h, la simulation est menée en exploitant successive-

ment, à partir de k0h, les équations (2.29) et (2.27) :
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x(k0h+ h) = x(k0h) + hf [x(k0h), u(k0h)]

y(k0h+ h) = g[x(k0h+ h), u(k0h+ h)]

x(k0h+ 2h) = x(k0h+ h) + hf [x(k0h+ h), u(k0h+ h)]

y(k0h+ 2h) = g[x(k0h+ 2h), u(k0h+ 2h)]
...

x(kh+ h) = x(kh) + hf [x(kh), u(kh)]

y(kh+ h) = g[x(kh+ h), u(kh+ h)]

Cette méthode permet une évaluation rapide de la solution du modèle d’état mais elle est peu précise. Une

méthode plus précise couramment utilisée est celle de Runge-Kutta.

Méthode de Runge-Kutta classique

La méthode de Runge-Kutta classique consiste à effectuer quatre évaluations de la fonction à intégrer : un fois

au point courant f [x(kh), u(kh)], deux fois à des points courants estimés à une demi-période d’intégration plus

tard f [x(kh) + h
2k1, u(kh + h

2 )] et f [x(kh) + h
2k2, u(kh + h

2 )] et finalement une dernière évaluation à un point

estimé une pèriode d’intégration complète plus tard f [x(kh) + k3h, u(kh + h)]. Les quatre quantités k1, k2, k3

et k4 sont les estimées successives de ẋ et données par :

k1 = f [x(kh), u(kh)]

k2 = f [x(kh) + h
2k1, u(kh+ h

2 )]

k3 = f [x(kh) + h
2k2, u(kh+ h

2 )]

k4 = f [x(kh) + hk3, u(kh+ h)]

La valeur de l’état un pas d’échantillonnage plus loin est donné en pondérant deux fois les estimées de ẋ données

obtenues un demi pas d’́ıntégration plus loin par rapport à celles du début et de la fin du pas d’intégration :

x(kh+ h) = x(kh) +
h

6
(k1 + 2k2 + 2k3 + k4) .

En itérant la relation ci-dessus, toutes les valeurs de x(kh), k = 1, 2, 3, . . . sont obtenues à partir de la condition

intiale x0.

Remarques

La simulation numérique (sur ordinateur) d’un système dynamique offre de nombreux avantages. Pour commen-

cer, les algorithmes mis en oeuvre sont parfaitement connus, ce qui permet d’évaluer la précision des résultats.

Le traitement de systèmes multivariables ne pose pas de difficultés particulières et les fonctions non linéaires f

et g peuvent être évaluées facilement.

Il ne faut toutefois pas perdre de vue que le calcul numérique est approximatif. En particulier, la représentation

des valeurs numériques par un nombre limité de chiffres provoque des erreurs d’arrondi. Les erreurs de

troncature sont quant à elles provoquées par l’approximation de fonctions mathématiques au moyen de séries

dont on ne considère qu’un nombre limité de termes.

La stabilité numérique d’un algorithme est garantie lorsque l’erreur d’inté- gration décrôıt à chaque pas de

calcul. Cette stabilité est facilement perdue lorsque les ordres de grandeur des nombres intervenant dans les

opérations sont très différents. Il est donc recommandé d’effectuer des mises à l’échelle pour éviter ce problème. Il

convient également de préciser que le choix de la méthode et du pas d’intégration qui assurent à la fois, la stabi-

lité de l’algorithme, une bonne précision des résultats, et un temps de calcul non excessif, n’est pas toujours aisé.

2.5 Exemple d’intégration numérique

Soit à intégrer
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ẋ1 = x2

ẋ2 = x3

ẋ3 = arctan(30x1)− 1.08x1 − x2 − x3

à partir des conditions initiales x1(0) = 1, x2(0) = 0.5 et x3(0) = 0.9.

Code de simulation à pas fixe

Runge-Kutta classique (code ’Maison’ en Matlab) :

Il faut créer le fichier ’StepRK.m’ :

function [xkplus]=StepRK(fct, xk, h)

k1 = fct(xk);

k2 = fct(xk + k1*h/2);

k3 = fct(xk + k2*h/2);

k4 = fct(xk + k3*h);

xkplus=xk + h/6*(k1 + 2*k2 + 2*k3 + k4);

return

Exemple d’utilisation :

Il faut créer un autre fichier ’Exemple1.m’ :

function [xd]=Exemple1(x)

xd = zeros(3,1);

xd(1) = x(2);

xd(2) = x(3);

xd(3) = atan(30*x(1)) - 1.08*x(1) - x(2) - x(3);

return

et un autre fichier ’IntegrerExemple.m’ :

function [xTraj] = IntegrerExemple(x0,N)

xTraj = zeros(length(x0),N);

xTraj(:,1) = x0;

for i = 2:N

xTraj(:,i) = StepRK(@Exemple1, xTraj(:,i-1), 20/70);

end

return

et finalement le dernier fichier ’runExemple.m’ :

function runExemple

x0 = [1; 0.5; 0.9];

plot(IntegrerExemple(x0,70)’);

return

Pour finalement, en tappant dans la fenêtre de commande ’runExemple’, voir la figure qui représente les trajec-

toires des trois états du système représentées en Figure 1.

Pour obtenir la solution par l’algorithme Runge-Kutta incorporé dans Matlab :

function [xd]=Exemple1Ode(t,x)

xd = Exemple1(x);

return

function runExempleODE45

x0 = [1, 0.5, 0.9];

[t,x] = ode45(@Exemple1Ode, [0,20], x0);

plot(t,x)
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Figure 2.8. En bleu est représentée la trajectoire de x1, en vert celle de x2 et finalement celle de x3 en rouge.

Runge-Kutta classique (code ’Maison’ en Mathematica) :

StepRK[fct_, xk_, h_] := Module[{k1, k2, k3, k4},

k1 = fct[xk];

k2 = fct[xk + k1 h/2];

k3 = fct[xk + k2 h/2];

k4 = fct[xk + k3 h];

Return[xk + h/6 (k1 + 2 k2 + 2 k3 + k4)]]

Exemple d’utilisation :

EquDyn= {x1’[t] == x2[t], x2’[t] == x3[t], x3’[t] == ArcTan[30 x1[t]]

- 1.08 x1[t]-x2[t]-x3[t]};

fctTest = (( Part[#, 2] & /@ EquDyn) /. {x1[t] -> Part[#, 1],

x2[t] -> Part[#, 2], x3[t] -> Part[#, 3]}) &

pts = 70;

tsol = Table[20 i /pts, {i, 0, pts}];

x1sol = Part[#, 1] & /@ NestList[StepRK[fctTest, #, 20/pts] & ,

{1, 0.5, 0.9}, pts];

p2 = ListPlot[Transpose[List[tsol, x1solB]]];

Comparaison avec l’intégrateur incorporé dans Mathematica :

xx = {x1[t], x2[t], x3[t]};

solRK = NDSolve[Join[EquDyn, {x1[0] == 1, x2[0] == 0.5,

x3[0] == 0.9}], xx, {t, 0, 20}];

p1 = Plot[x1[t] /. solRK, {t, 0, 20}];

Show[p1,p2]
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Figure 2.9. En trait plein est représentée la solution de l’intégrateur Runge-Kutta de Mathematica et les points
représentent les itérations successives de l’intégrateur Runge-Kutta classique ’fait Maison’. On remarque qu’il n’est pas
nécessaire d’avoir un pas d’intégration petit pour déjà avoir un bon résultat.

2.6 Approximation linéaire d’un modèle non linéaire

2.6.1 Introduction

L’intérêt des modèles linéaires réside dans

• la propriété importante liée au principe de superposition

• l’aisance mathématique qui en découle permettant, par exemple, de résoudre analytiquement un système

d’équations différentielles linéaires.

Malheureusement, la plupart des systèmes physiques réels sont intrinsèquement non linéaires. Afin de tirer parti

de la propriété de linéarité, on peut linéariser un modèle non linaire pour un point de fonctionnement choisi.

Il en résultera une approximation linéaire qui sera valable pour de petites déviations autour de ce point de

fonctionnement.

Considérons à titre d’exemple le cas de la fonction non linéaire f(x) représentée à la figure 2.10. Cette fonction

est approchée autour du point x̄ par une droite tangente à la fonction. Cette droite est utilisée pour déterminer

la valeur de la fonction à proximité de x̄, en particulier en x̄+ δx.

En considérant la partie linéaire d’un développement en série de Taylor de f(x) au point x̄, on obtient l’ap-

proximation suivante :

f(x̄+ δx) ' f(x̄) +
df

dx
(x̄)δx

La relation entre une variation δx de x et la variation correspondante δf de f s’écrit donc en première approxi-

mation :

δf =
df

dx
(x̄)δx

Cette relation n’est évidemment valable que pour de faibles écarts δx autour de x̄.

Quelques définitions préalables sont nécessaires pour traiter de façon rigoureuse le problème de linéarisation.

La collection (infinie) de vecteurs d’états x(t) ains que la collection des vecteurs de sortie y(t) constituent une

trajectoire nominale du système dynamique si ces collections satisfont aux équations différentielles correspon-

dantes et aux équations définissant les sorties. Ainsi, pour le système non linéaire et non stationnaire (2.6)-(2.7)

et l’entrée ū(t), et avec t0 = 0, les trajectoires nominales x̄(t) et ȳ(t) vérifient :

˙̄x(t) = f [x̄(t), ū(t), t] x̄(0) = x0 (2.30)

ȳ(t) = g[x̄(t), ū(t), t] (2.31)
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Figure 2.10. Fonction non linéaire et son approximation linéaire autour de x̄.

Pour un système stationnaire, les trajectoires nominales sont souvent choisies constantes, ˙̄x(t) = 0, formant

ainsi un point de fonctionnement stationnaire ou un point d’équilibre. Dans ce cas, les relations (2.30)

et (2.31) s’écrivent :

0 = f [x̄, ū] (2.32)

ȳ = g[x̄, ū] (2.33)

2.6.2 Procédure de linéarisation

Soit le modèle d’état non linéaire stationnaire :

ẋ(t) = f [x(t), u(t)] x(0) = x0 (2.34)

y(t) = g[x(t), u(t)] (2.35)

Pour le point d’équilibre (point de fonctionnement stationnaire) correspondant à ū, les variables x̄ et ȳ satisfont

les relations (2.32) et (2.33) :

Les équations (2.34) et (2.35) peuvent être développées en série de Taylor pour le point d’équilibre ū, x̄ et ȳ

(afin de simplifier l’écriture, la dépendance temporelle des variables u(t), x(t) et y(t) ne sera plus indiquée dans

le développements qui suivent) :

ẋ = f [x̄, ū] + ∂f
∂u

∣∣∣
ū,x̄

(u− ū) + t.o.s. (2.36)

y = g[x̄, ū] + ∂g
∂u

∣∣∣
ū,x̄

(u− ū) + t.o.s. (2.37)

où t.o.s. indique des termes d’ordre supérieur.

Introduisons les variables écart suivantes :

δx(t) := x(t)− x̄
δu(t) := u(t)− ū
δy(t) := y(t)− ȳ

et notons que δẋ = ẋ.

En soustrayant les équations (2.32) et (2.33) des parties linéaires des équations (2.36) et (2.37), et avec la
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définition des variables écart, on obtient :

δẋ = ∂f
∂x

∣∣∣
ū,x̄
δx+ ∂f

∂u

∣∣∣
ū,x̄
δu δx(0) = x0 − x̄ (2.38)

δy = ∂g
∂x

∣∣∣
ū,x̄
δx+ ∂g

∂u

∣∣∣
ū,x̄
δu (2.39)

Cette approximation linéaire s’écrit sous la forme du modèle d’état suivant :

δẋ = Aδx+Bδu δx(0) = x0 − x̄ (2.40)

δy = Cδx+Dδu (2.41)

avec A := ∂f
∂x

∣∣∣
ūx̄

et B := ∂f
∂u

∣∣∣
ūx̄

C := ∂g
∂x

∣∣∣
ūx̄

et D := ∂g
∂u

∣∣∣
ūx̄

Remarques

• Le modèle d’état (2.34)-(2.35) possède des variables indépendantes (le vecteur d’entrée u(t) et des variables

dépendantes (le vecteur d’état x(t) et le vecteur de sortie y(t)). Pour déterminer le point d’équilibre ū, x̄ et

ȳ, il convient donc de spécifier les variables indépendantes ū et de calculer les variables dépendantes x̄ et ȳ

à partir de (2.32) et (2.33).

• Les équations (2.40) et (2.41) représentent des approximations, lesquelles ne sont valables que pour de

petites déviations autour du point d’équilibre (ū, x̄).

• Il est important de noter que u, x et y dans les équations (2.40) et (2.41) représentent en fait les variables

écart δu, δx et δy.

• Pour le cas multivariable, c’est à dire où u, x et y sont des vecteurs, A, B, C et D représentent les matrices

jacobiennes de f et g par rapport à x et u :

A :=
∂f

∂x

∣∣∣
ū,x̄

=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1∂xn
∂f2
∂x1

∂f2
∂x2

. . . ∂f2∂xn
...

...
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn∂xn


∣∣∣∣∣∣∣∣∣∣
ū,x̄

B :=
∂f

∂u

∣∣∣
ū,x̄

=


∂f1
∂u1

∂f1
∂u2

. . . ∂f1∂up
∂f2
∂u1

∂f2
∂u2

. . . ∂f2∂up
...

...
...

∂fn
∂u1

∂fn
∂u2

. . . ∂fn∂up


∣∣∣∣∣∣∣∣∣∣
ū,x̄

C :=
∂g

∂x

∣∣∣
ū,x̄

=


∂g1
∂x1

∂g1
∂x2

. . . ∂g1∂xn
∂g2
∂x1

∂g2
∂x2

. . . ∂g2∂xn
...

...
...

∂gn
∂x1

∂gn
∂x2

. . . ∂gn∂xn


∣∣∣∣∣∣∣∣∣∣
ū,x̄
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D :=
∂g

∂u

∣∣∣
ū,x̄

=


∂g1
∂u1

∂g1
∂u2

. . . ∂g1∂up
∂g2
∂u1

∂g2
∂u2

. . . ∂g2∂up
...

...
...

∂gn
∂u1

∂gn
∂u2

. . . ∂gn∂up


∣∣∣∣∣∣∣∣∣∣
ū,x̄

2.7 Exemples

2.7.1 Oscillateur de Van der Pol

En partant de l’équation difflrentielle du second ordre décrivant l’oscillateur de Van der Pol

ẍ+ ε(x2 − 1)ẋ+ x = 0

il est possible de représenter une trajectoire solution de l’équation différentielle pour une condition initiale donnée

en utilisant un algorithme d’intégration de type Runge-Kutta. Par exemple, pour la valeur du paramètre ε = 0, 5

et pour la condition initiale x0 = ẋ0 = 1, la solution est représentée à la figure 2.11.

Cependant, lorsqu’une représentation pour un grand nombre de condition initiales est désirée, il est avantageux

de représenter également le graphe des éléments de pente (fig. 2.11).
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Figure 2.11. Superposition du graphe des pentes et d’une trajectoire dans le cas de l’oscillateur de Van der Pol
(ε = 0, 5, x10 = 1, x20 = 1).

2.7.2 Dynamique de population

Pour illustrer les concepts introduits dans ce chapitre, nous présentons deux exemples très simplifiés de dyna-

mique de population. Nous envisageons à la fois les modèles mathématiques de deux espèces en compétition pour

une même ressource unique, ainsi que la dynamique prédateur-proie, où deux espèces distinctes s’affrontent,

l’une jouant le rôle de proie et l’autre celui de prédateur.

Les hypothèses simplificatrices suivantes sont adoptées :

• La densité de l’espèce, c’est-à-dire le nombre d’individus par unité d’aire, est représentée par une variable

unique, la différence d’âge de sexe et de génotype sont ignorés.
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• L’effet de surpeuplement affecte le groupe dans son entier. Tous les membres de la population sont touchés

de manière similaire. Bien que ceci soit peu probable lorsque les membres se répartissent en sous-groupes,

de telle sorte qu’ils ne soient pas uniformément distribués dans tout l’ensemble du territoire considéré, nous

faisons néanmoins cette hypothèse.

• Les effets des interactions au sein de la même espèce et avec des espèces différentes sont instantanés. Il n’y

a pas de délai lors d’actions entreprises par un individu.

• Les facteurs abiotiques environnementaux (c-à-d. l’influence du non-vivant sur le vivant) sont suffisamment

constants.

• La croissance du taux de la population est dépendante de la densité, même lors de très faibles densités.

• Les femelles trouvent toujours à s’accoupler, même lorsque la densité est basse.

Ces hypothèses, très simplificatrices, se justifient essentiellement par le fait qu’il y aura nécessairement un effet

limitant par le manque de ressources.

2.7.3 Compétition

Deux population distinctes sont en compétition pour une même ressource qui se trouve en quantité limitée.

x1 désigne la population de la première espèce et x2 celle de la seconde. Un modèle d’évolution différentielle

est obtenu en considérant une croissance exponentielle en l’absence d’effet inhibitifs. Deux coefficients positifs

a1 et a2 sont introduits pour représenter les taux de croissances instantanés. Les populations agissent alors de

manière indépendante.

Cependant, les ressources ne sont pas infinies et la présence d’une densité croissante aura tendance à diminuer la

croissance des populations respectives. Ainsi, nous distinguons les coefficients d’auto-inhibition b11 et b22 (deux

quantités positives, crées par la présence d’un compétiteur de même espèce), de ceux des coefficients d’inhibition

croisée b12 et b21 (également deux nombres réels positifs mais dus cette fois-ci à la présence d’un compétiteur

de l’autre espèce). En conséquences, nous posons comme modèle d’évolution

ẋ1 = x1(a1 − b11x1 − b12x2)

ẋ2 = x2(a2 − b21x1 − b22x2)

Notons, en résolvant ẋ1 = ẋ2 = 0, la présence de plusieurs points d’équilibre. Lorsque b11b22 − b12b21 6= 0, il y a

quatre points d’équilibre isolés distincts :

a) x̄1 = 0 x̄2 = 0

b) x̄1 =
a1

b11
x̄2 = 0

c) x̄1 =
a2b12 − a1b22

b11b22 − b12b21
x̄2 =

a1b21 − a2b11

b11b22 − b12b21

d) x̄1 = 0 x̄2 =
a2

b22

Ils correspondent respectivement à :

a) l’extinction des deux espèces ;

b) l’extinction de la seconde espèce au profit de la première ;

c) la survie des deux espèces en équilibre ;

d) l’extinction de la première au profit de la seconde.
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Lorsque b11b22 − b12b21 = 0, outre le point d’équilibre à l’origine, la présence d’une droite continue de points

d’équilibre est constatée. En effet, en prenant pour valeur numérique a1 = a2 = 2 et b11 = b12 = b21 = b22 = 1,

on obtient les deux équations définissant les points d’équilibres

2x1 − x1x2 − x2
2 = 0 et 2x2 − x1x2 − x2

2 = 0

En soustrayant ces deux équations, l’expression (x2 − x1)(x1 + x1 − 2)= 0 est obtenue faisant apparâıtre la

droite x2 = 2− x1 comme un lieu continu de points d’équilibre.

Le système non linéaire ẋ = f(x) peut être estimé par le premier terme du développement en série de Taylor.

Ceci donne ẋ = A(x̄)(x− x̄) où x̄ désigne le point d’équilibre où l’on développe f(x). La matrice A s’écrit

A =

(
a1 − 2b11x̄1 − b12x̄2 −b12x̄1

−b21x̄2 a2 − b21x̄1 − 2b22x̄2

)
(2.42)

et dépend des valeurs x̄1 et x̄1 du point d’équilibre.

Le plan de phase est représenté à dans les figures 2.12, 2.13 et 2.14 pour trois choix de valeurs numériques. Les

facteurs de croissance sont fixés à a1 = a2 = 2. Dans le premier cas, fig. 2.12, les facteurs inhibitifs croisés sont
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Figure 2.12. Plan de phase et points d’équilibre pour deux populations en compétition pour une ressource unique.
a1 = a2 = 2 et b11 = b22 = 1. b12 = b21 = 2, l’inhibition croisée est plus grande que l’auto-inhibition et cela produit une
population à survivre au détriment de l’autre.

plus importants que les facteurs auto-inhibitifs (b11 = b22 = 1 et b12 = b22 = 2). Le point d’équilibre (0 0)T est

localement instable. Les points d’équilibre (2 0)T et (0 2)T sont des points stables. Le point d’équilibre ( 2
3

2
3 )T

est un point selle.

Dans le deuxième cas, fig, 2.13, lorsque l’auto-inhibition est identique à l’inhibition croisée, on constate une vie

mutuelle des deux espèces et une convergence vers des points d’équilibre qui dépend des conditions initiales.

Dans le troisième cas, fig. 2.14, c’est-à-dire lorsque l’inhibition croisée est moins forte que l’auto-inhibition, il

y a également une survie mutuelle des deux espèces, mais toujours avec la même densité. Le point d’équilibre

( 4
3

4
3 )T est stable. Le point d’équilibre (0 0)T est instable. Les deux points d’équilibre restants (0 2)T et (2 0)T

sont des points selles.



48 2 Modélisation mathématique

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

Figure 2.13. Plan de phase et points d’équilibre pour deux populations en compétitions pour une ressource unique.
a1 = a2 = 2 et b11 = b22 = 1. b12 = b21 = 1, l’inhibition croisée est identique à l’auto-inhibition, ce qui conduit les deux
populations à vivre avec des rapports qui dépendent des conditions initiales.
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Figure 2.14. Plan de phase et points d’équilibre pour deux populations en compétitions pour une ressource unique.
a1 = a2 = 2 et b11 = b22 = 1. b12 = b21 = 0, 5, l’auto-inhibition est plus grande que l’inhibition croisée et les deux
populations finissent au même point d’équilibre, pour presque toutes les conditions initiales.

2.7.4 Prédateur-proie
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Figure 2.15. Plan de phase et points d’équilibre pour le modèle prédateur-proie. La variable x1 représente la densité
des proies (axe horizontale) et la variable x2 représente la densité des prédateurs (axe vertical). Les valeurs numériques
choisies sont a1 = a2 = b21 = 2 et b11 = b12 = 1. Deux trajectoires sont également représentées pour x1(0) = x2(0) = 0, 2
et pour x1(0) = 1, 7, x2(0) = 1, 4. Les trois points d’équilibre sont constatés : a) l’origine x̄1 = x̄2 = 0 ( en bas à gauche),
b)la survie des proies et l’extinction des prédateurs x̄1 = 2, x̄2 = 0 ( en bas à droite), et finalement c) la survie mutuelle
x̄1 = x̄2 = 1 ( au centre).
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Dans ce modèle, x1 représente la densité de population des proies et x2 celle des prédateurs.

L’équation de l’évolution de x1 est identique au cas des populations en compétition de la section précédente.

En effet, les proies croissent de manière exponentielle en l’absence de prédateur (coefficient a1 positif). Leur

croissance est limitée par les ressources (effet auto-inhibitif, b11) et par la présence de prédateur (effet d’inhibition

croisé, b12).

Par contre, l’évolution des prédateurs x2 est foncièrement différente. En l’absence de proie, les prédateurs

disparaissent progressivement de manière exponentielle, et le signe devant le coefficient a2 est cette fois-ci

négatif. De plus, la présence des proies n’a pas un effet inhibitif, mais bien au contraire, un effet de croissance :

le signe devant le facteur b21 est positif. Il n’y a pas d’effet auto-inhibitif, ce qui implique l’annulation du

coefficient b22 = 0.

Sous ses hypothèse, les deux équations différentielles qui gouvernent l’évolution des populations sont

ẋ1 = x1(a1 − b11x1 − b12x2)

ẋ2 = x2(−a2 + b21x1)

Ce système comporte trois points d’équilibre :

a) x̄1 = 0 x̄2 = 0

b) x̄1 =
a1

b11
x̄2 = 0

c) x̄1 =
a2

b21
x̄2 =

a1b21 − a2b11

b12b21

Le premier point d’équilibre est l’extinction mutuelle des deux espèces. Le deuxième correspond uniquement à

la survie des proies ; il y a absence de prédateurs. Le troisième correspond à une survie mutuelle.

Lorsque a1b21 < a2b11, les prédateurs meurent par manque de facteur de reproduction des proies (coefficient

a1), La condition de survie mutuelle pondère les deux facteurs a1 et a2 par la qualité de satisfaction énergétique

de la proie pour un prédateur b21 et du taux d’auto-inhibition des proies b11. En effet, l’auto-inhibition des

proies rend la reproduction et la survie des prédateurs difficiles.

La figure 2.12 représente la plan de phase pour les valeurs numériques

a1 = a2 = b21 = 2 b11 = b12 = 1

Deux courbes, solutions de l’équation différentielle, sont également représentées, une pour la condition initiale

x1(0) = x2(0) = 0, 2 et une autre pour la condition initiale x1(0) = 1, 7 et x2(0) = 1, 4. On constate que dans

les deux cas, la solution correspondante converge vers le point d’équilibre de survie mutuelle x̄1 = x̄2 = 1.

Pour la première courbe, la densité des prédateurs commence légèrement à diminuer puis demeure relativement

modeste à cause du faible nombre de proies disponibles. Toutefois, ces dernières se reproduisent en présence

de la faible densité des prédateurs. Lorsqu’une taille critique est atteinte, à partir de laquelle les prédateurs

peuvent mieux se développer, la tendance s’inverse et les prédateurs augmentent au détriment des proies.

De manière générale, le taux de prédateurs par rapport à celui des proies oscille jusqu’à atteindre l’équilibre de

survie mutuelle (fig. 2.15).
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Représentation entrée-sortie

3.1 Introduction et objectifs

Ce chapitre introduit la représentation entrée-sortie et les opérateurs de convolution dans le cadre des systèmes

linéaires stationnaires. La notion de système linéaire permet, à l’aide du principe de superposition, de construire

des réponses à des signaux élémentaires. Il s’agit des réponses indicielles et impulsionnelles. Un signal arbitraire

est ainsi la superposition d’une succession de sauts indiciels séparés les uns des autres de manière infinitésimale.

La réponse à un tel signal est alors une succession de réponses indicielles séparées les unes des autres de manières

infinitésimales. Nous aboutissons alors au produit de convolution. La réponse d’un système est la convolution

de son entrée avec la réponse impulsionnelle du système. Le produit de convolution est distributif par rapport à

l’addition et commutatif. Il n’a pas de diviseur de zéro. Nous pouvons donc constituer son anneau de fraction.

Nous obtenons une algèbre de convolution isomorphe aux fractions de polynômes. Cet isomorphisme sera étudié

par l’entremise de la transformée de Laplace au chapitre suivant. Nous constaterons que tout systéme linéaire

est représentable comme une fraction de deux polynômes dont la variable est un opératuer élémentaire d.

3.2 Fonctions du temps

Les signaux seront considérés comme nul pour tout instant du temps t < 0 et non nécessairement nul pour

t ≥ 0. Un tel signal sera noté

{f(t)}

au lieu de f(t). Lorsque les accolades sont absentes, f(t) désigne la valeur de la fonction f à l’instant t. C’est

un nombre réel. Lorsque les accolades sont présentes, {f(t)} désigne toute la fonction vu comme une entité à

part entière.

3.3 Principe de superposition

3.3.1 Système

Soit un système avec une entrée u et une sortie y. Il est représenté à la figure 3.2. L’intérieur de la bôıte est vide

pour l’instant. Evidemment, il y a des équations différentielles avec un certain nombre de conditions initiales

qui permet de décrire la bôıte. Nous verrons comment représenter la bôıte du point de vue entrée-sortie. On

pourra alors inscrire quelque chose dans la bôıte qui traduira fidèlement celle-ci sans nécessairement avoir besoin

d’écrire toutes les équations différentielles.

3.3.2 Principe de superposition et système linéaire

Un système linéaire est un système qui obéit au principe de superposition. L’idée est assez directe. Lorsque deux

signaux arbitraires {u1(t)} et {u2(t)} excitent (à mêmes conditions initiales) un système donné, nous récoltons
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t

f

Figure 3.1. Les signaux {f(t)} sont nuls pour t < 0 et non nécessairement nul pour t ≥ 0. La condition initiale f(0)
jouera un rôle très important.

u y

Figure 3.2. Un système avec une entrée u et une sortie y.

deux signaux {y1(t)} et {y2(t)} correspondants aux réponses individuelles. Si nous effectuons une troisième

expérience avec la somme des deux signaux {u1(t) + u2(t)}, un nouveau signal de sortie {y(t)} est obtenu qui

est la réponse à la somme. Si cette réponse est la somme des deux réponses individuelles

{y(t)} = {y1(t)}+ {y2(t)} = {y1(t) + y2(t)},

quels que soient les choix des signaux individuels {u1(t)} et {u2(t)}, alors le système obéit au principe de

superposition et le système est qualifié de linéaire.

En résumé, lorsque

— {u1(t)} → {y1(t)}
— {u2(t)} → {y2(t)}
il est vrai que

— {u(t)} := {u1(t) + u2(t)} → {y(t)} = {y1(t)}+ {y2(t)}
alors le système obéit au principe de superposition.

3.4 Réponse indicielle

Grâce au principe de superposition, on peut construire tous les signaux de sortie connaissant la réponse à

un signal élémentaire. Considérons le signal élémentaire ’saut unité’, ou ’saut indiciel’ que l’on note {ε(t)} et

représenté à la figure 3.3.

3.4.1 Réponse indicielle

La réponse indicielle, notée {r(t)}, est la sortie {y(t)} lorsque l’entrée est un saut indiciel, c.-à-d. lorsque

{u(t)} = {ε(t)}.
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Figure 3.3. Un saut indiciel, également appelé saut unité ou saut de Heaviside, est un signal qui est nul pour t < 0 et
égal à 1 pour t ≥ 0.
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Figure 3.4. Représentation du saut indiciel à l’entrée d’un système qui produit une certaine sortie que l’on appelle la
réponse indicielle et notée {r(t)}.

Une réponse indicielle est représentée à la figure 3.5. Les réponses indicielles varient grandement d’un système

à un autre et on classifiera un certain nombre de celles-ci par la suite à l’aide de la décomposition en éléments

simples.
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Figure 3.5. Réponse indicielle {r(t)}.

3.5 Fonction constante par morceaux

3.5.1 Elément de base

Comme élément superposable de base, plusieurs exemples viennent à l’esprit. Signal constant, fonction si-

nusöıdale, etc. Souvenons-nous que les signaux {f(t)} sont nuls pour t < 0 et non nuls ensuite. Ainsi, les
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fonctions sinus et consinus sont assez mal adaptées comme fonctions de base à cause de leur nature non nulle

pour t < 0. On pourrait les tronquer, mais cela conduit à des problèmes de convergences assez sévères. Le plus

simple est de choisir des fonctions de base qui soient nulles pour t < 0 et qui se superposent facilement. Le choix

que l’on effectue est de considérer deux sauts indiciels décalés l’un par rapport à l’autre et dont le deuxième est

changé de signe.

{u(t)} = {ε(t)− ε(t− h)}

On obtient ainsi une impulsion carrée unique qui sera notre élément de base représenté à la figure 3.6.
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u

t

Figure 3.6. L’élément de base retenu est la différence de deux sauts indiciels dont le second est légèrement décalé par
rapport au premier {ε(t)− ε(t− h)}. La largeur de l’impulsion résultante est h.

La réponse à un tel signal de base est

{y(t)} = {r(t)− r(t− h)}

et elle est représentée à la figure 3.7.
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Figure 3.7. Réponse au signal élémentaire. Les réponses indicielles sont en trait fin. La deuxième est changée de signe
et décalée. La somme des deux signaux en trait fin donne la réponse élémentaire en trait épais.

Ce signal élémentaire {ε(t)−ε(t−h)} se superpose très bien si on considère les fonctions constantes par morceaux.

En effet, il permet d’obtenir la réponse à un tel signal de manière exacte à l’aide du principe de superposition.

Evidemment, ceci n’est valable que pour les systèmes linéaires stationnaires.

A partir de la décomposition d’un signal constant par morceau donné par
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{u(t)} =

{
3∑
i=0

ui(ε(t− ih)− ε(t− (i+ 1)h))

}
(h = 1)

et représenté à la figure 3.8,
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t

u

Figure 3.8. Un signal constant par morceaux est la superposition direct de signaux élémentaires, c.-à-d. des sauts
indiciels décalés de manière appropriée. .

on obtient sa réponse, simplement en remplaçant les ε par les réponses indicielles r, et en conservant les mêmes

pondérations ui, par simple application du principe de superposition. Ceci donne le signal de sortie

{y(t)} =

{
3∑
i=0

ui(r(t− ih)− r(t− (i+ 1)h)

}
qui est représenté à la figure 3.9.
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Figure 3.9. La réponse à un signal constant par morceaux s’obtient par le principe de superposition à partir des
réponses indicielles décalées et pondérées de manière identique à la décomposition du signal constant par morceaux en
sauts indiciels décalés.

3.6 Identité Neutre

Faisons une somme jusqu’à la partie entière de t/h (notée [t/h])
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Figure 3.10. Illustration de la construction lors de fonctions constantes par morceaux. Le principe de superposition
permet d’obtenir la réponse de manière immédiate. En haut à gauche, le signal constant par morceaux est décomposés en
signaux élémentaires. Chacun est associé à une couleur différente. En haut à droite, les réponses aux signaux élémentaires
sont représentées. On constatera que c’est toujours la même réponse mais décalée et pondérée de manière appropriée. En
bas, les signaux d’entrée et de sortie associés sont représentés. Le signal de sortie est la somme des signaux représentés
en haut à droite grâce au principe de superposition.

{u(t)} =


[t/h]∑
i=0

ui(ε(t− ih)− ε(t− (i+ 1)h))


Divisons et multiplions par h (hh = 1, cela ne change rien. . .)

{u(t)} =


[t/h]∑
i=0

ui
ε(t− ih)− ε(t− (i+ 1)h)

h
h


Passons à la limite limh→0, ce qui induit

∑
→
∫

, ih→ τ ,ui → u(τ) et h (à droite) devient dτ

{u(t)} =

{∫ t

0

u(τ) lim
h→0

(
ε(t− τ)− ε(t− τ + h)

h

)
dτ

}

3.6.1 Impulsion de Dirac

La figure 3.11 représente ε(t)−ε(t−h)
h lorsque h→ 0.1. A la limite, l’impulsion de Dirac est obtenue.

∀h > 0,∀t > 0,

∫ t

0

ε(τ)− ε(τ − h)

h
dτ = 1→

∫ t

0

δ(τ)dτ = 1

Definition 1. (Impulsion de Dirac) L’impulsion de Dirac est définie par le passage à la limite

{δ(t)} := lim
h→0

{ε(t)} − {ε(t− h)}
h

REMARQUE : Pour définir correctement l’impulsion de Dirac, il est nécessaire d’introduire la théorie de la

mesure et la théorie des distribution au sens de Schwartz. Dans notre contexte, l’impulsion de Dirac pourrait se
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Figure 3.11. Illustration de la construction de l’impulsion de Dirac {δ(t)}. Lorsque h 6= 0, il s’agit de fonctions.
Cependant l’objet limite lorsque h = 0 n’est plus une fonction. Tout au long du processus, l’intégrale vaut toujours 1,
La hauteur 1

h
s’ajuste de telle sorte que h 1

h
= 1.

définir comme l’opérateur neutre pour la convolution. Cependant, nous voulons une interprétation en tant que

signal bien spécifique, raison pour laquelle la définition ci-dessus est adoptée bien que pas très rigoureuse au

sens mathématique étant donné que l’on n’aboutit pas à une fonction à proprement parlé. Une discussion entre

la correspondance entre théorie des distributions au sens de Schwartz (fonctionnelles au lieu de fonction) et la

théorie des distributions données comme des quotients de convolution (c’est notre présentation) est discutée

dans le très joli ouvrage (court) de J.P. Marchand ”Distributions : an outline”, North Holland, Amsterdam &

NY, 1962. Se référer également aux deux ouvrages mentionnés dans la conclusion de ce chapitre.

3.6.2 Construction de l’identité neutre

En partant de la dernière identité

{u(t)} =

{∫ t

0

u(τ) lim
h→0

(
ε(t− τ)− ε(t− τ + h)

h

)
dτ

}
on aboutit à l’identité neutre

{u(t)} =

{∫ t

0

u(τ)δ(t− τ)dτ

}
(3.1)

On appelle ceci une identité neutre étant donné que de part et d’autre du singal égalité il apparâıt le signal

{u(t)}. En effet (3.1) s’écrit à l’aide du produit de convolution ∗ sous la forme

{u(t)} = {u(t)} ∗ {δ(t)}

ce qui signifie que {δ(t)} est bien l’opération élément neutre pour le produit ∗, un peu comme 1 est l’élément

neutre pour le produit de deux polynômes.

3.7 Réponse impulsionnelle

Definition 2. (Réponse impulsionnelle) Lorsque {u(t)} = {δ(t)}, la réponse impulsionnelle {g(t)} est la

sortie

{g(t)} := {y(t)}
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Figure 3.12. La réponse impulsionnelle est la sortie du système lorsque l’entrée est une impulsion de Dirac

3.7.1 Construction progressive de la réponse impulsionnelle

La figure 3.13 représente la construction progressive de l’impulsion de Dirac. La fonction r(t)−r(t−h)
h est

représentée lorsque h→ 0.1.
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Figure 3.13. Construction progressive de l’impulsion de Dirac. La figure représente la sortie du système lorsque l’entrée
correspond à un des cas de la figure 3.11.

3.8 Produit de convolution

On reprend l’identité neutre

{u(t)} =

{∫ t

0

u(τ)δ(t− τ)dτ

}
et on applique le principe de superposition

{y(t)} =

{∫ t

0

u(τ)g(t− τ)dτ

}
Definition 3. (produit de convolution)

{y(t)} = {u(t)} ∗ {g(t)} :=

{∫ t

0

u(τ)g(t− τ)dτ

}

3.8.1 Propriétés du produit de convolution

1. Commutatif

{a(t)} ∗ {b(t)} = {b(t)} ∗ {a(t)}
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2. Associatif

{a(t)} ∗ ({b(t)} ∗ {c(t)}) = ({a(t)} ∗ {b(t)}) ∗ {c(t)}

3. Distributif par rapport à l’addition

{a(t)} ∗ ({b(t)}+ {c(t)}) = {a(t)} ∗ {b(t)}+ {a(t)} ∗ {c(t)}

3.9 Calcul opérationnel

3.9.1 Opérateur neutre 1

Il représente un système qui ne modifie pas le signal d’entrée {u(t)}.

{u(t)} 1 {u(t)}

Figure 3.14. L’opérateur neutre restitue l’entrée {u(t)} à la sortie.

En comparant la formule générale

{y(t)} =

{∫ t

0

u(τ)g(t− τ)dτ

}
= {u(t)} ∗ {g(t)}

à l’identité neutre

{u(t)} =

{∫ t

0

u(τ)δ(t− τ)dτ

}
= {u(t)} ∗ {δ(t)}

on obtient l’expression

1 = {g(t)} = {δ(t)}

3.9.2 Opérateur intégral i

Il représente l’intégrale du signal d’entrée {u(t)}.

{u(t)} i {
∫ t

0
u(τ)dτ}

Figure 3.15. L’opérateur intégral i calcule l’intégrale du signal d’entrée.

En comparant la formule générale

{y(t)} =

{∫ t

0

u(τ)g(t− τ)dτ

}
= {u(t)} ∗ {g(t)}

à la sortie intégrale du signal d’entrée
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{y(t)} =

{∫ t

0

u(τ)dτ

}
= {u(t)} ∗ {ε(t)}

on obtient l’expression

i = {g(t)} = {ε(t)}

3.9.3 Opérateur d (inverse de i)

Definition 4. (opérateur δ ) L’opérateur d est définit comme l’inverse de i pour la convolution ∗. Autrement

dit,

d ∗ i = i ∗ d = 1

3.9.4 Théorème fondamental

Theorem 1.

d ∗ {f(t)} := {f ′(t)}+ f(0)

Démonstration

{f(t)} − {f(0)} =

{∫ t

0

f ′(τ)dτ

}
{f(t)} − i ∗ f(0) = i ∗ {f ′(t)}

{f(t)} = i ∗ {f(′(t)}+ i ∗ f(0)

d ∗ {f(t)} = {f ′(t)}+ f(0)

(on a utilisé {f(0)} = i ∗ f(0) et d ∗ i = 1)

C.Q.F.D.

3.9.5 Notation abrégée

Attention ! On a plongé les nombres dans l’espace des opérateurs. Ainsi on ne distingue pas 1 de 1{δ(t)} = 1.

1 := 1{δ(t)} = {δ(t)} = 1

De même, on ne distingue pas le nombre 3 de 3{δ(t)}

3 := 3{δ(t)}

A ne pas confondre...

3 = 3{δ(t)} 6= {3} = {3ε(t)} = 3{ε(t)}

3.9.6 Discontinuité due à la condition initiale∫
n’est pas l’inverse de d

dt
d

dt

(
1

10
sin(t) + 2

)
=

1

10
cos(t)

car ∫
1

10
cos(τ)dτ =

1

10
sin(t) 6= 1

10
sin(t) + 2

Par contre, d est l’inverse de i pour ∗

d ∗
{

1

10
sin(t) + 2

}
=

{
1

10
cos(t)

}
+ 2 =

{
1

10
cos(t)

}
+ 2{δ(t)}
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i ∗
({

1

10
cos(t)

}
+ 2{δ(t)}

)
=

{
1

10
sin(t)

}
+ 2 ∗ i

=

{
1

10
sin(t)

}
+ 2{ε(t)}

=

{
1

10
sin(t) + 2

}
On retrouve la condition initiale de manière correcte !

3.9.7 Pas de diviseur de zéro (anneau intègre)

Theorem 2. (Titchmarsh) Si

{a(t)} ∗ {b(t)} = {0}

alors nécessairement

{a(t)} = {0} ou/et {b(t)} = {0}

Ce théorème indique que si on a une fonction nulle comme résultat du produit de convolution alors nécessairement

un des deux arguments (ou les deux à la fois) sont nuls. C’est le cas d’une équation avec les entiers naturels. Si

ab = 0 avec a ∈ Z et b ∈ Z alors nécessairement a = 0 ou b = 0 ou a = b = 0.

Ce théorème est important pour construire ce que l’on appelle les fractions. Souvenez-vous de la construction

de Q à partir de Z, par exemple −3/4 est construit comme l’entité abstraite qui est telle que lorsque elle est

multipliée par 4 le résultat est −3. Une telle construction n’est pas possible s’il y avait des diviseurs de zéros.

Nous allons construire des fractions de tels opérateurs dans le prochain paragraphe.

3.9.8 Construction du corps de fraction

S’il n’y a pas de diviseur de zéro (anneau intègre), on peut construire un corps de fraction associé. Il suffit

d’écrire par convention une barre de fraction et de s’accorder sur les règles suivantes :

{a(t)}
{b(t)}

+
{c(t)}
{d(t)}

:=
{a(t)} ∗ {d(t)}+ {c(t)} ∗ {b(t)}

{b(t)} ∗ {d(t)}
{a(t)}

1
:= {a(t)}

C’est exactement le même cheminement formel que celui utilisé pour construire Q à partir de Z.

3.9.9 Utilité pour la résolution des équations différentielles

La construction de fraction couplée avec la théorème fondamental produit une technique pour résoudre les

équations différentielles. La résolution des équations diffŕentielles linéaires est la motivation principale du calcul

opérationnel.

3.9.10 Equivalence entre fonction et fraction de polynômes en d

En appliquant l’opérateur d à la fonction exponentielle, le théorème fondamental donne une relation avec la

condition initiale de la fonction, à savoir e0 = 1 :

d ∗ {eαt} = {αeαt}+ 1

= α{eαt}+ 1
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Il suffit alors de factoriser la fonction {eαt} et de diviser car les fractions d’opérateurs sont maintenant possibles.

{eαt} =
1

d− α

On obtient ainsi une correspondance entre la fonction

{eαt}

et l’opérateur
1

d− α

3.9.11 Equations différentielle et opérateur associé

Soit l’équation différentielle

ẋ = ax (3.2)

à résoudre. On utilise le théorème fondamental qui donne

{ẋ} = d ∗ {x(t)} − x(0) (3.3)

et fait apparâıtre la condition initiale x(0) de manière explicite. La relation (3.3) est utilisée dans l’équation

différentielle (3.2) pour remplacer {ẋ} ce qui donne

d ∗ {x(t)} − x(0) = a{x(t)} (3.4)

En factorisant {x(t)} et en utilisant les fractions, on exprime {x(t)} par une fraction de d ce qui permet de

déterminer la solution en appliquant la correspondance entre la fraction et la fonction obtenue au paragraphe

précédant. En effet (3.4) devient

{x(t)} = x(0)
1

d− a
(3.5)

ce qui donne, en utilisant l’égalité 1
d−a = {eat} du dernier paragraphe,

{x(t)} = x(0){eαt}

La solution de l’équation diffŕentielle (3.2) est ainsi déterminée.

La technique de résolution consistera donc en la factorisation des fractions de polynômes en d et la construction

d’éléments simples. Les éléments simples sont des fractions élémentaires pour lesquelles on associe des fonctions

bien connue (exactement comme {eat} est associée à 1
d−a ). On pourra alors consulter les correspondances donnés

dans des tables et on obtiendra alors la solution de l’équation différentielle.

Le paragraphe suivant présente certaines de ces fonctions. Le chapitre suivant étudiera la même question en

introduisant une correspondance plus directe avec les fraction de polynômes en une variable complexe s. La

présence du corps des nombres complexes C rend les calculs plus directs.
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3.9.12 Table de correspondances (égalité)

opérateur fonction graphique

a
d−α α < 0 {aeαt}

a
d−α α > 0 {aeαt}

ad
d2+ω2 {a cos(ωt)}

aω
d2+ω2 {a sin(ωt)}

opérateur fonction graphique

a(d−α)
(d−α)2+ω2 α > 0 {aeαt cos(ωt)}

a(d−α)
(d−α)2+ω2 α < 0 {aeαt cos(ωt)}

aω
(d−α)2+ω2 α > 0 {aeαt sin(ωt)}

aω
(d−α)2+ω2 α < 0 {aeαt sin(ωt)}
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3.10 Exemple

3.10.1 Structure anti-sismique

Immeuble : réponse impulsionnelle

La réponse impulsionnelle de l’immeuble à quatre étage mentionné au chapitre 1 et modélisé au chapitre 2 est

donnée à la figure 3.16.

5 10 15 20

2

1

0

1

2

3

4

d4

t

Figure 3.16. Réponse impulsionnelle pour l’immeuble à quatre étages dont la sortie est la position de la dalle du
quatrième étage d4.

Nous allons présenter à l’aide du quotient de polynômes en d comment construire cette réponse impulsionnelle

de manière exacte pour le choix de modèle simplifié que l’on a retenu.

Modèle (rappel)

Le modèle de l’immeuble est donné par quatre équations différentielles linéaires du second ordre couplées les

unes aux autres. La perte d’énergie est cette fois fonction uniquement de la vitesse de l’étage et non de la vitesse

relative. Le système suivant est obtenu lorsqu’on procède à cette modification des hypothèses de modélisation

par rapport à celles du modèle obtenu au chapitre précédant :

md̈1 = k(d0 − d1) + k(d2 − d1)− bḋ1

md̈2 = k(d1 − d2) + k(d3 − d2)− bḋ2

md̈3 = k(d2 − d3) + k(d4 − d3)− bḋ3

md̈4 = k(d3 − d4)− bḋ4 (3.6)

Valeurs numériques

{d0(t)} = {δ(t)}, k = 10, b = 2, m = 1

Réponse impulsionnelle

L’idée pour obtenir la réponse impulsionnelle est d’appliquer le théorème fondamental plusieurs fois de suite

pour transformer les dérivées (par exemple d̈1) et les remplacer par l’effet de l’opérateur d.

En effectuant ceci sur tout le système et en éliminant toutes les variables d1, d2, d3 pour ne retenir que d0 et

d4, puis en remplaçant {d0(t)} par l’impulsion de Dirac {δ(t)}, on trouve pour la réponse impulsionnelle
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{d4(t)} =
160000

d8 + 2d7 + 141.5d6 + 210.5d5 + 6105.06d4 + 6017.5d3 + 81500d2 + 40000.d + 160000
(3.7)

Pour donner un peu plus de détails sur la marche à suivre, prenons la première équation différentielle du second

ordre (3.6) et appliquons le théorème fondamental.

m d ∗ {ḋ1(t)} −mḋ1(0){δ(t)} = k({d0(t)} − {d1(t)}) + k({d2(t)} − {d1(t)})− bd ∗ {d1(t)}+ bd1(0){δ(t)}

et après une seconde application du th. fondamental,

m d ∗ d ∗ {d1(t)} −md1(0){δ(t)} −mḋ1(0){δ(t)} = k({d0(t)} − {d1(t)}) + k({d2(t)} − {d1(t)})
−bd ∗ {d1(t)}+ bd1(0){δ(t)}

Comme nous voulons la réponse impulsionnelle du système et que nous savons que le système est au repos avant

son excitation par l’impulsion de Dirac, les conditions initiales sont nulles. En conséquence, nous avons plus que

l’équation algébrique suivante

m d ∗ d ∗ {d1(t)} = k({d0(t)} − {d1(t)}) + k({d2(t)} − {d1(t)})− bd ∗ {d1(t)} (3.8)

en procédant de même pour les équations différentielles restantes (3.6-3.6) du modèle, nous trouvons sans trop

de difficulté

m d ∗ d ∗ {d2(t)} = k({d1(t)} − {d2(t)}) + k({d3(t)} − {d2(t)})− bd ∗ {d2(t)}
m d ∗ d ∗ {d3(t)} = k({d2(t)} − {d3(t)}) + k({d4(t)} − {d3(t)})− bd ∗ {d3(t)}
m d ∗ d ∗ {d4(t)} = k({d3(t)} − {d4(t)})− bd ∗ {d4(t)} (3.9)

En éliminant {d1(t)}, {d2(t)}, {d3(t)} en ne retenant qu’une seule équation algébrique parmis (3.8-3.9), on

aboutit à (3.7). Dans cette dernière étape, il est possible de diviser par un polynôme en d et on utilise toutes

les propriétés de l’algèbre du produit de convolution présentées auparavant (distributivité, commutativité, as-

sociativité). En somme, la convolution se comporte comme un produit ”classique”.

Immeuble : 4 composantes (modes)

Il est intéressant de considérer la fraction (3.7) comme constituée de fractions élémentaires. Nous pouvons alors

consulter les tables de fractions élémentaires pour déterminer les contributions associées. La réponse impulsion-

nelle est alors la somme des réponses élémentaires. Les factorisations sont rendues plus faciles par l’introduction

d’une correspondance (isomorphisme) entre la variable d et la variable complexe s par la transformée de Laplace,

que nous verrons au chapitre suivant. Pour l’instant, il suffit de vérifier la correspondance en procédant en sens

contraire et utiliser le corps de fraction de polynômes que nous avons introduit et de vérifier que la somme des

éléments simples donne bien (3.7). Les éléments simples sont

{d4(t)} = − 6.66667

(d + 0.25)2 + 19.9375
+

5.62686

(d + 0.25)2 + 46.8834

− 1.95419

(d + 0.25)2 + 70.5793
+

2.99399

(d + 0.25)2 + 2.3498

et les signaux élémentaires associés sont représentés à la figure 3.17.
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Les éléments simples sont détaillés dans la table ci-dessous.

opérateur fonction graphique

2.99399
(d+0.25)2+2.3498 {1.953e−0.25t sin(1.523t)}

5 10 15 20

-2

-1

0

1

2

− 6.66667
(d+0.25)2+19.9375 {−1.493e−0.25t sin(4.465t)}

5 10 15 20

-2

-1

0

1

2

5.62686
(d+0.25)2+46.8834 {0.822e−0.25t sin(6.847t)

5 10 15 20

-2

-1

0

1

2

− 1.95419
(d+0.25)2+70.5793 {−0.233e−0.25t sin(8.401t)}

5 10 15 20

-2

-1

0

1

2

3.11 Conclusion

Ce chapitre a mis l’accent sur la réponse impulsionnelle et la convolution. La réponse impulsionnelle représente

tout ce qui est nécessaire de connâıtre pour décrire le comportement entrée-sortie du système pour des conditions

initiales nulles. Il est d’usage de remplir la bôıte de la figure 3.2 en utilisant la réponse impuslsionnelle. Celle-ci

peut-être décrite par une fraction de deux polynômes en d ou de manière explicite en spécifiant la fonction

{g(t)}. C’est le principe de superposition qui rend cette universalité possible. Le système est ainsi caractérisé

entièrement par sa réponse impulsionnelle et la sortie de ce système est le produit de convolution de l’entrée par

sa réponse impulsionnelle (il faut toutefois veiller à considérer des conditions initiales nulles pour les variables

internes).

L’algèbre de convolution n’est pas nécessairement facile à manipuler et c’est la raison pour laquelle on utilise

la transformée de Laplace en fabriquant un isomorphisme entre fraction de polynômes en d et entre fraction de

polynômes dans la variable complexe s. Il y a des subtilités entre cette correspondance que nous n’envisagerons

pas. Il est par exemple possible d’étendre la théorie des opérateurs au delà de la validité de la transformée

de Laplace, ceci en particulier en relation avec les équations aux dérivées partielles et les système dynamiques

gouvernés par de telles équations. Comme nous nous limitons aux systèmes linéaires stationnaires de dimension

finie, nous ne verrons pas grande différence entre les opérateurs de ce chapitre et les fonctions de transfert

du chapitre suivant. Le lecteur désireux d’approfondir la théorie de ce chapitre peut se référer aux ouvrage

de J. Mikusinski ”Operational Calculus”, Pergamon Press, 1959 et de A. Erdélyi ”Operational Calculus and

Generalized Functions”, HRW, NY, 1962.
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Figure 3.17. Signaux élémentaires qui constituent la réponse impulsionnelle de l’immeuble.





4

Fonction de transfert

4.1 Introduction

La représentation entrée-sortie a mis en évidence l’importance de la réponse impulsionnelle pour caractériser la

relation entre l’entrée et la sortie. Les opérateurs et le produit de convolution décrivent cette relation entrée-

sortie. Dans le présent chapitre la relation entrée-sortie est approfondie en utilisant l’algèbre des polynômes en

une variable complexe s. A cette fin, une relation algébrique liant l’entrée et la sortie d’un système dynamique.

Ceci est possible grâce à la transformation de Laplace et au concept de fonction de transfert.

La transformation de Laplace, tout comme l’introduction de fractions de polynômes en l’opérateur d, per-

met de transformer des équations différentielles et intégrales, linéaires et à coefficients constants, en équations

algébriques beaucoup plus simples à manipuler. Il deviendra ainsi aisé de les résoudre ou d’étudier certaines

propriétés structurelles des systèmes dynamiques correspondantes. C’est une version ”miroir” de ce que nous

avons présenté au chapitre précédant où le produit de convolution et l’opérateur d intervenaient. Dans le présent

chapitre, le produit sera le produit classique et la variable d est remplacée par la variable complexe s.

4.2 Transformation de Laplace

4.2.1 Définition

Soient le signal temporel f(t), avec f(t) = 0 pour t < 0, et la variable complexe s.

La tranformation de Laplace de f(t) pour l’intervalle temporel [0,∞) s’écrit F (s) et est définie comme suit :

F (s) = L[f(t)] =

∫ ∞
0

f(t)e−stdt (4.1)

La transformée de Laplace transforme donc un signal temporel en un signal dépendant de la variable complexe

s :

f(t)
L−−−−−−−−−−−−−−−→ F (s)

4.2.2 Existence

La transformé de Laplace F (s) du signal f(t) existe si l’intégrale (4.1) converge.

Considérons à titre d’exemple la transformée de Laplace du signal f(t) = Aeαt où A et α sont des constantes

réelles s = a+ jb une variables complexe :
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F (s) = L[f(t)] =

∫ ∞
0

Aeαte−stdt = A

∫ ∞
0

e−(s−α)tdt = − A

s− α
e−(s−α)t

∣∣∣∣∞
0

= − A

s− α
e−(a−α)t[cos(bt)− j sin(bt)]

∣∣∣∣∞
0

=


A

s− α
si(a− α) > 0 a > α

no converge pas si(a− α) ≤ 0 a ≤ α

La partie du plan complexe pour laquelle a = <(s) > α représente le domaine de convergence de F (s). Ce

domaine est illustré à la figure 4.1 ; α est appelé l’abscisse de convergence de F (s).

Les fonctions temporelles de type exponentielle ou celles qui croissent moins rapidement qu’une exponentielle

s = a+ bj

Im

Reα

pas de convergence convergence

Figure 4.1. Domaine de convergence de F (s) pour f(t) = Aeαt.

possèdent un domaine de convergence non nul. Par exemple t, sin(ωt) et t sin(ωt) possèdent l’abscisse de conver-

gence 0 alors que eαt, teαt et eαt sin(ωt) possèdent toutes l’abscisse de convergence α. Par contre, les fonctions et
2

et tet
2

croissent plus rapidement qu’une fonction exponentielle et ne possèdent pas de domaine de convergence,

et donc pas de transformée de Laplace.

Notons cependant que

f(t) =

{
et

2

0 ≤ t ≤ t∗ <∞
0 t ≥ t∗

possède bien une transformée de Laplace F (s).

On démontre que l’intégrale (4.1) converge si f(t) est continue par morceaux pour t ≥ 0 et si une constante

positive β existe telle que :

lim
t→∞

e−βt|f(t)| = 0

La plupart des signaux d’intérêt dans l’étude des systèmes dynamiques possèdent une transformée de Laplace.

Il serait fort utile de pouvoir utiliser dans tout le plan complexe l’expression analytique calculée à partir de la

définition (4.1) et valable uniquement dans le domaine de convergence. A cette fin, on peut utiliser le théorème
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du prolongement analytique 1 : si deux fonctions complexes, analytiques dans un domaine 2, sont égales pour

un quelconque intervalle non nul de ce domaine, elles sont alors égales partout dans ce domaine. Dans notre

cas particulier, ces deux fonctions sont d’une part l’intégrale de la définition (4.1) et d’autre part l’expression

analytique pour F (s) ; le domaine est le plan complexe à l’exception des points de singularité où F (s) est in-

fini ; l’intervalle est un intervalle fini quelconque dans la région de convergence de l’intégrale (4.1). Le théorème

indique alors que l’expression analytique F (s) est valable pour tout le plan complexe à l’exception des valeurs

de s qui rendent F (s) infini (les pôles de F (s)).

Nous dirons donc que la transformée de Laplace de f(t) est la fonction analytique F (s) qui, pour <(s) > α, est

définie par son intégrale de Laplace (4.1).

4.3 Transformée de Laplace de signaux choisis

4.3.1 Saut unité

Le saut unité ε(t) est un signal défini de la façon suivante :

ε(t) =

{
0 pour t < 0

1 pour t ≥ 0

On l’appelle également échelon unité en raison de sa forme. Sa représentation graphique est donnée à la figure

4.2

A partir de la définition de la transformation de Laplace (4.1), on obtient pour la saut unité :

t
0

ε(t)

1 •

Figure 4.2. Saut unité.

L[ε(t)] =

∫ ∞
0

1e−stdt =
1

s
(4.2)

Dans le cas d’un saut unité d’amplitude A, soit u(t) = Aε(t) :

U(s) = L[u(t)] =

∫ ∞
0

Ae−stdt =
A

s
(4.3)

La réponse d’un système au repos à un échelon unité est appelée réponse indicielle.

1. Prolongement analytique. Soient deux domaines D et D1 tels que D ⊂ D1. Si deux fonctions F et F1 sont ho-
lomorphes sur D et D1 et si F (s) = F1(s) pour tout s ∈ D, on dit que F1 est un prolongement analytique de F sur
D1.

2. Une fonction F (s) est holomorphes ou analytique en D si elle admet une dérivée F ′(s) en tout point de D
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4.3.2 Rampe

Une rampe est un signal à croissance linéaire dont l’équation est u(t) = At, pour t ≥ 0. Sa représentation est

donnée à la figure 4.3. A partir de (4.3), et en utilisant la méthode d’intégration par parties, on a :

t
0

u(t)

A

1

Figure 4.3. Rampe.

U(s) = L[u(t)] =

∫ ∞
0

Ate−stdt

= A

{ [
− t1

s
e−st

]∣∣∣∣∞
0

−
∫ ∞

0

−1

s
e−stdt

}
=
A

s2

(4.4)

4.3.3 Exponentielle

u(t) =

{
0 pour t < 0

Ae−αt pour t ≥ 0

L−−−−−−→ U(s) =
A

s+ α

4.3.4 Sinus et cosinus

Soient les relations trigonométriques bien connues : ejω0t = cos(ω0t) + j sin(ω0t)

e−jω0t = cos(ω0t)− j sin(ω0t)

De la transformée de Laplace d’un signal exponentiel, on déduit aisément :

u(t) =

{
0 pour t < 0

A sin(ω0t) pour t ≤ 0

L−−−−−−→ U(s) =
Aω0

s2 + ω2
0

u(t) =

{
0 pour t < 0

A cos(ω0t) pour t ≤ 0

L−−−−−−→ U(s) =
As

s2 + ω2
0

4.3.5 Impulsion de Dirac

Soit l’impulsion rectangulaire définie par (4.4) :

ρ(t) =


0 t < 0

1/∆t t ∈ [0, ∆t)

0 t ≥ ∆t

A la limite, pour ∆t → 0, ρ(t) tend vers une impulsion de durée infiniment courte, d’amplitude infiniment

grande, de surface unité et située à l’origine (fig. 4.5) :
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t
0

ρ(t)

1

∆t
•

•
∆t

Figure 4.4. Impulsion rectangulaire.

δ(t) = lim
∆t→0

ρ(t)

Cette impulsion δ(t) est appelée impulsion de Dirac ou fonction delta. De ce qui précède, nous pouvons

t
0

δ(t)

Figure 4.5. Impulsion de Dirac.

mettre en évidence les caractéristiques de cette impulsion :∫ ∞
−∞

δ(t)dt = 1

δ(t) = 0 pour t 6= 0

La transformée de Laplace de l’impulsion de Dirac est :

L[δ(t)] =

∫ ∞
0

δ(t)e−stdt =

∫ 0+

0

δ(t)e0dt+

∫ ∞
0+

0e−stdt = 1

La réponse d’un système au repos à une impulsion de Dirac est appelée réponse impulsionnelle.
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4.3.6 Dictionnaire de la transformation de Laplace

n° Signal temporel Transformée de Laplace Abscisse de convergence

1 ε(t) 1
s

(0,∞)

2 δ(t) 1 (−∞,∞)

3 δn+1(t) sn (−∞,∞)

4 ε(t)e−αt
1

s+ α
(0,∞)

5 ε(t) cos(ωt)
s

s2 + ω2
(0,∞)

6 ε(t) sin(ωt)
ω

s2 + ω2
(0,∞)

7 ε(t)e−αt cos(ω(t))
s+ α

(s+ α)2 + ω2
(−α,∞)

8 ε(t)e−αt sin(ωt)
ω

(s+ α)2 + ω2
(−α,∞)

9 ε(t) cos(ωt+ φ)
s cosφ− ω sinφ

s2 + ω2
(0,∞)

10 ε(t) sin(ωt+ φ)
s sinφ+ ω cosφ

s2 + ω2
(0,∞)

11
ε(t)tn

n!

1

sn+1
(0,∞)

12
ε(t)tne−αt

n!

1

(s+ α)n+1
(−α,∞)

Ces expressions sont valables pour des puissances n positives et entières. ε(t) représente le saut unité à t = 0.

4.4 Propriétés de la transformation de Laplace

4.4.1 Dérivation temporelle

L[
d

dt
f(t)] =

∫ ∞
0

[
d

dt
f(t)

]
e−stdt

Une intégration par parties donne :

L[
d

dt
f(t)] = [f(t)e−st]

∣∣∞
0
−
∫ ∞

0

f(t)(−s)e−stdt

= −f(0) + s

∫ ∞
0

f(t)e−stdt = sF (s)− f(0)

De même, en appliquant successivement l’intégration par parties :

L[
d2

dt2
f(t)] = s2F (s)− sf(0)− d

dt
f(0)
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L[
dn

dtn
f(t)] = snF (s)− sn−1f(0)− . . .− dn−1

dtn−1
f(0) (4.5)

En d’autres termes, dériver le signal temporel f(t) correspond, dans le domaine de Laplace, à manipuler sa

transformée de Laplace F (s) par s. Remarquons ici qu’il est nécessaire de prendre en compte les conditions

initiales.

4.4.2 Intégration temporelle

L

[∫ t

0

f(τ)dτ

]
=

∫ ∞
0

[∫ t

0

f(τ)dτ

]
e−stdt

A nouveau, une intégration par parties permet d’évaluer cette expression :

L

[∫ t

0

f(τ)dτ

]
=

[∫ t

0

f(τ)dτ

](
− 1

s

)
e−st

∣∣∣∣∣
∞

0

−
∫ ∞

0

f(t)

(
− 1

s

)
e−stdt

= −1

s

[
e−∞

∫ ∞
0

f(τ)dτ − e0

∫ 0

0

f(τ)dτ

]
+

1

s

∫ ∞
0

f(t)e−stdt

=
F (s)

s
(4.6)

En d’autre termes, intégrer le signal temporel f(t) correspond, dans le domaine de Laplace, à multiplier sa

transformée de Laplace F (s) par 1/s.

4.4.3 Translation dans le domaine de Laplace F (s+ λ)

La transformée de Laplace d’un signal temporel multiplié par l’exponentielle e−λt correspond à la transformée

de Laplace du signal original décalé du facteur λ :

0 t
τ

ε(t)f(t)

ε(t− τ)f(t− τ)

Figure 4.6. Translation temporelle du signal f(t).

L[e−λtf(t)] =

∫ ∞
0

e−λtf(t)e−stdt =

∫ ∞
0

f(t)e−(s+λ)tdt = F (s+ λ) (4.7)
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4.4.4 Translation dans le temps f(t− τ )

Soit le signal temporel ε(t− τ)f(t− τ) qui correspond au signal ε(t)f(t) retardé de τ (4.6).

On peut écrire :

L[ε(t− τ)f(t− τ)] =

∫ ∞
0

ε(t− τ)f(t− τ)e−stdt =

∫ ∞
τ

f(t− τ)e−stdt

En introduisant le changement de variable v = t− τ , on a, d’une part dv = dt, et, d’autre part

L[ε(t− τ)f(t− τ)] = e−sτ
∫ ∞

0

e−svdv = e−sτF (s). (4.8)

En d’autres termes, retarder le signal temporel f(t) de τ correspond, dans le domaine de Laplace, à multiplier

sa transformée de Laplace F (s) par e−sτ .

4.4.5 Linéarité

La transformation de Laplace est un opérateur linéaire. En effet, si :

L[f1(t)] = F1(s)

L[f2(t)] = F2(s)

la définition (4.9) permet alors d’écrire :

L[c1f1(t) + c2f2(t)] = c1F1(s) + c2F2(s) (4.9)

c1 et c2 sont des constantes réelles, vérifiant ainsi le principe de superposition (théorème d’additivité et d’ho-

mogénéité). Notons au passage que

L[f1(t)f2(t)] =

∫ ∞
0

f1(t)f2(t)e−stdt 6= F1(s)F2(s)

Vérifier cette dernière relation en choisissant par exemple f1(t) = f2(t) = ε(t).

4.4.6 Valeur finale (régime stationnaire)

Nous verrons plus loin comment calculer le signal f(t) à partir de sa transformée de Laplace F (s). En attendant,

si la valeur en régime stationnaire de f(t) existe, elle peut être évaluée à partir de F (s) grâce au théorème de

la valeur finale :

lim
t→∞

f(t) = lim
s→0

sF (s) (4.10)

Cette relation peut être obtenue de Laplace de d/dtf(t) :∫ ∞
0

[
d

dt
f(t)

]
e−stdt = sF (s)− f(0)

En faisant tendre s vers 0, on obtient :∫ ∞
0

[
d

dt
f(t)

]
dt =

∫ ∞
0

df(t) = lim
t→∞

f(t)− f(0) = lim
s→0

sF (s)− f(0)

d’où l’on tire la relation (3.10).

La valeur en régime stationnaire de f(t) existe, et donc la relation (4.10) est valable, si sF (s), c’est-à-dire
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lorsque les valeurs de s qui rendent sF (s) infini, se trouvent dans la moitié gauche du plan complexe, axe

imaginaire non compris. On vérifie ainsi que le théorème de la valeur finale s’applique à un saut échelon (pour

lequel limt→∞ f(t) = lims→0 sF (s) = 1) mais pas à un sinus (pour lequel limt→∞ f(t) n’existe pas) ni à une

exponentielle croissante (pour laquelle limt→∞ =∞ alors que lims→0 sF (s) = 0).

Vérifier que le théorème de la valeur finale s’applique à y(t) = e−2t mais pas à y(t) = et.

4.4.7 Valeur initiale (comportement initial)

De manière similaire, on peut calculer la valeur initiale de f(t) à partir de F (s) :

lim
t→0

f(t) = lim
s→∞

sF (s) (4.11)

Pour le démontrer, on utilise à nouveau la transformée de Laplace de d/dtf(t) et on fait tendre s vers l’infini.

Ainsi, d’une part, en faisant commuter la limite avec l’intégrale,

lim
s→∞

∫ ∞
0

d

dt
f(t)e−stdt =

∫ ∞
0

d

dt
f(t)

(
lim
s→∞

e−st
)
dt =

∫ ∞
0

d

dt
f(t) 0 dt = 0,

d’autre part, en utilisant la transformée de Laplace d’une valeur dérivée,

lim
s→∞

∫ ∞
0

d

dt
f(t)e−stdt = lim

s→∞
(sF (s)− f(0)) = lim

s→∞
sF (s)− f(0)

de telle sorte qu’en égalant les deux expressions, on obtienne

0 = lim
s→∞

sF (s)− f(0)

et ainsi la relation (4.11).

Il n’y a dans ce cas pas de condition sur la position des pôles de sF (s). Cette relation est, par exemple, valable

pour un sinus ou une exponentielle croissante.

4.4.8 Dérivation dans le domaine de Laplace

Soit F (s) la transformée de Laplace du signal f(t). Par définition, on a :

F (s) =

∫ ∞
0

f(t)e−stdt

et, en dérivant par rapport à s :

d

ds
F (s) =

d

ds

∫ ∞
0

f(t)e−stdt = −
∫ ∞

0

tf(t)e−stdt = −L[tf(t)] (4.12)

On établit facilement la règle générale :

L[tnf(t)] = (−1)n
dn

dsn
F (s) (4.13)

4.4.9 Grammaire de la transformation de Laplace

L’ensemble des propriétés de la transformation de Laplace constitue la règle de grammaire à appliquer pour

déterminer la transformée d’un signal temporel particulier. Elles sont regroupées dans le tableau qui suit :
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n° Signal temporel Transformée de Laplace

I f(t) F (s)

II
∑
i kifi(t)

∑
i kiFi(s)

III f(t/λ) |λ|F (λs)

IV e−λtf(t) F (s+ λ)

V ε(t− τ)f(t− τ) e−sτF (s)

VI
dn

dtn
f(t) snF (s)− sn−1f(0)− sn−2 d

dt
f(0)− . . .− dn−1

dtn−1
f(0)

VII

∫ t

0

f(τ)dτ
F (s)

s

VIII tnf(t) (−1)n
dn

dsn
F (s)

IX lim
t→∞

f(t) lim
s→0

[sF (s)]

X lim
t→0

f(t) lim
s→∞

[sF (s)]

Les signaux temporels sont nuls pour t < 0. ε(t− τ) représente le saut unité au temps t = τ .

4.5 Exemples de transformée de Laplace

4.5.1 Echelon de durée finie

Déterminons la transformée de Laplace du signal représenté à la figure 4.7 :

Une première approche consiste à appliquer directement la définition (4.1).

t
0

f(t)

1 •

•
τ

Figure 4.7. Impulsion de durée τ .

L[f(t)] =

∫ τ

0

1e−stdt+

∫ ∞
τ

0e−stdt =
1

s
(1− e−sτ )

Une seconde approche, qui est appliquée de préférence chaque fois que cela est possible, consiste à décomposer

le signal f(t) en une combinaison de signaux dont les transformées de Laplace sont connues, en l’occurence :
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f(t) = ε(t)− ε(t− τ)

Et avec la linéarité de la transformation de Laplace :

L[f(t)] = L[ε(t)]− L[ε(t− τ)]

Et avec la propriété de translation temporelle :

L[f(t)] = L[ε(t)]− e−sτL[ε(t)] = (1− e−sτ )L[ε(t)]

Finalement :

L[f(t)] = (1− e−sτ )
1

s

4.5.2 Réponse exponentielle

Soit f(t) = A[1− e−αt] comme illustré à la figure 4.8, avec α > 0.

0

t

f(t)

A

Figure 4.8. Réponse exponentielle.

a) Déterminons F (s) en utilisant le dictionnaire de la transformation de Laplace.

b) Déterminons la valeur finale de f(t)

Solution

a) Selon le dictionnaire de la section 4.3 :

F (s) =
A

s
− A

s+ α
=

Aα

s(s+ α)

b) Valeur finale selon la grammaire de la section 4.4 :

Le pôle de sF (s) = Aα/(s + α) se trouve s = −α dans la moitié gauche du plan complexe. On peut donc



80 4 Fonction de transfert

appliquer le théorème de la valeur finale :

lim
t→∞

f(t) = lim
s→0

[sF (s)] = lim
s→0

[
Aα

s+ α

]
= A

4.5.3 Transformation de Laplace inverse

Quel est le signal dont la transformée de Laplace est

F (s) =
1

(s+ a)2
?

Solution

Le dictionnaire nous donne :

L[t] =
1

s2

et la grammaire :

L[e−atf(t)] = F (s+ a)

Il s’ensuit que, pour t ≥ 0 :

L[e−att] =
1

(s+ a)2

4.6 Fonction de transfert

4.6.1 Définition

Un système dynamique lscr est caractérisé par sa réponse impulsionnelle g(t) ou, de manière équivalente, par

la transformée de Laplace correspondante G(s) qui est appelée la fonction de transfert du système :

G(s) := L{g(t)} (4.14)

A partir de cette définition, on peut affirmer que la fonction de transfert est indépendante de l’entrée.

On démontre que la fonction de transfert d’un système lscr monovariable est le rapport des transformées de

Laplace de la sortie et de l’entrée. Considérons à titre d’exemple le système dynamique donné par l’équation

différentielle :

d2y

dt2
+ a1

dy

dt
+ a0y = b1

du

dt
+ b0u (4.15)

avec les conditions initiales y(0) = dy/dt(0) = 0.

En appliquant la transformation de Laplace à l’équation (4.15), on a :

[s2 + a1s+ a0]Y (s) = [b1s+ b0]U(s)

ou

G(s)
U(s) Y (s)

Figure 4.9. Représentation par fonction de transfert.
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Y (s)

U(s)
= G(s) =

b1s+ b0
s2 + a1s+ a0

(4.16)

G(s) lie ainsi la sortie à l’entrée d’un système lscr :

Y (s) = G(s)U(s) (4.17)

La représentation par fonction de transfert est illustrée par le schéma fonctionnel de la figure 4.9.

4.6.2 Equations différentielles linéaires à coefficients constants

Le comportement dynamique d’un grand nombre de systèmes linéaires peut être représenté par :

• n équations différentielles du premier ordre (modèle d’état linéaire) ;

• une équation différentielle linéaire d’ordre n (modèle entrée-sortie).

Considérons le second cas :

y(n) +an−1y
(n−1) + . . .+ a1y

(1) + a0y

= bmu
(m) + bm−1u

m−1 + . . .+ b1u
(1) + b0u

(4.18)

En appliquant la transformation de Laplace aux deux membres de l’équation (4.18), on obtient :

[Y (s)sn −y0s
n−1 − y(1)

0 sn−2 − . . .− y(n−1)
0 ]

+an−1[Y (s)sn−1 − y0s
n−2 − . . .− yn−2

0 ]

+ . . .+ a1[Y (s)s− y0] + a0Y (s)

= bm[U (s)sm − u0s
m−1 − u(1)

0 sm−2 − . . .− u(m−1)
0 ]

+bm−1[U(s)sm−1 − u0s
m−2 − u(1)

0 sm−3 − . . .− u(m−2)
0 ]

+ . . .+ b1[U(s)s− u0] + b0U(s)

(4.19)

En regroupant dans les polynômes Y0(s) de degré n − 1 et U0(s) de degré m − 1 les termes faisant intervenir

respectivement les conditions initiales de y et de u :

Y0(s) = y0s
n−1 + y

(1)
0 sn−2 + . . .+ y

(n−1)
0

+an−1[y0s
n−2 + y

(1)
0 sn−3 + . . .+ y

(n−2)
0 ]

+ . . .+ a1y0

= y0s
n−1 + [y

(1)
0 + an−1y0]sn−2 + . . .+ [y

(n−1)
0 + an−1y

(n−2)
0

+ . . .+ a1y0]

U0(s) = bm[u0s
m−1 + u

(1)
0 sm−2 + . . .+ u

(m−1)
0 ]

+bm−1[u0s
m−2 + u

(1)
0 sm−3 + . . .+ u

(m−2)
0 ]

+ . . .+ b1u0

= bmu0s
m−1 + [bmu

(1)
0 + bm−1u0]sm−2 + . . .

+[bmu
(m−1)
0 + bm−1u

(m−2)
0 + . . .+ b1u0]

La relation (4.19) donne :

Y (s) =
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

sn + an−1sn−1 + . . . a1s+ a0
U(s)

+
Y0(s)− U0(s)

sn + an−1sn−1 + . . .+ a1s+ a0

(4.20)

On constate que la sortie comporte deux termes bien distincts. Le premier dû à l’entrée, correspond à la réponse

forcée du système ; le second, dû aux conditions initiales, correspond à sa réponse libre, ou réponse propre.
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Pour se ramener à la définition de la fonction de transfert, il convient de considérer le système au repos (Y0(s) =

U0(s) = 0) :

Y (s) =
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

sn + an−1sn−1 + . . .+ a1s+ a0
U(s)

Le système est causal si les degrés m et n des polynômes numérateur et dénominateur respectent la condition

m ≤ n. Cette affirmation peut se justifier de façon intuitive en considérant le cas contraire, par exemple pour

m = 1 et n = 0, ce qui correspond à l’équation différentielle

y(t) = b1u̇(t) + b0u(t).

Ce système répondrait infiniment rapidement et avec une amplitude infinie à un saut échelon de l’entrée. Cette

faculté de répondre infiniment rapidement à une variation finie de l’entrée n’est pas possible pour un processus

physique. D’où la restriction de faisabilité physique m ≤ n qui correspond en fait à la condition de causalité.

Peut-on utiliser le même argument pour montrer qu’un système pour lequel m = n = 1 est physiquement

réalisable ?

La fonction de transfert d’un système lscr représenté par une équation différentielle d’ordre n a donc la forme :

G(s) =
Y (s)

U(s)
=
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

sn + an−1sn−1 + . . .+ a1s+ a0
m ≤ n (4.21)

Les valeurs de la variable complexe s qui annulent le dénominateur de la fonction de transfert sont appelés les

pôles du système ; quant aux valeurs qui annulent le numérateur, elles sont appelées zéros. L’ordre du système

est le nombre de pôles, c’est-à-dire le degré du dénominateur. Ces concepts seront précisés au chapitre suivant.

On remarque que la fonction de transfert est une fonction rationnelle de la variable de Laplace s, c’est-à-dire

un quotient de polynômes en s. Pourquoi a-t-on cette structure particulière ? Est-ce toujours le cas ?

4.6.3 Systèmes multivariables

En appliquant la transformée de Laplace à la représentation d’état

ẋ = Ax+Bu

y = Cx+Du,

deux équations

sX(s)− x0 = AX(s) +BU(s) (4.22)

Y (s) = CX(s) +DU(s) (4.23)

sont obtenues où X(s) et x0 sont des vecteurs de dimension n, U(s) un vecteur de dimension p et Y (s) un

vecteur de dimension q.

Pour des conditions initiales nulles (x0 = 0), les équations (4.22) et (4.23) donnent

X(s) = (sI −A)−1BU(s)

Y (s) = [C(sI −A)−1B +D]U(s).

Ainsi, la matrice de fonctions de transfert s’écrit

G(s) = C(sI −A)−1B +D (4.24)

qui est une matrice de dimension q× p dans laquelle chaque élément Gij(s) représente une fonction de transfert

correspondant à Yi(s)/Uj(s), c’est-à-dire une fonction de transfert entre l’entrée uj et la sortie yi.
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4.6.4 Domaine temporel et domaine de Laplace

La transformation de Laplace et la notion de fonction de transfert sont des outils puissants qui permettent,

entre autres, de déterminer la transformée de Laplace de la réponse d’un système lscr par une simple opération

de multiplication, plutôt que par un produit de convolution fastidieux. Il est par exemple possible de résoudre

une équation différentielle linéaire à coefficients constants par simple résolution d’une équation algébrique. Ces

simplifications découlent de la transposition du problème du domaine temporel dans le domaine de Laplace (fig

4.6.4). Il faut néanmoins relever que, en règle générale, toute simplification d’un problème à un niveau donné de

sa résolution se répercute par une complication à une autre étape. Il s’agit, dans ce cas-ci, de trouver le signal

y(t) qui correspond à la transformée de Laplace Y (s). Cette opération, connue sous le nom de transformation

de Laplace inverse, est notée :

Y (s)
L−1

−−−−−−−−→ y(t)

La voie de résolution choisie est adéquate uniquement si la complication résultante est moindre que celle présente

à l’origine.

équation
différentielle lscr

u(t) y(t)
domaine temporel

domaine de Laplace
fonction de transfert

U(s) · G(s) = Y (s)

L L−1 L L−1 L L−1

Figure 4.10. Correspondance entre le domaine temporel et le domaine de Laplace.

4.7 Transformation de Laplace inverse

4.7.1 Introduction

On calcul la sortie d’un système dynamique lscr excité par une entrée connue comme suit :

Y (s) = G(s)U(s)

C’est la transformation de Laplace inverse appliquée à Y (s) qui permettra d’obtenir la réponse temporelle y(t).

L’idée de base pour réaliser la transformation inverse consiste, dans le domaine de Laplace, à décomposer Y (s)

en une combinaison linéaire de termes dont les images dans le domaine temporel sont connues, par exemple les

signaux donnés dans le dictionnaire. La transformation de Laplace étant un opérateur linéaire satisfaisant au

principe de superposition, le signal y(t) sera donc la combinaison linéaire des images obtenues.

4.7.2 Eléments simples

La transformation de Laplace de la sortie d’un système est une fraction rationnelle dont le dénominateur

contient des termes qui proviennent de l’équation différentielle et de l’entrée. On peut développer cette fraction

rationnelle en une somme pondérée d’éléments simples comme suit :
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Y (s) =
dqs

q + dq−1s
q−1 + . . . d0

sp + cp−1sp−1 + . . .+ c0
=

A1

s− s1
+

A2

s− s2
+ . . .+

Ap
s− sp

où si (i = 1, . . . , p) sont les valeurs de s qui annulent le dénominateur de Y (s). Les facteurs constants Ai
(i = i, . . . p) sont appelés résidus.

Pour des raisons de causalité , le degré du numérateur est inférieur ou égal à celui du dénominateur (q ≤ p). Un

terme constant A apparâıt dans la décomposition en éléments simples si q = p. Le terme constant est obtenu

par division des deux polynômes. Par conséquent, dans le cas général, la fraction rationnelle s’écrit :

Y (s) = A+
N(s)

D(s)

où le degré du polynôme N(s) est strictement inférieur à celui du polynôme D(s). On se restreindrai donc par

la suite à la décomposition de N(s)/D(s).

Pour un système physique réel, les coefficients cp−1, . . . , c0 du dénominateur sont réels. Les racines sont par

conséquent des nombres réels ou des paires de nombres conjugués complexes. Il s’ensuit qu’à toute racine

complexe si = ai + jbi correspond la racine si+1 = ai − jbi.
Pour déterminer les résidus, il est possible soit de réduire au même dénominateur les éléments simples puis

d’identifier les coefficients de même puissance avec ceux de la fonction de transfert, soit de faire appel à une

méthode générale de calcul appelée méthode des résidus.

4.7.3 Décomposition en éléments simples par réduction au même dénominateur

Cette méthode, utilisable dans les cas simple, est illustrée sur la base d’un exemple. Soit le système au repos

caractérisé par la fonction de transfert :

G(s) =
2(s+ 3)

(s+ 1)(s+ 6)

et excité par l’entrée u(t) = e−2t, t ≥ 0, dont la transformée de Laplace est :

U(s) =
1

s+ 2

La transformée de Laplace de la réponse devient :

Y (s) = G(s)U(s) =
2(s+ 3)

(s+ 1)(s+ 6)(s+ 2)
(4.25)

On choisit de décomposer cette fraction rationnelle en trois éléments simples pondérés par les coefficients réel

A,B et C qui sont les résidus à déterminer :

Y (s) =
A

s+ 1
+

B

s+ 6
+

C

s+ 2
(4.26)

Après réduction au même dénominateur des fractions de la relation (4.26), une comparaison avec (4.25) donne :

2(s+ 3) = A(s+ 6)(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)(s+ 6)

L’identification membre à membre des coefficients de même puissance de s donne :

s2 : 0 = A+B + C ce qui donne : A = 0, 8

s1 : 2 = 8A+ 3B + 7C B = −0, 3

s0 : 6 = 12A+ 2B + 6C C = −0, 5

La transformation de Laplace inverse donne alors comme signal de sortie :
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y(t) = 0, 8e−t − 0, 3e−6t − 0, 5e−2t t ≥ 0

4.7.4 Décomposition en éléments simples par la méthode des résidus

L’équation (4.26) est valable pour tout s. On peut donc multiplier cette équation par l’un des facteurs et faire

tendre s vers la valeur qui annule ce facteur. On obtient ainsi :

A = lim
s→−1

(s+ 1)Y (s) = lim
s→−1

[
2(s+ 3)

(s+ 2)(s+ 6)

]
= 0, 8

B = lim
s→−6

(s+ 6)Y (s) = lim
s→−6

[
2(s+ 3)

(s+ 2)(s+ 1)

]
= −0, 3

C = lim
s→−2

(s+ 2)Y (s) = lim
s→−2

[
2(s+ 3)

(s+ 6)(s+ 1)

]
= −0, 5

Ainsi :

Y (s) =
0, 8

s+ 1
− 0, 3

s+ 6
− 0, 5

s+ 2

La transformation de Laplace inverse donne alors :

y(t) = 0, 8e−t − 0, 3e−6t − 0, 5e−2t t ≥ 0

4.7.5 Cas particuliers

Racines complexes

Soit :

Y (s) =
s+ 1

s(s2 + 4s+ 5)

Déterminons y(t), la transformée de Laplace inverse de Y (s).

Soution

Le dénominateur de Y (s) possède des racines complexes. Deux décompositions en éléments sont possibles, la

deuxième étant plus facile à manipuler car elle ne fait pas intervenir de termes complexes :

Y (s) =
s+ 1

s(s+ 2 + j)(s+ 2− j)
=
A

s
+

C +Dj

s+ 2 + j
+

C −Dj
s+ 2− j

et :

Y (s) =
A

s
+

Es+ F

s2 + 4s+ 5

Déterminons A,E et F pour la deuxième décomposition (en réduisant au même dénominateur) :

(s+ 1) = A(s2 + 4s+ 5) + (Es+ F )s

d’où :
s2 : 0 = A+ E ce qui donne : A = 0, 2

s1 : 1 = 4A+ F E = −0, 2

s0 : 1 = 5A F = 0, 2

Ainsi :

Y (s) =
0, 2

s
+
−0, 2s+ 0, 2

s2 + 4s+ 5
=

0, 2

s
+
−0, 2(s+ 2)

(s+ 2)2 + 1
+

0, 6

(s+ 2)2 + 1

La transformation de Laplace inverse donne alors :

y(t) = 0, 2− 0, 2e−2t cos t+ 0, 6e−2t sin t t ≥ 0



86 4 Fonction de transfert

Racines doubles

Un système dynamique est décrit par l’équation différentielle suivante :

...
y + 7ÿ + 16ẏ + 12y = u̇+ u (4.27)

avec les conditions initiales :

y(0) = ẏ(0) = ÿ(0) = u(0) = 0 (4.28)

Sachant que u(t) correspond à une impulsion de Dirac au temps t = 0, calculons y(t).

Solution

En appliquant la transformation de Laplace à (4.27) et en utilisant (4.28), on obtient :

Y (s)[s3 + 7s2 + 16s+ 12] = U(s)[s+ 1]

G(s) =
Y (s)

U(s)
=

s+ 1

s3 + 7s2 + 16s+ 12
=

s+ 1

(s+ 2)2(s+ 3)

Pour U(s) = 1 (impulsion de Dirac) :

Y (s) =
s+ 1

(s+ 2)2(s+ 3)
=

A

s+ 2
+

B

(s+ 2)2
+

C

s+ 3
(4.29)

Notons que la décomposition en éléments simple correspondant au terme 1/(s+ 2)2 peut s’écrire ainsi :

A′s+B′

(s+ 2)2
=
A′(s+ 2) + (B′ − 2A′)

(s+ 2)2
=

A

s+ 2
+

B

(s+ 2)2

Déterminons A,B et C par la méthode des résidus. L’équation (4.29) permet d’écrire :

(s+ 2)2Y (s) =
s+ 1

s+ 3
= A(s+ 2) +B +

C(s+ 2)2

s+ 3
(4.30)

et en dérivant (4.30) par rapport à s :

d

ds
[(s+ 2)2Y (s)] =

2

(s+ 3)2
= A+ (s+ 2)Q(s)

où Q(s) est un polynôme en s. On calcule A,B et C comme suit :

A = lim
s→−2

d

ds
[(s+ 2)2Y (s)] lim

s→−2

2

(s+ 3)2
= 2

B = lim
s→−2

(s+ 2)2Y (s) = lim
s→−2

s+ 1

(s+ 3)2
= −1

C = lim
s→−3

(s+ 3)Y (s) = lim
s→−3

s+ 1

(s+ 2)2
= −2

Finalement on obtient :

y(t) = L−1

[
2

s+ 2
− 1

(s+ 2)2
− 2

s+ 3

]
= 2e−2t − te−2t − 2e−3t t ≥ 0

Terme constant

Soit : Y (s) =
s(s+ 3)

(s+ 1)2
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Déterminons y(t).

Solution

Y (s) =
s2 + 3s

s2 + 2s+ 1
= 1 +

s− 1

(s+ 1)2
= 1 +

A

s+ 1
+

B

(s+ 1)2

Déterminons A et B en réduisant au même dénominateur :

s− 1 = A(s+ 1) +B

d’où :
s1 : A = 1

s0 : −1 = A+B B = −2

Ainsi :

Y (s) = 1 +
1

s+ 1
− 2

(s+ 1)2

La transformation de Laplace inverse donne alors :

y(t) = δ(t) + e−t − 2te−t t ≥ 0

Système non linéaire

Un système dynamique est donné par l’équation différentielle

ÿ + 2ẏ + 3 = u y(0) = ẏ(0) = 0 (4.31)

Calculons la fonction de transfert correspondante.

Solution

L’équation différentielle est non linéaire car le principe de superposition ne s’applique pas. En effet :

u1 → y1 : ÿ1 + 2ẏ1 + 3 = u1

u2 → y2 : ÿ2 + 2ẏ2 + 3 = u2

u1 + u2 9 y1 + y2 : (ÿ1 + ÿ2) + 2(ẏ1 + ẏ2) + 6 = (u1 + u2)

On voit donc que le terme 3 dans l’équation dynamique gêne. Comme le concept de fonction de transfert

ne s’applique qu’aux systèmes lscr, il convient de calculer d’abord une approximation linéaire à l’équation

dynamique. Dans ce cas-ci, on peut le faire très simplement en définissant une nouvelle entrée ũ(t) = u(t)− 3,

ce qui donne le système dynamique linéaire suivant :

ÿ + 2ẏ = ũ y(0) = ẏ(0) = 0

Bien que, dans le cas présent, le système dynamique soit linéaire, la représentation (4.31) est non linéaire (elle

est en fait affine) suite à un mauvais choix du point de référence pour u(t). Le fait de travailler en variables

écart permet d’éviter ce genre de problème.

La fonction de transfert est alors :
Y (s)

U(s)
=

1

s(s+ 2)

4.8 Exercices résolus

Exercice 1

Soit le système dynamique :
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ẋ1 = −x1 + x2 + u x1(0) = 0

ẋ2 = x1 − 2x2 x2(0) = 0

Calculer la fonction de transfert X2(s)/U(s) correspondant aux point de fonctionnement

a) ū = 1

b) ū = 2

Solution

La fonction de transfert est la même pour ū = 1 et ū = 2 car le système est linéaire.

L → X1(s)[s+ 1] = X2(s) + U(s)

X2(s)[s+ 2] = X1(s)

X2(s)[s+ 2][s+ 1] = X2(s) + U(s)

→ X2(s)

U(s)
=

1

s2 + 3s+ 1

Exercice 2

Calculer la réponse du système dynamique suivant à une impulsion de Dirac :

ÿ(t) + 2ẏ(t) = 2u(t) y(0) = −1, ẏ(0) = 0

Solution

L → [s2Y ( s) + s] + 2[sY (s) + 1] = 2U(s)

Y (s) =
2

s(s+ 2)
U(s)− (s+ 2)

s(s+ 2)

=
2

s(s+ 2)
U(s)− 1

s

réponse forcée réponse libre

Pour U(s) = 1→ Y (s) =
2

s(s+ 2)
− 1

s
=
A

s
+

B

s+ 2
− 1

s

Méthode des résidus pour calculer A et B

A = lim
s→0

2

s+ 2
= 1

B = lim
s→−2

2

s
= −1

On obtient ainsi : Y (s) = − 1

s+ 2

L−1 → y(t) = −e−2t t ≥ 0

Exercice 3

a) Calculer la transformée de Laplace de :

y(t) =

{
0 t < 1

e−(t−1)/4 t ≥ 1

b) Calculer la transformée de Laplace inverse de :

1) Y (s) =
2

(s+ 1)2
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2) Y (s) =
e−2s

s2 + 4s+ 5

Solution

a) y(t) = e−(t−1)/4 t ≥ 1 L Y (s) =
e−s

s+ 1
4

=
4e−s

4s+ 1

b1) Y (s) =
2

(s+ 1)2

L−1

−−−→ y(t) = 2te−t t ≥ 0

b2) Y (s) =
e−2s

s2 + 4s+ 5
= e−2sY1(s)

Y1(s) =
1

s2 + 4s+ 5
=

1

(s+ 2)2 + 1

L−1

−−−→ y1(t) = e−2t sin t t ≥ 0

=⇒ y(t) = y1(t− 2) = e−2(t−2) sin(t− 2) t ≥ 2

Exercice 4

La modélisation d’un système dynamique a donné l’équation différentielle suivante :

ẏ(t) + 2y(t)− 3 = u(t) y(0) = 1

Evaluer la fonction de transfert correspondante.

Solution

Système non linéaire à cause du terme constant -3. Introduisons :

ũ = u+ 3 → ẏ + 2y = ũ y(0) = 1

Fonction de tranfert :
Y (s)

Ũ(s)
=

1

s+ 2

Exercice 5

Soit le système dynamique avec l’entrée u(t) et la sortie y(t) :

ẋ(t) = −x(t) + 2u(t)− x(t)u(t) x(0) = 1

y(t) = x(t− 2)

a) Ce système est-il linéaire, stationnaire, causal et initialement au repos ?

b) Evaluer la fonction de transfert Y (s)/U(s) pour le point de fonctionnement correspondant à ū = 1.

Solution

a) Le système est non linéaire à cause du terme xu, stationnaire car les coefficients sont constants, causal

car y(t) ne dépend par des entrées futures, mais il n’est pas initialement au repos car x(0) = 1.

b) A l’état stationnaire pour ū = 1 :

0 = −x̄+ 2− x̄ → x̄ = 1

Linéarisation de xu :

xu ' x̄ū+ ūδx+ x̄δu = 1 + δx+ δu

Système linéarisé (en variables écart) :
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ẋ(t) = −x(t) + 2u(t)− x(t)− u(t) = −2x(t) + u(t) x(0) = 0

y(t) = x(t− 2)

L → X(s)

U(s)
=

1

s+ 2
Y (s)

X(s)
= e−2s

Y (s)

U(s)
=

e−2s

s+ 2

Exercie 6 Soit le système dynamique

G(s) =
1 + αs

1 + s

a) Calculer sa réponse indicielle

b) Esquisser les réponses indicielles pour α = 1 et α = −1

Solution

a)

U(s) =
1

s

Y (s) =
1 + αs

1 + s

1

s
=
A

s
+

B

1 + s
=

1

s
+
α− 1

s+ 1

A = lim
s→0

1 + αs

1 + s
= 1

B = lim
s→−1

1 + αs

s
= α− 1

L−1 → y(t) = 1 + (α− 1)e−t t ≥ 0

b) 0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

y(t)

α = 1 y(t) = 1 t ≥ 0

α = −1 y(t) = 1− 2e−t t ≥ 0

Exercice 7

a) Calculer la transformée de Laplace du signal temporel u(t) représenté par les figures suivantes.
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t

0

u1(t)

u2(t)

u(t)
1

τ

b) Evaluer le signal temporel dont la transformée de Laplace vaut :

Y (s) =
(s+ 3)(s+ 4)

(s+ 1)(s+ 2)

Solution

a)

u(t) = u1(t) + u2(t)

u1(t) =

{
0 t < 0
1
τ t t ≥ 0

u2(t) =

{
0 t < τ

− 1
τ (t− τ) t ≥ τ

U(s) =
1

τs2
− 1

τs2
e−τs =

1

τs2
[1− e−τs]

b)

Y (s) =
s2 + 7s+ 12

s2 + 3s+ 2
= 1 +

4s+ 10

(s+ 1)(s+ 2)
= 1 +

A

s+ 1
+

B

s+ 2

A = lim
s→−1

4s+ 10

s+ 2
= 6

B = lim
s→−2

4s+ 10

s+ 1
= −2

L → y(t) = δ(t) + 6e−t − 2e−2t t ≥ 0

Exercice 8

Calculer la réponse indicielle du système dynamique suivant :

ẍ+ 2ẋ+ 5x = 5u x(0) = ẋ(0) = 0

Solution

G(s) =
5

s2 + 2s+ 5
U(s) =

1

s

Y (s) =
5

s(s2 + 2s+ 5)
=
A

s
+

Bs+ C

(s+ 1)2 + 22
=

1

s
− s+ 2

(s+ 1)2 + 22

5 = A(s2 + 2s+ 5) + (Bs+ C)s

s2 : 0 = A+B A = 1

s1 : 0 = 2A+ C → B = −1

s0 : 5 = 5A C = −2

s+ 2

(s+ 1)2 + 22
=

(s+ 1)

(s+ 1)2 + 22
+

1

2

2

(s+ 1)2 + 22
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Y (s) =
1

s
− s+ 1

(s+ 1)2 + 22
− 1

2

2

(s+ 1)2 + 22

y(t) = 1− e−t
(

cos 2t+
1

2
sin 2t

)
t ≥ 0

Exercice 9

Soit Y (s) = (s+ 12)/(s2 + 4s) la transformée de Laplace de la réponse indicielle d’un système dynamique.

a) Calculer y(t)

b) Evaluer la valeur finale de la réponse du système à l’entrée u(t) = 1− e−2t.

Solution

a)

Y (s) =
s+ 12

s2 + 4s
=

s+ 12

s(s+ 4)
=
A

s
+

B

s+ 4

A = lim
s→0

sY (s) =
12

4
= 3

B = lim
s→−4

(s+ 4)Y (s) =
−4 + 12

−4
= −2

y(t) = L−1[Y (s)] = L−1

[
3

s
− 2

s+ 4

]
= 3− 2e−4t t ≥ 0

b)

G(s) =
Y (s)

U(s)
=

s+ 12

s(s+ 4)
1

s

=
s+ 12

s+ 4

Pour u(t) = 1− e−2t, U(s) =
1

s
− 1

s+ 2

donc Y (s) =

(
s+ 12

s+ 4

)(
1

s
− 1

s+ 2

)
=

s+ 12

s(s+ 4)
− s+ 12

(s+ 4)(s+ 2)

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s+ 12

s+ 4
= 3

Exercice 10

Soit le système décrit par l’équation dynamique :

ÿ(t)− 2ẏ(t) + y(t) = u(t) avec y(0) = 1, ẏ(0) = 0 et l’entrée u(t) = e2t

Déterminer la réponse temporelle libre de ce système.

Solution

ÿ(t)− 2ẏ(t) + y(t) = u(t) y(0) = 1, ẏ(0) = 0

y(t)→ Y (s)

ẏ(t)→ sY (s)− y(0) = sY (s)− 1

ÿ(t)→ s2Y (s)− sy(0)− ẏ(0) = s2Y (s)− s

Ainsi :

s2Y (s)− s− 2sY (s) + 2 + Y (s) = U(s)

Y (s)(s− 1)2 − (s− 2) = U(s)

Y (s) =
1

(s− 1)2
U(s)︸ ︷︷ ︸ +

s− 2

(s− 1)2︸ ︷︷ ︸
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L−1 → yf (t) = réponse forcée yl(t) = réponse libre

Calcul de la réponse libre yl(t) :

yl(t) = L−1

[
s−2

(s−1)2

]
= L−1

[
A

(s−1)2 + B
(s−1)

]
= L−1

[
1
s−1 −

1
(s−1)2

]
yl(t) = etε(t)− tet = ε(t)et[1− t]

Exercie 11

On considère le transfert d’énergie d’une source chaude (cuve de volume constant Vc, température Tc, puissance

de chauffe Pc) vers un puit froid (réacteur endothermique de volume contant Vf , température Tf , puissance

consommée Pf < 0). Le transfert a lieu par l’intermédiaire d’un manteau de chauffe (volume constant Vm,

température homogène Tm, coefficient de transfert UA entre Tm et Tf ).

Le liquide caloporteur circule à l’aide d’une pompe avec un débit volumique F . Les capacités calorifiques du

caloporteur et du mélange réactionnel sont identiques et égales à ρcp. On suppose que le système est bien isolé

et qu’il n’y pas de perte thermique vers l’extérieur.

Pc

Vc

Tc

Vm

Tf

VfTm

F

Pf

UA :

[
W

K

]

ρcp :

[
J

m3K

]

a) Ecrire un modèle dynamique pour ce système.

b) Sachant que F est constant et que Vm et Vc peuvent être négligés par rapport à Vf (Vm, Vc → 0), déterminer

la fonction de transfert Tf (s)/Pc(s).

Solution

a) Bilans thermiques

ρcpVf
dTf
dt = UA(Tm − Tf ) + Pf Tf (0) = Tf0 (1)

ρcpVm
dTm
dt = ρcpF (Tc − Tm)− UA(Tm − Tf ) Tm(0) = Tm0 (2)

ρcpVc
dTc
dt = ρcpF (Tm − Tc) + Pc Tc(0) = Tc0 (3)

b) Hypothèse : Vm = Vc = 0

(2)→ 0 = ρcpF (Tc − Tm)− UA(Tm − Tf )

(3)→ 0 = ρcpF (Tm − Tc) + Pc
→ UA(Tm − Tf ) = ρcpF (Tc − Tm) = Pc (4)

(1) + (4)→ ρcpVf
dTf
dt = Pc + Pf (5)

L : ρcpVfsTf (s) = Pc(s) + Pf (s)

Fonction de transfert
Tf (s)

Pc(s)
=

1

ρcpVfs
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Exercice 12

Le système dynamique

ÿ + 2ẏ + y = 2u y(0) = 1 ẏ(0) = −2

est soumis à l’entrée u(t) = e−2t, t ≥ 0. Calculer sa réponse libre et sa réponse forcée.

Solution

ÿ + 2ẏ + y = 2u y(0) = 1 ẏ(0) = −2

u(t) = e−2t t ≥ 0

L → [s2Y (s)− s+ 2] + 2[sY (s)− 1] + Y (s) = 2U(s)

Y (s)[s2 + 2s+ 1] = 2U(s) + s

Y (s) =
2

(s+ 1)2
U(s) +

s

(s+ 1)2

Réponse libre pour U(s) = 0

Y (s) =
s

(s+ 1)2
=
s+ 1− 1

(s+ 1)2
=

1

s+ 1
− 1

(s+ 1)2

y(t) = e−t − te−t t ≥ 0

Réponse forcée pour U(s) = 1/(s+ 2)

y(t) =
2

(s+ 1)2(s+ 2)
=

A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2

A = lim
s→−1

d

ds

(
2

s+ 2

)
= lim
s→−1

(
− 2

(s+ 2)2

)
= −2

B = lim
s→−1

(
2

s+ 2

)
= 2

C = lim
s→−2

2

(s+ 1)2
= 2

y(t) = −2e−t + 2te−t + 2e−2t t ≥ 0

Exercice 13

Soit le réacteur chimique continu suivant :

réaction A→ B

vitesse de réaction

r = kcA :

[
gmole

lmin

]
q

cA

V

q

cA,e



4.8 Exercices résolus 95

A l’état stationnaire, q̄ = 0, 05(m3/min), c̄Ae = 2(mole/l) et c̄A = 1, 33(mole/l)

a) Calculer la fonction de transfert CA(s)/CAe(s) sachant que V = 0, 1m3.

b) Indiquer les suppositions nécessaires à l’obtention du modèle.

Solution

a) Modèle dynamique

V
dcA
dt

= q(cA,e − cA)− V kcA cA(0) = cA0 (1)

A l’état stationnaire :

0 = q̄(c̄A,e − c̄A)− V kc̄A (2)

d’où l’on tire :

k =
q̄[c̄A,e − c̄A]

V c̄A
= 0, 25min−1

En utilisant la transformation de Laplace et en considérant des conditions initiales nulles :

V sCA(s) = q[CA,e(s)− CA(s)]− V kCA(s)

CA(s)

CA,e(s)
=

q

sV + (q + V k)
=

q

q + V k
V

q + V k
s+ 1

=
K

τs+ 1

avec

K =
q

q + V k
, τ =

V

q + V k

b) Suppositions

• Pertes thermiques négligeables

• Zone homogène (réacteur bien mélangé)

Exercice 14

La réaction catalytique 2A→ B a lieu dans un réacteur agité isotherme à marche continue. La modélisation du

réacteur a donné les équations suivantes :

dcA
dt = 1

τ (cAe − cA)− 2k1c
2
A cA(0) = c̄A

dcB
dt = − 1

τ cB + k1c
2
A CB(0) = c̄B

où τ représente le temps de séjour constant, cA et cB les concentrations de A et B, cAe la concentration

d’alimentation de A, c̄A et c̄B les concentrations de A et B au point de fonctionnement stationnaire et k1 la

constante cinétique. Déterminer la fonction de transfert CB(s)/CAe(s).

Solution

Système dynamique non linéaire à cause du terme c2A. On peut linéariser ce terme non linéaire autour du point

de fonctionnement stationnaire c̄A :

c2A ' c̄2A + 2c̄A(cA − c̄A)

Le système dynamique devient ainsi (en variables écarts autour de c̄A et c̄B) :

dcA
dt = 1

τ (cAe − cA)− 4k1c̄AcA cA(0) = 0
dcB
dt = − 1

τ cB + 2k1c̄AcA cB(0) = 0

La transformation de Laplace donne :
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CA(s)

[
s+

1

τ
+ 4k1c̄A

]
=

1

τ
CAe(s)→

CA(s)

CAe(s)
=

1

1 + 4k1τ c̄A
τ

1 + 4k1τ c̄A
s+ 1

CB(s)

[
s+

1

τ

]
= 2k1c̄ACA(s)→ CB(s)

CA(s)
=

2k1τ c̄A
τs+ 1

CB(s)

CAe(s)
=
CB(s)

CA(s)

CA(s)

CAe(s)
=

2k1τ c̄A
1 + 4k1τ c̄A

(τs+ 1)

(
τ

1 + 4k1τ c̄A
s+ 1

)
Exercice 15

Le système de deux réservoirs cylindriques de section A1 et A2 placés en cascade est présenté sur le schéma.

Les débits q1 et q2 sont proportionnels aux niveaux de liquide h1 et h2 dans les réservoirs, c’est-à-dire :

q1 = k1h1 et q2 = k2h2

Le débit de recyclage qr est ajusté par la pompe P et peut ainsi être considéré comme une variable indépendante ;

q

cA

V

q

cA,e

q0 est un débit d’entrée.

a) Ecrire les équations dynamiques pour ce système.

b) Déterminer les fonctions de transfert

H1(s)

Q0(s)
,
H1(s)

Qr(s)
,
H2(s)

Q0(s)
,
H2(s)

Qr(s)

c) Est-ce que le débit qr influence le niveau h2 en régime stationnaire ?

Solution

a) Modèle dynamique

Bilan massique pour le réservoir 1 :

d

dt
(ρA1h1) = ρqr + ρq0 − ρk1h1 h1(0) = h10 (1)

Bilan massique pou le réservoir 2 :

d

dt
(ρA2h2) = ρk1h1 − ρk2h2 − ρqr h2(0) = h20 (2)

Comme ρ est constant, on peut diviser (1) et (2) par ρ.
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b) Fonctions de transfert

(1) −−−−−→ H1(s)[sA1 + k1] = Qr(s) +Q0(s) (3)

(2) −−−−−→ H2(s)[sA2 + k2] = k1H1(s)−Qr(s) (4)

(3) −−−−−→ H1(s)

Qr(s)
=
H1(s)

Qr(s)
=

1

A1s+ k1
(5)

L’équation (4) indique que H2(s) dépend de la variable dépendante H1(s) en plus de la variable

indépendante Qr(s). Il faut donc exprimer H1(s) en fonction des variables indépendantes Qr(s) et Q0(s)

à partir de (3) :

Q0(s)→ H2(s) : H2(s)[sA2 + k2] = k1
1

A1s+ k1
Q0(s)

H2(s)

Q0(s)
=

k1

(A1s+ k1)(A2s+ k2)

Qr(s)→ H2(s) : H2(s)[sA2 + k2] = k1
1

A1s+ k1
Qr(s)−Qr(s)

H2(s)

Qr(s)
= − A1s

(A1s+ k1)(A2s+ k2)

c) Etat stationnaire

(1)→ 0 = q̄r + q̄0 − k1h̄1

(2)→ 0 = k1h̄1 − k2h̄2 − q̄r

En additionnant ces deux équations pour éliminer le terme k1h̄1 dans la deuxième, on obtient :

0 = q̄0 − k2h̄2

ce qui indique que h̄2 dépend de q̄0 mais pas de q̄r

Exercice 16

Un système dynamique est décrit par l’équation différentielle :

d2y

dt2
+ 4

dy

dt
+ 4y =

du

dt
+ u y(0) = 1, ẏ(0) = u(0) = 0

a) Evaluer sa fonction de transfert.

b) Calculer la réponse du système à une impulsion de Dirac au temps t = 1.

Solution

a) La transformée de Laplace de l’équation différentielle :

Y (s)(s2 + 4s+ 4) = U(s)(s+ 1) + (s+ 4)

G(s) =
Y (s)

U(s)
=

s+ 1

s2 + 4s+ 4
=

s+ 1

(s+ 2)2

b) u(t) = δ(t− 1)

U(s) = e−s

Y (s) = G(s)U(s) =
(s+ 1)e−s + (s+ 4)

s2 + 4s+ 4
= Y1(s)e−s + Y2(s)

réponse réponse

forcée libre
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• Y1(s) =
s+ 1

(s+ 2)(s+ 2)
=

A

s+ 2
+

B

(s+ 2)2

Méthode des résidus :

A = lim
s→−2

d

ds
[(s+ 2)2Y1(s)] = lim

s→−2
1 = 1

B = lim
s→−2

(s+ 2)2Y1(s) = lim
s→−2

(s+ 1) = −1

• Y2(s) =
s+ 4

s2 + 4s+ 4
=

C

s+ 2
+

D

(s+ 2)2

C = lim
s→−2

d

ds
[(s+ 2)2Ys(s)] = lim

s→−2
1 = 1

D = lim
s→−2

(s+ 2)2Y2(s) = lim
s→−2

(s+ 4) = 2

y1(t) = L−1

[
1

s+ 2
− 1

(s+ 2)2

]
= ε(t)[e−2t − te−2t]

y2(t) = L−1

[
1

s+ 2
+

2

(s+ 2)2

]
= ε(t)[e−2t + 2te−2t]

• Finalement on obtient

y(t) = ε(t− 1)[e−2(t−1) − (t− 1)e−2(t−1)] + ε(t)[e−2t + 2te−2t]

Exercice 17

Transformer le système dynamique

ẋ(t) + 2x(t) = u(t) x(0) = 2

sous la forme d’un système dynamique avec des conditions initiales nulles.

Solution

La transformation de Laplace du système dynamique donne :

[sX(S)− 2] + 2X(s) = U(s)

X(s) =
1

s+ 2
[U(s) + 2] =

1

s+ 2
[U(s) + 2∆(s)] (1)

où ∆(s) = L(δ(t)) = 1

La transformation de Laplace inverse de (1) donne :

ẋ(t) + 2x(t) = u(t) + 2δ(t) x(0) = 0

On voit ainsi que, pour un système dynamique linéaire, des conditions initiales différentes de zéro correspondent

à l’application d’une impulsion de Dirac au temps initial.

4.9 Symboles utilisés

D(s) polynôme dénominateur

f(t) signal temporel

F (s) transformée de Laplace de f(t)

g(t) réponse impulsionnelle
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G(s) fonction de transfert

Im axe imaginaire du plan complexe

j
√
−1

L[.] transformée de Laplace

L−1[.] transformée de Laplace inverse

N(s) polynôme numérateur

Re axe réel du plan complexe

s variable complexe de Laplace (s = a+ bj)

t temps [s]

u(t) entrée du système

y(t) sortie du système

δ(t) impulsion de Dirac au temps t = 0

ε(t) saut unité au temps t = 0

λ translation fréquentielle

ρ impulsion rectangulaire au temps t = 0

τ translation temporelle [s]
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Analyse temporelle

5.1 définitions préliminaires

5.1.1 Introduction

Nous avons vu précédemment que les réponses temporelles de systèmes linéaires sont obtenues par combinaison

de termes issus d’une décomposition en éléments simples. Ces éléments sont d’ordre un ou deux, suivant que

les racines du dénominateur sont réelles ou conjuguées complexes. Les réponses types des systèmes d’ordre un

ou deux constituent par conséquent les � briques � de base qui, combinées et pondérées par les résidus des

éléments simples correspondants, permettent de calculer les réponses d’un système d’ordre quelconque.

La réponse indicielle γ(t) sera étudiée en priorité dans ce chapitre, sachant que la réponse impulsionnelle g(t)

est obtenue par simple dérivation : g(t) = ˙γ(t).

5.1.2 Gain statique, pôles et zéros, équation caractéristique

Soit un système dynamique dont la fonction de transfert G(s) est donnée sous la forme d’un quotient de deux

polynômes en s :

G(s) := L[g(t)] =
Y (s)

U(s)
=
bms

m + · · ·+ b1s+ b0
sn + · · ·+ a1s+ a0

• Le gain statique K est défini comme la valeur de G(s) pour s = 0 :

K = lim
s→0

G(s)

Pour un système stable (système dont tous les pôles ont une partie réelle négative), le gain statique est

le rapport entre l’amplitude de la réponse et l’amplitude de l’excitation après disparition des phénomènes

transitoires, c’est à dire en régime stationnaire :

K =
limt→∞ y(t)

limt→∞ u(t)
(5.1)

On peut le montrer en considérant un saut d’amplitude A comme excitation, c’est à dire U(s) = A/s, et en

appliquant le théorème de la valeur finale pour calculer la valeur stationnaire de la sortie y :

K =
lims→0 sY (s)

A
=

lims→0 sG(s)As
A

= lim
s→0

G(s) (5.2)

Il est parfois utile de définir d’autres gains statiques :

Gain en vitesse : Kv = lim
s→0

sG(s)

Gain en accélération : Ka = lim
s→0

s2G(s)
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• Les pôles de G(s) sont les n valeurs de s qui annulent le dénominateur de G(s). Ces valeurs sont notées

pi, i = 1, . . . , n.

Les zéros de G(s) sont les m valeurs de s qui annulent le numérateur de G(s).

Ces valeurs sont notées zj , j = 1, . . . ,m.

Les pôles et les zéros peuvent être réels ou complexes. S’ils sont complexes, ils apparaissent en paires

conjuguées.

• L’équation caractéristique de G(s) est :

sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0

5.1.3 Ordre d’un système

Il y a plusieurs manières équivalents de définir l’ordre d’un système :

• L’ordre d’un système est le nombre minimum d’équations différentielles temporelles du premier ordre

nécessaires pour décrire le comportement du système ; une équation d’ordre n peut se réduire sous la forme

de n équations du premier ordre. De façon équivalente, l’ordre d’un système est le nombre de variables d’état

(variables dépendantes) nécessaires pour décrire la dynamique du système.

• L’ordre d’un système est le degré du polynôme en s du dénominateur de la fonction de transfert décrivant

ce système après, le cas échéant, élimination des facteurs communs au numérateur et au dénominateur. De

la façon équivalente, l’ordre d’un système correspond au nombre de pôles de la fonction de transfert.

Exemples

a) Soit un système décrit par l’équation de mouvement de Newton :

m
d2

dt2
x(t) =

∑
i

Fi(t)

Il s’agit d’un système du deuxième ordre car il est caractérisé par une deuxième dérivée par rapport à t.

b) Soient les fonctions de transfert G1(s) = 1/(s3 + 2s) et G2(s) = s/(s3 + 2s). G1(s) est d’ordre 3 alors que

G2(s) est d’ordre 2 car on peut simplifier le numérateur et les dénominateur par s.

ẍ+ 5ẋ+ 3x = 2u̇+ u x(0) = ẋ(0) = u(0) = 0

Ce système dynamique est d’ordre deux. En effet, comme u(t) représente l’entrée du système, le terme u̇(t)

ne fait pas intervenir de variable d’état. On le remarque également en calculant la fonction de transfert :

X(s)

U(s)
=

2s+ 1

s2 + 5s+ 3

5.2 Étude d’un système simple : salle chauffée

Soit une salle chauffée par un radiateur qui dispense une puissance de chauffage P (t). A l’intérieur règne une

température T (t), l’extérieur se trouvant à la température Text(t) comme indiqué à la figure 5.1. Le but est

d’étudier le comportement de T (t) en fonction des variations de P (t) et de Text(t).

5.2.1 Variables écart

Pour l’analyse de systèmes dynamiques, on travaille le plus souvent avec des variables écart définies par

rapport à un état stationnaire de référence. Ceci est dû au fait que, d’une part, les modèles linéarisés ne sont
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�	�� ���� ���� �	P T Text
•

•

Figure 5.1. Schéma d’une salle chauffée

valable que dans le voisinage du point stationnaire de référence et, d’autre part, les variables écart possèdent la

valeur zéro au point de référence, ce qui est utile pour définir des conditions initiales nulles. Dans notre exemple,

nous définissons les variables écart suivantes :

δT (t) := T (t)− T̄

δP (t) := P (t)− P̄

δText(t) := Text(t)− T̄ext

où T̄ , P̄ et T̄ext correspondent à un point de fonctionnement stationnaire.

5.2.2 Modélisation du système

Bilan thermique

Nous pouvons écrire, par rapport à l’état stationnaire de référence :

(
accumulation dechaleur dansla pièce par unitéde temps

)
=


puissance thermique

qui entre dans

la pièce via

le radiateur

−
puissance thermique

perdue à travers

les cloisons



C
d

dt
δT (t) = δP (t)− 1

R
[δT (t)− δText(t)] (5.3)

où C[J/K] est la capacité thermique de la pièce et R[K/W ] la résistance thermique des cloisons.

Grandeurs caractéristiques

Nous retrouvons dans le modèle (5.3) :

• une variable d’état (dépendante) : δT (t)

• une variable d’entrée (indépendante) : δP (t)

• une variable de perturbation (indépendante) : δText(t)

• des paramètres constants : C,R

5.2.3 Fonctions de transfert

En appliquant la transformation de Laplace à l’équation (5.3), on obtient :

sCδT (s) = δP (s)− 1

R
[δT (s)− δText(s)]

où

[sRC + 1]δT (s) = RδP (s) + δText(s)

En posant τ = RC, on trouve :



104 5 Analyse temporelle

δT (s) =
R

τs+ 1
δP (s) +

1

τs+ 1
δText(s) (5.4)

Qu’en est-il de la condition initiale pour δT ?

Quelle est la dimension de τ ? Quelle est sa signification physique ?

Puisqu’il y a deux variables indépendantes distinctes, δP (t) et δText(t), on considère les deux fonctions de

transfert :

G1(s) =
δT (s)

δP (s)
=

R

τs+ 1
(5.5)

G2(s) =
δT (s)

δText(s)
=

1

τs+ 1
(5.6)

L’équation (5.5) décrit uniquement le comportement de δT en fonction de δP , tandis que l’équation (5.6)

renseigne uniquement sur la variation δT résultant d’une variation δText. Si nous sommes intéressés par la

réponse du système à des variations δP et δText, il nous faut alors considérer l’équation complète (5.4).

5.2.4 Réponse de T (t) à un saut unité de P (t)

Variation de P (t) :

P (t) = P̄ + δP (t)

Pour un saut unité, δP (t) = 1 ou δP (s) = 1/s, l’équation (5.5) permet d’écrire :

δT (s) = G1(s)δP (s) =

(
R

τs+ 1

)(
1

s

)
=
A

s
+

B

τs+ 1

Détermination de A et B à l’aide de la méthode des résidus :

A =

[
R

τs+ 1

]
s=0

= R

B =

[
R

s

]
s=− 1

τ

= −Rτ

Ainsi

δT (s) =
R

s
− R

s+ 1
τ

La transformation de Laplace inverse de δT (s) donne :

δT (t) = L−1

[
R

s

]
+ L−1

[
− R

s+ 1
τ

]
= R−Re− t

τ = R

[
1− e− t

τ

]
et ainsi :

T (t) = T̄ + δT (t) = T̄ +R

[
1− e−tτ

]
t ≥ 0

Comportement de δT (t) pour t→∞

Gain statique de G1(s) : K = lim
s→0

[
R

τs+ 1

]
= R

Pôle de G1(s) : p1 = −1

τ

Zéros de G1(s) : aucun
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Equation caractéristique de G1(s) : τs+ 1 = 0

Représentation graphique

En supposant que le saut unité de l’entrée P (t) à lieu à l’instant t∗, la représentation graphique de ce test

dynamique est donnée à la figure 5.2.

-

6

P̄

T̄

T̄ +R

P̄ +R

t0 t∗

T (t)

P (t)

Figure 5.2. Réponse indicielle.

5.2.5 Réponse de T (t) à un saut unité de Text(t)

Pour δText(t) = 1, on calcule aisément :

T (t) = T̄ +

(
1− e− t

τ

)
t ≥ 0

Comportement de δT (t) pour t→∞

Le théorème de la valeur finale donne :

lim
t→∞

δT (t) = lim
s→0

[sδT (s)] = 1

c’est à dire :

(δT )final = δText

Gain statique, pôle, zéro et équation caractéristique

Gain statique de G2(s) : K = lim
s→0

[
1

τs+ 1

]
= 1

Pôle de G2(s) : p1 = −1

τ

Zéro de G2(s) : aucun

Equation caractéristique deG2(s) : τs+ 1 = 0
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Peut-on comparer les grandeurs caractéristiques de G1(s) et G2(s) ?

Représenter graphiquement δT (t) pour un saut d’unité de δText(t).

5.2.6 Remarque importante concernant les notations

On a vu dans l’exemple précédent que les variables écart δT , δP et δText déterminent entièrement les varia-

tions du système autour du point de référence T̄ , P̄ et T̄ext. Pour l’analyse des système, on travaille presque

exclusivement avec des variables écart car on s’intéresse aux variations autour du point de référence. On avait

déjà rencontré ces variables écart lors de l’approximation linéaire d’un système non linéaire. La figure 5.2 se

laisse normaliser si l’on reporte en abscisse δt = t− t∗(δt ≥ 0) et en ordonnée les variables écart δP (t) et δT (t),

comme illustré à la figure 5.3.

On rencontre naturellement les variables absolues lors de la modélisation d’un système ou lors de son opération

-

6

1

R

t0

δT (t)

δP (t)

Figure 5.3. Réponse indicielle en variable écart.

(les grandeurs physiques de mesure et de commande sont des signaux en valeur absolue). Par contre, pour

l’étude des systèmes linéaires ou linéarisés, il est plus simple de travailler en variables écart. Ceci à l’avantage

de générer des conditions initiales nulles pour le système relâché au point de référence, ce qui permet d’utili-

ser directement le concept de fonction de transfert. On peut aisément passer des variables écart aux variables

absolues, et inversement, à l’aide des relations :

T (t) = T̄ + δT

P (t) = P̄ + δP

Dorénavant, et en accord avec les notation au niveau international, nous omettrons le symbole δ distinguant

une variable écart d’une variable absolue. Le contexte indiquera s’il s’agit d’une variable écart ou d’une variable

absolue.
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5.3 Système du premier ordre

5.3.1 Représentation

Un système du premier ordre est décrit par une fonction de transfert possédant un polynôme du premier ordre

au dénominateur. Si il n’y a pas de zéro, la fonction de transfert aura la forme suivante :

G(s) =
Y (s)

U(s)
=

K

τs+ 1
(5.7)

Le gain statique de ce système est lims→0G(s) = K.

Le pôle est p = −1/τ, τ étant la constante de temps du système.

5.3.2 Réponse indicielle

La réponse à un saut d’amplitude A, u(t) = Aε(t), d’un système du premier ordre est :

y(t) = ε(t)KA[1− e−t/τ ] (5.8)

On peut l’obtenir suit :

u(t) = Aε(t)
L−−−−−−−−→ U(s) =

A

s−−−−−→

Y (s)

U(s)
=

K

τs+ 1

y(t) = ε(t)KA[1− e−t/τ ]
L−1

←−−−−−−−− Y (s) =
KA

s(τs+ 1)

Cette représentation graphique de la réponse indicielle est valable pour tous les systèmes caractérisés par la

fonction de transfert (5.7), laquelle est paramétrée par K et τ . En d’autre termes, qu’il s’agisse d’un processus

lent ou rapide, de nature mécanique, électrique ou autres, pour autant que ce processus soit caractérisable par

(5.7), la réponse indicelle de la figure 5.4 paramétrée par KA et τ restera valable (A est ici l’amplitude du

saut échelon). On peut donc choisir de représenter la réponse indicielle normalisée, c’est à dire y(t)/KA en

fonction de t/τ .

La dérivée de la réponse indicielle est maximale à l’origine et vaut :

ẏ(0) = KA/τ

Quant à la valeur finale de la réponse, elle est donnée par :

lim
t→∞

y(t) = KA

La valeur de la réponse pour t = τ est :

y(τ) = KA

(
1− 1

e

)
= 0, 63KA

La valeur de la réponse pour t = 3τ est :

y(3τ) = KA

(
1− 1

e3

)
= 0, 95KA

On constate donc que la réponse indicielle du système atteint le 63% de sa valeur finale lorsqu’un temps τ s’est

écoulé. De plus, la réponse indicielle atteint 95% de sa valeur finale pour 3τ . La variable τ constitue donc une
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-

6

��
��
��

��

��

��
KA

y(t)

0, 63KA

t0 τ

Figure 5.4. Réponse indicielle d’un système du premier ordre.

mesure de la rapidité de la réponse. Pour cette raison, cette grandeur est appelée la constante de temps du

système. Elle est toujours en unités de temps, comme une analyse dimensionnelle le montre.

Identification du système à partir de la réponse indicielle

Si la réponse indicielle d’un système du premier ordre est mesurée, il est possible de déterminer le gain statique

K et la constante de temps τ . Une fois ces grandeurs disponibles, la fonction de transfert est complètement

définie et peut être utilisée pour prédire les réponses à des entrées autres q’un saut indiciel.

Trois méthodes simples sont proposées pour l’identification (fig. 5.5).

a) Le gain statique est obtenu en divisant l’amplitude maximale KA de la réponse par le facteur A (amplitude

connue du saut indiciel appliqué au système). La constante de temps correspond à l’instant où l’amplitude

de cette réponse atteint le 63% de sa valeur finale.

b) Le gain statique est obtenu de la même manière que celle proposée en a. Pour déterminer la constante de

temps, la pente m de la tangente de la réponse indicielle est mesurée à l’instant d’application de l’échelon.

Elle vaut :

m =
KA

τ

Par conséquent,

τ =
KA

m

c) Une troisième possibilité consiste à prélever deux échantillons de la réponse y1(t) et y2(t) et à résoudre un

système de deux équations avec les deux inconnues K et τ .

∣∣∣∣∣
y(t1) = KA[1− e−t1/τ ]

y(t2) = KA[1− e−t2/τ ]

On constate en pratique que la réponse indicielle relevée expérimentalement est souvent bruitée et présente une

allure qui diffère légèrement de celle attendue, certains phénomènes ayant été négligés lors de la modélisation

comme des non-linéarités et des modes rapides. La précision des résultats obtenus avec les outils simples proposés

ci-dessus est par conséquent souvent insuffisante. Afin d’améliorer l’identification, toutes les mesures disponibles
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peuvent être prises en compte pour introduire une redondance et par conséquent un effet de lissage. Un problème

de régression, linéaire ou non linéaire selon l’approche choisie, est à même de réaliser cet objectif.

Les techniques décrites précédemment servent également à obtenir une fonction de transfert qui décrit localement

un système non linéaire. Dans ce cas ci, l’entrée u et la sortie y doivent impérativement être remplacées dans

toutes les expressions par l’écart δu de l’entrée par rapport à l’entrée nominale ū et l’écart δy de la sortie par

rapport à la sortie nominale ȳ.

-

6

KA

t

pente m

τ

y

Figure 5.5. Réponse indicielle mesurée.
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Figure 5.6. Réponse impulsionnelle d’un système du premier ordre.

5.3.3 Réponse impulsionnelle
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u(t) = Aδ(t)
L−−−−−−−−→ U(s) = A−−−−−→

Y (s)

U(s)
=

K

τs+ 1

y(t) =
KA

τ
e−t/τ

L−1

←−−−−−−−−− Y (s) =
KA

τs+ 1

La représentation graphique est donnée à la figure 5.6.

Vérifier que la réponse impulsionelle soit bien la dérivée de la réponse indicielle. Comment peut-on le justifier ?

5.3.4 Réponse à une rampe

u(t) = At(t)
L−−−−−−−−→ U(s) =

A

s2−−−−−→

Y (s)

U(s)
=

K

τs+ 1

y(t)
L−1

←−−−−−−−− Y (s) =

(
K

τs+ 1

)(
A

s2

)

Pour déterminer y(t), il est nécessaire de décomposer Y (s) en éléments simples :

Y (s) =

(
K

τs+ 1

)(
A

s2

)
=
α

s
+
β

s2
+

γ

τs+ 1
(5.9)

Déterminons α, β et γ par la méthode des résidus :

α =

[
d

ds

(
KA

τs+ 1

)]
s=0

=

(
−KAτ

(τs+ 1)2

)
s=0

= −KAτ

β =

(
KA

τs+ 1

)
s=0

= KA

γ =

(
KA

s2

)
s= −1

τ

= KAτ2

Ainsi

Y (s) =
KAτ

s
+
KA

s2
+
KAτ2

τs+ 1

La transformation de Laplace inverse donne :

y(t) = −KAτ +KAt+KAτe−t/τ = KA(t− τ) +KAτe−t/τ t ≥ 0

La représentation graphique de y(t) est donnée à la figure 5.7.

5.3.5 Réponse harmonique

La réponse harmonique est la réponse en régime permanent d’un système dynamique excité par une sinusöıde

de pulsation donnée. Le terme transitoire de la réponse est donc négligé.

Pour un système du premier ordre excité par l’entrée sinusöıdale u(t) = A sin(ωt) de pulsation ω =

2π/T [rad/sec], on peut écrire :
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Figure 5.7. Réponse d’un système du premier ordre à une rampe.

u(t) = A sin(ωt)
L−−−−−−−−→ U(s) =

Aω

s2 + ω2

−−−−−→

Y (s)

U(s)
=

K

τs+ 1

y(t)
L−1

←−−−−−−−− Y (s) =
KAω

(τs+ 1)(s2 + ω2)
=

α1

τs+ 1
+
α2s+ α3

s2 + ω2
(5.10)

Calculons la réponse y(t). Nous commençons par déterminer α1 par la méthode des résidus :

α1 =

(
KAω

s2 + ω2

)
s=−1/τ

=
KAωτ2

1 + τ2ω2

En réduisant l’équation (5.10) au même dénominateur, on obtient :

KAω = α1(s2 + ω2) + (α2s+ α3)(τs+ 1)

Cette équation est valable pour tous s. On peut également la dériver une fois, puis une deuxième fois par rapport

à s pour obtenir :

0 = 2α1s+ 2α2τs+ α2 + α3τ (5.11)

0 = 2α1 + 2α2τ

d’où :

α2 = −α1

τ
= − KAωτ

1 + τ2ω2

L’équation (5.11) pour s = 0 donne :

α3 = −α2

τ
=

KAω

1 + τ2ω2

On obtient ainsi la réponse du système :
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Y (s) =
KA

1 + τ2ω2

[
ωτ2

τs+ 1
− ωτs

s2 + ω2
+

ω

s2 + ω2

]
et avec la transformée de Laplace inverse de Y (s) :

y(t) =
KA

1 + τ2ω2

(
ωτ exp

(
− t

τ

)
− ωτ cos(ωt) + sin(ωt)

]
(5.12)

En utilisant la relation trigonométrique :

a sin(ωt) + b cos(ωt) =
√
a2 + b2 sin(ωt+ ϕ)

où

ϕ = arctan

(
b

a

)
(5.13)

l’équation (5.12) devient :

y(t) =

(
KAωτ

1 + τ2ω2

(
exp(− t

τ
) +

(
KA√

1 + τ2ω2

)
sin(ωt+ ϕ) (5.14)

avec :

ϕ = arctan(−τω) = − arctan(τω)

La réponse comporte une partie transitoire (premier terme) et une partie permanente (deuxième terme). La

réponse en régime permanent (c’est-à-dire une fois que la partie transitoire a disparu) s’écrit :

ȳ(t) =
KA√

1 + τ2ω2
sin(ωt+ ϕ)

et est caractérisée par :

1. une amplitude A′ différente de l’amplitude du signal d’excitation A ; on parle de rapport d’amplitude entre

la sortie et l’entrée, RA = A′/A

2. la même pulsation ω (c’est-à-dire la même période T )

3. un déphasage ϕ entre les signaux d’entrée et de sortie.

Cette situation en régime permanent est visualisée à la figure 5.8. Le déphasage est négatif (ϕ = −ωt′) ; on dit

que ȳ(t) est en � retard � sur u(t) et on parle de retard de phase. Exemple

Soit une cuve homogène de 1[m3] de volume alimentée en continu par un début d’eau de 0, 05[m3/min] qu’il

convient de chauffer de 10 à 20[C] par l’intermédiaire d’un corps de chauffe dont la puissance nominale vaut

35[kW ]. On peut modéliser ce système par la fonction de transfert liant la puissance de chauffe à la température

de la cuve (cf. section 6.2) :

T (s)

P (s)
=

K

τs+ 1
avec

K = 0, 29[C/kW ]

τ = 20[min]

On désire étudier l’effet sur la température d’une excitation sinusöıdale de la puissance de chauffe. On a observé

les comportements suivants :

a) Sous l’effet de l’excitation

P (t) = 10 sin(0, 01t) [kW ]

autour de la valeur stationnaire de référence P̄ = 35[kW ], le temps étant exprimé en [min], la variation de

température en régime permanent devient :

T̄ (t) = 2, 84 sin(0, 01t− 0, 197) [C]
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Figure 5.8. Réponse en régime permanent à une excitation sinusöıdale.

b) Avec une excitation de pulsation plus élevée, par exemple :

P (t) = 10 sin(t) [kW ]

on obtient

T̄ (t) = 0, 14 sin(t− 1, 52) [C]

Quelle constatation peut-être faite en comparant ces deux tests ?

Peut-on identifier le gain statique K et la constante de temps τ ?

5.4 Système intégrateur du premier ordre

5.4.1 Représentation

Un système intégrateur du premier ordre possède un pôle unique à l’origine (p = 0). Sa fonction de transfert

est donc de la forme :

G(s) =
Y (s)

U(s)
=
K

s
(5.15)

Le gain statique d’un tel système est infini. Le gain en vitesse vaut K.

5.4.2 Réponse indicielle

La réponse d’un système intégrateur du premier ordre au saut échelon u(t) = Aε(t) est :

y(t) = L−1[G(s)U(s)] = L−1

[
K

s

A

s

]
= ε(t)KAt (5.16)

5.4.3 Exemple

Soit la cuve de volume variable donnée à la figure 5.9. On peut modéliser ce système comme suit :

S
d

dt
h(t) = qe(t)− qs(t)
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Figure 5.9. Cuve de volume variable.

Pour un débit de fuite constant (imposé par la pompe), on obtient :

S
d

dt
h(t) = qe(t)− qs (5.17)

Remarque

L’équation (5.17) est écrite en variables absolues. En travaillant avec des variables écart, on obtient :

S
d

dt
h(t) = qe(t)

et dans le domaine de Laplace

SsH(s) = Qe(s)

La fonction de transfert du système s’écrit donc :

H(s)

Qe(s)
=

1

Ss

Indiquer le gain statique, le gain en vitesse et les pôles de cette fonction de transfert ?

Réponse de h(t) à un saut de qe(t) d’amplitude A

Supposons le système initialement au repos (à l’état stationnaire) :

dh̄

dt
= q̄e − qs

c’est à dire q̄e = qs = const.

Soit qe(t) = A pour t ≥ 0. Ainsi (tout en variables écart) :

qe(t) = A
L−−−−−−−−→ Qe(s) =

A

s

−−−−−→

H(s)

Qe(s)
=

1

Ss

h(t) =
A

S
t

L−1

←−−−−−−−− H(s) =
A

Ss2
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Ce résultat est représenté à la figure 5.10.

Si le niveau h(t) doit être exprimé en variable absolue, il devient :

h(t) = h̄+
A

S
t t ≥ 0

-

6

t0

h(t)

• A
S

qe(t)
A

Figure 5.10. Niveau du liquide en réponse à un saut du débit d’alimentation

5.5 Système du deuxième ordre sans zéro

5.5.1 Représentation

Un système du deuxième ordre sans zéro se rencontre dans la littérature sous deux forme classiques équivalentes :

G(s) =
Y (s)

U(s)
=

K

τ2s2 + 2ζτs+ 1
= K

ω2
0

s2 + 2ζω0s+ ω2
0

(5.18)

On limite l’étude au cas où ζ ≥ 0 pour lequel le système est stable (voir section 5.6 et le chapitre 7 pour une

discussion sur la stabilité).

Une simple inspection permet de construire les relations pour passer d’une représentation à l’autre, soit ω0 = 1/τ

et a = ζω0.

La nomenclature correspondante est la suivante :

K : Gain statique

ζ : Coefficient d’amortissement [-]

τ : Constante de temps [s]

ω0 : Pulsation propre ou naturelle [1/s]

Les pôles de G(s) sont :

p1,2 = −1

τ
(ζ ±

√
ζ2 − 1) = −ω0(ζ ±

√
ζ2 − 1)

Ces pôles peuvent être réels distincts, réels confondus ou conjugués complexes.

Un système du deuxième ordre est souvent formé à partir de deux systèmes du premier ordre en série, c’est-à-

dire :
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G(s) =
Y (s)

G(s)
=

(
K1

τ1s+ 1

)(
K2

τ2s+ 1

)
(5.19)

On a dans ce ce cas la correspondance suivante :

K = K1K2

τ =
√
τ1τ2

ζ =
τ1 + τ2
2
√
τ1τ2

Remarques

Il convient de noter certaines limitations liées à la représentation (5.18) pour un système du deuxième ordre :

• La constante de temps équivalente τ ne représente pas nécessairement la constante de temps dominante

du système. Par exemple, pour le système (5.19) avec τ1 � τ2, la constante de temps dominante est

environ τ1 et non τ =
√
τ1τ2.

• Comme mentionné précédemment, la représentation (5.18) n’est pas utilisable pour un système instable.

Par exemple, pour le système strictement instable (un ou plusieurs pôles positifs)

G(s) =

(
K1

τ1s+ 1

)(
K2

τ2s− 1

)
on obtient

G(s) =
K1K2

τ1τ2s2 + (τ2 − τ1)s− 1

qui ne se laisse pas mettre sous la forme (5.18).

5.5.2 Réponse indicielle

Pente à l’origine

La pente à l’origine de la réponse indicielle d’un système du deuxième ordre sans zéro est toujours nulle. C’est une

caractéristique intrinsèque qui permet de les différencier des systèmes du premier ordre par simple inspection.

Pour justifier cette affirmation, il suffit d’utiliser le théorème de la valeur initiale. La pente à l’origine est :

ẏ(0) = lim
t→0

ẏ(t) = lim
s→∞

sL[ẏ(t)]

Pour une excitation u(t) = Aε(t) en forme d’échelon :

L[ẏ(t)] = sY (s) = sG(s)U(s) = sG(s)
A

s
= G(s)A

Le théorème de la valeur initiale permet d’écrire :

ẏ(0) = lim
s→∞

sG(s)A

= lim
s→∞

sKA

τ2s2 + 2ζτs+ 1
= 0

Montrer que cette conclusion n’est, en général, pas valable pour un système du deuxième ordre avec un zéro.

Cas sur-amorti : Pôles réels distincts pour ζ > 1

La fonction de transfert G(s) peut dans ce cas être décomposée en deux facteurs du premier ordre :
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G(s) = K
1

(τ1s+ 1)

1

(τ2s+ 1)
(5.20)

avec

τ1,2 = τ/(ζ ±
√
ζ2 − 1)

La réponse à un échelon de la forme u(t) = Aε(t) devient :

y(t) = ε(t)KA

{
1− 1

τ1 − τ2
[τ1e

−t/τ1 − τ2e−t/τ2 ]

}
(5.21)

Cas critique : Pôles réels confondus pour ζ = 1

La fonction de transfert G(s) se résume dans ce cas à :

G(s) =
K

(τs+ 1)2
(5.22)

La réponse à un échelon de la forme u(t) = Aε(t) est alors :

y(t) = ε(t)KA

[
1−

(
1 +

t

τ

)
e−t/τ

]
(5.23)

Cas sous-amorti : Pôles conjugués complexes pour 0 ≤ ζ < 1

La réponse à un échelon de la forme u(t) = Aε(t) est dans ce cas :

y(t) = ε(t)KA

{
1− e−ζt/τ

[
cos ω̄t+

ζ√
1− ζ2

sin ω̄t

]}
(5.24)

avec
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Figure 5.11. Réponse indicielle normalisée d’un système du deuxième ordre sans zéro et avec pôles réel (ζ ≥ 1).

ω̄ =
1

τ

√
1− ζ2
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Figure 5.12. Réponse indicielle normalisée d’un système du deuxième ordre sans zéro et avec pôles conjugués complexes
(0 ≤ ζ < 1).

La réponse normalisée y(t)/KA en fonction du temps relatif t/τ est présentée aux figures 5.11 et 5.12 pour

différentes valeurs de ζ.

5.5.3 Systèmes oscillants et non oscillants

Suite à l’étude de la section précédente, on distingue deux cas de réponse d’un système du deuxième ordre sans

zéro à une entrée non oscillante (p1 et p2 sont les pôles de G(s) :

a) Si ζ ≥ 1, la réponse y(t) sera non oscillatoire (cas sur-amorti et critique).

Cela signifie que p1 et p2 sont réels.

b) Si 0 ≤ ζ < 1, la réponse y(t) sera oscillatoire (cas sous-amorti).

Cela signifie que p1 et p2 sont conjugués complexes (p1,2 = a± jb).
De plus :

— si 0 < ζ < 1 : les oscillations seront amorties,

— si ζ = 0 : les oscillations seront entretenues.

5.5.4 Identification de la fonction de transfert

Il est utile d’exprimer analytiquement l’abscisse et l’ordonnée de certains points particuliers de la réponse

indicielle d’un système du deuxième ordre sans zéro, tel un point d’inflexion ou un maximum. En effet, cette

connaissance permet d’identifier le modèle d’une installation existante sur la base de l’observation de sa réponse

indicielle.

Cas sur-amorti : Pôles réels distincts pour ζ > 1

Dans le cas d’un système non oscillant, un point particulier est le point d’inflexion de la réponse indicielle. Ses

coordonnées ti et y(ti) sont obtenues en exploitant les deux premières dérivées de la réponse :

ẏ(t) =
KA

τ1 − τ2
[e−t/τ1 − e−t/τ2 ] (5.25)

ÿ(t) =
KA

(τ1 − τ2)

[
− 1

τ1
e−t/τ1 +

1

τ2
e−t/τ2

]
(5.26)
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Comme au point d’inflexion ÿ(ti) = 0, l’équation (5.26) donne :

1

τ1
e−ti/τ1 =

1

τ2
e−ti/τ2 (5.27)

ce qui permet de déterminer l’instant ti du point d’inflexion :

ti =
τ1τ2
τ1 − τ2

ln
τ1
τ2

(5.28)

Introduisons la constante :

X :=
1

τ1
e−ti/τ1 =

1

τ2
e−ti/τ2 (5.29)

qui permet de simplifier l’écriture de la réponse indicielle et de sa dérivée au point d’inflexion :

y(ti) = KA

{
1− τ2

1 − τ2
2

τ1 − τ2
X

}
= KA{1− (τ1 + τ2)X} (5.30)

ẏ(ti) = KAX (5.31)

L’équation de la droite d(t) tangente au point d’inflexion est :

d(t) = KA[X(t− (ti + τ1 + τ2)) + 1] (5.32)

Cette droite passe par zéro en t = tA et croise l’asymptote horizontale correspondant à la valeur finale KA en

t = tB = ti + τ1 + τ2. Ainsi, l’intervalle de temps qui sépare le point d’inflexion de l’intersection mentionnée est

égale à la somme des constantes de temps τ1 et τ2.

L’ensemble des indications obtenues et résumées à la figure 5.13 sont pratiques pour identifier la fonction de

-
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Figure 5.13. Réponse indicielle d’un système sur-amorti du deuxième ordre sans zéro.

transfert d’un système sur-amorti du deuxième ordre sans zéro. La marche à suivre est la suivante :

1. Mesurer la valeur finale KA de la réponse à un échelon d’amplitude A. Ceci permet de déterminer la valeur

du gain statique K.

2. Mesurer la pente KAX de la droite tangente au point d’inflexion. Ceci permet d’en déduire la valeur de la

constante X. En injectant ensuite cette valeur dans les deux termes de la relation (5.29), deux équations

non linéaires sont obtenues qui permettent de déterminer les constantes de temps τ1 et τ2.
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3. Mesurer l’intervalle de temps tB − ti et vérifier qu’il corresponde bien à la somme des constantes de temps.

Cas critique : Pôles réels confondus pour ζ = 1

Un point particulier est également le point d’inflexion de la réponse indicielle. Ses coordonnées ti et y(ti) sont

obtenues en exploitant les deux premières dérivées de la réponse :

ẏ(t) = −KA
[

1

τ
e−t/τ − 1

τ

(
1 +

t

τ

)
e−t/τ

]
=
KAt

τ2
e−t/τ

ÿ(t) =
KA

τ2

[
e−t/τ − t

τ
e−t/τ

]
=
KA

τ2
e−t/τ

[
1− t

τ

]
(5.33)

Comme au point d’inflexion ÿ(ti) = 0, l’équation (5.33) donne ti = τ .

La marche à suivre pour déterminer K et τ est la suivante :

1. Mesurer la valeur finale KA de la réponse à un échelon d’amplitude A. On obtient directement τ = ti.

2. Déterminer le point d’inflexion et le temps correspondant ti. On obtient directement τ = ti.

3. Les valeurs de la réponse indicielle et de sa dérivée au temps ti permettent de vérifier l’exactitude de K et

τ . En effet, on doit avoir :

y(ti) = KA

(
1− 2

e

)
= 0, 264KA et ẏ(ti) =

KA

τe
= 0, 368

KA

τ

Cas sous-amorti : Pôles conjugués complexes pour 0 ≤ ζ < 1

Dans le cas d’un système sous-amorti ou oscillant, les points particuliers sont les extrema de la réponse indicielle,

plus spécialement le premier maximum qu’il est important de connâıtre et facile à mesurer. Ses coordonnées tp
et y(tp) sont obtenues en exploitant la première dérivée de la réponse.

Déterminons pour commencer les extrema qui sont situés aux instants tk, tels que ẏ(tk) = 0. La dérivation

temporelle de (5.24) donne :

ẏ(t) =
kAe−ζt/τ

τ
√

1− ζ2
sin ω̄t t ≥ 0

et donc :

tk =
kπ

ω̄
=

kπτ√
1− ζ2

, k = 0, 1, 2, . . .

Les minimas sont obtenus pour les valeurs paires de k et les maxima pour valeurs impaires. Le premier maximum

est obtenu pour k = 1. Ainsi :

tp =
πτ√
1− ζ2

En introduisant cette expression dans l’équation de la réponse indicielle (5.24), on obtient :

y(tp) = KA

(
1 + e

− ζπ√
1− ζ2

)
(5.34)

Ces indications, résumées à la figure 5.14, sont utiles pour identifier la fonction de transfert d’un système oscillant

du deuxième ordre sans zéro. La marche à suivre est la suivante :

1. Mesurer la valeur finale KA de la réponse à un échelon d’amplitude A. Ceci permet de déterminer la valeur

du gain statique K.

2. Mesurer l’amplitude du premier maximum, ce qui permet de déterminer la valeur de ζ.

3. Mesurer l’instant d’apparition de ce premier maximum, ce qui permet de déterminer la valeur de la constante

de temps τ .
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A

KA

y(t)

u(t)

KAe
− ζπ√

1−ζ2

Figure 5.14. Réponse indicielle d’un système sous-amorti du deuxième ordre sans zéro.

La méthodologie d’identification proposée ici est de nature plus didactique que pratique. Elle permet en effet

de développer une intuition quant à la forme de la réponse indicielle. Toutefois, pour identifier efficacement le

modèle d’un système sur la base d’une réponse dynamique, il convient d’utiliser plus de mesures que les 3 points

pré-cités. Il existe des méthodes d’identification de système dynamiques basées sur la technique des moindres

carrées qui permettent d’utiliser tous les points mesurés de la réponse. Il y a ainsi une forte redondance des

données (par exemple, 100 mesures pour déterminer les trois paramètres K, τ et ζ, ce qui permet de lisser les

erreurs de mesure et les effets d’autres perturbations).

5.6 Relation entre position des pôles et réponse temporelle

La réponse Y (s) d’un système dynamique contient les pôles du système ainsi que d’autres pôles associés à

l’excitation U(s) :

Y (s) = G(s)U(s)

Nous avons appris au chapitre 4 à décomposer Y (s) en éléments simples de manières à retomber sur une ou

plusieurs entrées du dictionnaire de la transformation de Laplace. Les termes temporels qui correspondent à

une fraction rationnelle simple peuvent s’écrire de la manière générique. Pour les cas paire de pôles conjugués

complexes, la réponse temporelle s’écrit :

2A

(r − 1)!
tr−1eαt cos(ωt)− 2B

(r − 1)!
tr−1eαt sin(ωt) (5.35)

avec p1,2 = α ± jω la paire de pôles conjugués complexes, A± Bj les résidus correspondants et r = 1, 2, . . . , µ

où µ représente la multiplicité des pôles. L’expression (5.35) est appelée un mode. Il s’agit du mode associé à

la paire de pôles conjugués complexes α± jω. Selon les cas, r− 1, α ou ω peuvent être nuls. Par exemple, pour

un pôle réel simple (ω = 0 et µ = 1), le mode devient Aeαt.

Evaluer l’expression (5.35) pour Y (s) =
K(s− z)

(s− p1)(s− p2)

Le signe de α joue un rôle important. Pour α > 0, la réponse crôıtra au-delà de toute limite. Inversement, si

α < 0, ces termes décroissent et tendent vers zéro lorsque le temps s’écoule. L’existence d’un facteur tr−1 ne

change rien à cette règle car la décroissance de l’exponentielle l’emporte sur tr−1 ainsi qu’un développement en
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Figure 5.15. Lieu des pôles d’un mode et allure temporelle correspondante.

série de Taylor le montre.

De façon générale, la partie réelle α d’un pôle conditionne l’amortissement du mode qui lui est associé. La

partie imaginaire ω détermine quant à elle la fréquence d’oscillation du même mode. Ces particularités sont

représentées à la figure 5.15.

Un système linéaire est dit stable si et seulement si tous ses pôles sont stables, c’est-à-dire si ses pôles se

trouvent dans le demi-plan complexe de gauche (αi < 0), axe imaginaire non compris. On parle alors de stabi-

lité BIBO (Bounded Input Bounded Output), c’est-à-dire que la réponse à toute entrée bornée restera bornée.

Un signal borné est un signal dont la valeur en fonction du temps reste entre une limite inférieur finie et une

limite supérieur finie (par exemple, un saut unité, une sinusöıde ou e−2t, mais par contre pas e2t).

Pour un système stable, le pôle le plus proche de l’origine, c’est-à-dire celui pour lequel |α| est le plus petit, est

dit dominant. En effet, après un temps suffisant pour que les contributions des autres pôles se soient amortis,

seule la contribution qui lui est associée reste présente. Il conditionne de ce fait l’allure globale de la réponse

après un temps initial.

5.7 Exercices résolus

Exercice 1

a) Evaluer la réponse impulsionnelle du système :

G(s) =
s− 1

(2s+ 1)(s+ 3)

b) Représenter graphiquement cette réponse.

c) Evaluer les pôles et les zéros de ce système. Est-il stable ?

Solution

a)

Y (s) = G(s)U(s) =
s− 1

(2s+ 1)(s+ 3)
=

A

2s+ 1
+

B

s+ 3

A = lim
s→− 1

2

s− 1

s+ 3
= −3

5

B = lim
s→−3

s− 1

2s+ 1
=

4

5

L−1 → y(t) = −−3

10
e−t/2 +

4

5
e−3t t ≥ 0

b) Graphique

c) z1 = 1, p1 = −0.5, p2 = −3

Comme les deux pôles sont dans la moitié gauche du plan complexe, le système est BIBO stable.

Exercice 2

Soit le système dynamique autonome, c’est-à-dire sans entrée :

ẋ =

[
1− 2

2− 3

]
x x(0) =

[
10

10

]
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a) Calculer x(t).

b) Quel est l’ordre du système ? Combien de modes se trouvent dans la réponse x(t) ? Discuter ce résultat.

Solution

a) ẋ1 = x1 − 2x2 x1(0) = 10

ẋ2 = 2x1 − 3x2 x2(0) = 10

Transformation de Laplace :

sX1(s)− 10 = X1(s)− 2X2(s)

sX2(s)− 10 = 2X1(s)− 3X2(s)

X2(s)[s+ 3] = 2X1(s) + 10 → X2(s) =
2

s+ 3
X1(s) +

10

s+ 3

X1(s)[s− 1] = −2X2(s) + 10 = − 4

s+ 3
X1(s)− 20

s+ 3
+ 10

X1(s)[(s− 1)(s+ 3) + 4] = −20 + 10(s+ 3)

X1(s)[s2 + 2s− 3 + 4] = 10s+ 10

X1(s)[s2 + 2s+ 1] = 10s+ 10

X1(s)[s2 + 2s+ 1] = 10(s+ 1)

X1(s) =
10

s+ 1

X2(s) =
2

s+ 3

10

s+ 1
+

10

s+ 3
=

20 + 10(s+ 1)

(s+ 3)(s+ 1)
=

10(s+ 3)

(s+ 3)(s+ 1)
=

10

s+ 1

x1(t) = x2(t) = 10e−t t ≥ 0
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b) Le système est d’ordre 2 car il est décrit par 2 équations différentielles du premier ordre. Comme les

réponses x1(t) et x2(t) ne contiennent que le mode e−t, on pourrait penser que le système est du premier

ordre. Cependant, il s’agit là d’un artefact dû au choix des conditions initiales. Pour le montrer, considérons

le même système dynamique avec les conditions initiales génériques :

x(0) =

[
x10

x20

]

Un développement similaire à celui du point a) donne les signaux X1(s) et X2(s) suivants :

X1(s) =
x10s+ (3x10)− 2x20

(s+ 1)2

X2(s) =
x20s+ (2x10 − x20)

(s+ 1)2

Pour x10 = x20 = 10, on retrouve le résultat du point a). Dans le cas général avec un pôle double à s = −1,

on observe les modes e−t et te−t. Notons également que les valeurs propres de la matrice du système sont

λ1 = λ2 = −1.

Exercice 3

Un système physique est composé de deux sous-systèmes S1 et S2 : Le sous-système S1 est décrit par la fonction

S1 S2
- --

u(t) z(t) y(t)

S

de transfert : G1(s) = (s+ 1)/s.

La sortie z de ce système est l’entrée du sous-système S2 dont la dynamique est régie par l’équation différentielle :

ÿ(t) + 3ẏ(t) + 2y(t) = ż(t) + 3z(t) y(0) = 1 ẏ(0) = 0 z(0) = 0

a) Calculer la fonction de transfert du système complet S.

b) Evaluer les pôles et les zéros ainsi que le gain statique du système S.

Solution

a) Système S1 : G1(s) =
s+ 1

s
=
Z(s)

U(s)

Système S1 : ÿ(t) + 3ẏ(t) + 2y(t) = ż(t) + 3z(t)

Calcul de G2(s) =
Y (s)

Z(s)

Le concept de fonction de transfert suppose des conditions initiales nulles (système relâché) :

s2Y (s) + 3sY (s) + 2Y (s) = sZ(s) + 3Z(s)



5.7 Exercices résolus 125

Y (s)[s2 + 3s+ 2] = Z(s)[s+ 3]

G2(s) =
Y (s)

Z(s)
=

s+ 3

s2 + 3s+ 2

Système S : G(s) =
Y (s)

U(s)
=
Y (s)

Z(s)
· Z(s)

U(s)

G(s) = G2(s) ·G1(s)→ G(s) =
(s+ 3)(s+ 1)

(s+ 1)(s+ 2)s
=

s+ 3

s(s+ 2)

b) Pôles : p1 = 0 p2 = −2

Zéro : z1 = −3

Il s’agit d’un système intégrateur (p1 = 0) possédant donc un gain statique infini :

lim
s→0

G(s) = lim
s→0

s+ 3

s(s+ 2)
=∞

Exercice 4

a) Calculer la réponse indicielle du système suivant :

Y (s)

U(s)
=

2

s2 + s− 2

b) Quel est le gain statique, la constante de temps dominante et le coefficient d’amortissement de ce système ?

Solution

a)
Y (s)

U(s)
=

2

s2 + s− 2
=

2

(s− 1)(s+ 2)

Pour un saut unité, U(s) = 1/s, on a :

Y (s) =
2

s(s− 1)(s+ 2)
=

A

s+ 2
+

B

s− 1
+
C

s

Par la méthode des résidus, on détermine :

A = lim
s→−2

{
2

s(s− 1)

}
=

1

3

B = lim
s→1

{
2

s(s+ 2)

}
=

2

3

C = lim
s→0

{
2

(s− 1)(s+ 2)

}
= −1

Finalement, on obtient :

y(t) =
1

3
e−2t +

2

3
et − 1 t ≥ 0

b) Comme le système est instable (un pôle à 1), il n’est pas possible d’identifier K, τ et ζ par inspection de sa

fonction de transfert :
K

τ2s2 + 2τζs+ 1
6= 1

0, 5s2 + 0, 5s− 1

• Le gain statique est infini à cause du terme et dans y(t).
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• Le mode instable 0, 67et est dominant.

• Le concept de coefficient d’amortissement n’a pas de sens pour un système instable.

Exercice 5

Calculer la réponse indicielle du système dynamique caractérisé par un gain statique de 2, une constante de

temps de 5 minutes et un retard pur de 1 minute.

Solution

Fonction de transfert

G(s) =
Y (s)

U(s)
=

2e−s

5s+ 1

Réponse du système sans retard

GSR(s) =
YSR(s)

U(s)
=

2

5s+ 1

YSR(s) = GSR(s)U(s) =
2

s(5s+ 1)

YSR(s) =
2

s
− 10

5s+ 1
=

2

s
− 2

s+ 1
5

Ainsi :

ySR(t) = 2

(
1− e− t5

)
t ≥ 0

Réponse avec retard

y(t) = ySR(t− 1) = 2ε(t− 1)

[
1− e−

t−1
5

]

Exercice 6

Soit le système de cuves suivant avec le débit d’alimentation qe(t), le débit intermédiaire q1(t) proportionnel à

la différence de niveaux h1(t)− h2(t) et q2 constant :

a) Calculer l’état stationnaire du système.

b) Calculer la fonction de transfert H2(s)/Qe(s).

c) Un tel système est appelé interactif. Pourquoi ?

d) Ce système possède-t-il un élément intégrateur ?

Solution

a) Etat stationnaire

Bilans massiques (après simplification par ρ =const.) :

Cuve 1 : S1
dh1

dt
= qe − q1 = qe −

1

R
(h1 − h2) (5.1)

Cuve 2 : S2
dh2

dt
= q1 − q2 =

1

R
(h1 − h2)− q2 (5.2)
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Etat stationnaire :

(1)⇒ 0 = q̄e −
1

R
(h̄1 − h̄2) (5.0)

(2)⇒ 0 =
1

R
(h̄1 − h̄2)− q2

Il y a un état stationnaire uniquement si q̄e = q2,⇒ h̄1 − h̄2 = Rq̄e.

b) Fonctions de transfert

Equations dynamiques en variables écarts :∆h1 = h1 − h̄1

∆h2 = h2 − h̄2

∆qe = qe − q̄e


(1)− (1a) : S1

d

dt
(∆h1) = ∆qe −

1

R
(∆h1 −∆h2) (5.2)

(2)− (2a) : S2
d

dt
(∆h2) =

1

R
(∆h1 −∆h2) (5.2)

A l’état stationnaire ∆h1 = ∆h2 = ∆qe = 0

Transformation de Laplace :

S1s∆H1(s) = ∆Qe(s)−
1

R
[∆H1(s)−∆H2(s)] (5.2)

S2s∆H2(s) =
1

R
[∆H1(s)−∆H2(s)] (5.2)

(3) :

(
S1s+

1

R

)
∆H1(s) = ∆Qe(s) +

1

R
∆H2(s) (5.2)

(4) :

(
S2s+

1

R

)
∆H2(s) =

1

R
∆H1(s) (5.2)

(6) :
∆H2(s)

∆H1(s)
=

1

RS2s+ 1
(5.2)

Eliminons ∆H2(s) dans (5) : (
S1s+

1

R

)
∆H1(s) = ∆Qe(s) +

1

R

∆H1(s)

(RS2s+ 1)[
RS1s+ 1− 1

RS2s+ 1

]
∆H1(s) = R∆Qe(s)

∆H1(s)

∆Qe(s)
=

R(RS2s+ 1)

s[R2S1S2s+R(S1 + S2)]
(5.2)

∆H2(s)

∆Qe(s)
=
∆H2(s)

∆H1(s)

∆H1(s)

∆Qe(s)
=

1

s[RS1S2s+ (S1 + S2)]
=

K

s(τs+ 1)
(5.2)

avec :

K =
1

S1 + S2
τ =

RS1S2

S1 + S2

c) Le système est appelé interactif car le niveau de la deuxième cuve influence celui de la première.

d) Elément intégrateur car le terme 1/s apparâıt dans la fonction de transfert (9).

Exercice 7

Soient les 2 systèmes de cuves suivants.
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a) Pour chaque système, calculer la fonction de transfert H2(s)/Qe(s) et évaluer son gain statique et ses pôles.

Y a-t-il un élément intégrateur ?

b) Comparer qualitativement les deux systèmes.

Solution

a1) Système 1

Equations dynamiques :

A1
d

dt
h1(t) = qe(t)− k1h1(t)

A2
d

dt
h2(t) = k1h1(t)− k2h2(t)

Fonction de transfert :

A1sH1(s) = Qe(s)− k1H1(s)

A2sH2(s) = k1H1(s)− k2H2(s)

H1(s)

Qe(s)
=

1
k1

A1

k1
s+ 1

H2(s)

H1(s)
=

k1
k2

A2

k2
s+ 1

H2(s)

Qe(s)
=
H2(s)

H1(s)

H1(s)

Qe(s)
=

1
k2(

A1

k1
s+ 1

)(
A2

k2
s+ 1

)
• Gain statique :

K =
1

k2

• Constantes de temps :

τ1 =
A1

k1
τ2 =

A2

k2

• Pôles :

p1 = − k1

A1
p2 = − k2

A2

• Pas d’éléments intégrateur (pas de pôle en 0)

a2) Système 2

Equation dynamiques :

A1
d

dt
h1(t) = qe(t)− k1[h1(t)− h2(t)]

A2
d

dt
h2(t) = k1[h1(t)− h2(t)]− k2h2(t)

Fonctions de transfert :

A1sH1(s) = Qe(s)− k1[H1(s)−H2(s)]

A2sH2(s) = k1[H1(s)−H2(s)]− k2H2(s)

H2(s)

H1(s)
=

k1
k1+k2
A2

k1+k2
s+ 1
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H1(s)

Qe(s)
=

k1+k2
k1k2

[
A2

k1+k2
s+ 1

]
A1A2

k1k2
s2 + 2s

√
A1A2

k1k2

[
A1(k1+k2)+k1A2

2
√
k1k2A1A2

]
+ 1

H2(s)

Qe(s)
=
H2(s)

H1(s)

H1(s)

Qe(s)

Avec la définition des paramètres suivants :

K2 =
k1

k1 + k2
K3 =

k1 + k2

k1k2
K4 =

1

k2

τ2 =
A2

k1 + k2
τ =

√
A1A2

k1k2
ζ =

A1(k1 + k2) + k1A2

2
√
k1k2A1A2

on obtient les fonctions de transfert :

H2(s)

H1(s)
=

K2

τ2s+ 1

H1(s)

Qe(s)
=

K3[τ2s+ 1]

τ2s2 + 2ζτs+ 1

H2(s)

Qe(s)
=
H2(s)

H1(s)

H1(s)

Qe(s)
=

K4

τ2s2 + 2ζτs+ 1

• Gain statique : K = K4 = 1/k2

• Constante de temps équivalente : τ =
√
A1A2/k1k2

• Pôles :

p1 =
−ζ −

√
ζ2 − 1

τ
p2 =

−ζ +
√
ζ2 − 1

τ

• Pas d’élément intégrateur (pas de pôles en 0)

b) Comparaison des deux systèmes

Système Ordre Particularités Gain statique Pôles

1 2
Deux systèmes

d’ordre 1 en série
1
k2

Pas d’oscillation

2 2

Interactif :

h1 influence h2

h2 influence h1

1
k2

Oscillation pour

ζ < 1

5.8 Symboles utilisés

A amplitude [J/K]

C capacité thermique

g(t) réponse impulsionnelle

G(s) fonction de transfert

h hauteur [m]

j
√
−1

K gain statique

Ka gain en accélération
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Kv gain en vitesse

L[.] transformation de Laplace

L−1[.] transformation de Laplace inverse

m nombre de zéros

n nombre de pôles

p pôle (p = α± jω)

P puissance [W]

q débit volumique [m3/s]

R résistance thermique [K/W]

s variable complexe de Laplace (s = a+ bj)

S surface de section [m2]

t temps [s]

ti temps au point d’inflexion

T température [K]

T période [s]

Text température extérieur [K]

u entrée du système

x état du système

y sortie du système

z zéro

α Re(p)

γ(t) réponse indicielle

δ(t) impulsion de Dirac au temps t = 0

ε(t) saut unité au temps t = 0

ζ coefficient d’amortissement

µ multiplicité d’un pôle

φ déphasage

τ constante de temps

ω pulsation

ω0 pulsation propre

ω̄
√

1− ζ2/τ

Indices et autres symboles

Xe X d’entrée

Xs X de sortie

X0 condition initiale pour X

X̄ X à l’état stationnaire

Ẋ dérivée de X par rapport au temps

δX variation de X ; variable écart X(t)− X̄



6

Commandes élémentaires

Nous étudions dans ce chapitre le comportement de systèmes commandés en rétroaction par des régulateurs

simples, en particulier des régulateurs avec effets proportionnel, intégral et dérivé. La mise au point de tels

régulateurs est également discutée.

En introduction, la section 6.1 présente différents types de commande, notamment la commande manuelle, la

commande en boucle ouverte et la commande en boucle fermée. On étudie également la réduction de schémas

fonctionnels.

6.1 Types de commande

On utilise la notation générale u(t) pour la grandeur de commande, y(t) pour la grandeur commandée, yc(t)

pour la grandeur de consigne, d(t) pour la perturbation, e(t) pour l’erreur de commande, GP (t) pour l’effet de

u sur y, GL(s) pour celui de d sur y et GR(s) pour la fonction de transfert du régulateur. Les effets des organes

de mesure et de commande sont inclus dans GP (s). Le schémas fonctionnel général d’un système de commande

est donné à la figure 6.1, lequel permet de visualiser trois situations importantes :

GR(s) GP (s)

GL(s)

u

MAN

uman

AUTO

y+

+

d

BF BO

−
+ eyc

•
•

Figure 6.1. Schéma fonctionnel d’un système commandé (MAN : manuel, AUTO : automatique, BO : boucle ouverte,
BF : boucle fermée).

a) commande manuelle avec u = uman,

b) commande en boucle ouverte lorsque le signal de retour est déconnecté au niveau du comparateur,

c) commande en boucle fermée ou par rétroaction lorsque la boucle est fermée au niveau du comparateur.

Dans ce chapitre consacré à la commande, on va également travailler avec des variables écart, lesquelles vont donc

représenter des déviations autour d’un point de fonctionnement de référence. On a ainsi la situation dépictée à



132 6 Commandes élémentaires

la figure 6.2 avec les signaux u et y liés au procédé et la fonction de transfert GP entre δu et δy. Comme dans

le chapitre précédent, on va également noter par u et y les écarts δu et δy afin de simplifier les notations ; ainsi,

une valeur de u en variable écart signifie en fait ūref + u en variable absolue.

Procédé
+

−
+

+

GP

yu δyδu

ȳrefūref

Figure 6.2. Relations entre variables absolues (u et y), variables de référence (ūref et ȳref ) et variables écart (δu et
δy).

6.1.1 Commande manuelle

Il arrive parfois que l’opérateur doive (ou désire) prendre contrôle du système de commande. Pour ce faire, il

existe un commutateur à la sortie du régulateur (fig. 6.1) : en mode � manuelle �, le signal u est généré par

l’opérateur à l’aide d’un potentiomètre ou d’un générateur de fonctions ; en mode � automatique �, u correspond

à la sortie du régulateur.

Pour passer d’un mode à l’autre sans-à-coup, on procède ainsi :

Commutation � manuel � / � automatique �

1. Opération en mode � manuel � à l’état stationnaire : ūman, ȳman

2a Ajuster la consigne telle que yc = yman, c’est-à-dire ē = 0

2b Ajuster la commande a priori ūref (fig. 6.2) telle que ūref = ūman

2. Commuter en � automatique � : u(t) = ūref + 0 = ūman

Commutation � automatique � / � manuel �

1. Opération en mode � automatique � à l’état stationnaire : ūaut, ȳaut
2. Ajuster la commande manuelle telle que ūman = ūaut
3. Commuter en � manuel � : u(t) = ūman = ūaut

6.1.2 Commande en boucle ouverte

Si la boucle est déconnectée au niveau du comparateur, la fonction de transfert entre la consigne yc et la gran-

deur commandée y devient :

Y (s)

Yc(s)

∣∣∣∣∣
BO

= GR(s)GP (s)

La commande est parfaite (c’est-à-dire y suit parfaitement la consigne yc) si GR(s) = 1/GP (s). Il y a cepen-

dant trois raison principales qui, dans la pratique, limitent l’application d’une telle commande en boucle ouverte :

1. nécessité de connâıtre parfaitement le modèle du système à commander,

2. le régulateur GR(s) ainsi calculé est souvent un élément dynamique non causal nécessitant un prédiction

et donc pas réalisable physiquement,

3. aucune action n’est prévue pour rejeter la perturbation d.
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6.1.3 Commande en boucle fermée

Il s’agit d’une commande par rétroaction (en anglais feedback) pour laquelle le signal de commande u est calculé

à partir d’une mesure de la grandeur commandée y. Le principe à été introduit au chapitre 1. La façon de

calculer la fonction de transfert d’un système bouclé par rétroaction est présentée au paragraphe suivant.

6.1.4 Réduction de schémas fonctionnels

Il arrive souvent que l’on souhaite calculer une fonction de transfert globale à partir de plusieurs fonction de

transferts se trouvant dans un système bouclé. Pour ce faire, on dispose de la règle simple suivante :

Fonction de transfert

entre entrée et sortie

d’un système bouclé

 =

[
Produit des fonctions de transfert

en transmission direct (entrée → sortie)

]

1 +

[
Produit des fonctions de

transfert dans la boucle

] (6.1)

Illustrons cette règle à l’aide du système en boucle fermée de la figure 6.1. On peut écrire :

Y (s) = GP (s)U(s) +GL(s)D(s)

U(s) = GR(s)E(s)

E(s) = Yc(s)− Y (s)

• Pour calculer la fonction de transfert Y (s)/Yc(s), on pose D(s) = 0 et on obtient à partir des 3 équations

précédentes :

Y (s) = GP (s)GR(s)[Yc(s)− Y (s)]

ou

Y (s)[1 +GP (s)GR(s)] = GP (s)GR(s)Yc(s)

Y (s)

Yc(s)
=

GP (s)GR(s)

1 +GR(s)GP (s)
(6.2)

Exemple Considérons l’exemple de la figure 6.3.

Boucle intérieure :
Y3(s)

Y2(s)
=

GR,2(s)GOC(s)GP,1(s)

1 +GR,2(s)GOC(s)GP,1(s)GOM.1(s)
= G1(s)

Boucle extérieure :
Y4(s)

Y1(s)
= GBF (s) =

KOMGR,1(s)G1(s)GP,2(s)

1 +GR,1(s)G1(s)GP,2(s)GOM.2(s)

Pour le schéma fonctionnel de la figure 6.1, vérifier la validité des quatre relations suivantes :

Y (s)

D(s)

∣∣∣∣∣
BO

= GL(s)
Y (s)

D(s)

∣∣∣∣∣
BF

=
GL(s)

1 +GR(s)GP (s)
(6.3)

Y (s)

Yc(s)

∣∣∣∣∣
BO

= GR(s)GP (s)
Y (s)

Yc(s)

∣∣∣∣∣
BF

=
GR(s)GP (s)

1 +GR(s)GP (s)
(6.4)
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6.2 Exemple : régulation de température

Soit une cuve homogène de 1 [m3] de volume et alimentée en continu par un débit d’eau de 0, 05[m3] qu’il

convient de chauffer de 10 à 20 [°C] par l’intermédiaire d’un corps de chauffe dont la puissance nominale vaut

35 [kW]. On souhaite modéliser les divers éléments de la boucle de commande nécessaire à la régulation de la

température de la cuve. On considère un régulateur proportionnel pour commander T (t) en ajustant P (t). Le

schéma de l’installation commandée est donné à la figure 6.4 où M et N sont des signaux électriques de mesure

et de commande.

RT TT
M

Tc

Te

q
N

P

T

T

q

Figure 6.4. Régulation de la température d’une cuve (TT : transmetteur de température ; RT : régulateur de
température).

6.2.1 Modélisation

Un bilan thermique pour la cuve donne le modèle suivant :

V ρcp
d

dt
T (t) = qρcp[Te(t)− T (t)] + P (t) (6.5)

avec les grandeurs suivantes :

• paramètres constants : V, ρ, cp, q

• variables d’entrée (variables indépendantes) : P (t), Te(t)

• variable d’état (variable dépendante) : T (t)

• variable de sortie (mesure) : T (t)

A l’état stationnaire, l’équation (6.5) devient :

0 = qρcp(T̄e − T̄ ) + P

d’où l’on tire : T̄ = T̄e + (P̄ /qρcp) = 20[C]

Ecrire l’équation (6.5) en termes de variables écart par rapport à l’état stationnaire de référence.
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6.2.2 Analyse des éléments de la boucle de commande

Le schéma fonctionnel pour la régulation de température de la cuve est donnée à la figure 6.5. Mc,M et N sont

des signaux électriques normés, par exemple 0-5 [V] ou 4-20 [mA]. On étudie ci-dessous séparément chacun des

blocs du schéma fonctionnel.

a) Cuve

La transformée de Laplace de l’équation 6.6 donne (en supposant le système initialement au repos) :

V ρcpsT (s) = qρcp[Te(s)− T (s)] + P (s)

ou

(
V

q
s+ 1)T (s) = Te(s) +

1

qρcp
P (s) (6.6)

Puisque la grandeur commandée T (t) dépend de Te(t) et de P (t), nous considérons deux fonctions de

transfert distinctes :

• Fonction de transfert de la perturbation (load) GL(s) décrivant le comportement de T (s) en fonction

de Te(s) uniquement ; pour cela on pose P (s) = 0 dans l’équation (6.6) et, après réarrangement, on

obtient :

GL(s) :=
T (s)

Te(s)
=

1

(V/q)s+ 1
=

1

τs+ 1

où

τ =
V

q
= 20[min]

• Fonction de transfert du processus GP (s) décrivant le comportement de T (s) en fonction de P (s)

uniquement ; pour cela on pose Te(s) = 0 dans l’équation (6.6), et après réarrangement, on obtient :

GP (s) :=
T (s)

P (s)
=

1/qρcp
(V/q)s+ 1

=
K

τs+ 1
oùK =

1

qρcp
= 0, 29[C/kW ]

b) Organe de mesure (thermocouple + conditionnement du signal électrique)

La caractéristique faiblement non linéaire de l’organe de mesure ainsi que son approximation linéaire sont

représentées à la figure 6.6. Cette caractéristique représente une relation statique entre la température T

et la tension générée correspondante M .

La constante de temps du thermocouple est d’environ 3 [s]
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Un organe de mesure est souvent modélisé comme un système statique (d’ordre zèro) ou un système de

premier ordre (cf. section 5.3). Ici :

GOM (s) =
M(s)

T (s)
=

KOM

(τOMs+ 1)

avec

KOM =
5[V ]

50[C]
= 0, 1[V/C] (obtenu à partir du graphe ci-dessous)

τOM (s) = 3[s] = 0, 05[min]

[V ]

tension M

0 50 1000

T

[C]

5

100

réel

approximation linéaire

·
KOM

Figure 6.6. Caractéristique statique de l’organe de mesure.

c) Organne de commande (amplificateur de puissance + corps de chauffe)

La caractéristique statique de l’organe de commande est donnée à la figure 6.7.

Sa constante de temps est d’environ 2 [min].

Un organe de commande est souvent modélisé comme un système du premier ordre :

GOC(s) =
P (s)

N(s)
=

KOC

τOCs+ 1

Ici : KOC =
100[kW ]

5[V ]
= 20[kW/V ] (obtenu à partir du graphe ci-dessus) τOC = 2[min]

d) Système à commander (cuve avec organe de mesure et organe de commande)

Le système à commander, tel que vu par le régulateur, correspond à la mise en série des trois éléments

indiqués à la figure 6.8.

G(s) =
M(s)

N(s)
=
M(s)T (s)P (s)

T (s)P (s)N(s)
= GOM (s)GP (s)GOC(s)
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0

P

[V ]

tension N

[kW ]

5

100

•
KOC

Figure 6.7. Caractéristique statique de l’organe de commande.

GP GOMGOC

G

cuve organe de mesureorgane de commande

SYSTEME A COMMANDER

N P T M

N M

Figure 6.8. Système à commander comprenant la cuve et les organes de mesure et de commande.

= (
0, 1

0, 05s+ 1
)(

0, 29

20s+ 1
)(

20

2s+ 1
) =

0, 58

(0, 05s+ 1)(20s+ 1)(2s+ 1)

La dynamique du capteur (organe de mesure) étant négligeable (en effet 0, 05� 2 ou 20), on peut écrire

simplement :

G(s) ' KOMGP (s)GOC(s) =
0, 58

(20s+ 1)(2s+ 1)

Utiliser des arguments graphiques pour justifier la simplification précédente. Peut-on également négliger

KOM ?

e) Régulateur Le régulateur calcule le signal de commande N sur la base de l’erreur de commande e =

Mc −M . Un régulateur proportionnel possède la fonction de transfert suivante :

GR(s) =
N(s)

E(s)
= KR
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où KR représente le gain du régulateur.

f) Système bouclé

Le système bouclé, avec toutes les fonctions de transfert d’intérêt, est donné à la figure 6.9. Le système

GOC GPKRKOM

GL

GOM

+
− +

+P

[V ]

N

[V ][V ]

eMc

[V ][C]

Tc T

[C]

Te [C]

M

[V ]

REGULATEUR

SYSTEME A

COMMANDER

Figure 6.9. Schéma fonctionnel de la commande d’une cuve

bouclé représente un système dynamique dont l’étude constitue l’objet de l’automatique. L’objectif prin-

cipal est le dimensionnement du régulateur (ici le choix du gain KR) en fonction des caractéristiques du

système à commander et du système bouclé désiré.

En appliquant la règle de la section précédente, on peut écrire les fonctions de transferts suivantes :

• Effet de l consigne Tc sur la grandeur commandée T :

T (s)

Tc(s)

∣∣∣∣∣
BF

=
KOMKRGOC(s)GP (s)

1 +KRGOC(s)GP (s)GOM (s)
(6.7)

• Effet de la perturbation Te sur la grandeur commandée T :

T (s)

Te(s)

∣∣∣∣∣
BF

=
GLS

1 +KRGOC(s)GP (s)GOM (s)
(6.8)

Etant donnés GP (s), GL(s), GOC(s) et GOM (s), la synthèse du régulat- eur consiste à choisir KR de

façon à avoir une solution acceptable au problème d’asservissement (6.7) et/ou de régulation (6.8). D’où

l’intérêt d’étudier le comportement dynamique de T (s)/Tc(s) et de T (s)/Te(s).

Par définition, les variables du schéma fonctionnel de la figure 6.9 représentent des écarts autour de l’état

stationnaire de référence. Pour déterminer cet état stationnaire, on a spécifié les valeurs numériques des

deux variables indépendantes P̄ et T̄e (cf. §6.2.1). Pour le système en boucle fermée, l’état stationnaire

sera déterminé en spécifiant les valeurs numériques des deux variables indépendantes T̄c et T̄e (fig. 6.9).

Il en résultera les valeurs numériques de M̄c, M̄ , ē, N̄ , P̄ et T̄ .

6.3 Commande tout-ou-rien

Considérons la régulation de la température d’une salle équipée d’un radiateur avec thermostat à deux positions :

� ouvert � / � fermé �, c’est-à-dire que le radiateur chauffe ou ne chauffe pas. La consigne est Tc(t) et la

température effective dans la pièce est T (t). L’erreur e(t) = Tc(t) − T (t) permet de déterminer la puissance

P (t). Comme cette dernière ne peut prendre que deux valeurs Pmax ou Pmin (dans ce cas particulier Pmin = 0),

on obtient la loi de commande suivante :
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P (t) =

{
Pmax pour e(t) > 0

Pmin pour e(t) ≤ 0

Cette condition exprime une commande tout-ou-rien ou on/off. Le radiateur sera � on � lorsque l’erreur est

positive (T < Tc) et � off � lorsque l’erreur est négative ou nulle (T ≥ Tc). La variable commandée oscillera

+

−

eTc P

T

0
e

P
Pmax

Pmin

Figure 6.10. Commande tout-ou-rien

-

6

t

b)

on on

off off

Tc + ε

Tc

Tc − ε

-

6

on on

off off off

Tc

P

T
a)

Figure 6.11. Comportement qualitatif d’une commande tout-ou-rien : a) sans hystérésis, b) avec hystérésis.

autour de la valeur de consigne avec une amplitude et une fréquence qui dépendront de l’ordre et de la valeur

constante de temps du système à commander.

Pour éviter de passer très souvent de Pmin à Pmax, et inversement, dès que l’erreur change de signe (c’est-à-dire
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afin de réduire le nombre de commutations on/off par là l’usure de l’organe de commande), on introduit souvent

une hystérésis de largeur 2ε (Fig. 6.12.

La commande tout-ou-rien est simple, bon marché et utile en l’absence d’une connaissance précise de la dy-

namique du processus. Elle est très utilisée pour des commandes simples dans l’industrie et les applications

courantes (systèmes de chauffage et de conditionnement de l’aire, réfrigérateurs, etc.). Malgré son apparente

simplicité, la commande tout-ou-rien est difficile à analyser du fait de sa non-linéarité.

+

−

eTc P

T

0
e

P
Pmax

Pmin

Figure 6.12. Commande tout-ou-rien avec hystérésis.

Identifier l’élément non linéaire de la commande tout-ou-rien. Pourquoi l’analyse est-elle difficile ? Ecrire la

fonction de transfert pour une commande tout-ou-rien. Dessiner qualitativement la réponse temporelle d’un

système du premier ordre commandé à l’aide d’un régulateur tout-ou-rien avec hystérésis. Quelle est l’influence

de ε sur l’amplitude et la fréquence des oscillations ?

6.4 Commande proportionnelle

Le plus souvent, il ne saurait être question d’agir comme dans l’exemple précédent par � tout-ou-rien � car le

système est ajusté par à-coups. Il est préférable de pondérer l’action du régulateur. Par exemple, celle-ci peut

être proportionnelle à l’écart de commande e(t).

6.4.1 Fonction de transfert du régulateur proportionnel

La sortie N(t) d’un régulateur proportionnel dépend de son entrée e(t) selon l’équation suivante :

N(t) = KRe(t) (6.9)

Ceci donne la fonction de transfert suivante pour le régulateur proportionnel :

GR(s) =
N(s)

E(s)
= KR (6.10)

KR représente la gain du régulateur. Dans l’industrie, on rencontre souvent une indication de la bande propor-

tionnelle (BP en % = 100/KR). L’équation (6.9) indique la relation entre les déviations e(t) et N(t), lesquelles

sont calculées à partir de l’état stationnaire de référence ēref et N̄ref . L’erreur de référence ēref = ȳc,ref − ȳref
est typiquement nulle. Le signal de référence N̄ref est appelé commande à priori et représente le signal de

commande réel lorsque l’erreur est nulle.

Il est important de ne pas oublier la commande a priori dans une implantation pratique car, lorsque l’erreur

de commande est nulle, il convient d’appliquer la tension N̄ref (et non pas 0) à l’actionneur. On voit aussi que

N̄ref doit être calculé de façon à ce que, à l’état stationnaire, l’erreur de commande correspondante ēref soit

nulle. On obtient ainsi la situation de la figure 6.13.



6.4 Commande proportionnelle 143

N(t) = KRe(t)
− e(t)ereel(t) N(t)

ēref = 0

Nreel(t)+

+

N̄ref

Figure 6.13. Régulateur proportionnel avec la commande a priori N̄ref correspondant à ēref = 0.

6.4.2 Statisme

Définition On appelle statisme, ou erreur statique, l’erreur résiduelle (permanente) entre la grandeur de

consigne et la grandeur commandée pour t→∞ :

ē := lim
t→∞

[Tc(t)− T (t)] = lim
s→0

s[Tc(s)− T (s)]

On cherche souvent à éliminer le statisme afin d’améliorer la précision en régime permanent ; on dit qu’un

système bouclé n’a pas de statisme si ē = 0.

L’équation (6.9) montre que si l’on veut, avec un régulateur P , obtenir un valeur de N(t) différente de zéro

(c’est-à-dire un signal de commande réel différent de N̄ref ), une certaine erreur est nécessaire.

Avec un régulateur proportionnel, une certaine erreur e(t) est nécessaire afin de pouvoir générer une grandeur

de commande différente de celle à l’état de référence. Ceci est souvent nécessaire suite à un changement durable

de consigne ou à une perturbation durable comme illustré dans l’exemple suivant.

Exemple

Supposons que le système bouclé de la section 6.2 soit à l’état stationnaire de référence avec, en variables ab-

solues :

T̄c,ref = T̄ref = 20[C] c’est-à-dire ēref = 0

N̄ref =
P̄ref
KOC

= 1, 75[V ] P̄ref = 35[kW ]

Le système est bouclé par un régulateur P et on désire imposer une nouvelle température de consigne. On

aimerait donc que le régulateur amène le système à un nouvel état stationnaire, si possible sans statisme,

caractérisé par :

T̄c = T̄ = 25[C] c’est-à-dire ē = 0

Pour cela, il faut N̄ = 2, 62[V ] et P̄ = 52, 5[kW ].

Or, pour générer un signal de commande réel N̄ = 2, 62[V ], donc différent de N̄ref = 1, 75[V ], il faut qu’une

certaine erreur existe puisque N̄ = N̄ref + KRē. Avec une régulateur proportionnel, une erreur statique nulle

( ē = 0) donnera toujours N̄ = N̄ref et donc T̄ = T̄ref = T̄c,ref . Par conséquent, pour avoir T̄ 6= T̄ref , il

est nécessaire d’avoir un statisme (ē 6= 0). L’erreur statique qui résulte d’un saut de consigne est représentée

graphiquement à la figure 6.14 (une description quantitative est donnée au §6.4.4).

Dessiner qualitativement le comportement du signal de commande N(t).

6.4.3 Saturation du régulateur

A partir de l’équation (6.9), le signal réel de commande (donc en variable absolue) peut s’écrire :

Nréel(t) = N̄ref +KRe(t)

En pratique, le signal Nréel est borné entre 0 et 5[V]. Ainsi, si le terme KRe est grand en valeur absolue, il y

aura saturation de Nréel(t), comme représenté à la figure 6.15. On cherche donc à travailler dans les régions de
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eTc P

T

0
e

P
Pmax

Pmin

Figure 6.14. Réponse de la température de la cuve à un saut de consigne de 5°C (régulateur P ). Les variables expriment
des déviations par rapport au point de référence.

non saturation.

La commande tout-ou-rien de la figure 6.10 constitue en fait une commande proportionnelle de gain infini et

avec des saturations à Pmin et Pmax.

Le régulateur P avec saturation est-il linéaire ?

0

Nreel

N̄ref
pente KR

[V ]

e

5

Figure 6.15. Caractéristique d’un régulateur P avec effets de saturation.

6.4.4 Effet de la consigne Tc(t) sur T (t)

Pour les valeurs numériques de la section 6.2, l’équation (6.7) donne pour un régulateur P :

GBF (s) =
T (s)

Tc(s)

∣∣∣∣∣
BF

=
0, 58KR

40s2 + 22s+ (1 + 0, 58KR)

ce qui permet de définir :

KBF = lim
s→0

GBF (s) =
0, 58KR

1 + 0, 58KR
(6.11)

τBF =

√
40

1 + 0, 58KR
ξBF =

1, 74√
1 + 0, 58KR

a) Pour KR = 1 :

GBF (s) =
0, 58

40s2 + 22s+ 1, 58
d’où KBF = 0, 37

[
C

C

]
τBF = 5, 03[min]

ξBF = 1, 38
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b) Pour KR = 10 :

GBF (s) =
5, 8

40s2 + 22s+ 6, 8
d’où KBF = 0, 85

[
C

C

]
τBF = 2, 42[min]

ξBF = 0, 66

-
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1
0.98
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T [°C]

Tc

(1) KR = 1
(2) KR = 5
(3) KR = 10
(4) KR = 100

Figure 6.16. Réponse du système bouclé à un saut de consigne pour différents régulateurs, P .

Le système est il oscillant pour KR = 1 ? Et pour KR = 10 ?

Répéter le calcul pour KR = 5 et KR = 100.

La réponse T (t) à un saut unité de Tc(t) pour différents régulateurs P est donnée à la figure 6.16.

Qu’elle est l’effet de KR sur l’erreur statique ?

Qu’elle est l’effet de KR sur KBF , τBF et ξBF ?

6.4.5 Effet de la perturbation Te(t) sur T (t)

a) En boucle ouverte

GBO(s) =
T (s)

Te(s)

∣∣∣∣∣
BO

= GL(s) =
1

20s+ 1

[
C

C

]

b) En boucle fermée Pour les valeurs numériques de la section 6.2, l’équation (6.8) donne pour un régulateur

P :

GBF (s) =
T (s)

Te(s)

∣∣∣∣∣
BF

=
2s+ 1

40s2 + 22s+ 1 + 0, 58KR

d’où

KBF = lim
s→0

GBF (s) =
1

1 + 0, 58KR
(6.12)

La réponse indicielle, c’est-à-dire la réponse T (t) à un saut unité de la perturbation Te(t), est donnée à la figure

6.17.

Quelle est l’effet de KR sur l’erreur statique ?
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Figure 6.17. Réponse du système bouclé à un saut unité de perturbation pour différents régulateurs P (KR = 0 :
système en boucle ouverte).

6.4.6 Action directe ou inverse ?

Jusqu’à présent, nous avons considéré le gain du régulateur comme une grandeur positive ; cependant, un

régulateur doit sans cas posséder un gain négatif.

Considérons le régulateur P de la figure 6.18 avec :

N(t) = KRe(t) = KR[Mc(t)−M(t)] (6.13)

On distingue deux cas en relation avec l’équation (6.13) :

a) KR > 0 Action inverse du régulateur

N(t) augmente quand M(t) diminue, et inversement

b) KR < 0 Action directe du régulateur

N(t) augmente quand M(t) augmente et inversement

KR
−

+ e

[V ]

Mc

[V ]

N

[V ]

[V ]M

Figure 6.18. Régulateur P .

Exemple : Régulation de niveau dans une cuve

Soit l’installation de la figure 6.19. La vanne peut être de deux types :

• Vanne � air-to-open � (un signal est nécessaire pour ouvrir la vanne ; l’organe de commande a un gain

statique positif). Si l’énergie pneumatique vient à manquer, la vanne se ferme automatiquement ; une telle

vanne est utilisée pour des raisons de sécurité pour commande un débit d’alimentation par exemple. Seul

un régulateur à action inverse convient ; en effet :
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OM régulateur

qs

McM

h

N

qe

Figure 6.19. Régulation de niveau dans une cuve.

Lorsque h(t)↗⇒M(t)↗⇒ N(t)↘⇒ qe(t)↘⇒ h(t)↘

(action corrective dans la bonne direction)

(régulateur à action directe : si h(t)↗⇒M(t)↗⇒ N(t)↗⇒ qe(t)↗⇒ h(t)↗ !)

• Vanne � air-to-close � (un signal est nécessaire pour fermer la vanne ; l’organe de commande a un grain

statique négatif). Si l’énergie pneumatique vient à manquer, la vanne s’ouvre automatiquement ; une telle

vanne est utilisée par exemple pour un débit de réfrigération. Seul un régulateur à action direct convient ;

en effet :

lorsque h(t)↗⇒M(t)↗⇒ N(t)↗⇒ qe(t)↘⇒ h(t)↘

(action corrective dans la bonne direction)

(régulateur à action inverse : si h(t)↗⇒M(t)↗⇒ N(t)↘⇒ qe(t)↗⇒ h(t)↗!)

6.5 Commande intégrale

La sortie N(t) d’un régulateur intégral dépend de son entrée e(t) selon l’équation :

N(t) =
1

τ1

∫ t

0

e(t′)dt′ (6.14)

où τ1 est la constante de temps d’intégration.

Avantages

L’intégrale dans l’équation (6.14) représente une somme pondérée de toutes les erreurs passées ; le régulateur I

considère donc le passé aussi bien que le présent pour calculer le signal de commande.

N(t) varie aussi longtemps que e(t) 6= 0 et n’atteint donc pas de nouvel état stationnaire avant que l’erreur de

commande soit nulle De ce fait, ce nouvel état stationnaire n’exhibe pas d’erreur statique. Il est donc possible

d’obtenir N̄ différent de zéro et ē nulle. Il s’ensuit que la commande intégrale permet d’éliminer le statisme.

Inconvénient

La commande intégrale ne répond pas suffisamment à l’erreur instantanée vu qu’elle tient en mémoire toute

l’erreur passée. En d’autre termes, l’erreur instantanée est pondérée trop faiblement. Le régulateur I est de ce

fait très peu utilisé en pratique ; on lui préfère le régulateur PI, lequel possède un terme P en plus d’élément I

(cf. section 6.7).
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6.6 Commande dérivée

La sortie N(t) d’un régulateur dérivé dépend de son entrée e(t) selon l’équation suivante :

N(t) = τD
d

dt
e(t) (6.15)

où τD est la constante de dérivation.

La dérivée d
dte(t) indique la variation de l’erreur, c’est-à-dire la tendance de celle-ci à augmenter ou à diminuer.

Avantage La dérivée dans l’équation (6.15) signifie que l’on considère la tendance de l’erreur à augmenter ou

à diminuer. De ce fait, on porte un regard sur le futur (effet de prévision). On verra que cet effet de prévision

augmente en général la stabilité du régulateur.

Inconvénient

On n’emploie que très rarement un régulateur dérivé tout seul ; on lui associe généralement un terme P et

souvent également un terme I (cf. section 6.8).

6.7 Commande proportionnelle-intégrale

6.7.1 fonction de transfert du régulateur PI

En combinant les deux effets, proportionnel et intégrale, on obtient l’équation suivante décrivant le comporte-

ment de la sortie N(t) en fonction de l’entrée e(t) :

N(t) = KR

[
e(t) +

1

τ1

∫ t

0

e(t′)dt′

]
(6.16)

Ce type de régulateur est très utilisé dans l’industrie chimique.

Avec la transformée de Laplace de l’équation (6.16) :

N(s) = KR

[
E(s) +

1

τ1s
E(s)

]
la fonction de transfert du régulateur PI devient :

GR(s) =
N(s)

E(s)
= KR

(
1 +

1

τ1s

)
(6.17)

Cette dernière est-elle-linéaire ? Quel est son ordre ?

6.7.2 Effet de la consigne T : c(t) sur T (t)

Pour les valeurs numériques de la section 6.2, l’équation (6.7) donne pour un régulateur PI :

GBF (s) =
T (s)

Tc(s)

∣∣∣∣∣
BF

=
0, 58KR(τ1s+ 1)

40τ1s3 + 22τ1s2 + τ1(1 + 0, 58KR)s+ 0, 58KR
(6.18)

d’où

KBF = lim
s→0

GBF (s) = 1 (6.19)

Une comparaison des équation (6.11) et (6.19) montre bien que le terme I régulateur permet l’élimination du

statisme ; en effet, KBF = 1 signifie ici que, grâce à la commande PI, une augmentation de 1 [°C] de la valeur

de consigne Tc(t) implique également, au nouvel état stationnaire, une augmentation de 1 [°C] de la grandeur

commandée T (t).

La réponse T (t) à un saut unité de Tc(t) pour différents régulateurs P et PI est donnée à la figure 6.20.
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Figure 6.20. Réponse du système bouclé à un saut de consigne pour différents régulateurs P et PI.

6.7.3 Effet de la perturbation Te(t) sur T (t)

Pour les valeurs numériques de la section 6.2, l’équation (6.8) donne pour un régulateur PI :

GBF (s) =
T (s)

Te(s)

∣∣∣∣
BF

=
τ1s(2s+ 1)

40τ1s3 + 22τ1s2 + τ1(1 + 0, 58KR)s+ 0, 58KR
(6.20)

d’où

KBF = lim
s→0

GBF (s) = 0 (6.21)

Une comparaison des équation (6.12) et (6.21) montre que le terme I du régulateur permet l’élimination du

statisme ; en effet , dans le cas du régulateur PI, lorsque t→∞, la perturbation constante Te n’influence plus

la grandeur commandée T (t).

La réponse T (t) à un saut unité de Te(t) pour différents régulateurs P et PI est donnée à la figure 6.21.

A la figure 6.21, laquelle des courbes (3) et (4) représente la réponse la plus rapide ? Quelle conclusion en tirer

pour le choix de τ1 ?.

6.8 Commande proportionnelle-intégrale-dérivée

6.8.1 Fonction de transfert PID

La sortie N(t) d’un régulateur PID dépend de son entrée e(t) selon l’équation suivante :

N(t) = KR

[
e(t) +

1

τ1

∫ t

0

e(t′)dt′ + τD
d

dt
e(t)

]
(6.22)

terme P terme I terme D Remarque : le gain KR multiplie les trois termes du régulateur

PID.

La transformée de Laplace de l’équation (6.22) permet d’obtenir la fonction de transfert du régulateur PID :
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Figure 6.21. Réponse du système bouclé à un saut de perturbation pour différents régulateur P et PI.

GR(s) =
N(s)

E(s)
= KR

[
1 +

1

τ1s
+ τDs

]
= KR

[
τ1τDs

2 + τ1s+ 1

τ1s

]
(6.23)

Cependant, le terme τDs n’est pas réalisable physiquement car le degrés du numérateur est supérieur à celui du

dénominateur (cf. section 3.6.2) ; c’est pourquoi, en pratique, on utilisera l’approximation suivante :

GR(s) =
N(s)

E(s)
= KR

[
1 +

1

τ1s
+

τDs

αs+ 1

]
(6.24)

avec α� τD

6.8.2 Effet de la consigne Tc(t) sur T (t)

Pour les valeurs numériques de la section 6.2, l’équation (6.7) donne pour un régulateur PID :

GBF (s) =
T (s)

Tc(s)

∣∣∣∣
BF

=
0, 58KR(1 + τ1s+ τ1τDs

2))

40τ1s3 + 22τ1s2 + τ1(1 + 0, 58KR)s+ 0, 58KR
(6.25)

d’où

KBF = lim
s→0

GBF (s) = 1 (6.26)

La réponse T (t) à un saut unité de Tc(t) pour différents régulateurs PI et PID est donnée à la figure 6.22.

6.8.3 Effet de la perturbation Te(t) sur T (t)

Pour les valeurs numériques de la section 6.2, l’équation (6.8) donne pour un régulateur PID :

GBF (s) =
T (s)

Te(s)

∣∣∣∣
BF

=
τ1s(2s+ 1)

40τ1s3 + 22τ1s2 + τ1(1 + 0, 58KR)s+ 0, 58KR
(6.27)

d’où

KBF = lim
s→0

GBF (s) = 0 (6.28)
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Figure 6.22. Réponse du système bouclé à un saut de consigne pour différents régulateurs PI et PID.

La réponse T (t) à un saut unité de Te(t) pour différents régulateurs PI et PID est donnée à la figure 6.23.
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Figure 6.23. Réponse du système bouclé à un saut de perturbation pour différents régulateurs PI et PID.

6.8.4 Effets des termes P, I et D du régulateur PID

a) Effet du terme P Elément de base de la loi de commande, il permet une réponse rapide, proportionnelle à

l’erreur instantanée.

Si on augment KR :
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— réduction de l’erreur statique (cf. fig. 6.16),

— système bouclé plus rapide mais aussi un peu plus oscillant (cf. fig. 6.15)

— saturation possible du régulateur (cf. §6.4.3).

Avantage

N(t) varie proportionnellement à l’erreur e(t) : plus l’erreur est importante, plus l’action corrective sera

grande. Inconvénient Une erreur statique est présente pour un changement durable de consigne ou une

perturbation durable (cf. §6.4.2).

b) Effet du terme I Avantage Il élimine le statisme grâce à l’intégration de l’erreur e(t), ce qui permet de définir

automatiquement une commande a priori adaptée au nouvel état stationnaire (cf. section 6.5). Inconvénients

Le système bouclé peut devenir plus oscillant (cf. fig. 6.20 et fig. 6.21).

� Integral Windup � : le terme intégral
∫ t

0
e(t′)dt′ peut devenir très grand suite à de grandes perturbations

de longue durée, ou lors d’une opération de démarrage ; il s’ensuit une saturation de la commande N(t).

Afin d’éviter ce problème ou dès que la sortie du régulateur sature.

c) Effet du terme D Avantages Augmente la sensibilité du régulateur en intriduisant une correction prédictive

basée sur de(t)/dt (cf. section 6.6).

Augmente la stabilité du système bouclé grâce à l’effet de prévision, permettant ainsi l’emploi de plus

grandes valeurs de KR. Inconvénients

Amplifie le bruit de mesure car le terme D utilise la dérivée du signal de mesure M(t), de(t)/dt =

(d/dt)[Mc(t) − M(t)]. Si le signal M(t) est bruité , l’opérateur dérivation amplifiera ce bruit qui, bien

que très petite amplitude, peut avoir une dérivée très grande (fluctuations très rapides).

6.9 Dimensionnement des régulateurs P, PI ET PID

6.9.1 Caractéristiques souhaitées du système bouclé

On aimerait que le système en boucle fermée :

• répondre rapidement à des changements de la grandeur de consigne Tc(t),

• rejette bien les perturbations Te(t),

• évite le statisme,

• soit un peu sensible aux variations du processus et aux erreurs de mesure,

• n’ait pas un signal de commande excessif, afin d’éviter la saturation du régulateur.

6.9.2 Dimensionnement du régulateur (choix de KR, τI et τD)

On peut dimensionner un régulateur sur la base d’une analyse temporelle (cf. cette section), ou d’une analyse

fréquentielle (pas abordé dans ce cours).

Pour le choix des paramètres du régulateur sur la base d’une analyse temporelle, deux classes de méthodes ont

été développés :

a) Les méthodes basées sur un test expérimental en boucle fermée, par exemple la méthode empirique du

paragraphe 6.9.3

b) Les méthodes basées sur l’identification en boucle ouverte du système à commander :

— la méthode de Ziegler Nichols (cf. §6.9.4),

— la spécification du système bouclé (cf. §6.9.5).
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6.9.3 Méthode empirique en boucle fermée

Cette approche considère le système en boucle fermée et propose la procédure suivante [cf. C.L. Smith, 2000] :

• Implanter un régulateur PI de manière à obtenir une réponse oscillatoire comme illustré à la figure 6.24.

On suggère d’utiliser KR0 = 2/K où K représente le gain statique ∆M/∆N du système à commander ; si

l’oscillation n’est pas suffisamment marquée, augmenter KR,0.

-

6 -�

t0

Tc

P

T

Figure 6.24. Réponse du système commandé par un régulateur PI (paramètre KR0etτI,0).

• Observer la période d’oscillation P (fig. 6.24) et calculer

τI =
P

1, 3 + 0, 2
(
P
τI,0

)
τD = 0, 25τI

• Avec un régulateur PI ou PID et les valeurs de τI et τD ci-dessus, ajuster KR de manière à obtenir la

performance souhaitée comme illustrée à la figure 6.25.

Avec cette méthode, τI et τD sont calculés sur la base des caractéristiques du système à commander alors que

KR dépend des objectifs de commande. L’avantage de cette méthode en boucle fermée est qu’elle considère tous

les éléments de la boucle de commande.

6.9.4 Méthode de Ziegler-Nichols

Cette méthode considère la réponse indicielle du système en boucle ouverte, avec ouverture de la boucle au

niveau de la sortie du régulateur (fig. 6.26).

On positionne le régulateur en mode � manuel � (cf. §6.1.1). On impose un saut ∆N sur N(t) et on observe la

réponse M(t). Cette réponse (actionneur, processus et capteur) est approchée par celle d’un système du premier

ordre avec un retard pur :
M(s)

N(s)
= G(s) ' Kexp(−θs)

τs+ 1
(6.29)

A l’aide d’une analyse graphique, on déduit les paramètres K, τ et θ du système à commander et de là ceux du

régulateur à concevoir. τ représente la constante de temps dominante du système dynamique, c’est-à-dire
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Figure 6.25. Réponse du système commandé par un régulateur PID pour un saut de consigne au temps 0 et une
perturbation au temps t∗. La performance est ajustée à l’aide du gain du régulateur KR.
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Figure 6.26. Schéma fonctionnel du système en boucle ouverte pour le test de la réponse indicielle.

la constante de temps du système du premier ordre qui approche le mieux possible la réponse du système.

On distingue les cas de systèmes avec ou sans nouvel état stationnaire :

a) pour un système avec nouvel état stationnaire (fig. 6.27) :

K = ∆M/∆N, τ et θ directement du graphique

b) pour un système intégrateur, sans nouvel état stationnaire (fig. 6.28) : m et θ directement du graphique

Le choix des paramètres du régulateur se fait sur la base des relations empiriques suivantes :

a) Régulateur P

KR =
N

θm
= 0, 9

τ

θK

b) Régulateur PI

KR = 0, 9
N

θm
= 0, 9

τ

θK

c) Régulateur PID

KR = 1, 2
N

θm
= 1, 2

τ

θK

τI = 2θ

τD = 0, 5θ
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Figure 6.27. Réponse indicielle d’un système sans terme intégrateur.
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Figure 6.28. Réponse indicielle d’un système avec terme intégrateur.

d) Corrections finales Le système bouclé obtenu avec cette méthode possède une réponse oscillatoire avec un

rapport d’amortissement d’environ 4 (rapport des amplitudes de deux oscillations successives). Si un système

bouclé non oscillant est souhaité, on propose de réduire de moitié le gain KR et d’augmenter τI et τD d’un

facteur 2.

Avantages de la méthode de Ziegler-Nichols

• Un seul test en boucle ouverte est nécessaire,

• ce test est simple et rapide.

Inconvénients de la méthode de Ziegler-Nichols

• Analyse en boucle ouverte, c’est-à-dire sans tenir compte du régulateur (si ce dernier a des imprécisions de

calibration, la qualité de la commande en souffrira),

• sensible aux erreurs d’appréciation (dans la détermination de la pente m et du retard pur θ),

• ne s’applique pas aux systèmes qui oscillent (en boucle ouverte) ni aux systèmes du premier ordre sans

retard pur (Car θ = 0).
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6.9.5 Spécification du système bouclé

La réponse en boucle fermé la plus simple correspond à celle d’un système du premier ordre.

GBF (s) =
1

τBF s+ 1
(6.30)

Comme l’équation (6.30) peut également s’écrire :

GBF (s) =
GR(s)G(s)

1 +GR(s)G(s)
(6.31)

on peut combiner ces deux relations pour exprimer GR(s) en fonction de G(s) et τBF (s) :

GR(s) =
GBF (s)

G(s)[1−GBF (s)]
=

1

G(s)τBF s
(6.32)

Ce régulateur possède un terme intégral de façon à éliminer le statisme (gain unité spécifié pour GBF (s)). On

considère plusieurs cas spéciaux.

• Si le système à commander est strictement du premier ordre avec

G(s) =
K

τs + 1
GBF (s) =

1

τBF s+ 1

on obtient :

GR(s) =
τs+ 1

KτBF s
(6.33)

L’équation (6.33) est celle d’un régulateur PI avec

KR =
1

K

τ

τBF
(6.34)

τI = τ (6.35)

On remarque que plus la constante temps du système bouclé est petite, plus le gain du régulateur sera élevé.

• Si le système à commander possède la fonction de transfert :

G(s) =
K

s(τs + 1)
GBF (s) =

1

τBF s+ 1

l’équation (6.32) done :

GR(s) =
τs+ 1

KτBF
(6.36)

qui est l’équation d’un intégrateur PD avec

KR =
1

KτBF
(6.37)

τD = τ (6.38)

• Si le système à commander est de la forme

G(s) =
K

(τ1s + 1)(τ2s + 1)
GBF (s) =

1

τBF s+ 1

l’équation (6.32) donne :

GR(s) =
τ1τ2s

2 + (τ1 + τ2)s+ 1

KτBF s
(6.39)
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qui est l’équation d’un régulateur PID avec

KR =
τ1 + τ2
KτBF

(6.40)

τI = τ1 + τ2 (6.41)

τD =
τ1τ2
τ1 + τ2

(6.42)

• Pour le système à commander

G(s) =
K

s
GBF (s) =

1

τBF s+ 1

l’équation (6.32) donne le régulateur proportionnel

GR(s) =
1

KτBF
(6.43)

• Si le système à commander est de la forme

G(s) =
K

τs + 1
e−θs

il est possible de dimensionner un régulateur PI en spécifiant la fonction de transfert

GBF (s) =
1

τBF s+ 1
e−θs

En effet, en approximant le retard pur comme suit :

e−θs ' (1− θs)

on obtient en suivant la démarche suivante proposée (cf. éq. 6.30 - 6.32) :

GR =
τs+ 1

K(τBF + θ)

c’est-à-dire :

KR =
τ

K(τBF + θ)
τI = τ

Choix du système bouclé

Dans tous les cas précédents, nous avons choisi un système bouclé du premier ordre paramètré uniquement par

τBF (KBF = 1 afin d’éviter un statisme). Si nécessaire, il est également possible de spécifier un système bouclé

du deuxième ordre, lequel sera alors paramètré par τ1 et τ2 ou alors τ et ξ (cf. section 5.5).

Comme un des objectifs de la commande est d’accélérer la réponse du système dynamique, on choisit

généralement τBF inférieure à la constante de temps dominante du système à commander. On propose sou-

vent la relation empirique suivant τBF = τ/2.

6.9.6 Exemple

Conception d’un régulateur PID pour le système de la figure 6.29

a) Méthode de la réponse indicielle de Ziegler-Nichols En boucle ouverte, la fonction de transfert entre N(s) et

T (s) s’écrit :
T (s)

N(s)
=

(
2

0, 2s+ 1

)(
5

2s+ 1

)
=

10

(2s+ 1)(0, 2s+ 1)
(6.44)
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GR
2

0.2s+ 1

5

2s+ 1

Ne P TTc

−
+

Figure 6.29. Schéma fonctionnel d’un système bouclé.

La figure 6.30 montre la réponse indicielle de ce système, ainsi que celle d’une approximation du premier

ordre. On peut y déduire graphiquement la pente m ainsi que le retard pur θ. Pour cet exemple simple, ces

deux valeurs peuvent également se calculer analytiquement comme suit :

• On approche le système du deuxième ordre par un système du premier ordre avec le retard pur, θ,

comme indiqué par l’équation (6.29) :

T (s)

N(s)
'
(

K

τs+ 1

)
exp(−θs) (6.45)

• On détermine le retard pur θ en comparant les deux équations précédentes : on fixe K = 10, τ = 2 et

on demande :

exp(−θs) ' 1

0, 2s+ 1
(6.46)

Un développement en série de Taylor donne pour chacun des termes :

0
t

[min]

T (t)

N(t)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

pente m

modèle exact

modèle approche au premier ordre

Figure 6.30. Réponse indicielle du système à commander.

exp(−θs) = 1− θs+
(θs)2

2!
− (θs)3

3!
+ . . .

1

0, 2s+ 1
= 1− 0, 2s+

(0, 2s)2

2!
− (0, 2s)3

6
+ . . .
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Ainsi, en première approximation, c’est-à-dire en ne retenant que la partie linéaire des développements en

série, l’approximation (6.46) est valable pour :

θ = 0, 2[min]

On obtient finalement le régulateur PID suivant (cf. §6.9.4) :

KR = 0, 6
τ

θK
= 0, 6

2

0, 2 · 10
= 0, 6

[
V

C

]
τI = 4θ = 4 · 0, 2 = 0, 8[min]

τD = θ = 0, 2[min]

b) Spécification du système bouclé

Pour un système bouclé qui soit environ deux fois plus rapide que le système à commander (τ1 = 2, τ2 = 0, 2),

on choisit :

τBF =
τ1
2

= 1[min]

Les équations (6.40) et (6.42) permettent alors d’évaluer :

KR =
τ1 + τ2
KτBF

=
2 + 0, 2

10 · 1
= 0, 22

[
V

C

]
τI = τ1 + τ2 = 2 + 0, 2 = 2, 2[min]

τD =
τ1τ2
τ1 + τ2

=
2 · 0, 2
2 + 0, 2

= 0, 18[min]

En comparant les valeurs obtenues sous point a) et b), on remarque bien que celles-ci n’ont qu’une valeur

indicative. Les paramètres définitifs seront de préférence choisis sur l’installation en observant son comportement

en asservissement et en régulation.

6.10 Exercices résolus

Exercice 1

Un système à commander a été approché par la fonction de transfert suivantes :

M(s)

N(s)
=

2e−s

3s+ 1

Calculer les paramètres d’un régulateur PID pour ce processus.

Solution

Système à commander du premier ordre avec retard pur :

K = 2, τ = 3, θ = 1

En utilisant la méthode de la réponse indicielle de Ziegler-Nichols :

KR =
1, 2τ

θK
=

1, 2 · 3
1 · 2

= 1, 8τI = 2θ = 2τD = 0, 5θ = 0, 5

Exercice 2

Soit le système bouclé suivant :

a) Déterminer le régulateur qui donne la fonction de transfert GBF .
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b) Discuter la réalisation pratique d’un tel régulateur pour GBF = 1 (cas idéal) et GBF = 1/(τBF s+ 1)2

Solution

c) Régulateur
Y (s)

Yc(s)
= GBF =

KOMGRGOCGP
1 +GRGOCGPGOM

GBF (1 +GRGOCGPGOM ) = KOMGRGOCGP

GR =
GBF

GOCGP (KOM −GBFGOM )

d) Réalisation pratique

• Pour le cas idéal (GBF = 1) avec des fonctions de transfert du premier ordre pour l’organe de mesure,

l’organe de commande et le processus, on obtient :

GOC =
KOC

τOCs+ 1
GOM =

KOM

τOMs+ 1
GP =

KP

τP s+ 1

GR =
(τOCs+ 1)(τP s+ 1)

KOCKPKOM

(
1− 1

τOMs+ 1

) =
(τOCs+ 1)(τP s+ 1)(τOMs+ 1)

KOCKPKOMτOMs

numérateur : degré 3, dénominateur : degré 1⇒ GR(s) pas réalisable

• Pour la fonction de transfert GBF = 1/(τBF s+ 1)2, on a :

GR =
(τOCs+ 1)(τP s+ 1)

(τBF s+ 1)2KOCKPKOM

(
1− 1

(τBF s+ 1)2(τOMs+ 1)

)
=

(τOCs+ 1)(τP s+ 1)(τOMs+ 1)(τBF s+ 1)2

(τBFs+ 1)2KOCKPKOM [(τBFs+ 1)2(τOMs+ 1)− 1]

numérateur : degré 5, dénominateur : degré 5⇒ GR(s) réalisable

Exercice 3

Soit le système bouclé suivant :

Indiquer la démarche à suivre pour mettre au point un régulateur de type PID qui élimine le statisme suite à

un changement de consigne.

Solution

GBF =

GR
K

s(τs+ 1)2

1 +GR
K

s(τs+ 1)2

=
GRK

s(τs+ 1)2 +GRK
(1)

Il n’y aura pas de statisme si lims→0GBF (s) = 1, ce qui sera le cas pour tout régulateur de type PID, c’est-à-

dire P, PI, PD ou PID. Il n’y a pas de statisme avec un régulateur P car le système à commander contient un

terme intégrateur.

Le système à commander n’ayant pas de retard pur, il n’est pas possible d’utiliser la méthode de Ziegler-Nichols

basée sur la réponse indicielle. On peut par contre utiliser la méthode empirique en boucle fermée de la section

6.9.3.
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Exercice 4

Un processus à commander est décrit par l’équation différentielle suivante :

ÿ + 2ẏ = 2u ẏ(0) = y(0) = 0

Les organes de mesure et de commande sont de nature statique et possèdent les caractéristiques suivantes :

Dimensionner un régulateur tel que le système bouclé se comporte comme GBF (s) = 1/(0, 2s+ 1).

Solution

Dynamique du procédé

s2Y (s) + 2sY (s) = 2U(s) G(s) =
Y (s)

U(s)
=

2

s(s+ 2)

Organe de mesure. D’après le graphe :

KOM =
∆M

∆y
=

5− 0

10− 0
= 0, 5

Organe de mesure statique : GOM (s) = KOM Organe de commande. D’après le graphe :

KOC =
∆u

∆N
=

40− 0

5− 1
= 10

Organe de commande statique : GOC = KOC

Fonction de transfert en boucle fermée

Y (s)

Yc(s)
=

KOMGRKOCG

1 +GRKOCGKOM

ce que donne :

1

0, 2s+ 1
=

0, 5GR10
2

s(s+ 2)

1 + 0, 5GR10
2

s(s+ 2)

d’où l’on tire :

GR =
s

2
+ 1

On a ainsi un régulateur PD avec KR = 1 et τD = 0, 5

Exercice 5

L’équation dynamique d’une cuve de mélange de volume variable est donnée par l’équation

Sḣ(t) = qe(t)− qs(t) h(0) = 1m

où h représente le niveau dans la cuve, qe et qs les débits volumiques d’entrée et de sortie et S la section de la

cuve cylindrique. On désire commander le niveau h par rétroaction en ajustant le débit qe.

L’organe de mesure est de nature statique avec un gain ∆M/∆h de 2, 5[V/m]. L’organe de commande est

approché par une fonction de transfert du premier ordre avec une constante de temps de 0, 1[min]. La ca-

ractéristique statique a été modélisée comme suit :

qe = −0, 04N2 +N + 14
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où qe est exprimé en [l/min] et N en [V ].

a) Evaluer la fonction de transfert M(s)/N(s) correspondant à N̄ = 1V et sachant que S = 0, 1[m]2.

b) Dimensionner un régulateur de type PID (c’est-à-dire avec 1,2, ou 3 termes) pour ce système.

Solution

a) Cuve

sSH(s)− Sh(0) = Qe(s)−Qs(s)H(s) =
Qe(s)

sS
− Qs(s)

sS
+

1

s

Organe de mesure
M(s)

H(s)
= KOM = 2, 5

V

m

Notons que l’on doit utiliser ce gain statique pour convertir la valeur de consigne en une grandeur comparable

à celle qui sort de l’organe de mesure.

Organne de commande

Le gain statique de l’organe de commande vaut pour N̄ = 1 :

KOC =
dqe
dN

∣∣∣∣
N̄=1

= −0, 08N̄ + 1 = 0, 92
l

minV

Ainsi :

GOC(s) =
0, 92

0, 1s+ 1

Fonction de transfert M(s)/N(s)

M(s)

N(s)
=
M(s)

H(s)

H(s)

Qe(s)

Qe(s)

N(s)
= 2, 5 · 1

Ss
· 0, 92

0, 1s+ 1
=

23

s(0, 1s+ 1)
[V/V ]

b) Régulateur Comme le système à commander possède déjà un terme intégrateur, on utilise un régulateur P

ou PD.

On peut par exemple spécifier la fonction de transfert du système bouclé comme étant du premier ordre

avec KBF = 1 et τBF = τ/2 = 0, 05min. On obtient ainsi un régulateur PD avec (équations 6.37 et 6.38) :

KR =
1

KτBF
=

1

23 · 0, 05
= 0, 87[V/V ]τD = τ = 0, 1min

Pour un régulateur P , les relations empiriques de Ziegler-Nichols nous indiquent de diminuer sensiblement

le gain du régulateur :

KR = 0, 87 · 0, 9

1, 2
= 0, 65[V/V ]

Exercice 6

Soit deux réservoirs cylindriques de section respectives A et B. Les écoulements par les vannes réductrices sont

proportionnels aux différences de pression amont/aval de ces vannes, le coefficients de proportionnalité étant

égal à 1/R.

a) Déterminer les fonctions de transfert

G1(s) =
H1(s)

Qe(s)
, G2(s) =

H2(s)

Qe(s)

b) Pour le système G1(s), déterminer le régulateur le plus simple parmi P, PD,PI, PID qui garantisse

l’absence de statisme dans la variable commandée.

c) Est-ce qu’un régulateur de même structure permet d’éliminer le statisme pour le système G2(s) ?
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Solution

a) Modèle dynamique

A
dh1

dt
= qe −

1

R
(h1 − h2) (1)

B dh2

dt = 1
R (h1 − h2)− 1

Rh2 (2)

A l’état d’équilibre stationnaire :

0 = q̄e − 1
R (h1 − h2)

0 = 1
R (h1 − h2)− 1

Rh2

⇒

{
h̄1 = 2Rq̄e
h̄2 = Rq̄e

Transformation de Laplace (avec des conditions initiales nulles en variables écart) :

AsH1(s) = Qe(s)−
1

R
[H1(s)−H2(s)] (3)

BsH2(s) =
1

R
[H1(s)−H2(s)]− 1

R
H2(s) (4)

(4) → H2(s)

H1(s)
=

1

BRs+ 2
(5)

(3) + (5) → G1(s) =
H1(s)

Qe(s)
=

R(BRs+ 2)

ABR2s2 +R(2A+B)s+ 1
(6)

G2(s) =
H2(s)

Qe(s)
=

R

ABR2s2 +R(2A+B)s+ 1
(7)

b) h1 sans statisme

Soit GR(s) la fonction de transfert du régulateur. En boucle fermée, on aura :

GBF (s) =
GR(s)G1(s)

1 +GR(s)G1(s)
(8)

Avec GR(s)G1(s) = N(s)/D(s), (8) devient :

GBF (s) =
N(s)

D(s) +N(s)

L’absence de statisme est garantie pour KBF = 1, c’est-à-dire pour :

lim s→ 0
N(s)

D(s) +N(s)
= 1 ↔ lim s→ 0D(s) = 0

Comme D(s) = DR(s)D1(s) = DR(s)[ABR2ss +R(2A+B)s+ 1]

lim s→ 0D(s) = 0 ↔ lim s→ 0DR(s) = 0

Il est donc nécessaire d’avoir un terme intégral dans le régulateur → régulateur PI
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c) h2 sans statisme

Même développement que ci-dessus. Comme G1(s) et G2(s) possèdent le même dénominateur, le résultat

est identique → régulateur PI.

Exercice 7

La réponse indicielle d’un système dynamique a été mesurée comme suit :

Pour ce système dynamique :

a) Evaluer son gain statique et sa constante de temps dominante.

b) Dimensionner un régulateur PI.

c) Le système commandé résultant est-il stable ? sans statisme ? (le justifier sans calcul).

d) Quel est l’effet du retard pur sur la stabilité du système bouclé ?

Solution

a)

Gain statique K = 3, 8

Retard pur θ = 6, 7s

Constante de temps = 6, 7s

 G(s) =
3, 8e−6,7s

6, 7s+ 1

b) Régulateur PI

KR = 0, 9
τ

θK
= 0, 9

6, 7

6, 7 · 3, 8
= 0, 24

τI = 3, 33θ = 3, 33 · 6, 7 = 22, 3s

c) Système commandé est

stable (rapport d’amortissement de 4)

sans statisme (terme intégral)

d) Une augmentation du retard pur réduit KR. Pour un régulateur donné, une augmentation du retard pur

diminue la marge de stabilité.

6.11 Symnbole utilisés

AUTO mode automatique

BF boucle fermée

BO boucle ouverte

BP bande proportionnelle (= 100/KR)

cp chaleur spécifique [J/kg°C]

d perturbation

e erreur ou écart de commande

ē erreur statique ou statisme

G fonction de transfert

h hauteur [m]

K gain statique

MAN mode manuel

m pente ∆M/τ [V/s]

M signal électrique de mesure normé [V]

N signal électrique de commande normé [V]

P puissance de chauffage [kW]
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q débit volumique [m3/s]

RT régulateur de température

t temps [s]

T température [°C]

>lim période à la limite de la stabilité [s]

TT transmetteur de température

u signal d’entrée

V volume [m3]

y signal de sortie

ε largeur d’hystérésis [V]

ξ coefficients d’amortissement

ρ masse volumique [kg/m3]

τ constante de temps [s]

τI constante de temps d’intégration [s]

τD constante de temps de dérivation [s]

θ retard pur [s]

Indices et autres symboles

XBF X du système en boucle fermée

XBO X du système en boucle ouverte

Xc X de consigne

Xe X d’entrée

XL X de la perturbation (� load �)

Xlim X à la limite de la stabilité

Xman X mode manuel

Xmax maximum de X

Xmin minimum de X

XOC X de l’organe de commande

XOM X de l’organe de mesure

XP X du processus

XR X du régulateur

Xréel X réel (en valeur absolue)

Xs X de sortie

X̄ X à l’état stationnaire

X̄ref X l’état stationnaire de référence

δX variation de X ; variable écart X(t)− X̄
∆X variation de X
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Stabilité et performance des systèmes bouclés

7.1 Définition et critère de stabilité

7.1.1 Définition

Stabilité BIBO (Bounded Input, Bounded Output)

Un système linéaire est stable si et seulement si sa réponse à toute entrée bornée reste bornée.

Un signal borné est un signal dont la valeur en fonction du temps (t ≥ 0) reste entre une limite inférieur finie

et une limite supérieur finie. Par exemple, un saut unité, une sinusöıde ou s(t) = exp(−2t) représentent des

signaux bornés. Par contre une rampe ou s(t) = exp 2t sont des signaux non bornés.

Cette définition indique que si, par exemple, la réponse d’un système à un saut unité est y(t) = exp(2t), le

système est instable (entrée bornée résultant en une sortie non bornée).

7.1.2 Critère de stabilité

Un système est stable si et seulement si toutes les racines de son équation caractéristique ont une partie réelle

négative. Ce critère représente une condition nécessaire et suffisante.

La stabilité d’un système linéaire peut donc être déduite de la position de ses pôles dans le plan complexe,

comme indiqué à la figure 7.1.

Nous allons démontrer ce critère de stabilité à partir de la définition de la stabilité BIBO. Pour cela, considérons

un système bouclé dont le schéma fonctionnel est donné à la figure 7.2.

Im

Re

stable instable

Figure 7.1. Domaine de stabilité (axe imaginaire non compris).

La réponse du système pour des conditions initiales nulles est la somme des effets des variations de consigna yc
et de perturbation d :
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Y (s) =
KOMGR(s)GOC(s)GP (s)

1 +GR(s)GOC(s)GP (s)GOM (s)
Yc(s)

+
GL(s)

1 +GR(s)GOC(s)GP (s)GOM (s)
D(s)

(7.1)

La fonction de transfert de la boucle comprend tous les éléments contenus dans la boucle et s’écrit donc :

GB(s) ≡ GR(s)GOC(s)GP (s)GOM (s)

si bien que l’équation (7.1) devient :

Y (s) =
KOMGR(s)GOC(s)GP (s)

1 +GB(s)
Yc(s) +

GL(s)

1 +GB(s)
D(s)

On peut expliciter les fonctions de transfert en fonction des pôles et des zéros :

Y (s)

Yc(s)

∣∣∣∣∣
BF

=
KOMGR(s)GOC(s)GP (s)

1 +GB(s)
= C

(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)
n ≥ m

Y (s)

D(s))

∣∣∣∣∣
BF

=
GL(s)

1 +GB(s)
= C ′

(s− z′1)(s− z′2) . . . (s− z′m)

(s− p′1)(s− p′2) . . . (s− p′n)
n′ ≥ m′

où pi, p
′
i, zi et z′i peuvent être réels ou complexes.

Etudions le comportement du système bouclé soumis à une excitation bornée de yc(t). Les conclusions seront

les mêmes pour une variation bornée de d(t). Calculons, par exemple, la réponse du système bouclé à un saut

unité de yc, c’est-à-dire Yc(s) = 1/s.

Y (s) =
C

s

(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pm)

=
A0

s
+

A1

s− p1
1

A2

s− p2
+ . . .+

An
s− pn

(7.2)

La transformation de Laplace inverse donne :

y(t) = A0 +A1 exp(p1t) +A2 exp(p2t) + . . .+An exp(pnt)

Séparons les pôles réels et les pôles complexes :

a) pi réel

La fonction yi(t) = Ai exp(pit) est décroissante pour pi < 0 et croissante pour pi ≥ 0. La réponse yi(t),

et par conséquent aussi y(t), sera non bornée et ainsi le système instable pour pi > 0.

Si pi = 0, le dénominateur de Y (s) possédera un terme en s2, lequel générera un terme en t pour yi(t).

Il s’ensuit que la réponse y(t) sera nécessairement non bornée et le système instable pour pi = 0.

b) pi, pi+1 conjugués complexes :

pi = ai + jbi

pi+1 = ai − jbi

yi(t) + yi+1(t)

= (αi + jβi) exp[(ai + jbi)t] + (αi − jβi) exp[(ai − jbi)t]

= αi exp(ait)[exp(jbit) + exp(−jbit)]

+jβi exp(ait)[exp(jbit)− exp(−jbit)]
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= 2αi exp(ait) cos(bit)− 2βi exp(ait) sin(bit)

= 2 exp(ait)[αi cos(bit)− βi sin(bit)]

Si ai > 0, alors yi(t) + yi+1(t) crôıt sans limite, donc aussi y(t), et le système est instable. De même, si

ai = 0, l’excitation bornée u(t) = A sin(bit) va générer une réponse y(t) non bornée car le dénominateur

de Y (s) possédera un terme en (s2 + b2i )
2, mettant ainsi en évidence l’instabilité du système.

Il importe encore de vérifier que ces conclusions sur la stabilité ne dépendent pas du choix de l’excitation yc(t),

pour autant que celle-ci soit bornée. Cette vérification se base sur la décomposition en éléments simples de la

réponse Y (s) :

• Si l’excitation yc(t) est bornée et possède une limite pour t→∞ alors, en vertu du théorème de la valeur

finale :

lim
t→∞

yc(t) = lim
s→0

sYc(s) 6= ±∞

Il s’ensuit que Yc(s) contiendra au plus un pôle à s = 0. Cela nous ramène au cas considéré dans l’équation

(7.2).

• Si l’excitation est bornée mais ne possède pas de limite pour t→∞, par exemple la sinusöıde sin(ωt), on

aura yc(t) = exp(jωt). Comme les pôles de l’excitation (partie réelle nulle) ne correspondent pas à ceux

du système (pour lequel ai < 0), la réponse possédera un terme de même type, exp(jωt), et sera donc

bornée.

Remarques

a) La stabilité d’un système linéaire est complètement déterminée par ses pôles.

b) Ces conditions de stabilité restent valables même si tous les pôles ne sont pas distincts.

7.1.3 Exemples

Exemple 1

Considérons le système intégrateur du §5.4.3 (cuve avec débit de fuite constant) dont la fonction de transfert

est :
H(s)

Qe(s)
=

1

Ss

Pour un saut échelon de qe(t) d’amplitude b, la sortie devient :

h(t) =
b

S
t

Ainsi, puisqu’une entrée bornée produit une réponse non bornée, le système est instable. On peut également le

vérifier en évaluant le pôle du système (p1 = 0).

Exemple 2

Etudions la stabilité du système bouclé donné à la figure 7.2 avec :

GR(s) = KR GOC =
1

2s+ 1

GP (s) = GL(s) =
1

5s+ 1
GOM (s) =

1

s+ 1

La fonction de transfert Y (s)/Yc(s)
∣∣∣
BF

donne :

Y (s)
Yc(s)

∣∣∣∣
BF

=
KR/((2s+ 1)(5s+ 1))

1 +KR/((2s+ 1)(5s+ 1)(s+ 1))

=
KR(s+ 1)

10s3 + 17s2 + 8s+ 1 +KR
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avec l’équation caractéristique suivante :

10s3 + 17s2 + 8s+ 1 +KR = 0

Pour déduire la stabilité de ce système, il faut trouver les racines d’une équation cubique en s. Il existe des

programmes de manipulations symboliques (par exemple MAPLE ou MATHEMATICA) qui permettent de

résoudre analytiquement de telles équations. On peut aussi les résoudre numériquement, par exemple avec

Matlab ; on obtient ainsi, pour différentes valeurs de KR :

KR = 2 s1 = −1, 25 s2 = −0, 22 + 0, 44j s3 = −0, 22− 0, 44j

6 −1.48 −0, 11 + 0, 68j −0, 11− 0, 68j

15 −1.76 0, 03 + 0, 95j 0, 03− 0, 95j

Le système bouclé est donc stable pour KR = 2 et KR = 6 et instable pour KR = 15. Cela se voit bien en

-
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Figure 7.3. Réponse du système bouclé en fonction du gain du régulateur.

représentant la réponse du système à un saut unité de yc (7.3).

Pour KR = 15, le système est instable car la réponse est une oscillation caractérisée par une amplitude croissante,

c’est-à-dire un signal non borné. En pratique, un signal ne peut grandir indéfiniment. Certaines limitations phy-

siques telles les saturations feront que le système atteindra un cycle limite (oscillation d’amplitude entretenue).

Cependant, le système linéaire est bien instable (tendance de la sortie à crôıtre indéfiniment).

L’objectif de la commande est d’assurer une bonne performance du système bouclé tout en garantissant bien

sûr sa stabilité. D’où l’importance du choix des paramètres du régulateur.

7.2 Critère de stabilité de Routh-Hurvitz

Pour l’exemple simple de la figure 7.2, il est nécessaire de calculer les racines d’un polynômes cubique en s. La

question se pose de savoir s’il est possible d’évaluer la stabilité d’un système linéaire sans devoir calculer ses

pôles. Cela est possible avec critère de Routh-Hurwitz.
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7.2.1 Principe

Le critère de Routh-Hurwitz est une technique analytique pour déterminer si toutes les racines d’un polynôme

sont à parties réelles négatives et et ceci sans les calculer. Nous verrons également le critère de Nyquist dans

le chapitre suivant qui a le même avantage de ne pas nécessiter le calcul explicite des racines du polynôme.

Le critère de Nyquist est un critère avec une interprétation graphique qui permet de donner des marges (des

”distances” à l’instabilité). Le critère de Routh-Hurwitz est purement algébrique et il ne permet pas de mesurer

facilement ”la distance” á l’instabilité. Il donne une réponse tout ou rien concernant la stabilité.

Si l’on applique ce critère à l’équation caractéristique polynomiale d’un système, il devient aisé d’analyser sa

stabilité.

Soit l’équation caractéristique sous sa forme polynomiale générale :

ans
n + an−1 + . . .+ a1s+ a0 = 0 (7.3)

Supposons an > 0 (pour le cas où an < 0, on multipliera l’équation par -1).

On peut montrer qu’une première condition nécessaire (mais non suffisante) pour la stabilité est :

an, an−1, . . . , a1, a0 > 0

Afin d’obtenir une condition également suffisante, on construit le tableau de Routh de la manière suivante :

ligne 1 an an−2 an−4 . . .

2 an−1 an−3 an−5 . . .

3 b1 b2 b3 . . .

4 c1 c2 . . .
...

...

n+ 1 z1

où

b1 =
an−1an−2 − anan−3

an−1
; b2 =

an−1an−4 − anan−5

an−1
; . . .

c1 =
b1an−3 − an−1b2

b1
; c2 =

b1an−5 − an−1b3
b1

; . . .

...

Pour que toues les racines de l’équation caractéristique (7.3) aient une partie réelle négative, il est nécessaire et

suffisant que tous les éléments de la première colonne du tableau de Routh soient positifs.

7.2.2 Exemples

Exemple 1

Reprenons l’équation caractéristique cubique de l’exemple 2 du §7.1.3 :

10s3 + 17s2 + 8s+ 1 +KR = 0

Etudions la stabilité du système bouclé à l’aide du critère de Routh-Hurwitz.

1. Conditions nécessaire :

10, 17, 8 et (1 +KR) > 0 =⇒ KR > −1

2. Tableau de Routh :
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ligne 1 10 8

2 17 1 +KR

3
136− 10KR

17
4 1 +KR

Conditions nécessaire et suffisantes :

136− 10KR

17
> 0 =⇒ KR < 13, 6

1 +KR > 0 =⇒ KR > −1

Le système est donc stable pour −1 < KR < 13, 6.

Justifier intuitivement ces deux bornes pour KR.

Exemple 2

Le système avec l’équation caractéristique suivante est-il stable ?

s4 + 5s3 + 3s2 + 1 = 0

Conditions nécessaire :

1, 5, 3, 0, 1 > 0

Le coefficient du terme en s est nul ; le système est donc instable.

Exemple 3

Etudier la stabilité du système bouclé de la figure 7.2 pour :

GR(s) = KR GOC(s) = 2

GP (s) =
4 exp(−s)

5s+ 1
GOM (s) = 0, 25

L’équation caractéristique devient :

1 +GB(s) = 1 +
2KR4 exp(−s)0, 25

5s+ 1
= 0

⇔ 5s+ 1 + 2KR exp(−s) = 0 (7.4)

Comme l’équation caractéristique n’est pas de nature polynomiale, le critère de Routh-Hurwitz n’est pas appli-

cable. Néanmoins, il est possible d’approcher un retard pur de façon à obtenir une équation caractéristique de

type polynomial comme indiqué ci-dessous.

7.2.3 Approximation d’un retard pur

Lorsque l’équation caractéristique comporte un facteur de la forme exp(−θs), il est possible de l’approcher par

une équation rationnelle à l’aide d’un développement en série de Taylor :

exp(−θs) = 1− θs+
θ2s2

2!
− θ3s3

3!
+ . . . (expression exacte de la série)

ou encore :

exp(−θs) =
exp(−(θ/2)s)

exp((θ/2)s)
=

1− (θ/2)s+ (θ2/8)s2 − (θ3/48)s3 + . . .

1 + (θ/2)s+ (θ2/8)s2 + (θ3/48)s3 + . . .
(7.5)
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On peut donc choisir comme approximation rationnelle de exp(−θs) :

exp(−θs) ' (1− θs) (zéro positif : z1 = 1/θ)

exp(−θs) =
1

exp(θs)
' 1

1 + θs
(pôle négatif : p1 = −1/θ)

exp(−θs) =
exp(−(θ/2)s)

exp((θ/2)s)
' 1− (θ/2)s

1 + (θ/2)s
(zéro positif : z1 = 2/θ)

(pôle négatif : p1 = −2/θ)

Cette dernière approximation est connue sous le nom d’approximation de Padé du premier ordre.

Exemple

En utilisant l’approximation de Padé du premier ordre, l’équation caractéristique (7.4) donne l’expression ra-

tionnelle suivante :

5s+ 1 + 2KR

(
1− 0, 5s

1 + 0, 5s

)
= 0

⇔ 2, 5s2 + (5, 5−KR)s+ (1 + 2KR) = 0

1. Conditions nécessaires pour la stabilité :

5, 5−KR > 0 ⇒ KR < 5, 5

1 + 2KR > 0 ⇒ KR > − 1
2

2. Tableau de Routh

ligne 1 2, 5 1 + 2KR

2 5, 5−KR

3 1 + 2KR

Conditions nécessaires et suffisantes :

5, 5−KR > 0 ⇒ KR < 5, 5

1 + 2KR > 0 ⇒ KR > − 1
2

En première approximation, le système est donc stable pour −0, 5 < KR < 5, 5. La condition exacte de stabilité

de ce système (−0, 5 < KR < 4, 25) peut être obtenue à l’aide du critère de stabilité de Bode (pas abordé dans

ce cours).

Déterminer la condition de stabilité du système précédent en utilisant une approximation de Padé du deuxième

ordre pour le retard pur.

7.3 Performance d’un système bouclé

7.3.1 Objectifs de la commande

Mentionnons certains objectifs importants quant à la performance d’un système bouclé (cf. §6.9.1) :

a) La stabilité du système bouclé doit être garantie.

b) La réponse à des changements de consigne doit être rapide et fiable (problème d’asservissement).

c) L’effet des perturbations sur la grandeur commandée doit être minimal (problème de régulation).

d) Le statisme est à minimiser.
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e) On doit également éviter de trop grandes variations de la grandeur de commande qui risqueraient de

provoquer une saturation du régulateur.

f) Le système bouclé doit être robuste, c’est-à-dire peu sensible aux changements du point de fonctionne-

ment, aux erreurs de modèle, aux bruits de mesure et aux perturbations.

7.3.2 Asservissement et régulation

Etudions les fonctions de transfert en boucle fermée pour les problèmes d’asservissement et de régulation. Afin

de simplifier les notations, et sans perte de généralité, considérons la situation suivante, très courante dans la

pratique : organe de mesure de nature statique avec :

GOM (s) = KOM

Avec la fonction de transfert du système à commander

G(s) = GOC(s)GP (s)KOM

les fonctions de transfert pour les problèmes d’asservissement et de régulation peuvent s’écrire :

Y (s)

Yc(s)

∣∣∣∣
BF

=
GR(s)G(s)

1 +GR(s)G(s)
(7.6)

et
Y (s)

D(s)

∣∣∣∣
BF

=
GL(s)

1 +GR(s)G(s)
(7.7)

On obtient une commande parfaite, c’est-à-dire Y (s)/Yc(s)
∣∣∣
BF

= 1 (suivi de consigne idéal) et Y (s)/D(s)
∣∣∣
BF

=

0 (régulation parfaite) en choisissant GR(s) très grand malheureusement, cela n’est pas possible pour toutes

les valeurs de s, pour des raisons de causalité, de stabilité et d’amplification de bruit. Cependant, le cas s→ 0

permet d’éliminer l’erreur statique. On montre que le statisme peut être éliminé de la façon suivante :

a) en asservissement : si le produit GR(s)G(s) contient au moins un terme intégrateur.

b) en régulation : si le produit GR(s)G(s) contient au moins un terme intégrateur de plus que GL(s).

Exemples

1.

G(s) =
K

τs+ 1
; GL(s) =

KL

τLs+ 1
; GR(S) = KR

Y (s)

Yc(s)

∣∣∣∣
BF

=
GR(s)G(s)

1 +GR(s)G(s)
=

KRK/(τs+ 1)

1 +KRK/(τs+ 1)
=

KRK

τs+ 1 +KRK

Y (s)

D(s)

∣∣∣∣
BF

=
GL(s)

1 +GR(s)G(s)
=

KL/(τLs+ 1)

1 +KRK/(τs+ 1)
=
KL(τs+ 1)/(τLs+ 1)

τs+KRK

Comportement à l’état stationnaire, c’est-à-dire pour s→ 0 :

lim
s→0

Y (s)

Yc(s)

∣∣∣∣
BF

=
KRK

1 +KRK
6= 1 ⇒ statisme

lim
s→0

Y (s)

D(s)

∣∣∣∣
BF

=
KL

1 +KRK
6= 0 ⇒ statisme

2.

G(s) =
K

s
; GL(s) =

KL

s
; GR(S) = KR

Y (s)

Yc(s)

∣∣∣∣
BF

=
KRK/s

1 +KRK/s
=

KRK

s+KRK
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Y (s)

D(s)

∣∣∣∣
BF

=
KL/s

1 +KRK/s
=

KL

s+KRK

Le comportement en régime permanent :

lim
s→0

Y (s)

Yc(s)

∣∣∣∣
BF

=
KRK

KRK
= 1 ⇒ pas de statisme

lim
s→0

Y (s)

D(s)

∣∣∣∣
BF

=
KL

KRK
6= 0⇒ statisme

Répéter les calculs des exemples précédents en utilisant un régulateur PI. Vérifier bien qu’il n’y a pas de statisme.

7.4 Exercices résolus

Exercice 1

Pour quelles valeurs de α le système dynamique non linéaire suivant est-il localement stable autour du point de

fonctionnement (ū = 1, x̄ = 1) :

ẍ+ αẋ+ x2 = u x(0) = 1 ẋ(0) = 0

Solution

Approximation linéaire (en variable écart) :

ẍ+ αẋ+ x2 = u x(0) = 0 ẋ(0) = 0

Equation caractéristique :

s2 + αs+ 2 = 0

s1,2 =
−α±

√
α2 − 8

2

Le système est stable si <{s1,2} < 0, donc pour α > 0.

On peut également utiliser le critère de Routh-Hurwitz. La condition nécessaire (et également suffisante pour

un système d’ordre 2, voir exercice 3) est que tous les coefficients de l’équation soient positifs, d’ou α > 0.

Exercice 2

Soit le système dynamique stable

ÿ + 3ẏ + 2y = 5u y(0) = ẏ(0) = 0

que l’on commande avec un régulateur de type PID.

a) Déterminer les conditions de stabilité lorsque le système est bouclé avec un régulateur P .

b) Idem pour un régulateur PI.

Solution

a) Régulateur P : u = KR(yc − y)

ÿ + 3ẏ + (2 + 5KR)y = 5KRyc

Condition de stabilité : 2 + 5KR > 0 KR > −0, 4

b) Régulateur PI
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U(s) =
KR(τIs+ 1)

τIs
= 0

τIs
3 + 3τIs

2 + (2 + 5KR)τIs+ 5KR = 0

Routh-Hurwitz :

1 τI (2 + 5KR)τI
2 3τI 5KR

3 (2 + 5KR)τI − 5
3KR

Conditions τI > 0 5KR(3τI − 1) + 6τI > 0

Remarques

On peut obtenir la condition de stabilité du système bouclé avec un régulateur P à partir de celles obtenues

pour un régulateur PI comme suit :

Pour τI > 1/3, la dernière condition devient :

5KR > −
6τI

3τI − 1

d’où l’on tire, pour τI →∞ (régulateur P ) :

KR > −
2

5
= −0, 4

Exercice 3

Montrer que la condition nécessaire de stabilité selon Routh-Hurwitz est également suffisante dans le cas d’un

système d’ordre 2.

Solution

Soit a2s
2 + a1s+ a0 = 0

Conditions nécessaires : a2, a1, a0 > 0

Tableau de Routh-Hurwitz :

1 a2 a0

2 a1

3 a0

Conditions nécessaires et suffisantes : a2, a1, a0 > 0

Exercice 4

Le système dynamique

G(s) =
3se−2s

5s2 + 3s+ 1

est commandé par un régulateur proportionnel.

a) Utiliser une approximation de Padé de premier ordre pour approcher le retard pur et déterminer la

condition de stabilité du système bouclé.

b) Comparer la région de stabilité avec celle obtenue pour le système sans retard pur.

Solution
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a) Equation caractéristique du système bouclé :

1 +GB(s) = 1 +
3KRse

−2s

5s2 + 3s+ 1
⇔ 5s2 + 3s+ 1 + 3KRse

−2s = 0

Padé 1er ordre :

e−2s ' 1− s
1 + s

→ 5s3 + (8− 3KR)s2 + (4 + 3KR)s+ 1 = 0

Routh-Hurwitz :

1 5 4 + 3KR

2 8− 3KR 1

3
27 + 12KR − 9K2

R

8− 3KR

Conditions : 8− 3KR > 0 ⇔ KR < 2, 67

27 + 12KR − 9K2
R > 0 ⇔ −1, 19 < KR < 2, 52

La vraie condition de stabilité du système bouclé (sans approximation ; étude dans le domaine fréquentiel)

est en fait :

−1, 20 < KR < 1, 78

b) Equation caractéristique du système sans retard pur :

5s2 + 3(1 +KR)s+ 1 = 0

Condition de stabilité : KR > −1.

On voit que la présence du retard pur limite fortement le domaine de stabilité du système bouclé.

Exercice 5

Montrer que le statisme peut être éliminé de la façon suivante :

a) en asservissement, si le produit GR(s)G(s) contient au moins un terme intégrateur,

b) en régulation, si le produit GR(s)G(s) contient au moins un terme intégrateur de plus que GL(s).

Solution

Exprimons GB(s) = GR(s)G(s) et GL(s) comme suit :

GB(s) =
G′B(s)

sα
GL(s) =

G′L(s)

sβ
α, β : entiers

où G′B(s) et G′L(s) ne contiennent pas de termes en 1
s .

a) En asservissement :
Y (s)

Yc(s)
=

G′B(s)/sα

1 +G′B(s)/sα
=

G′B(s)

sα +G′B(s)

En régime permanent (s→ 0), G′B(0) est fini. Il s’ensuit :

lim
s→0

Y (s)

Yc(s)
=

G′B(0)

sα +G′B(0)
= 1 (pas de statisme)

⇔ lim
s→0

sα = 0 c’est-à-dire α > 0
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b) En régulation
Y (s)

D(s)
=

G′L(s)/sβ

1 +G′B(s)/sα
=
sα−βG′L(s)

sα +G′B(s)

En régime permanent (s→ 0), G′B(0) et G′L(0) sont finis. Il s’ensuit :

lim
s→0

Y (s)

D(s)
=

AG′L(0)

B +G′B(0)
= 0 (pas de statisme)

avec A = lims→0 s
α−β

B = lim
s→0

sα

pour A = 0 ⇔ α > β

ou A fini, B →∞ ⇔ α ≥ β, α < 0

ou A→∞, B →∞ avec α < α− β ⇔ α, β < 0, α < β

Donc, pour ne pas avoir de statisme en régulation, il faut avoir α > β ou alors α, β < 0 (cas très parti-

culiers).

Exercice 6

Soit le système bouclé de la figure 7.2 avec

GR = KR;GOC = 2;GP =
0, 4(s− a)

(2s+ 1)(10s+ 1)
;GL =

KL

5s+ 1
;GOM =

1

s+ 1

a) Déterminer si la présence d’un zéro positif (α > 0) influence la stabilité du système bouclé.

b) Montrer que la valeur de KL n’influencera pas la stabilité du système bouclé.

Solution

La stabilité est analysée à partir de l’éqaution caractéristique :

1 +GRGOCGPGOM = 1 +
0, 8KR(s− a)

(2s+ 1)(10s+ 1)(s+ 1)
= 0

⇔ 20s3 + 32s2 + (13 + 0, 8KR)s+ (1− 0, 8KRa) = 0

a) L’équation caractéristique du zéro a, lequel influencera donc la stabilité du système bouclé. La condition

de stabilité selon Routh-Hurwitz donne :

1 20 13 + 0, 8KR

2 32 1− 0, 8KRa

3 12, 375 + 0, 8KR + 0, 5KRa

4 1− 0, 8KRa

→ 12, 375 + (0, 8 + 0, 5a)KR > 0 ⇔ KR > −
12, 375

0, 8 + 0, 5a

1− 0, 8KRa > 0 ⇔ KR < 1, 25/a

Donc, la condition de stabilité en fonction de a est la suivante :

− 12, 375

0, 8 + 0, 5a
< KR <

1, 25

a

b) Comme la fonction de transfert de la perturbation n’intervient pas dans l’équation caractéristique, la

valeur de KL n’influencera pas la stabilité du système bouclé.
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7.5 Symboles utilisés

d perturbation

e erreur ou écart de commande

G(s) fonction de transfert

h hauteur [m]

Im axe imaginaire du plan complexe

j
√
−1

K gain statique

m degré du numérateur d’une fonction de transfert

M signal électrique de mesure normé [V ]

n pôle d’une fonction de transfert

N signal électrique de commande normé [V ]

p pôle d’une fonction de transfert

qe débit volumique d’entrée [m3/s]

Re axe réel du plan complexe

s variable complexe de Laplace

S Surface de section [m2]

t temps [s]

y(t) Signal temporel de sortie (terme général)

z zéro d’une fonction de transfert

θ retard pur [s]

τ constante de temps [s]

ω pulsation [rad/sec]

Indices
XB Xde la boucle de commande

XBF Xdu système en boucle fermée

Xc Xde consigne

XL Xde la perturbation (� load �)

XOC Xde l’organe de commande

XOM Xde l’organe de mesure

XP Xdu processus

XR Xdu régulateur
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Diagramme de Nyquist

8.1 Introduction et objectifs

Ce chapitre décrit le critère de Nyquist. Ce critère permet de déterminer si un système est stable en boucle

fermée sans devoir calculer les racines du polynôme du dénominateur de la boucle fermée. Il donne également

des marges de stabilité comme la marge de gain et la marge de phase. Le critère utilise la réponse harmonique

K(iω)G(iω) en boucle ouverte afin de déduire la stabilité en boucle fermée.

Nous avons vu au chapitre précédant que la stabilité est déterminée par la position des pôles (zéros du polynôme

au dénominateur de la fonction de transfert). Lorsque ceux-ci sont tous dans le demi-plan gauche du plan

complexe, la stabilité est garantie (on dit même que la stabilité est de type exponentiel). Lorsqu’un seul de ces

pôles est dans le demi-plan droit, le système entrée-sortie représenté par la fonction de transfert est instable.

Un tel critère nécessite ainsi la capacité de calculer les pôles un à un, et ainsi de tous les calculer étant donné

qu’un seul d’entre eux peut être responsable du comportement instable.

Dans ce chapitre, nous allons indirectement garantir que tous les pôles de la fonction de transfert en boucle

fermée (asservissement et régulation) se situent du bon côté du plan complexe, le demi-plan gauche, sans devoir

calculer individuellement les pôles en boucle fermée.

L’analyse du comportement en boucle fermée est effectuée sur la connaissance de la boucle ouverte uniquement.

Il faut faire très attention au fait que se sont les données de la boucle ouverte (sous la forme de la connaissance

des polynômes des numérateurs et des dénominateurs des fonctions de transfert du régulateur et du système

à régler) qui sont utilisées à des fins de conclure sur la stabilité du montage en boucle fermée. Ceci conduit

malheureusement à une potentielle source de confusion.

Le critère de Nyquist repose sur un peu d’analyse complexe, et en particulier du thèorème de Cauchy. Nous

utiliserons le principe de l’argument appliqué à une transformation méromorphe particulière.

Nous ferons donc un rappel de la différence entre polynôme, fonction rationnelle, fonction entière, fonction

méromorphe et fonction analytique, avant de présenter la transformation particulière donnant naissance au

critère de stabilité.

Le critère est finalement appliqué, en guise d’illustration, au système bille sur une roue.

8.2 Boucle ouverte et boucle fermée

Il est important de rappeler les concepts de boucle ouverte et de boucle fermée. Notons que bien qu’il existe es-

sentiellement deux formes de boucle fermée (celle d’asservissement et celle de régulation), toutes deux possèdent

le même polynôme au dénominateur ce qui entrâıne que la stabilité de l’une est automatiquement garantie dès

lors que que les racines de ce polynôme sont toutes dans C−.
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8.2.1 Boucle ouverte

La boucle ouverte est le mise en série du régulateur K(s) et du système à régler G(s) ne supprimant la rétroaction

e(t) = yc(t)− y(t) entre la grandeur de sortie y(t) du système à régler G(s) et l’entrée e(t) du régulateur K(s).

Il n’y a pas d’influence du système à régler G(s) sur le régulateur K(s). Ce dernier opère en sorte en aveugle

par rapport à la grandeur à commander y (la sortie du système à réguler G(s)).

K(s) G(s) Y

Figure 8.1. Schéma de commande en boucle ouverte qui consiste dans la mise en série du régulateur et du système à
régler.

Parmis les fonctions de transfert en boucle ouverte impliquant le système à commander G(s) on peut distinger

la fonction de transfert du sysème à commander G(s) et la mise en série de la fonction de transfert du système

à commander et du régulateur, ce qui donne K(s)G(s).

La fonction de transfert du système à commander G(s)

C’est la fonction de transfert définissant le rapport entre la transformée de Laplace de la sortie Y (s) sur celle

de l’entrée U(s)

G(s) :=
Y (s)

U(s)

Le système à régler obéit à des équations différentielles ordinaires qui lient l’entrée u(t) à la sortie y(t), et par

conséquent G(s) est une fraction rationnelle donnée sous la forme d’une fraction entre deux polynômes en s.

Par convention, le polynôme au numérateur sera noté B(s) et celui du dénominateur A(s) et ainsi

G(s) =
B(s)

A(s)

La mise en série K(s)G(s) entre le régulateur et le système à commander

Par définition c’est le produit

K(s)G(s)

où K(s) et la fonction de transfert du régulateur donné comme le rapport de la transformation de Laplace de

la grandeur de commande (sortie de K(s)) sur la transformation de Laplace de l’erreur (entrée de K(s)).

K(s) :=
U(s)

E(s)

Comme le régulateur est également décrit par un ensemble d’équations différentielles ordinaires, la fonction de

tranfert K(s) est une fraction rationnelle. Le polynôme du numérateur sera par convention S(s) et celui du

dénominateur R(s) :

K(s) =
S(s)

R(s)

Pôles en boucle ouverte

Ce sont les zéros du polynôme A(s)R(s).
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8.2.2 Boucle fermée

La boucle fermée apparâıt dès qu’il existe une influence de la grandeur à commander sur la grandeur d’entrée du

régulateur. Parmis toutes celles possibles, on distingues essentiellement deux fonctions de transfert particulières,

celle d’asservissement (poursuite de la consigne) et celle de régulation (rejet de perturbation). Grâce au principe

de superposition, les deux apparaissent dans le même schéma fonctionnel.

Fonctions de transfert en boucle fermée

Il y a deux fonctions de transfert en boucle fermée, celle d’asservissement

Gyc→y =
K(s)G(s)

1 +K(s)G(s)
=

B(s)S(s)

A(s)R(s) +B(s)S(s)
(8.1)

et celle de régulation

Gv→y =
G(s)

1 +K(s)G(s)
=

B(s)

A(s)R(s) +B(s)S(s)
(8.2)

K(s)
+

+
−

Yc
YG(s)

V

Figure 8.2. Schéma de commande en boucle fermée. La fraction Y (s)/V (s) est décrit par la fonction de transfert
en boucle fermée de régulation (8.2) et la fraction Y (s)/Yc(s) est donné par la fonction de transfert en boucle fermée
d’asservissement (8.1).

Pôles en boucle fermée

Les deux fonctions de transfert en boucle fermée, celle d’asservissement et celle de régulation, ont le même

polynôme au dénominateur

A(s)R(s) +B(s)S(s)

qui détermine ainsi les pôles en boucle fermée.

8.3 Principe et critères de Nyquist

Un critère graphique est présenté qui permet de vérifier la stabilité en boucle fermée sans calculer les racines du

polynôme du dénominateur AR+BS des fonctions de transfert en boucle fermée. A cette fin, il suffit d’examiner

la boucle ouverte en dessinant dans le plan complexe C la courbe

K(iω)G(iω)

pour ω qui varie ω ∈ [−∞; +∞]. Ceci décrit une courbe fermée dans le plan complexe qui peut encercler ou

non le point −1. Comme les coefficients des polynômes apparaissant dans K(s) et G(s) (c.-à-d. les polynômes

A, B, R et S), la courbe est symètrique par rapport à l’axe réel.

La stabilité est déterminée par le nombre de fois que la courbe K(iω)G(iω) encercle le point −1.

Les hypothèse de stabilité de la boucle ouverte conditionne le type de critère utilisé, le critère de Nyquist

simplifié et celui généralisé. Une esquisse de la démonstration du crière généralisé sera effectuée.
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8.3.1 Critère de Nyquist simplifié

Theorem 3. (Critère de Nyquist simplifié) Hypothèse : Le système en boucle ouverte K(s)G(s) est stable.

Sous cette hypothèse, le système est BIBO stable en boucle fermée si et seulement si K(iω)G(iω) n’encercle pas

le points −1.

Enonçons le critère généralisé. Une esquisse de la démonstration sera donnée ensuite. L’avantage du critère

simplifié est qu’il n’est pas nécessaire de comptabiliser le nombre d’encerclements du points −1. L’inconvénient

est qu’il ne s’applique uniquement aux systèmes stables en boucle ouverte.

8.3.2 Critère de Nyquist généralisé

Theorem 4. ( Critère de Nyquist généralisé) Le système K(s)G(s) possède P pôles instables (pôles

instables de la boucle ouverte). Le système en boucle fermée est stable, si et seulement si K(iω)G(iω) encercle

le point −1 un nombre de fois correspondant à P dans le sens trigonométrique positif.

8.4 Un peu d’analyse complexe...

Dans cette section, nous laissons provisoirement de côté le critère de Nyquist et nous étudions des éléments

d’analyse complexe essentiel pour sa justification.

8.4.1 Polynômes

Definition 5. (Polynômes) Un polynôme est une somme finie de monômes

F (s) =

n∑
i=0

ais
i

8.4.2 Fonction entière

Definition 6. (Fonction entière) Une fonction entière est une somme infinie de monômes, dont la somme

est convergente partout (pour tout s ∈ C)

Exemple :

F (s) =

∞∑
i=0

ais
i

Condition ⇔ pour la convergence dans tout C

lim
i→∞

(|ai|)
1
i = 0 (8.3)

8.4.3 Fonction analytique

Definition 7. (Fonction analytique) Une fonction analytique est localement une fonction entière Dans un

ouvert V ⊂ C

F (s) =

∞∑
i=0

ai(s0)(s− s0)i ∀s0 ∈ V ai(s0) ∈ C

— La série converge dans un disque centré en s0 de rayon r(s0)

(qui peut être petit)

— Le disque de convergence doit être inclut dans V
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8.4.4 Fonction méromorphe

Definition 8. (Fonction méromorphe) C’est une fraction de deux fonctions entières.

Definition 9. (Fonction méromorphe, définition alternative plus générale) C’est une fonction lo-

calement définie par une fraction de deux fonctions analytiques.

8.4.5 Exemples de fonctions méromorphes

Polynôme

s+ 3 + 3s2 + 3s+ 1

Fraction de deux polynômes

s+ 2

s2 + 2s+ 1

A l’aide de fonctions entières bien connues

La fonction sinus est une fonction entière car elle se développe en une série en la variable s qui converge partout.

C’est par conséquent une fonction méromorphe. Le sinus est également la différence entre deux exponentielles

complexes pondérées ce qui donne une autre démonstration de cette propriété du sinus.

sin(s)

s2 + s+ 1

es

cos(s)

A l’aide du critère de convergence pour les fonctions entières

Lorsque on effectue une somme infinie de la variable s élevée en puissances successives, les coefficients devant

chaque terme peuvent entrâıner la convergence pour toute les valeurs de la variable s. Un fonction entière est

alors obtenue. Celle-ci n’admet pas nécessairement une description par une fonction bien connue (contrairement

à l’exponentielle ou le sinus). Par exemple,

2s+ 3∑∞
0 aisi

ai =
i+ 2

(ln(i+ 2))i+2
(8.4)

est une fonction méromorphe étant donné que la série au dénominateur est une fonction entière. Ce sont les ai
qui ont la propriété (8.3) ce qui garantit cette propriété. Il n’existe pas de fonction connue qui décrive la fraction

(8.4). La théorie de ce chapitre s’applique à cette fraction étant donné que c’est une fonction méromorphe.

8.4.6 Transformation définie par une fonction méromorphe

Examinons l’effet d’une application qui prend comme source les points d’un plan complexe et qui les applique

dans un autre plan complexe. Soit donc

H : C→ C

la fonction méromorphe.
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8.4.7 Courbe Γ

Une courbe Γ dans le plan complexe est choisie qui effectue une boucle simple en se refermant sur elle-même.

Cette courbe est orientée. Nous choisirons l’orientation comme le sens trigonométrique positif (c’est le sens

relatif qui a de l’importance, donc le choix d’une orientation est importante mais sa direction est un choix

arbitraire).

Γ = eiα α ∈ [0; 2π] (8.5)

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

C

8.4.8 Image de Γ par la fonction méromorophe

Lorsque les points s ∈ Γ varient il est possible de dessiner l’image de ces points par l’application méromorphe,

c.-à-d. l’ensemble

H(Γ ) := {H(s)|s ∈ Γ}

qui est une nouvelle courbe qui se referme sur elle-même mais qui n’effectue pas nécessairement une boucle

simple. En effet, comme l’application H peut être surjective, il est possible que cette courbe repasse par les

même points. Elle peut effectuer plusieurs boucles.

Par exemple, lorsque

H(s) =
(s+ 1.1)2 + 0.22

(s+ 0.5)3
(8.6)

l’image de la courbe Γ donnée par le cercle (8.5), à savoir H(Γ ) est donnée ci-dessous



8.4 Un peu d’analyse complexe... 187

1.5 1.0 0.5 0.5 1.0

1.5

1.0

0.5

0.5

1.0

1.5

C

8.4.9 Nombre d’encerclements de l’origine et singularités

Supposons que Γ soit décrit par un paramètre α ∈ [0; 1]

Γ = γ(α) α ∈ [0; 1]

Comme la courbe se referme sur elle-même γ(0) = γ(1) et puisque la courbe est simple γ(α1) 6= γ(α2) lorsque

α1 6= α2 et α1, α2 ∈ [0; 1].

Etant donné que H peut être surjective, on peut avoir

∃α1 6= α2 H(γ(α1)) = H(γ(α2))

Definition 10. (Nombre d’encerclements N) On appelle N le nombre de fois que la courbe encercle l’ori-

gine 0 lorsque α ∈ [0; 1] pour une courbe Γ paramétrée par α.

Pour la courbe Γ donnée par (8.5), α appartient à l’intervalle [0; 2π[ et on a ei0 = ei2π.

Definition 11. (Z et P ) Comme H est une fonction méromorphe donnée par le quotient de deux fonctions

entières, on appelle Z le nombre de zéros du numérateur de H contenu à l’intérieur de Γ . On appelle P le

nombre de pôles de H (zéros du dénominateur) contenu à l’intérieur de Γ .

L’équation N = Z − P

Nous avons un théorème important :

Theorem 5. La courbe H(Γ ) encerle N = Z − P fois l’origine O où Z désigne le nombre de zéros et P le

nombre de pôles de H contenus à l’intérieur de Γ .

Reprenons l’exemple avec la courbe Γ donnée par (8.5) et la fonction H(s) donnée par (8.6). Z est le nombre

de zéros de H(s) à l’intérieur du contour Γ . Comme le numérateur de H(s) est (s + 1.1)2 + 0.22, nous avons

deux zéros, en −1.1± 0.2 i qui sont tous les deux à l’extérieur de Γ car leur module vaut 1.18 qui est supérieur

au rayon 1 du cercle Γ . Par conséquent Z = 0. En ce qui concerne P , le nombre de pôles de H(s) à l’intérieur

de Γ , le dénominateur de Γ a trois racines qui sont toutes en −0.5, et donc à l’intérieur du cercle unité. En

conséquence, P = 3. La conclusion est que la courbe H(Γ ) doit encercler N = Z − P = −3 fois l’origine du

plan complexe. C’est ce que nous avons constater en examinant la courbe juste en dessous de l’équation (8.6).
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8.4.10 Exemples supplémentaires

Conservons les mêmes pôles qu’auparavant et changeons le numérateur afin d’avoir un zéro unique juste à

l’intérieur de Γ . Ceci donne

s+ 0.99

(s+ 0.5)3

et conduit à la courbe image

�1.0 �0.5 0.5 1.0 1.5 2.0

�2

�1

1

2

C

La courbe n’encercle que deux fois l’origine car cette fois N = 1− P = −2.

Finalement, déplaçons le zéro juste à l’extérieur de la courbe Γ , autrement dit juste à l’extérieur du cercle unité

avec

s+ 1.01

(s+ 0.5)3

1.0 0.5 0.5 1.0 1.5 2.0

2

1

1

2

C

et on constate que la courbe encercle trois fois dans le sens trig. − puisque nous avons à nouveau N = Z −P =

0− 3 = −3.
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Nous pouvons prendre des courbes Γ plus compliquées comme par exemple

Γ = (1 + 0.2 cos(8ω))ejω ω ∈ [0; 2π]

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

C

et avec comme transformation

H(s) =
1

(s+ 0.1)4

ce qui conduit à la courbe image

1.5 1.0 0.5 0.5 1.0 1.5

4

2

2

4
C

qui encercle bien l’origine un nombre de fois compatibles avec la théorie N = Z − P = 0− 4 = −4.

Prenons encore quelques cas où la transformation H(s) est plus compliquée que la fraction de deux polynôme,

ceci afin d’effectuer des dessins plus complexes. Cette fois la théorie permet de générer un grand nombre de

boucles puisque Z = N − P et en emprisonant beaucoup de zéros ou de pôles on effectuera beaucoup de tours

autour de l’origine. Reprenons le cercle comme courbe initiale

Γ = ejω ω ∈ [0; 2π]
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�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

C

et prenons un fonction sinus de la variables complexe s. Cette fonction possède un nombre infini de zéros.

sin(22s)

0.5s− 1

On s’attend alors que la courbe image H(Γ ) tourne un nombre infini de fois autour de l’origine et c’est ce qui

se produit en examinant la figure

C

8.4.11 Principe de l’argument

Le nombre d’encerclements de l’origine par la transformation d’une courbe fermée peut être justifié par le

principe de l’arguement dont voici une esquisse. L’idée clé est que seul les zéros et les pôles situés à l’intérieure

de la courbe contribue à l’arguement de la fonction H(s) modulo 2π lorsqu’on considère la variation de l’angle

du vecteur reliant un pôle ou un zéro et le point de la courbe paramétré par α. Lorsque le point sur Γ effectue

un tour complet, l’angle du vecteur entre ce point et un pôle ou zéro sera un multiple de 2π si celui-ci est à

l’intérieur de la courbe Γ ou non. Si c’est un pôle il contribuera −2π, si c’est un zéro, il contribuera +2π. Tous

les pôles et zéros situés à l’extérieur de Γ ne contribueront pas.

Contour Γ et fonction méromorphe H(s)

Soit Γ un contour dans la plan complexe qui entoure une région simplement connexe ayant ainsi un intérieur

et un extérieur.

La courbe Γ est paramétrée par, par exemple, α ∈ [0; 2π]. Soit H(s) une fonction méromorphe qui sera prise,

sans perte de généralité, comme une fraction rationnelle contenant
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— m zéros zi, i = 1, . . . ,m

— n pôles pi, i = 1, . . . , n

— les Z premiers zéros sont à l’intérieur de Γ

— les P premiers pôles sont à l’intérieur de Γ

Principe de l’argument de Cauchy

Theorem 6. (Principe de l’argument de Cauchy)

argH(Γ ) = 2π(Z − P )

Z est le nombre de zéros de H(s) à l’intérieur de Γ

P est le nombre de pôles de H(s) à l’intérieur de Γ

le signe + correspond à la même orientation que celle de Γ

Esquisse de démonstration :

H(s) =

∏m
i=1(s− zi)∏n
i=1(s− pi)

arg(H(Γ )) =

Z∑
i=1

arg(Γ − si) +

m∑
i=Z+1

arg(Γ − si)

−
P∑
i=1

arg(Γ − pi)−
n∑

i=P+1

arg(Γ − pi)

=

Z∑
i=1

arg(Γ − si)−
P∑
i=1

arg(Γ − pi)

arg(H(Γ (ω)))α∈[0,2π] = 2π(Z − P )

8.5 Démonstration du critère de Nyquist généralisé

Le critère de Nyquist provient de l’application du nombre d’encerclements de l’origine pour un choix de la

courbe Γ qui encercle l’ensemble du demi plan droit C+.

La courbe Γ est choisie ainsi comme l’axe imaginaire (qui encercle le demi-plan complexe C+

Γ = {iω, ω ∈]−∞; +∞[}

La fonction de transformation est

H(s) = 1 +K(s)G(s)

En appliquant la méthode de la section précédante, on arrive aux conclusions que le nombre d’encerclements N

de la courbe 1 +K(iω)G(iω), ω ∈]−∞; +∞[ est donné par

N = Z − P

où

N Nombre d’encerclements de 1 +K(iω)G(iω) autour de 0

Z Nombre de zéros de 1 +K(s)G(s) dans C+

P Nombre de pôles de 1 +K(s)G(s) dans C+
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étant donné que la courbe Γ entoure tout C+.

Un examen attentif de l’expression 1 +K(s)G(s) donne

1 +K(s)G(s) = 1 +
S(s)B(s)

R(s)A(s)

=
A(s)R(s) +B(s)S(s)

A(s)R(s)

et on peut réécrire le tableau ainsi

N Nombre d’encerclements de 1 +K(iω)G(iω) autour de 0

Z Nombre de zéros de A(s)R(s) +B(s)S(s) dans C+

P Nombre de zéros de A(s)R(s) dans C+

En remarquant que les zéros du polynôme A(s)R(s) sont les pôles de K(s)G(s) (les pôles de la boucle ouverte,

cf. sections 8.2.1 et 8.2.1) et que les zéros de A(s)R(s) + B(s)S(s) sont les pôles des fonctions de transfert en

boucle fermée (cf. sections 8.2.2 et 8.2.2), le tableau s’écrit

N Nombre d’encerclements de 1 +K(iω)G(iω) autour de 0

Z Nombre de pôles de la boucle fermée dans C+

P Nombre de pôles de la boucle ouverte dans C+

Finalement, regarder le nombre d’encerclements de l’origine par 1 +K(iω)G(iω) revient au même à regarder le

nombre d’encerclements du point −1 par la courbe K(iω)G(iω).

N Nombre d’encerclements de K(iω)G(iω) autour de −1

Z Nombre de pôles de la boucle fermée dans C+

P Nombre de pôles de la boucle ouverte dans C+

ce qui donne le critère de Nyquist généralisé. En posant P = 0 (valable uniquement à condition d’avoir le

système en boucle ouverte stable), le critère de Nyquist simplifié est obtenu.

8.6 Exemples

8.6.1 Critère de Nyquist simplifié

La courbe Γ est choisie comme l’axe imaginaire en laissant de côté tous les pôles situés sur l’axe imaginaire.

Γ = {iω ∈ C|ω ∈ R, ω ∈] =∞; +∞[} (8.7)

Par exemple, lorsque H(s) = 1 + K(s)G(s), il revient au même de regarder le nombre d’encerclements de

l’origine de H(Γ ) que le nombre d’encerclements de −1 par K(Γ )G(Γ ). Prenons

K(s)G(s) =
1

s3 + 9s2 + 26s+ 24
(8.8)

l’image de l’axe imaginaire donné par Γ défini par (8.7) devient
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Les pôles en boucle ouverte de K(s)G(s) donnés par les zéros du dénominateur de (8.8) qui sont −2, −3, −4

et aucun n’est instable (aucun n’est situé dans C+). On peut donc appliquer le critère de Nyquist simplifié en

posant P = 0. En examinant la figure ci-dessus on constate que la courbe n’encercle pas le point −1. Ainsi

N = 0. De là, la conclusion que Z = N + P = 0 + 0 = 0. Il n’y a donc pas de pôle instable de la boucle fermée.

Prenons comme autre exemple

K(s)G(s) =
150

s3 + 9s2 + 26s+ 24

=
150

(s+ 2)(s+ 3)(s+ 4)

=
150

(s− p1)(s− p2)(s− p3)

On a représenté le point −1 en rouge. Bien que celui-ci se rapproche de la courbe K(Γ )G(Γ ), il n’est toujours

pas entouré et le critère de Nyquist prédit la stabilité de la boucle fermée.

2 2 4 6

4

2

2

4

C

Vérifions que tous les pôles de la boucle fermée sont stables. Rappelons que ce calcul n’est pas nécessaire pour

appliquer le critère de Nyquist.

K(s)G(s)

1 +K(s)G(s)
=

150

s3 + 9s2 + 26s+ 174
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A(s)R(s) +B(s)S(s) = s3 + 9s2 + 26s+ 174

= (s+ 8.38)(s+ 0.31 + 4.55j)(s+ 0.31− 4.55j)

= (s− p1)(s− p2)(s− p3)

Les pôles en boucle fermée sont tous dans le demi-plan gauche (pi ∈ C−, i = 1, 2, 3). Le critère de Nyquist a

prédit correctement la stabilité de la boucle fermée.

Prenons un autre exemple, mais cette fois-ci avec un gain statique de la boucle ouverte supérieur

K(s)G(s) =
350

s3 + 9s2 + 26s+ 24

=
350

(s+ 2)(s+ 3)(s+ 4)

=
350

(s− p1)(s− p2)(s− p3)

En examinant la courbe K(iω)G(iω) pour ω ∈ [−∞; +∞], on se rend compte que le point −1 est encerclé une

fois. Ceci prédit un pôle instable de la boucle fermée

5 10

10

5

5

10

C

Vérifions cette prédiction en calculant les pôles de la boucle fermée.

K(s)G(s)

1 +K(s)G(s)
=

350

s3 + 9s2 + 26s+ 374

A(s)R(s) +B(s)S(s) = s3 + 9s2 + 26s+ 374

= (s− 10.1)(s+ 0.55 + 6.06j)(s+ 0.55− 6.06j)

= (s− p1)(s− p2)(s− p3)

Le pôle p1 = 10.1 conduit à une instabilité car il appartient à C+

8.6.2 Critère de Nyquist généralisé

8.6.3 Exemple : bille sur une roue

La fonction de transfert de la bille sur la roue est donnée par

G(s) =
1

s2 − 0.1
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et nous choisissons le régulateur initial sous la forme

K(s) = K(1 + 4s)

Calcul du nombre de pôle instable de la boucle ouverte :

— 1 pôle instable p1 =
√

0.1. Ainsi P = 1

Le critère de stabilité de Nyquist généralisé détermine N :

— P = 1 (1 pôle instable en boucle ouverte)

Z = 0 (0 pôles de la boucle fermées dans C+)

Calculons N (le nombre de tours autour de −1).

N = Z − P
−1 = 0− 1

— K(jω)G(jω) doit encercler le point −1 une fois pour assurer la stabilité en boucle fermée

Au fur et à mesure que K augmente. . .

3 2 1 1

2

1

1

2C

Ainsi il existe un gain suffisament grand pour lequel on entoure le point −1 conduisant l̀a stabilité de la boucle

fermée. Objectif atteint.

8.7 Conclusion

Un critère de stabilité essentiellement graphique et qui exploite la boucle ouverte en fréquence K(iω)G(iω) a

été présenté et développé dans ce chapitre. Le critère de stabilité possède les propriétés suivantes :

— Pas besoin de calculer les pôles en boucle fermée.

(Pas besoin de calculer les racines de AR+BS avec K = R
S et G = B

A .)

— Utilisation uniquement du transfert en boucle ouverte.

(Utilisation directe de KG) et évalué sur l’axe imaginaire. Autrement dit il nécessite la connaissance de

K(iω)G(iω) et non toute la connaissance du transfert K(s)G(s).)
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— Il faut seulement connâıtre le nombre de pôles instables de la boucle ouverte.

(Le nombre de racines instables de AR.)

— Rend possible la synthèse en “sculptant” la boucle ouverte.
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commande proportionnelle, 142

effet de la perturbation Te(t), 145

commande proportionnelle-intégrale, 148
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intégration temporelle, 75

translation dans le domaine de Laplace, 75

translation dans le temps, 76

valeur finale, 76

valeur initiale, 77

proroiétés de la transformation de Laplace
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réponse indicielle, 116
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